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ABSTRACT 

The Tiny Encryption Algorithm (TEA) is a Feistel block cipher well known for its simple implementation, small memory 
footprint, and fast execution speed. In two previous studies, genetic algorithms (GAs) were employed to investigate the 
randomness of TEA output, based on which distinguishers for TEA could be designed. In this study, we used quan-
tum-inspired genetic algorithms (QGAs) in the cryptanalysis of TEA. Quantum chromosomes in QGAs have the advan-
tage of containing more information than the binary counterpart of the same length in GAs, and therefore generate a 
more diverse solution pool. We showed that QGAs could discover distinguishers for reduced cycle TEA that are more 
efficient than those found by classical GAs in two earlier studies. Furthermore, we applied QGAs to break four-cycle 
and five-cycle TEAs, a considerably harder problem, which the prior GA approach failed to solve. 
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1. Introduction 

The Tiny Encryption Algorithm (TEA), a Feistel block 
cipher notable for its simplicity of description and im-
plementation, was developed by David Wheeler and 
Roger Needham at the Computer Laboratory of Cam-
bridge University and was first presented at the Fast 
Software Encryption workshop at Cambridge in 1994 [1]. 
Its design goal was to minimize the memory footprint 
and maximize the speed. There is an excellent article on 
TEA by Shepherd [2]. 

The following code presents the TEA encode routine 
in C language: 

void code(long* v, long* k) { 
unsigned long y = v[0], z = v[1], sum = 0, /* set up */ 
delta = 0x9e3779b9, n = 32 ;  
while (n-->0) { /* basic cycle start */ 
sum += delta ; 
y += (z<<4)+k[0] ^ z+sum ^ (z>>5)+k[1] ; 
z += (y<<4)+k[2] ^ y+sum ^ (y>>5)+k[3] ;  
} 
v[0] = y ; v[1] = z ; } 

where the 128-bit key is stored in four 32-bit blocks k = 
(k[0], k[1], k[2], k[3]) and data of 64 bits are stored in v 
= (v[0] ,v[1]). 

The quantity delta in the C code is used to ensure that 
encryption/decryption in each cycle is different. A cycle 

in TEA is defined as two Feistel rounds. The SHIFT, 
ADD, and XOR operations in TEA provide the necessary 
diffusion of the statistics of the plaintext in the ciphertext 
and confusion between the ciphertext and key value for a 
secure encryption algorithm. 

The simplicity of TEA’s key schedule algorithm made 
itself susceptible to the related-key attacks; in [3] three 
such attacks were suggested. Soon after this discovery, 
the original authors of TEA created a revised version of 
TEA called XTEA to address this weakness [4]. 

Differential cryptanalysis is a commonly used crypt-
analytic technique introduced by Biham and Shamir [5]. 
It explores the correlations between the difference in an 
input and the resultant difference at the output of the en-
cryption. The goal is to discover the non-randomness, in 
the form of differential characteristics, of the cipher, 
based on which the information about the secret key used 
in encryption can be uncovered. In a differential crypt-
analysis, a large number of plaintext pairs need to be 
generated following the patterns of differential charac-
teristics of a specific problem. A random selection me- 
thod will not be the best technique for this purpose. In 
[4,6,7], genetic algorithms [8] were employed to improve 
the search process for effective plaintext pairs to attack 
Data Encryption Standard (DES) [19]. In [9], authors 
suggested differential attacks on 17-cycle TEA and 23- 
cycle XTEA. 
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The impossible differential cryptanalysis proposed in 
[10] is a special case of differential cryptanalysis. Dif-
ferential cryptanalysis seeks out the differential charac-
teristics of a cipher with greater than expected probabil-
ity, but the impossible differential cryptanalysis looks for 
differential characteristics with probability zero (impos-
sible). In [11] authors conducted the impossible differen-
tial cryptanalysis of 12-cycle TEA and 14-cycle XTEA. 
It is interesting to note that XTEA is more vulnerable to 
this kind of attacks than TEA, although the original im-
provement was aimed at the key-related attacks. 

