Cryptanalysis of Simpira v1

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Austria
maria.eichlseder@iaik.tugraz.at

Abstract. Simpira v1 is a recently proposed family of permutations,
based on the AES round function. The design includes recommenda-
tions for using the Simpira permutations in block ciphers, hash functions,
or authenticated ciphers. The designers’ security analysis is based on
computer-aided bounds for the minimum number of active S-boxes. We
show that the underlying assumptions of independence, and thus the
derived bounds, are incorrect. For family member Simpira-4, we provide
differential trails with only 40 (instead of 75) active S-boxes for the recom-
mended 15 rounds. Based on these trails, we propose full-round collision
attacks on the proposed Simpira-4 Davies-Meyer hash construction, with
complexity 2%2-%2 for the recommended full 15 rounds and a truncated
256-bit hash value, and complexity 2'1%!¢ for 16 rounds and the full
512-bit hash value. These attacks violate the designers’ security claims
that there are no structural distinguishers with complexity below 228,

Keywords: Simpira - permutation-based cryptography - cryptanalysis -
hash functions - collisions

1 Introduction

The Advanced Encryption Standard AES and its underlying wide-trail design
strategy are among the most popular building blocks for new symmetric designs.
There are several good reasons for this. New AES-like designs profit both from
the insights in efficient implementations and from the extensive cryptanalysis and
well-understood security bounds of AES. In particular, if new designs not only
reuse the general design ideas, but the AES block cipher itself or its round function,
then Intel’s AES-NT instruction set can provide high software performance on
modern CPUs. However, while block ciphers are a versatile building block for
other cryptographic primitives, the fixed block size of AES of 128 bits implies
a certain limitation. Modern designs often require larger states for efficiency
or security. Examples include permutation-based cryptography (hash functions,
authenticated encryption, etc.), wide-block encryption, security beyond 264 inputs
without resorting to beyond-birthday-security schemes, and more.

These considerations have motivated the design of numerous cryptographic
algorithms based on the AES round function. Notable recent examples of dedi-
cated designs include several authenticated encryption algorithms with excellent
software performance, such as the CAESAR round-2 candidates AEGIS [15] and

© TACR 2016. The final publication will be available at Springer in the proceedings of SAC 2016.

Tiaoxin [12], but also more specialized primitives like the Haraka hash function
for short inputs [9]. Very recently, Jean and Nikoli¢ [5] analyzed a more general
family of AES-round-based building blocks that generalizes several of the previous
dedicated designs. However, except for the last work, these dedicated designs
target only specific state sizes, and do not offer scalable, easily reusable building
blocks for other cryptographic applications.

Simpira is a recently proposed family of permutations designed by Gueron
and Mouha [2] that aims to fill this gap. The design goal is to provide very
efficient permutations for arbitrarily large input sizes of b-128 bits, b € NT, while
taking advantage of the Intel AES-NI instruction set for optimized software im-
plementations. To achieve these goals, Simpira plugs the AES round function into
a generalized Feistel construction. Additionally, the designers provide computer-
aided bounds for the minimum number of active S-boxes, and argue that these
bounds provide security against a wide range of attack vectors. To showcase
the versatility of the Simpira permutations, the designers propose a number of
application scenarios, including Even-Mansour block cipher constructions, or a
keyless Davies-Meyer variant for hash functions with limited-length inputs.

Our contribution. We analyze members of the original Simpira v1 family [2].
We show that the underlying assumptions of independence, and thus the derived
bounds on the minimum number of active S-boxes, are incorrect. We focus
our analysis on family member Simpira-4 with its 512-bit state, but similar
observations also apply to other family members with larger state sizes. For
Simpira-4, we provide differential trails with only 40 (instead of 75) active S-
boxes for the recommended 15 rounds. Based on these trails, we propose collision
attacks on the proposed Simpira-4 Davies-Meyer hash construction. For 16 rounds
of the permutation, we obtain collisions for the full 512-bit hash output with
complexity 211916, We also adapt the attack to the originally recommended 15
rounds, providing second-order collisions and truncated collisions. We consider
several truncation variants, and obtain, among others, collisions on truncated
384-bit output with complexity 211016 or collisions on the 256-bit output with
complexity 28262 — the details depend on the implemented truncation variant.
These attacks violate the designers’ security claims that there are no structural
distinguishers below 228,

