
Cryptanalysis of the 10-Round Hash and Full
Compression Function of SHAvite-3-512?

Praveen Gauravaram1, Gaëten Leurent2, Florian Mendel3,
Maŕıa Naya-Plasencia4, Thomas Peyrin5,

Christian Rechberger6, and Martin Schläffer3

1 Department of Mathematics, DTU, Denmark
2 ENS, France

3 IAIK, TU Graz, Austria
4 FHNW Windisch, Switzerland

5 Ingenico, France
6 ESAT/COSIC, K.U.Leuven and IBBT, Belgium

martin.schlaeffer@iaik.tugraz.at

Abstract. In this paper, we analyze the SHAvite-3-512 hash function,
as proposed and tweaked for round 2 of the SHA-3 competition. We
present cryptanalytic results on 10 out of 14 rounds of the hash func-
tion SHAvite-3-512, and on the full 14 round compression function of
SHAvite-3-512. We show a second preimage attack on the hash function
reduced to 10 rounds with a complexity of 2497 compression function
evaluations and 216 memory. For the full 14-round compression function,
we give a chosen counter, chosen salt preimage attack with 2384 compres-
sion function evaluations and 2128 memory (or complexity 2448 without
memory), and a collision attack with 2192 compression function evalua-
tions and 2128 memory.

Keywords: hash function, cryptanalysis, collision, (second) preimage

1 Introduction

With the advent of new cryptanalysis [6, 20] of the FIPS 180-2 standard hash
function SHA-1 [14], NIST has initiated an open hash function competition [15].
SHAvite-3 [3, 4], a hash function designed by Biham designed by Biham and
Dunkelman, is a second round candidate in the SHA-3 hash function compe-
tition [16]. It is an iterated hash function based on the HAIFA hash function
framework [2]. In this framework, the compression functions also accepts a salt

? This work was supported by the European Commission through the ICT programme
under contract ICT-2007-216676 ECRYPT II and by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy). Parts of this work were car-
ried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship Programme,
and while authors were participating in the ECRYPT2 workshop “Hash3: Proofs,
Analysis and Implementation” in November 2009. The first author is supported by
the Danish Council for Independent Research (FTP and FNU) grant 274-09-0096.

and counter input in addition to the chaining value and message block. The
mixing of the salt with the message aims to increase the security of hash-then-
sign digital signatures against offline collision attacks [9,10], whereas the counter
aims to thwart any attempts to mount some generic attacks on the iterated hash
functions [1, 8, 11].

The SHAvite-3 compression function consists of a generalized Feistel struc-
ture whose round function is based on the AES. SHAvite-3 proposes two differ-
ent instances called SHAvite-3-256 and SHAvite-3-512 with 12 and 14 rounds
respectively. The first round version of SHAvite-3 has been tweaked for the sec-
ond round of the SHA-3 competition due to a chosen salt and chosen counter
collision attack [18] on the compression function. Recently, Bouillaguet et al. [5]
have proposed the cancellation property to analyse hash functions based on a
generalized Feistel structure. They have applied their method to find second
preimages for 9 rounds of the SHAvite-3-512 hash function.

In this paper, we further analyze SHAvite-3-512 by improving the previous
analysis of Bouillageut et al. [5]. We first present a chosen counter, chosen salt
collision and preimage attack for the full compression function of SHAvite-3-512.
The complexity for the preimage attack is 2384 compression function evaluations
and 2128 memory (or complexity 2448 without memory), and for the collision
attack we get 2192 compression function evaluations and 2128 memory. We then
propose a second preimage attack on the hash function reduced to 10 rounds
with a complexity of 2497 compression function evaluations and 216 memory.

The paper is organised as follows: In Section 2, we briefly describe the
SHAvite-3-512 hash function and in Section 3, we provide the fundamental ideas
used in our attacks. In Section 4, we provide a preimage and collision attacks
for the full 14 round compression function. In Section 5, we present a second
preimage attack on the 10 round hash function and we conclude in Section 6.