In the study of the block cipher RC6 [12], a candidate 
for the Advanced Encryption Standard (AES), authors 
noticed that block ciphers such as TEA and XTEA that 
use shifting tended to display some non-random distribu-
tions in the least significant bits of their output words. For 
a secure encryption algorithm, the bits patterns of the out-
put are expected to be uniform, i.e., truly random. They 
employed the chi-square statistic x2 to measure the devia-
tion of the observed distributions in the least significant 
bits of the output from a uniform distribution. Their results 
showed that RC6 with 128-bit blocks could be distin-
guished from a random permutation with up to 15 rounds, 
and for some weak keys up to 17 rounds. 

In [13] authors were the first to make use of a genetic 
algorithm (GA) with x2 statistic and two customized fit-
ness functions to study the same issue with TEA. More 
specifically, they studied the bit patterns of the least sig-
nificant eight bits of the first output word of TEA, i.e., 
v[0] & 255. Their goal was to search bitmasks for the 
input, both the input data blocks and the input key, which 
produces a chi-square statistic value as far as possible 
from the expected ones. They were successful with one- 
cycle, two-cycle, and three cycle TEAs, but not with the 
four-cycle TEA, which is a much harder problem. 

In [14] authors corrected one of the two fitness func-
tions in [13] and used a meta-GA [15] to optimize the 
parameters in each GA, including population size and 
mutation rate, to improve the results in [13], but were 
unable to tackle the four-cycle TEA. Consequently, to 
find a means to attack TEA of greater than three-cycles 
remains challenging. Solving this problem calls for a 
different approach such as designing more effective fit-
ness functions since the performance of GAs heavily 
depends on the structure of its fitness function or using 
other evolutionary computation techniques. 

2. Quantum-Inspired Genetic Algorithms 

2.1 Some Basic Concepts in Quantum Mechanics 

In quantum mechanics, particles move from one point to 
another as if they are waves, reflecting the dual nature of 
both waves and particles. The shape of these waves de-
pends on the particle’s angular momentum and energy 
level. Particles are in a low energy state on one observa-
tion, and in a high energy state on the next. There is no 

transition at all. The location of quantum particles, such 
as electrons and photons, can be described by a quantum 
state vector  , a weighted sum which in the case of 

two possible locations equals 0 1  , where   

and   are two weights influencing the particle being in 

locations 0  or 1 , respectively.   represents a 

linear superposition of the particle given individual 
quantum state vectors. However, in the act of observing a 
quantum state, it collapses to a single state [16]. This fact 
will be important when we introduce the quantum-inspired 
genetic algorithms in Subsection 2.5. 

2.2 Quantum Bit 

The basic unit of information in quantum computing is 
not a traditional bit but a quantum system with two states 
such as a photon that has two polarized directions. This 
quantum system is called qubit. A qubit, quantum bit, is 
represented as 

0 1     

where ߙ and ߚ are complex numbers and |2|ߙ| .1=2|ߚ|+2|ߙ 
defines the probability that the qubit will be found in 
state “0” and |2|ߚ defines the probability that the qubit 
will be found in state “1”. A qubit may be in the state “0”, 
state “1”, or a linear superposition of the two. 

2.3 Quantum Chromosome 

Like the other evolutionary algorithms, the quantum- 
inspired genetic algorithms have a representation of indi-
vidual or chromosome. An m-qubit chromosome is de-
fined as: 

1 2

1 2

...

...

m

m

  

  

 
 
  

 

 
where |1,2=݅,1=2|݅ߚ|+2|݅ߙ,…,݉. This expression has the 
capability to represent a linear superposition of states, 
from which all possible combinations of different values 
can be derived. Let us look at one such example of 3- 
qubit chromosome: 

1 3 1

22 2

1 1 1

22 2

  
 
 
 
  

 

The states of this chromosome can be represented as  

3 3 1 1 3
000 001 010 011 100

4 4 4 4 4

3 1 1
101 110 111

4 4 4

  
   


 


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The above expression induces a probability distribu-
tion such that the probabilities that the chromosome is 
seen to be in the 8 states 000 , 000 , 001 , 010 ,  
011 , 100 , 101 , 110  and 111 are the squares of 

the weights. This 3-qubit chromosome is capable of rep-
resenting 8 states, and 8 3-bit classical binary chromo-
somes are required to represent 8 states (000), (001), 
(010), (011), (100), (101), (110), and (111). A qubit 
represents probabilities of being in state “0”, “1”, or a 
superposition of both, whereas a classical bit must be in 
either state “0” or “1”. It is evident that a qubit contains 
more information than a classical bit. 