Related work. Rgnjom [14] independently analyzed Simpira v1, and identified
invariant subspaces for any even number of rounds of Simpira-4. Both attacks
on Simpira v1 exploit properties of the underlying Type-1.x Generalized Feistel
Structure by Yanagihara and Iwata [16] and the sparse, structured round con-
stants. In response to Rgnjom’s and our attacks, Gueron and Mouha proposed a
new version of the design, Simpira v2 [3], which replaces both the Feistel con-
struction and the round constant schedule. In the remaining document, Simpira
always refers to Simpira v1.

Simpira is not the first AES-round-based design with problematic round
constants. Other examples include the analysis of the hash function Haraka [9] by

Jean [4], the analysis of the withdrawn CAESAR round-1 candidate PAES [17]
by Jean et al. [6,7], or the analysis of SHAvite-3 [1] by Peyrin [13]. In all
three cases, the structure of the round constants failed to break the symmetry
properties of the unkeyed AES round function. However, our attack exploits
different properties, in particular the incomplete diffusion of differences in the
structured round constants.

Outline. We first describe the Simpira family of permutations in Sect. 2. We then
propose our attacks in Sect. 3, beginning with an iterative truncated differential
trail with fewer S-boxes than expected in Sect. 3.1. In Sect. 3.2, we select the
bitwise differences of our truncated trail to obtain an 8-round differential trail
with probability 2711016 Based on this trail, we propose a collision attack on
the 16-round Simpira-4 hash construction in Sect. 3.3. Finally, in Sect. 3.4, we
adapt our attack to the recommended 15-round design.

2 Description of Simpira

Simpira is a family of permutations designed by Gueron and Mouha [2]. By using
the AES round function in a generalized Feistel construction, it can be adapted
to any input size of b- 128 bits, b € N*. We refer to Simpira family members as
Simpira-b.

2.1 F-Function

The Feistel update function F' = F_; applies two rounds of AES, where the
Simpira family member b and the round counter ¢ define the round constants.
Like for AES, the 128-bit intermediate state of F' is represented as a 4 X 4-matrix
of bytes, labelled sq, ..., s15:

83 157(511|515

We also refer to the value at byte position s; in state S as S[i].

The operations SubBytes, ShiftRows, and MixColumns are defined identically
to AES, whereas AddConstant adds counters that define an invocation counter
and the value b:

— SubBytes (SB): Applies the 8-bit AES S-box S to each of the 16 state bytes.

— ShiftRows (SR): Rotates row i of the state, 0 <+ < 3, by i bytes to the left.

— MixColumns (MC): Multiplies each byte column of the state by the MDS-
matrix M over K = Fao[a]/(a® + a* + a® + a + 1),

a a+1 1 1 02 03 01 01

vo| ' @ a+1i 1 | _|o1o020301
1 1 a a+1 01 01 02 03

a+l 1 1 « 03 01 01 02

— AddConstant (AC): In the cth invocation of F' for Simpira-b, xors the following
round constant C.p to the state:

Ccolby| 00
c1|b1| 010

Cep =
b Cc2lby| 0|0
c3|bs| 0|0

In the remaining paper, we focus on Simpira-4, so by = 04 and by = by = b3 =
00. Also, since the number of invocations of F' is limited to 30 in Simpira-4,
c1 = ¢o = ¢3 = 00. This constant is only added in the first of the two AES
rounds of F', while the second round adds O.

To refer to intermediate states of F' for an input S, we use the following notation:

SB SR MC AC SB SR MC
S SSBI SSRI SMCI SAC SSBQ SSR2 SMC2 _ F(S) .

2.2 Round Function and Permutation

The permutation Simpira-b keeps a state of b - 128 bits. The generalized Feistel
round function for b > 4, where b # 6, 8, is illustrated in Fig. 1. The final output
of Simpira-b for b > 4, b # 6,8, is the state after 6b — 9 such rounds. Note that
if the number of rounds is not a multiple of b, the state words are output in a
permuted order to allow for more efficient implementations.