2 The SHAvite-3-512 Hash Function

SHAvite-3-512 is used for the hash sizes of n = 257, . . . , 512 bits. First, the
message M is padded and split into ` 1024-bit message blocks M1‖M2‖ . . . ‖M`.
Then, each message block is iteratively processed using the 512-bit compression
function C512 and finally, the output is truncated to the desired hash size as
follows:

h0 = IV

hi = C512(hi−1, Mi, salt, cnt)
hash = truncn(hi)

The 512-bit compression function C512 of SHAvite-3-512 consists of a 512-
bit block cipher E512 used in Davies-Meyer mode. The input of the compression
function C512 consists of a 512-bit chaining value hi−1, a 1024-bit message block
Mi, a 512-bit salt and a 128-bit counter (cnt) to denote the number of bits

2

processed by the end of the iteration. The output of the compression function
C512 is given by (+ denotes an XOR addition):

hi = C512(hi−1, Mi, salt, cnt) = hi−1 + E512(Mi‖salt‖cnt, hi−1)

2.1 State Update

The state update of the compression function consists of a 14-round generalized
Feistel structure. The input hi−1 is divided into four 128-bit chaining values
(A0, B0, C0, D0). In each round i = 0, . . . , 13, these chaining values are updated
using the non-linear round functions Fi and F ′i by the Feistel structure given as
follows (also see Figure 1):

(Ai+1, Bi+1, Ci+1, Di+1) = (Di, Ai + Fi(Bi), Bi, Ci + F ′i (Di))

Ai Bi Ci Di

Fi

RKi

F ′i

RK′i

Ai+1 Bi+1 Ci+1 Di+1

Fig. 1. Round i of the state update of SHAvite-512.

The non-linear functions Fi and F ′i are keyed by the 512-bit round keys
RKi = (k3

0,i, k
2
0,i, k

1
0,i, k

0
0,i) and RK ′i = (k3

1,i, k
2
1,i, k

1
1,i, k

0
1,i) respectively. Each

round function is composed of four AES rounds with subkeys k0
0,i and k0

1,i used
as a key whitening before the first AES round and an all zero-key 0128 for the
last internal round. Hence, the round functions Fi and F ′i are defined as:

Fi(x) = AES(0128, AES(k3
0,i, AES(k2

0,i, AES(k1
0,i, k

0
0,i + x)))) (1)

F ′i (x) = AES(0128, AES(k3
1,i, AES(k2

1,i, AES(k1
1,i, k

0
1,i + x)))) (2)

2.2 Message Expansion

The message expansion of C512 (the key schedule of E512) takes as input a 1024-
bit message block, a 512-bit salt and 128-bit counter. The 1024-bit message block
Mi is represented as an array of 8 128-bit words (m0, m1, . . . ,m7), the 512-bit

3

k0
0,8 k1

0,8 k2
0,8 k3

0,8 k0
1,8 k1

1,8 k2
1,8 k3

1,8

AES
(s0, s1, s2, s3)

AES
(s4, s5, s6, s7)

AES
(s8, s9, s10, s11)

AES
(s12, s13, s14, s15)

AES
(s0, s1, s2, s3)

AES
(s4, s5, s6, s7)

AES
(s8, s9, s10, s11)

AES
(s12, s13, s14, s15)

cnt[2]

cnt[3]

cnt[0]

cnt[1]

k0
0,9 k1

0,9 k2
0,9 k3

0,9 k0
1,9 k1

1,9 k2
1,9 k3

1,9

k0
0,10 k1

0,10 k2
0,10 k3

0,10 k0
1,10 k1

1,10 k2
1,10 k3

1,10

Fig. 2. One round (r = 2) of the message expansion (key schedule) of SHAvite-
512 with the counter values (cnt2‖cnt3‖cnt0‖cnt1) added prior to subkey k3

1,9.

salt as an array of 16 32-bit words (s0, s1, . . . , s15) and the counter as an array
of 4 32-bit words (cnt0, cnt1, cnt2, cnt3).