2.4 Quantum Mutation and Crossover 

The mutation operation of a bit in a binary chromosome 
is flipping that bit. We made use of two types of muta-
tions, rotational mutation and point mutation, in the 
quantum genetic algorithms used in this work. The rota-
tional mutation operation of a qubit proposed in [17] is 
defined by a quantum rotation matrix which satisfies ܷܷכ 
 is the Hermitian adjoint matrix of כܷ I, where =ܷכܷ =
matrix ܷ and I is an identity matrix. In this paper, we 
only used the following real-valued quantum rotation 
matrix: 

 
cos sin

sin cos
U

 


 

 
  
  

 

where   represents the angle of counterclockwise rota-
tion. 

The point mutation is to switch the values of 
and   in a qubit, and the crossover operation of a 

quantum chromosome is defined similarly to that of a 
binary chromosome. The original version of quantum- 
inspired evolutionary algorithm proposed in [17] did not 
contain such operations. We observed in our experiments 
that our solutions tended to be trapped at local maxima, 
so we introduced these two operations to increase the 
diversity of our solution pool. Other similar definitions of 
mutation and crossover could be found in the literature. 

2.5 Quantum Genetic Algorithms 

Encouraged by the excellent performance of the quan-
tum-inspired evolutionary algorithm in [17], we adapted 
the following quantum-inspired genetic algorithm (QGA) 
for our current study. The structure of QGA is described 
in the following pseudo code: 

QGA: 
Begin 
t←0 

1) initialize quantum population Q(t) of N qubit 
    chromosomes 

2) make binary population P(t) by observing the states 
  of Q(t) 
3) evaluate P(t) 

4) store the best solutions among P(t) into b 
while( t < T) 
t←t+1 
1) evaluate P(t-1) 
2) select the top 50% of Q(t-1) to undergo rotational  
  mutation, point mutation, and crossover to produce  
  N/2 new qubit chromosomes 
3) Q(t)= (the top 50% of Q(t-1)) + (N/2 new qubit  
  chromosomes)  
4) make P(t) by observing the states of Q(t) 
5) store the best solutions among P(t) into b 
end while 
End 

In our implementation of QGA, we chose    1

2
   

for all qubits in each chromosome when t = 0, so that 
each qubit had equal probability to be in state “0” or “1”. 
The quantum rotation angle   was chosen according to 
Table 1 as in [18], where 0.001  . 

3. Results 

The input of TEA is 128 bits long, which is made of 64 
bit blocks of data and a 128 bit key, and the output of 
TEA is the encrypted 64 bit data stored in v[0] and v[1], 
where v[0] and v[1] are defined in the C code introduced 
at the beginning of this paper. 

We used a qubit chromosome to represent a bitmask. 
To evaluate each bitmask in a QGA, a logical AND op-
eration between the bitmask and a randomly generated 
input pair, data-key, of 128 bits was performed. The re-
sultant values were then passed to TEA to yield the out-
put. There were 211 such randomly generated data-key 
pairs for each bitmask. 

The focus of our work is studying the distribution of 
the bit patterns of v[0] & 255 in the output of TEA. We 
recorded the counts of different values of v[0] & 255 
from the outputs of TEA. The important question is 
whether the observed counts were significantly different 
from the expected ones. There are a variety of ways to 
assess this difference including Pearson’s chi-square, G 
test, and Fisher’s exact test. We utilized the chi-square 
statistic in this work as in [13] and [14]. The Pearson’s 
chi-square is 

X2  
1i

In this equation, N is the number of observations, ܱ݅ is 
the observed counts and ݅ܧ is the expected counts. In the 
current study, the expected counts follow a uniform dis-
tribution, which implies the bit patterns are truly random. 