Fig. 1. Round function for round ¢ of Simpira-b for b > 4, b # 6, 8.

In case of Simpira-4, we denote the 4 state words before round i > 1 by
SA 8B SC SP so the state update rule corresponds to
SA L = Fai1.4(Sf) @ S,
S = Faia(SP) @ 57,
Sic+1 = SiDv
Sk, =5

The recommended number of rounds for Simpira-4 is 15, with output words
(515, S76: 13, Si6)-

2.3 Permutation-based Hashing

Simpira’s designers identify several application areas for the Simpira permutation,
such as block ciphers via an Even-Mansour construction. One particular suggested
application is permutation-based hashing for short inputs, where “short” means
the state size of any Simpira variant. The proposal is to use a single-block, keyless
Davies-Meyer-like construction with a feed-forward, and compute the hash h(z)
of = as

h(z) = Simpira-b(z) @ .

This approach provides an efficient construction for hashing inputs of limited
length, which is required by many applications, such as Lamport signatures [10].

3 Collision Attacks on Simpira-4 Hash

In this section, we show that the number of rounds recommended by the designers
is not sufficient to obtain a secure permutation. In particular, we provide collisions
for full-round Simpira-4 when used in the hash mode suggested by the designers.
While our analysis is focused primarily on Simpira-4, the basic observations also
apply to the larger Simpira variants with the same construction approach, that
is, Simpira-b with b > 4, b # 6, 8.

3.1 Differential Trail with 40 Active S-Boxes over 15 Rounds

The analysis performed by Simpira’s designers [2] relies on two basic bounds:
full bit diffusion, and minimum number of active S-boxes. The recommended
number of rounds for each variant is selected as 3 times the number of rounds
necessary to prove full bit diffusion and a minimum number of 25 differentially
or linearly active S-boxes. While the proofs for full bit diffusion are based on
generic results on the underlying generalized Feistel construction by Yanagihara
and Iwata [16], the bounds for active S-boxes were obtained with a Mixed-Integer
Linear Programming (MILP) model [11]. For Simpira-4, both full bit diffusion
and at least 25 active S-boxes are claimed to be provided by 5 rounds of the
round function. For the full number of 15 rounds, this method would imply at
least 75 active S-boxes.

The bound is derived under the assumption that all F-function inputs are
processed independently. For example, if the F-functions were indeed independent,
the 4-round differential trail illustrated in Fig. 2 would contain 20 independently
active S-boxes. Since the trail is iterative, and adds 5 active S-boxes per round,
this trail also demonstrates the tightness of the 15-round bound.

Of course, in an unkeyed primitive like a permutation or a hash function, the
S-boxes are not really independent, since there are no random, independent round
keys. Nevertheless, it is usually a reasonable assumption that the differential
probabilities behave as if the values were actually independently random. We
thus count S-boxes as independently active when it can reasonably be expected

Fig. 2. Iterative 4-round trail for Simpira-4 with 10 independently active S-boxes.

that their multiplied differential probabilities give a good estimate for the overall
differential probability of the trail.

However, for all instances of Simpira-b with b > 4, b # 6, 8, this independence
is violated by the generalized Feistel construction, and the particular definition
of F. Consider, for example, the inputs to the active F-functions in rounds 1 and
2, S{* and SP. The input values to the two F-functions are identical. Recall the
definition of F' = Fi4, in our case Fi 4 and F3 4. The only difference between Fi 4
and F3 4 is the round-constant addition at the end of the first AES round. This
means that the inputs and outputs of the S-boxes of the first AES round must
be identical, i.e., Sf’MCl = Sf’MCl. The round constant only differs in state byte
S0, so this means the S-box transitions in the second AES round will also be
identical except in sg. In fact, the outputs Sfl’MCQ of F1 4 an SQD’MC2 of F3 4 will
have identical values except for the first column.