The subkeys for the odd rounds of the state update are generated using
parallel AES rounds and a subsequent linear expansion step. The AES rounds

4

are keyed by the salt words. The subkeys for the even rounds are computed using
only a linear layer. One out of r = 0, . . . , 7 rounds of the message expansion is
shown in Figure 2. The first subkeys of round r = 0 are initialized with the
message block:

(k0
0,0, k

1
0,0, k

2
0,0, k

3
0,0, k

0
1,0, k

1
1,0, k

2
1,0, k

3
1,0) = (m0, m1, m2, m3, m4, m5, m6, m7)

Note that in rounds r = 0, 2, 4, 6 of the message expansion, the counter value
(with one word inverted) is added to the subkeys:

k0
0,1 = k0

0,1 + (cnt0‖cnt1‖cnt2‖cnt3)

k1
0,5 = k1

0,5 + (cnt3‖cnt2‖cnt1‖cnt0)

k3
1,9 = k3

1,9 + (cnt2‖cnt3‖cnt0‖cnt1)

k2
1,13 = k2

1,13 + (cnt1‖cnt0‖cnt3‖cnt2)

We refer to [4] for additional details on the message expansion.

3 Basic Attack Strategy

We first show how we can keep one chaining value of the state update constant
using the cancellation property. Then, we interleave the cancellation property
to simplify the resulting conditions and to keep the chaining value constant for
a larger number of rounds. These properties can be used to construct partial
preimages of the compression function. Note that we define a partial preimage
attack as the task to find a preimage for only parts of the target hash value.
Then, we extend this partial preimage attack to a collision or preimage attack
of the compression function, or a (second) preimage of the hash function.

3.1 The Cancellation Property

The cancellation property was published by Bouillaguet et al. in the analysis
of the SHA-3 candidates Lesamta and SHAvite-3 [5]. Using the cancellation
property, a disturbance introduced in one state variable cancels itself 2 rounds
later again. In our attacks on SHAvite-3-512, the cancellation property is used
to ensure that Bi = Bi+4 in the state update. This is the case if and only
if Fi+3(Bi+3) = F ′i+1(Di+1) (see Table 1). Hence, a disturbance F ′i+1(Di+1)
introduced in round i + 1 cancels itself in round i + 3 (also see Figure 3).

Using Bi+3 = Di+1 + Fi+2(Bi+2) and Equations (1) and (2) we get:

AES(0128, AES(k3
0,i+3, AES(k2

0,i+3, AES(k1
0,i+3, k

0
0,i+3 + Di+1 + Fi+2(Bi+2)))) =

AES(0128, AES(k3
1,i+1, AES(k2

1,i+1, AES(k1
1,i+1, k

0
1,i+1 + Di+1)))).

This equation and thus, the characteristic of Table 1, is fulfilled under the fol-
lowing conditions:

(k3
0,i+3, k

2
0,i+3, k

1
0,i+3) = (k3

1,i+1, k
2
1,i+1, k

1
1,i+1) (3)

5

Table 1. We use the cancellation property to ensure that Bi = Bi+4. This is
the case if Fi+3(Bi+3) and F ′i+1(Di+1) are equal.

i Ai Bi Ci Di condition

i ? Bi ? ?
i + 1 ? ? Bi Di+1

i + 2 Di+1 Bi+2 ? Bi + F ′i+1(Di+1)
Fi+3(Bi+3) =

i + 3 Bi + F ′i+1(Di+1) Bi+3 Bi+2 ?
F ′i+1(Di+1)

i + 4 ? Bi ? ?

and
k0
0,i+3 + Fi+2(Bi+2) = k0

1,i+1. (4)

Hence, using the cancellation property we always get Bi = Bi+4, no matter
which value Di+1 has. Also differences in Di+1 are cancelled in round i+4 again.
Of course, we can repeat the cancellation property for other rounds as long as
we can fulfill the resulting conditions. The cancellation property is used twice in
the 9-round hash attack on SHAvite-3-512 by Bouillaguet et al. [5] and in the
10-round hash attack in Section 5, and 4 times in the 13 and 14-round attack of
the compression function in Section 4.