N
i i

i

O E

E


   

There are 256 possible values from v[0] & 255, therefore 
the maximum value of the chi-square is 522,240 with 
255 degrees of freedom and 211 observations (See [14] 
for detailed calculation). 
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Table 1. Rotation angle   updating rules 

ix  ibest  f(x)>f(best) 
i  i i  >0 i i  <0 i =0 i =0 

0 0 false 0 0 0 0 0 

0 0 true 0 0 0 0 0 

0 1 false 0 0 0 0 0 

0 1 true ε -1 +1 ±1 0 

1 0 false ε -1 +1 ±1 0 

1 0 true ε +1 -1 0 ±1 

1 1 false ε +1 -1 0 ±1 

1 1 true ε +1 -1 0 ±1 

 
3.2 Two-Cycle TEA where f is the fitness function, x and best are a solution and 

the best solution respectively, xi and besti are the i-th bit com-
ponent of x and best. Since the two-cycle TEA is more difficult than one-cycle 

TEA, no bitmasks of heavy enough weights can produce 
the maximal deviation of 522,240. In [13] and [14], authors  

In this section, we will compare different bitmasks 
found in each cycle of TEA using QGAs in our study and 
using GAs in [13] and [14]. modified the fitness function in Equation (1) to create the 

following fitness function to break the two-cycle TEA, 
3.1 One-Cycle TEA 

4 2
3

3

1
, 403.4579

1
,

w if x
wfitness

otherwise
w

   



     (2) 
We used the following fitness function as in [13] and 
[14], 

4 2

2

, 522, 240

,

w if x
fitness

x otherwise

  


         (1) 

The idea behind this fitness function is to divide the-
search process of GA into two steps. The first step is to 
find bitmasks with weights above the thresholdvalue 
403.4579, which is about 0.5 percentile of all x2 values 

where w represents the weight, the number of 1’s, of the 
bitmask. This fitness function was first introduced in [6], 
but incorrectly used 522,480 in place of 522,240. This 
piece-wisely defined fitness function aims to find bit-
masks that have maximal deviation from a uniform 
probability distribution. 

and has a P-value of 5*10-9. The second is to in- 

crease the weights of those bitmasks. 
For one-cycle TEA, we found bitmasks that had max- 

imal deviation from the random distribution with x2 = 
522.240. In [13], the authors found their best solution at 
weight 153, and [14] found their best solutions to be at 
weights 154 and 155. 

Table 2. Our results of QGA on one-cycle TEA 

Bitmask x2
 Weight

{0xFFFFFF00,0xFFFFE000, 
0xFFFFFF00,0xFFFFFF00, 
0xFFFFFFFF, 0xFFFFFFFF} 

522,240 155 

{0xFFFFFF00,0xFFFFE000, 
0xFFFFFF00,0xFFFEFF00, 
0xFFFFFFFF, 0xFFFFFFFF} 

522,240 154 

{0xFFFFFF00,0xDFFFE000, 
0xFFFFFF00,0xFFFEFF00, 
0xFFFFFFFF, 0xFFFFFFFF} 

522,240 153 

{0xFFFFFF00,0xDFFFE000, 
0xFFFFFF00,0xFFFEFF00, 
0xFFFFFFFE, 0xFFFFFFFF} 

522,240 152 

{0xFFFFFF00,0xDFFFE000, 
0xFFFFFF00,0xFFFEFF00, 
0xFFFFFFFF, 0xFF7FFFDF} 

522,240 151 

The bitmasks of higher weight are preferred since they 
permit a bigger set of inputs to be used for the test. In [13] 
authors used a GA with a population size of 100 to find 
the best bitmask of weight 153 and in [14] authors used a 
GA with a population size of 185 to find the best bit-
masks of weights 154 and 155. To provide a baseline for 
comparison of different GA techniques, we ran our QGA 
with a population size of 100 to find the best bitmasks of 
weights ranging from 151 to 155, which are listed in Ta-
ble 2. The two bitmasks of weights 151 and 152 in Table 
2 were not reported in [13] and [14]. Because one-cycle 
TEA is relatively easier to break, all the bitmasks in Ta-
ble 2 have their x2= 522.240, which is the maximal value 
for this statistic.  
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Table 3. Results of GA on two-cycle TEA in [14] 