Considering the 4-round trail of Fig. 2, this means that the entire output
difference of F3 4 will be identical to that of F} 4 with probability 1, as illustrated
in Fig. 3. Note that s¢ is not active in the second AES round, and the differential
behaviour of MixColumns is independent of the actual values of sg. Consequently,
if we fix all full-state differences to the same bitwise difference pattern, all single-
byte differences to the same difference pattern, and all columnwise differences
to the same difference pattern, the actual cost of the iterative trail of Fig. 2
is equivalent to only 5 active S-boxes per 2 rounds, or 40 S-boxes overall for
the recommended 15 rounds, which is about half as many as suggested by the
MILP-based bound. In fact, the MILP model can be adapted to take this into

account by counting only the activity of the left-hand F-functions, and only
S-box sy for the right-hand F-functions, except in the first round. With this
modification, it is easy to prove that 40 active S-boxes is a tight bound for 25
rounds. The minimum number of rounds to achieve at least 25 active S-boxes is
then 9, instead of 5.

Fig. 3. Trail for the F-function with 5 active S-boxes.

3.2 Collision Attack on 8 Rounds

We now want to use this iterative differential trail of Fig. 2 to find collisions for
the permutation-based hash construction suggested for Simpira permutations.
Recall that in this short-input Davies-Meyer construction, the b - 128-bit message
is used as input to the Simpira permutation, and finally added as a feed-forward
to the permutation output to produce the untruncated b - 128-bit hash value. Our
trail is incidentally very well suited to produce collisions for this feed-forward
construction. Observe that if we fix all state differences to the same patterns as
discussed in Sect. 3.1, the feed-forward will cancel out the message difference
with probability 1 for any number of rounds that is a multiple of b = 4.

To optimize the complexity of the collision attack, we need to fix the bitwise
difference patterns suitably. Recall that the AES S-box has maximum differential
probability % = 276, For each nonzero input difference, there is exactly one
output difference with this probability (and vice versa), while the other prob-
abilities are either ﬁ =277 or 0. We can easily choose difference patterns so
that all S-box transitions have this optimal probability, at least for uniformly
random round constants. For example, if we fix the one-byte input difference to
75, the trail illustrated in Fig. 4 satisfies our requirements. The probability of
the differential for the F-function is then at least 2739, Overall, the probability
of such an 8-round trail is at least 27394 = 27120 and the resulting complexity
for finding the 512-bit collision is at most 2'2°.

00 00 00 75 00 00 00 fe I\S/I'E 00 00 00 eT 00 00 00 £7 SR b7 d8 73 £5
00 00 00 00| sB_ |00 00 00 00| Ac, |00 00 00 fe| s, |00 00 00 d8| mc, |[b7 73 ab £7

00 00 00 00 = 00 00 00 00 00 00 00 fe 00 00 00 d8 c2 ab d8 £7
00 00 00 00 00 00 00 00 00 00 00 19 00 00 00 b7 75 d8 d8 02
2—6 2—6~4

Fig. 4. Trail for the F-function with probability 273°

Note that we are actually not interested in the probability of the trail within
the F-function, but just in the input-output differential from the fixed 1-byte

difference to the fixed 16-byte difference. The probability of this differential is
typically higher than that of the trail, since several different trails can contribute
to the same differential. In the case of 2-round AES, Keliher and Sui [8] proved
that for a random round constant, the probability of the differential in Fig. 4 is
actually 2739 4 74 . 2735 ~ 2728:272

If we consider additionally that the round constant is not random, but in
our case fixed to (00,00,00,00)7 for the relevant state bytes, the transition
probabilities can increase even further. For example, the differential in Fig. 5 is
satisfied with probability 22-2732 ~ 2727-54, With this differential, the probability
of the 8-round trail is increased to 24%27-54 = 2-110.16,

00 00 00 00 00 00 00 00 00 00 00 77 00 00 00 61 4c c2 61 2b
00 00 00 00 00 00 00 00 00 00 00 77 00 00 00 cd 81 61 61 7d

99 . 932 5, 9—27.54

Fig. 5. Differential for F-function with probability

00 00 00 40 00 00 00 77 I\S/IRE 00 00 00 77 00 00 00 2b R cd 61 a3 56
00 00 00 00| sB, |00 00 00 00| Ac, |00 0O 00 ??7| s |00 0O 00 61| mc, |cd a3 c2 2b
272754

3.3 Collision Attack on 16 Rounds

Since the permutation involves no round keys, we can try to satisfy the conditions
for some active F-functions with message modification. We will try to find
messages (or rather, initial structures for intermediate Simpira states) such that
the conditions for several rounds are satisfied “for free” with probability 1, and
append the previous 8-round trails of Sect. 3.2 to be satisfied probabilistically.
We first propose a simple initial structure covering 6 rounds, and then improve it
to satisfy all conditions over 8 rounds, thus extending the previous 8-round trail
to a 16-round trail with the same probability.