3.2 Interleaving

In this work, we extend the 9 round attack on SHAvite-3-512 by several rounds.
This is possible by interleaving the cancellation property such that the conditions
can be fulfilled more easily. Note that equation (4) depends on the chaining value
Bi+2. In our attack, we use the following sufficient conditions, which allow us to
fulfill the conditions on the keys and chaining values independently:

Fi+2(Bi+2) = 0 (5)

RKi+3 = RK ′i+1. (6)

Figure 3 shows that if the output of Fi+2(Bi+2) is zero, the same input Di+1

enters the round functions Fi+3 and F ′i+1. Hence, if the keys of these non-linear
functions are equal, any disturbance introduced by Di+1 cancels itself two rounds
later. Note that we get equivalent conditions if we continue with Bi+4 = Bi+8

and interleave with Bi+2 = Bi+6. Hence, we get

Bi = Bi+4 = Bi+8 = . . .

Bi+2 = Bi+6 = Bi+10 = . . .

if the following conditions on the chaining values are fulfilled:

Fi+2(Bi+2) = 0, Fi+6(Bi+2) = 0, Fi+10(Bi+2) = 0, . . .

Fi+4(Bi) = 0, Fi+8(Bi) = 0, Fi+12(Bi) = 0, . . .

6

Ai Bi Ci Di

Ai+1 Bi+1 Ci+1 Di+1

Ai+2 Bi+2 Ci+2 Di+2

Ai+3 Bi+3 Ci+3 Di+3

Ai+4 Bi+4 Ci+4 Di+4

Fi

RKi

F ′i

RK′i

Fi+1

RKi+1

F ′i+1

RK′i+1

Fi+2

RKi+2

F ′i+2

RK′i+2

Fi+3

RKi+3

F ′i+3

RK′i+3

Bi

Bi

Di+1

Di+1

Bi ⊕ F ′i+1(Di+1)

Bi ⊕ F ′i+1(Di+1)

0

Fig. 3. We need to ensure that Bi = Bi+4 for a number of times. This is the
case if Fi+3(Bi+3) = F ′i+1(Di+1). However, we use the following sufficient condi-
tions which can be fulfilled more easily using interleaving: Fi+2(Bi+2) = 0 and
RKi+3 = RK ′i+1.

Since F is an invertible function, all these conditions are fulfilled if we choose
Bi = F−1

i+4(0) and Bi+2 = F−1
i+2(0), and the keys of the respective functions are

the same. Hence, we get the following conditions only on the keys:

RKi+2 = RKi+6 = RKi+10 = . . . (7)

7

RKi+4 = RKi+8 = RKi+12 = . . . (8)

RKi+3 = RK ′i+1, RKi+5 = RK ′i+3, RKi+7 = RK ′i+5, . . . (9)

An example starting with B3 is given in Table 2.

Table 2. Interleaving.

i Ai Bi Ci Di conditions

3 ? B3 ? ?
4 ? ? B3 D4

5 D4 B5 ? B3 + F ′4(D4) F5(B5) = 0
6 B3 + F ′4(D4) D4 B5 D6 RK6 = RK′4
7 D6 B3 D4 B5 + F ′6(D6) F7(B3) = 0
8 B5 + F ′6(D6) D6 B3 D8 RK8 = RK′6
9 D8 B5 D6 B3 + F ′8(D8) RK9 = RK5

10 B3 + F ′8(D8) D8 B5 D10 RK10 = RK′8
11 D10 B3 D8 B5 + F ′10(D10) RK11 = RK7

.

3.3 From Partial Preimages to Preimages and Collisions

In the following attacks on SHAvite-3-512, we show how to fix one 128-bit output
word Hi of the (reduced) compression function C512 to some predefined value:

H0‖H1‖H2‖H3 = C512(A0‖B0‖C0‖D0, msg, salt, cnt)

Let’s assume, we are able to construct a partial preimage on H0 with a com-
plexity of 2x < 2128. Then, this partial preimage can be extended to construct a
preimage or collision for the compression function below the generic complexity.