Weight x2
 

157 459.6417 

155 483.6 

158 474.8167 

145 486.2333 

159 451.3917 

158 415.8583 

160 422.475 

157 435.6833 

162 488.3333 

159 413.8417 

 
Table 4. Our results of QGA on two-cycle TEA 

Bitmask x2
 Weight

{0xFFFFD7FF,0xFFDFFBFF,0xFFFCADF9, 
0xFFFFFBCF, 0xFFFFFF5E, 0xFFFFFB8B} 

611.925 170 

{0xFFFFD7FF, xFFDFFBFF,0xFFFCAC75, 
0xFFFFDFCF, 0xFFFFFF5E, 0xFFFFFFCB} 

606.725 170 

{0xFFFFD7F7, 0xFF9FFBFF, 0xFFFEAFF1, 
0xFFFFFFCF, 0xFFFFFF5E, 0xFFFFFF8B} 

588.875 171 

{0xFFFFD7F7,0xFF9FFBFF,0xFFFCBD7B, 
0xFFFFFFCF, 0xFFFFFF5E, 0xFFFFFB8F} 

572.375 171 

{0xFFFFD7FF,0xFF9FFBFF, 0xFFFCAD75, 
0xFFFFFBEF, 0xFFFFFF5E, 0xFFFFFF9B} 

538.5 171 

{0xFFFFD7F7, 0xFF9FFBFF, 0xFFFFAC77, 
0xFFFFDFCF, 0xFFFFFF7E, 0xFFFFFF8B} 

578.4 171 

{0xFFFFD7FF,0xFF9FFBFF, 0xFFFEBDF1, 
0xFFFFFBCF, 0xFFFFFF5E, 0xFFFFFB9B} 

662.075 171 

{0xFFFFD7FF,0xFF9FFBFF, 0xFFFCAD75, 
0xFFFFFBEF, 0xFFFFFF5E, 0xFFFFFF9B} 

628.125 172 

{0xFFFFF7FF,0xFF9FFBFF, 0xFFFCAD73, 
0xFFFFFBCF, 0xFFFFF5DE, 0xFFFFFFBF} 

635.725 172 

{0xFFFFF7F7,0xFFDFFBFF,0xFFFCADF7, 
0xFFFFFBCF,0xFFFFFFDF, 0xFFFFFB8B} 

598.075 173 

 
In [13], authors employed the fitness function defined 

in Equation (2) to find the following best bitmask with a 
weight of 155 and an average x2 statistic of 508.15 on 30 
random input-key datasets: 

{0xBFFFF0FA, 0xFFFE7388, 0xFFFFF7F8, 
0xFFFFF3F8, 0xFFFFEF85, 0xFFFFEF8C} 

In [14] authors found ten bitmasks using the fitness 
function in Equation (2) and calculated the average x2 
statistic across 30 different random input-key datasets, 
each having 211 input-key pairs. Their results are summa-
rized in Table 3. 

In [13] and [14], both authors used the same threshold 
in the fitness function as in Equation (2) for two-cycle, 
three-cycle, and four-cycle TEAs, and the bitmasks 
found for four-cycle TEA were not usable due to their 

low weights. We suspected that using a different thresh-
old in the fitness function for each cycle might be more 
appropriate since the average x2 values of various cycles 
are different. Based on this belief, we selected different 
thresholds in the fitness function for each different cycle.  

We used the following fitness function for two-cycle TEA, 

4 2

2

, >1100

,

w if x
fitness

x otherwise

 


          (3) 

The idea behind this fitness function is to ensure the 
minimum value for x2 first, then find a bitmask of large 
weight. 

Our QGA discovered ten bitmasks whose average x2 
statistic across 30 different random input-key datasets 
and weight are included in Table 4. 

In Table 4, the average x2 statistic was 602 and the av-
erage bitmask weight was 171, whereas the results from 
[14] in Table 3 had corresponding values of 453.3875 
and 157 respectively. 

Our results in Table 4 demonstrated a big improve-
ment over those in [13] and [14]. As the cycles of TEA 
increase, our QGAs show their apparent advantage over 
GAs as illustrated in the following sections. In all the 
subsequent experiments below, we used a QGA with 
population size of 100, generation number of 200, and 

0.001   in rotational mutation. 