Initial structure for 6 rounds. It is sufficient to set the 4 bytes x1, xg, £11, T12
of a state S to a suitable assignment in order to follow the trail for this F-
function deterministically. We will refer to these 4 bytes as the diagonal in
the following, and to a valid assignment as a valid diagonal. We can reuse one
precomputed valid diagonal for all necessary diagonals.

We want to fix the values of the diagonals in S{', Sf, and Sg“ to the valid
diagonal. Observe that S7* = S§, and S5' = SE. Thus, by fixing the diagonals of
S and SE, we have already satisfied 2 F-trails. The remaining 12+ 16+ 12 bytes
of S2', S8, SE can be filled arbitrarily, which will immediately determine the value
of SP and thus Sf’M@. If we now set the diagonal of SSC to the valid diagonal,
and fill its remaining 12 bytes with arbitrary values, we completely determine
SP via SP and S§!, and thus complete the state after 4 rounds. By varying the
52 arbitrary byte values, we can obtain the necessary 21916 candidates to satisfy

the 8-round trail. The approach is illustrated in rounds 1-6 of Fig. 6, where
and 0 mark the 52 arbitrary bytes.

Improved initial structure for 8 rounds by matching diagonals. With
some additional effort, we can find initial structures that also satisfy the F-trail in
round 7. We will again initialize the values of S&, 2, 5S¢ S§ as in the previous
6-round initial structure. However, we can use the 12 + 12 arbitrary bytes of Sz
and S¢ to obtain a valid diagonal in S#'. This will provide us with a 16-round
collision attack with the same computational complexity as the 8-round trail in
Sect. 3.2.

Our goal is to obtain a match between the diagonals of %D’MC2 and Sg"MCQ,
as illustrated in Fig. 6. If these two diagonals sum to zero, the diagonal of Sz
will take the exact same value as that of S5C , which is the valid diagonal. For this
purpose, we want to initialize part of the initial structure to generate random
values in Sg‘ ’MC27 and independently a different part of the initial structure, to
independently get random values in S5D MC2 Then, any match between the two
corresponds to an initial structure that satisfies 4 F-trails.

Assume that S§ and S£ are already fixed to some arbitrary constants, with

the valid diagonal in S§’. We first use the free bytes of SZ' to randomize S?’MCQ.
Any complete assignment of Sg:‘ will directly determine Sg? M2 yia S5A M2 and

Sg“. We can assume the values are distributed reasonably close to uniformly
random, since the values are processed by 4 AES rounds, and only 4 input bytes
are fixed.

Independently, we can vary the 12 bytes of S5C to randomize the diagonal
of SEI)D MC2 Ty see the independence of the values in Sz, consider the diagonal
of Sf’MCQ. Its values will always be identical to that of S5D ,MC2’ except for the
first column, which is influenced by the round constant and will be considered

separately in a moment. Since the diagonals of S and S$ are fixed and predeter-
D,MC2

mined, these values can further be traced back right to S . Thus, knowing
the diagonal of S?? MC2 i5 equivalent to knowing the target diagonal of S5D MC2

except for 1 byte in s;. This equivalent diagonal is derived easily from S¢', again
by 4 AES rounds via SP, f’MCQ, S¢.

Evaluating the missing match byte s; of Sf’Mcz. Now we still need to

account for the missing byte s;. Fortunately, with some minor modifications of our
guessing strategy, this value can also be computed directly from S?P M2 Tnstead
of varying all 12 arbitrary bytes of ng‘ to produce our matching candidates, we
will keep the first column (bytes sg, s2, s3) fixed. In fact, for simplicity, we will

set them to the exact same values as the first column of S§:
s&0,...,3] = S5[0,...,3].