In a preimage attack on the compression function, we have to find some input
values A0‖B0‖C0‖D0, msg, salt, cnt to the compression function for a given out-
put H0‖H1‖H2‖H3. For example, by repeating a partial preimage attack on H0

about 2384 times, we expect to find a chaining value where also H1, H2 and H3

are correct. In other words, we can find a preimage for the (reduced) compression
function of SHAvite-512 with a complexity of about 2384+x.

Similarly, a collision for the compression function can be constructed. If we
can find 2192 inputs A0‖B0‖C0‖D0, msg, salt, cnt such that all produce the same
output value H0, two of the inputs also lead to the same values H1, H2, and
H3 due to the birthday paradox. Hence, we can construct a collision for the
compression function of SHAvite-512 with a complexity of 2192+x.

Further, by using an arbitrary first message block and a standard meet-in-
the-middle attack we can turn the preimage attack on the compression function
into a (second) preimage attack on the hash function. Note that in this case the
salt and cnt values need to be the same for all partial preimages.

8

4 Attacks on the Compression Function

In this section, we present preimage and collision attacks for the SHAvite-3-512
compression function reduced to 13 and 14 rounds. We first give an outline of the
attack and describe the characteristic used to find partial preimages. Then, we
show how to find a message, salt and counter value according to the conditions of
this characteristic. Finally, we extend the attack to find many message, salt and
counter values such that the partial preimage attack can be extended to find a
collision and preimage for 13 and 14 rounds. Note that the given preimage attack
is an s-Pre (enhanced preimage) attack, as defined by Reyhanitabar et al. [19].
However, the attacks on the compression fucntion can not be extended to the
hash function, since in the attack we have to choose the salt and counter value.

4.1 Outline of the Attack

In the attack on 13 and 14 rounds of the compression function, we use the
same idea as in the 9-round attack in [5], but we extend it to more rounds
by interleaving more cancellations. In detail, we use the cancellation property
four times at rounds 6, 8, 10 and 12. This requires several 128-bit equalities on
the key-schedule. We can satisfy the equalities using the degrees of freedom an
attacker has in the choice of the message, salt, counter and chaining value in an
attack on the compression function. Both, the 13 and 14 round attacks use the
characteristic given in Table 3. For the 13 round attack we omit the last round.

Table 3. Characteristic for the attack on 13 and 14 rounds of the compression
function. We can keep the value Z constant as long as the conditions are fulfilled.

i Ai Bi Ci Di conditions

0 ? ? ? ?
1 ? ? ? ?
2 ? X ? ?
3 ? Z X ?
4 ? Y Z D4

5 D4 Z Y Z + F ′4(D4) F5(Z) = 0
6 Z + F ′4(D4) D4 Z D6 RK6 = RK′4
7 D6 Z D4 Z + F ′6(D6) RK7 = RK5

8 Z + F ′6(D6) D6 Z D8 RK8 = RK′6
9 D8 Z D6 Z + F ′8(D8) RK9 = RK7

10 Z + F ′8(D8) D8 Z D10 RK10 = RK′8
11 D10 Z D8 Z + F ′10(D10) RK11 = RK9

12 Z + F ′10(D10) D10 Z ? RK12 = RK′10
13 ? Z D10 ? RK13 = RK11

14 ? ? Z ?

9

We start the attack using X, Z, Y, Z for B2, B3, B4, B5. Choosing B3 = B5 =
Z gives slightly simpler and more uniform conditions for the key schedule which
can be fulfilled easier (see Section 4.2 and 4.3). The characteristic requires that
the outputs of the functions F5, F7, F9 and F11 are zero and we get:

F5(Z) = F7(Z) = F9(Z) = F11(Z) = 0 .

As already mentioned in the previous section, the best way to guarantee that the
above conditions hold is to ensure that the four subkeys RK5, RK7, RK9, RK11

and hence, the functions F5, F7, F9, F11 are equal. In this case Z can be easily
computed by Z = F−1

5 (0) and we get the following conditions for the key-
schedule:

RK5 = RK7 = RK9 = RK11 .