3.3 Three-Cycle TEA 

For three-cycle TEA, authors in [14] used the same fit-
ness function defined in Equation (2) as for the two-cycle 
TEA to find ten bitmasks. Their average x2 statistic 
across 30 different random input-key datasets and weight 
are presented in Table 5. 

In [13], authors used fitness function defined in Equa-
tion (2) to get the following best bitmask with a weight 
of 116 and an average x2 statistic of 466.5 on 30 random 
input-key datasets: 

{0xFFE1F040, 0x FCE70446, 0x FFEFF06E, 
 0x FFE7F42A, 0x FFBF1825, 0x FFFA0064} 

We identified ten bitmasks using the following fitness 
function for three-cycle TEA, 

4 2

2

, >90

,

w if x
fitness

0

x otherwise

 


          (4) 

The only difference between this function and that in 
Equation (3) is the threshold employed in the function 
definition. The information about these bitmasks is 
summarized in Table 6. The average X

2 statistic was 
530.756 and the average bitmask weight was 117.8 in 
Table 6, while the results from [14] in Table 5 had cor-
responding values of 420.8242 and 100.2 respectively.  
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Table 5. Results of GA on three-cycle TEA in [14] 

Weight x2
 

99 427.0 

100 432.675 

105 413.0417 

109 437.7333 

104 423.025 

93 445.1333 

100 396.1917 

105 420.7333 

79 437.2667 

108 375.4417 

 
For two-cycle and three-cycle TEAs, we obtained bet-

ter bitmasks than those found in [13] and [14] in terms of 
both chi-square statistic and weight. 

3.4 Four-Cycle TEA 

The task of finding efficient bitmasks becomes more 
complicated as the cycles of TEA increase. The ap-
proaches in [13] and [14] were sufficient to find efficient 
bitmasks for TEA of cycles less than four, but failed to 
attack TEA of cycles greater than or equal to four. 

In [13], using the fitness function in Equation (2) au-
thors found bitmasks of relatively low weights, less than 
47. They then took up a different approach. Instead of 
using chi-square statistic, they used Strict Avalanche 
Criterion (SAC), a more sensitive measure, to assess the 
deviation of the output of TEA from randomness. The 
best bitmask they found was  

{0x96922A0C, 0x42C06402, 0x35B11001, 
0x97000000, 0xF0000001, 0xBEB00001} 

with a weight of 50 and an average x2 statistic of 673.40 
on 30 random input-key datasets. Since TEA takes input 
data of 64 bits, any bitmask of weight less than 64 cannot 
be useful for different cryptanalysis of TEA. 

In [14], authors were unable to find any useful bit-
masks for four-cycle TEA. They suspected that with 
more rounds of calculations in their GA, it might be pos-
sible to discover some adequate bitmasks. 

Based on the principle that we should approach each 
cycle differently, the following fitness function was ap-
plied to four-cycle TEA, 

4 2

2

, >80

,

w if x
fitness

0

x otherwise

 


             (5) 

Our QGA uncovered five bitmasks. For each of these 
bitmask, we computed the average x2 statistic across 30 
random input-key datasets. The results are listed in Table 7. 
All these x2 statistic values have a P-value less than 5*10-9. 