This implies that the values of the first column and diagonal (bytes so, ..., s3, Se,

811, S12) must be identical between S’?’MCQ and Sf’MCZ. By partially inverting

9-110.16

-+ 8 rounds, probability

e MES B

Fig. 6. 16-round collision attacks on Simpira-4 hash using 8-round initial structure.
M fixed difference, B valid diagonal, I2 arbitrary bytes, EJ matching inputs, match

10

the last few steps of F, we can also easily verify that this means that
D,AC A,AC
S5 [0] = Sy [0].

To determine our target value s; in S? ’MCQ, consider a differential view of
the intermediate variables in the computations F(S7') and F(SP). The input
values are identical, but a difference in sq is introduced by AddConstant. We are
interested in how this difference ASAC propagates to the target byte in ASME2,
Since we only introduced a single-byte difference before the final MixColumns, we
get

ASMC2[1] = 01 - ASSB2(0]
=S (sf*\c [0]) ®S (5;;‘7“ 0] & ASAC [O]) .

By using the previously established identities between F(S{') and F(SP), and
observing ASAC[0] = 07 @ 0A = 0D, we finally obtain all our target match bytes
in SPM directly from F(SP):

S5D,Mc2[1] _ Sf,MCZ[l] @ ASMC2[1]
=5 e s (5740)) @ S ($70] & op)
= §PMe g s (S;”AC [0]) ®S (Sf’AC E on) :
S M2 6) = 557V 6],
SPME 1) = §PMO 1),

D,MC2 D,MC2
Se [12] = S5 [12].

Complexity of generating initial structures. Summarizing, we can now
generate a large number of initial structures as follows. First, fix the diagonals
in S and S§ to any valid diagonal. Fix all remaining bytes of S§ and SZ to
arbitrary values. Copy the valid diagonal and first column of S3C to Sg‘. Vary the
remaining 9 bytes of SZ', storing the resulting values of the diagonal of Séq MC2
in a list. Independently vary the 12 bytes of S¢, derive the diagonal of Séj MC2
and store it in a second list. Any match between the two lists gives a valid initial
structure that follows the differential trail up to round 8.

If we only wanted one match on the 4 bytes of the diagonal, we could try
216 values each for S and S§, and would expect roughly 2216732 = 1 match
due to the birthday effect. However, consider using 232 values each instead. The
expected number of 4-byte matches is roughly 2232732 = 232 Now we evaluate
the complexity for generating these 232 solutions. Computing the match bytes
requires to evaluate 2 -2 - 232 = 234 F_functions. Since 16-round Simpira-4
evaluates more than 16 = 2* F-functions, this corresponds to a complexity of
about 23274 = 239 Simpira-4 evaluations. Thus, we were able to produce solutions
with amortized complexity less than 1. With this initial structure, we obtain a
16-round collision with computational complexity about 24%27-54 = 2110.16 The
memory requirements are only about 232 - 2 AES states.

i

11

3.4 Collision Attack on 15 Rounds with Truncation

In Sect. 3.3, we actually attacked more than the recommended number of 15
rounds for the Simpira-4. In the following, we discuss the applicability of the
analysis to the original 15-round design.

Permutation distinguisher. Clearly, the 16-round trail of Fig. 6 also imme-
diately leads to a 15-round permutation distinguisher. With a computational
complexity of 211916 we can find pairs of inputs with a fixed input difference
such that the permutation outputs collide in 62 of 64 bytes, or actually in 510
of 512 bits, since we use the 1-byte differences of Fig. 5. This property implies,
for example, second-order collisions for the hash construction with complexity
2. 21016 whereas the generic complexity bound is at least about 2°12/4 = 2128,
This distinguisher violates the security claims for Simpira-4.

Furthermore, if we impose no constraints on the active F-function in round
15 by allowing arbitrary constraints in Sf‘gMcz and thus in S{%, we still get a
collision on at least 46 of 64 bytes, or in at least 382 of 512 bits, with a fixed input
difference. Then, only the 3 active F-functions in rounds 9, 11, and 13 need to
be satisfied probabilistically. The probability for this trail is 273%27-54 = 2-82.62,

Truncated collisions. The trail no longer automatically leads to full-state
collisions for the hash construction, since the 2 active state words we get after
an odd number of rounds cannot cancel all 3 active state words at the input.
However, we can consider truncated versions of the hash construction. Since the
permutation-based Simpira-4 hash construction claims only 128-bit security, but
the state size is 512 bits, Simpira’s designers comment that “truncation of the
output of Simpira may be required [...] to match the intended application”. An
obvious choice would be to truncate the state to 256 bits, so that the security
claim matches the generic bound. The details and complexity of the collision
attack then vary depending on the implementation of this truncation. Below, we
consider 3 natural choices for truncation.