Next, we need to ensure that the output of F ′4(D4) and F6(D4) is equal to
one another such that B7 = Z + F ′4(D4) + F6(D4) = Z after round 7. In total,
the characteristic specifies that:

– F ′4(D4) = F6(D4) such that B7 = Z
– F ′6(D6) = F8(D6) such that B9 = Z
– F ′8(D8) = F10(D8) such that B11 = Z
– F ′10(D10) = F12(D10) such that B13 = Z

and we get the following conditions on the key schedule for i = 4, 6, 8, 10 (also
see Table 3):

RK ′i = RKi+2 .

If we can find a message, salt and counter value, such that all conditions on
the state values and key-schedule are fulfilled, the characteristic of Table 3 is
followed from round i = 5 to the end. Then, we simply compute backwards to
get the inputs (A0, B0, C0, D0) of the compression function as a function of X,
Y and Z (see also Table 4). Note that we can choose only values for X and Y
since Z is fixed by the attack:

A0 = Z + F4(Y) + F ′2(Y + F3(Z)) + F0(Y + F3(Z) + F ′1(Z + F2(X))) (10)
B0 = Y + F3(Z) + F ′1(Z + F2(X)) (11)
C0 = Z + F2(X) + F ′0(X + F1(Z + F4(Y) + F ′2(Y + F3(Z)))) (12)
D0 = X + F1(Z + F4(Y) + F ′2(Y + F3(Z))) (13)

4.2 Finding the Message

An easy solution to fulfill all the conditions on the subkeys is to ensure that
all keys are equal. This was possible for the round 1 version of SHAvite-512.
By setting the message to the all zero value, each byte of the salt to 0x52 and
the counter to 0, all subkeys are equal to zero [18]. In this case the required
conditions are trivially fulfilled.

10

Table 4. We get the input of the 14-round characteristic as a function of X,Y
and Z by computing backwards from round i = 4. We only show the updated
chaining values Ai and Ci since Bi = Ci+1 and Di = Ai+1.

i Ai Ci

0 ?
Z + F2(X) + F ′0(X + F1(Z + . . .

+F4(Y) + F ′2(Y + F3(Z))))

1 X + F1(Z + F4(Y) + F ′2(Y + F3(Z))) Y + F3(Z) + F ′1(Z + F3(X))

2 Z + F2(X) Z + F4(Y) + F ′2(Y + F3(Z))

3 Y + F3(Z) X

4 Z + F4(Y) Z

5 D4 Y

6 Z + F ′4(D4) Z

7 D6 D4

8 Z + F ′6(D6) Z

9 D8 D6

0 Z + F ′8(D8) Z

11 D10 D8

12 Z + F ′10(D10) Z

13 ? D10

14 ? Z

For the second round of the SHA-3 competition, SHAvite-512 has been
tweaked and some counter words are inverted to prevent all zero keys. How-
ever, by choosing the counter to be

(cnt3, cnt2, cnt1, cnt0) = (0, 0, 0, 0),

the value (cnt2, cnt3, cnt0, cnt1) added in round 5 of the key schedule is zero (see
Figure 2). In contrast to the attack on the round 1 version, this results in a valid
counter value. If we choose each byte of the salt to be 0x52 and the subkeys of
round 5 to be zero, a large part of the subkeys will remain zero until non-zero
values are added by the counter again. This happens in round 3 and round 7 of
the key schedule. We only require that subkeys with round index i = 4, . . . , 13
are equal. Table 5 shows that indeed all required subkeys can be forced to zero.
By computing backwards we get the message which is given in Appendix A.
Since the key RK5 = 0, we further get for Z = F−1

5 (0) = 0x1919...19.

4.3 Using Different Salt Values

Actually, we can relax the previous condition that all required subkeys are zero.
This allows us to use many different salt values. Instead of trying to get the
subkeys to be zero, we try to find subkeys which are periodic (see Table 6). Due to
the nature of the key schedule, we will then get RKi+2 = RK ′i+2 = RKi = RK ′i

11

Table 5. Subkeys in SHAvite-512 where ’0’ denotes an all-zero subkey kj
0,i or

kj
1,i, and ’?’ denotes a subkey which is not zero. The counter values are XORed

prior to the subkeys marked by ∗.