Table 6. Our results of QGA on three-cycle TEA 

Bitmask x2 Weight

{0xF7D65CE6, 0x10FCA894,0xF2ABBFDD, 
0xFF0557BB, 0xFF867C02, 0xFFD7E73D} 

554.3 120 

{0x77D65CE6, 0x10FCA894, 0xF2ABBFDD, 
0xFF0557BB, 0xFF867C02, 0xFFD7E73D} 

518.74 119 

{0x77D65CE6, 0x10FCA894, 0xF2ABBFDD, 
0xDF0557BB, 0xFF867C02, 0xFFD7E73D} 

536.51 118 

{0x77D65CE6, 0x10FCA894, 0xE2ABBFDD, 
0xFF0557BB, 0xFF867C02, 0xFBD7E73D} 

540.11 117 

{0x77D65CE6, 0x10FCA894, 0xE2ABBFDD, 
0xDF0557BB, 0xFF867C02, 0xFBD7E73D} 

547.80 116 

{0xF1729F86, 0x97B6EC6F, 0xFB5A1EE0, 
0xFFD328F4, 0xFFE4408C, 0xFFB1FDEA} 

542.23 117 

{0xF1729F86, 0x97B6EC6F, 0xFB5A1EE0, 
0xFFD328F4, 0xFDE4408C, 0xFFB1FDEA} 

540.65 116 

{0xF38FA5FB, 0xF7E44E4B, 0xF483FB22, 
0xF23FE071, 0xFFE1C64D, 0xFFCF5074} 

559.45 116 

{0xF77C99E2, 0xD157C8BC, 0x7C79BF35, 
0x9555D5F2, 0xFFFECA55, 0xCDDDABE5} 

482.56 120 

{0x773C98EF, 0xD92FCEBC, 0x5C79BF15, 
0x955D55F2, 0xFFFECA45, 0xCDDDABC5} 

485.21 119 

 
Table 7. Our results of QGA on four-cycle TEA 

Bitmask x2
 Weight

{0x504007C7, 0xB03C5091, 0x84AE8212, 
0x026029C7, 0x411BA198, 0xC81074B8} 

740.22 69 

{0xF407DC1C, 0x7A123211, 0x8F1042AE, 
0x8040A0BE, 0x90017A89, 0x20C204C0} 

749.12 69 

{ 0x4520B630, 0x0A36E920, 0x0D051868, 
0x0AEC3868, 0x2312C768, 0x2460F804} 

721.33 69 

{0x54D3A2C4, 0x901722EC, 0xE02B0591, 
0x21D00283, 0x57848409, 0x49114082} 

735.26 67 

{0x3E2C642A, 0x80443210, 0xB446B064, 
0x87250417, 0x0C93E181, 0x12040508} 

767.23 64 

 
The output v[0] & 255 of the first bitmask in Table 7, 

from two separate sample runs of TEA on one random 
input-key dataset of 211 pairs, is displayed in the form of  
histograms in Figure 1. As illustrated in Figure 1, there is 
a clear peak or bias at the same position 152 for both 
runs although the frequencies at all other positions are 
relatively the same. The x2 statistic values produced by 
these two sample runs of TEA were 927 and 941 respec-
tively. The significance of these x2 statistic values, which 
measure the deviation of TEA output from randomness, 
can be evaluated by their P-value. We thought it is more 
helpful if the plots like those in Figure 1 can be exhib-
ited. 

3.5 Five-Cycle TEA 

In both [13] and [14], no results were reported for 
five-cycle TEA. We used the following fitness function 
in this case, 
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Figure 1. The two plots show the histograms of the output 
of the first bitmask in Table 7. The x-axis represents the 
possible 256 positions, and the y-axis represents the fre-
quencies of the bit patterns of TEA output at various positions 

 

4 2

2

, >70

,

w if x
fitness

0

x otherwise

 


            (6) 

We found the following bitmask: 

{0xE4822346, 0x830CA317, 0xCE9522DC, 
0x3E13C130, 0x33C18B0A, 0x128A11A0} 

This bitmask has a weight of 76, an average x2 statistic 
of 631.74 on 30 random input-key datasets, and a P-value 
less than 5*10-9. 

For five-cycle TEA, we only reported one bitmask that 
has a high chi-square statistic and a high weight. It was 
not the intent of our current study to conduct an exhaus-
tive search of all bitmasks of interest, but rather to dem-
onstrate the effectiveness of QGAs in the cryptanalysis 
of TEA. 

4. Conclusions 

In this paper, QGAs were utilized in the cryptanalysis of 
TEA. We not only significantly improved the results in 
[13] and [14] in terms of both bitmask chi-square statistic 
and weight, but also were able to break TEA of cycles 
greater than or equal to four, a challenge previous studies 

could not resolve. With these improved bitmasks, effi-
cient distinguishers for TEA can be constructed. These 
distinguishers require few inputs to get high distinguish-
ing probability [13]. Our success, we believed, was based 
on designing new fitness functions and the fact that the 
qubit chromosomes in QGAs are more informative than 
the bit chromosomes of same length in traditional GAs. 
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