Truncation variant 1: Left /right half. The most intuitive choice is to simply
truncate to the right (or left) half of the final state. Consider the rightmost 256
bits. With the previous 16-round trail of Fig. 6 and 7a, the permutation of the
output words means that this conveniently corresponds to a hash output of

(s¢ @58, sPosty) = (R, FHeHH) = (EH.)

In fact, we can extend this to collisions up to the rightmost 384 bits if we just shift
our iterative trail down by 1 round, as illustrated in Fig. 7b. The probabilistic
part of the trail is then moved to rounds 1 (input S¥) and rounds 10, 12, and 14
(inputs S4). For the same complexity of 211016 we get a 384-bit hash collision
of the output

(S ® St6, ST @ S, S¥ @ Sip)-

12

L

.- 8 rounds initial structure + 7 rounds with probability 27110-16 ...

256-bit hash (variant 1)
S S

L—————— 256-bit hash (variant 3) ———

(a) Truncation variants 1 and 3: 256-bit collisions with complexity 2*10-16

E&A SF% @Sf SP@

- 1 round (27%7-%*) 4 8 rounds initial structure 4 6 rounds (273%27-54) ...

384-bit hash (variant 1)

(b) Truncation variant 1: 384-bit collisions with complexity 2!1%-¢

gy YEET

- 8 rounds initial structure + 6 rounds with probability 2782-62 ...

L— 256-bit hash (variant 2) —!

(c) Truncation variant 2: 256-bit collisions with complexity 252-62

Fig. 7. Collisions for truncated 15-round Simpira-4 hash.

13

Truncation variant 2: Every second word. Assume the truncation function
selects every second word, that is, the 256-bit hash output is

(St e Sf, SY @ SR

Then, we can even take advantage of the improved permutation distinguisher
with complexity 28262, as in Fig. 7c.

Truncation variant 3: Updated words. In the previous truncation variants,
we took advantage of the fact that the output of one of the last round’s two F-
functions was truncated. Consequently, another good candidate for a truncation
function is to select exactly the words that depend on the last round’s F-outputs,
S{t and ST, so the hash output is

(Si* @ ST, SP @ Siy).

Nevertheless, the trail of Fig. 7a still provides hash collisions with complexity
9110.16

4 Conclusion

In this paper, we analyzed the permutations Simpira-b, b > 4, b # 6, 8, of the
Simpira v1 family, with a focus on Simpira-4. Due to properties of the underlying
Type-1.x Generalized Feistel Structure and the sparse round constants, the
computer-aided bounds given by the designers for the minimum number of active
S-boxes are invalid. The count includes many pairs of S-boxes whose inputs
are not independent, in particular, many actually share the exact same inputs.
Based on differential trails that exploit this property, we propose full-round
collision attacks on the proposed Simpira-4 Davies-Meyer hash construction,
with complexities down to 28262 for the recommended full 15 rounds and the
truncated 256-bit hash value, depending on the truncation rule, and complexity
2110-16 for 16 rounds and the full 512-bit hash value.

The attacks exploit Generalized Feistel Structures which apply multiple F-
functions to a Feistel branch without xoring other F-outputs in between, as would
be the case in a standard Feistel construction. While it is not clear whether this
property could be exploited in general for independent F', it certainly becomes
a problem when the F-functions differ only by using different, sparse round
constants. In Simpira v1, this is the case for all family members b > 4, b # 6, 8.
The consequence is that two branches of the state will be updated with two
closely related F-outputs.

To address the problems described in this paper and by Rgnjom [14], Gueron
and Mouha subsequently tweaked their design [3]. The new Simpira v2 fixes the
issue by replacing both the Feistel construction, to ensure disjoint F-inputs, and
the round constants with denser values.

Acknowledgments. We thank the Simpira designers Shay Gueron and Nicky
Moubha for verifying our results and providing useful suggestions.

14

o The research leading to these results has received funding from the

: European Union’s Horizon 2020 research and innovation programme

e under grant agreement No 644052 (HECTOR) and from the Austrian
Science Fund (project P26494-N15).

*
* o

References

1. Biham, E., Dunkelman, O.: The SHAvite-3 hash function. Submission to NIST (SHA-
3 Round 2) (2009), http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.
09.09.pdf

2. Gueron, S., Mouha, N.: Simpira: A family of efficient permutations using the
AES round function. Cryptology ePrint Archive, Report 2016/122 (2016), http:
//eprint.iacr.org/2016/122/20160214:005409

3. Gueron, S., Mouha, N.: Simpira v2: A family of efficient permutations using
the AES round function. Cryptology ePrint Archive, Report 2016/122 (2016),
http://eprint.iacr.org/2016/122/20160306:231039

4. Jean, J.: Cryptanalysis of Haraka. Cryptology ePrint Archive, Report 2016/396
(2016), http://ia.cr/2016/396

5. Jean, J., Nikoli¢, I.: Efficient design strategies based on the AES round function.
FSE 2016. See also: Cryptology ePrint Archive, Report 2016/299 (2016), http:
//ia.cr/2016/299

6. Jean, J., Nikoli¢, I., Sasaki, Y., Wang, L.: Practical cryptanalysis of PAES. In: Joux,
A., Youssef, A.M. (eds.) SAC 2014. LNCS, vol. 8781, pp. 228-242. Springer (2014)

7. Jean, J., Nikoli¢, 1., Sasaki, Y., Wang, L.: Practical forgeries and distinguishers
against PAES. IEICE Transactions 99-A(1), 39-48 (2016)

8. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Information Security 1(2), 53-57
(2007), http://ia.cr/2005/321

9. Kolbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka — efficient short-
input hashing for post-quantum applications. Cryptology ePrint Archive, Report
2016/098 (2016), http://ia.cr/2016/098

10. Lamport, L.: Constructing digital signatures from a one-way function. Tech. Rep.
SRI-CSL-98, SRI International Computer Science Laboratory (1979)

11. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57-76. Springer (2011)

12. Nikoli¢, I.: Tiaoxin v2. Submission to the CAESAR competition (2015), http:
//competitions.cr.yp.to/round2/tiaoxinv2.pdf

13. Peyrin, T.: Chosen-salt, chosen-counter, pseudo-collision for the compression func-
tion of SHAvite-3. NIST mailing list (2009), http://ehash.iaik.tugraz.at/
uploads/e/ea/Peyrin-SHAvite-3.txt

14. Rgnjom, S.: Invariant subspaces in Simpira. Cryptology ePrint Archive, Report
2016/248 (2016), http://ia.cr/2016/248

15. Wu, H., Preneel, B.: AEGIS v1. Submission to the CAESAR competition (2014),
http://competitions.cr.yp.to/roundl/aegisvl.pdf

16. Yanagihara, S., Iwata, T.: Type 1.x generalized Feistel structures. IEICE Transac-
tions 97-A(4), 952-963 (2014)

17. Ye, D., Wang, P., Hu, L., Wang, L., Xie, Y., Sun, S., Wang, P.: PAES v1. Submission
to the CAESAR competition (2014), http://competitions.cr.yp.to/round1/
paesvl.pdf

15

http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf
http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf
http://eprint.iacr.org/2016/122/20160214:005409
http://eprint.iacr.org/2016/122/20160214:005409
http://eprint.iacr.org/2016/122/20160306:231039
http://ia.cr/2016/396
http://ia.cr/2016/299
http://ia.cr/2016/299
http://ia.cr/2005/321
http://ia.cr/2016/098
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt
http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt
http://ia.cr/2016/248
http://competitions.cr.yp.to/round1/aegisv1.pdf
http://competitions.cr.yp.to/round1/paesv1.pdf
http://competitions.cr.yp.to/round1/paesv1.pdf

	Cryptanalysis of Simpira v1