i
RKi RK′i r

k0
0,i k1

0,i k2
0,i k3

0,i k0
1,i k1

1,i k2
1,i k3

1,i

0 ? ? ? ? ? ? ? ? M
1 ?∗ ? ? ? ? ? ? 0

1
2 0 ? ? ? ? 0 0 0
3 0 ? ? ? 0 0 0 0

2
4 0 ? 0 0 0 0 0 0
5 0 0∗ 0 0 0 0 0 0

3
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

4
8 0 0 0 0 0 0 0 0
9 0 0 0 0∗ 0 0 0 0

5
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0

6
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 ?∗ ? 7

Table 6. Subkeys in SHAvite-512 with periodic round keys RKi or RK ′i.

i
RKi RK′i

k0
0,i k1

0,i k2
0,i k3

0,i k0
1,i k1

1,i k2
1,i k3

1,i

i a b c d a b c d
i + 1 e f g h e f g h
i + 2 a b c d a b c d

as long as the counter does not interfere. This will be enough to apply the
cancellation property, and to interleave it.

We can find salts and messages giving such a periodic expanded message by
solving a linear system of equations. The message expansion alternates linear
and non-linear layers, where the non-linear layer is one AES round with the salt
used as the key. Note that the 512-bit salt is used twice in the 1024-bit message
expansion. Hence, if we look for solutions with equal left and right halves, both
halfs will still be equal after the non-linear layer. To find solutions, we construct a
linear system with 1024 binary variables (or 32 32-bit variables), corresponding
to the inputs and outputs of the non-linear layer. Hence, we get 1024 binary
equations stating that the output of the linear layer must be equal to the input
of the non-linear layer, such that the key-schedule will be periodic.

Each solution to this system gives an input and output of the non-linear layer.
The resulting output and input of the single non-linear AES round can easily be

12

connected by computing the according salt value. Then, we compute the message
expansion backwards to get the message that will give a good expanded message
for the given salt. Surprisingly, the system has many solutions, with a kernel of
dimension 9, given by the following basis:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1


This means that we can generate 29·32 = 2288 different salt values and corre-
sponding message blocks such that the conditions on the subkeys are fulfilled.
An example of a random salt and message block in this class is given below:

Salt: 7f 51 e2 fb ca a5 95 ac 04 42 40 19 30 0f 17 82

6d 31 01 30 86 30 0d 18 05 dc db 90 96 2f 2a 78

32 71 59 03 e3 bb 97 17 ee 41 bc 97 a3 b2 5c 18

ce af fd 90 d6 8d bf fd ab 11 9d 62 6a 11 13 b6

Message: e1 c1 44 35 67 84 1b 18 ca ad ac f8 13 4d ea c9

b1 a0 79 d1 e7 a9 11 ca 75 eb 96 82 cc 81 50 4f

7a 69 43 38 8f 5d e8 e4 e0 ce 3f 6b 55 1a 27 4e

8d e6 2d 9a 63 76 78 73 67 10 8e d2 38 02 45 90

12 16 0b cc 6f ab c8 1a ca 0e c8 b7 5b e7 33 93

58 87 01 5f 09 b3 64 c3 a9 a2 5a 15 c9 70 a8 cb

a0 80 ff a8 c7 6d 24 60 09 8e 9d 15 0b b1 af 8d

5c 37 11 26 17 df d7 eb 9f bc f0 82 2d ad 98 e0

4.4 Collision and Preimages for 13 Rounds

If all the conditions on the key-schedule of Table 3 are fulfilled, the characteristic
is followed and we get B13 = Z after 13 rounds. For each value of X and Y
(Z is fixed in the attack), we can compute backward to get the input of the
compression function according to Equation (11) (also see Table 4).

After applying the feed-forward to B0, we get for the output word H1:

H1 = B0 + B13 = Z + Y + F3(Z) + F ′1(Z + F2(X))

For any value of H1 we can simply choose a value X and compute Y . Hence,
we can construct a partial preimage on 128 bits (on H1) for the compression
function of SHAvite-3-512 reduced to 13 rounds. The complexity is about one
compression function evaluation. In Appendix A, we give 3 examples for inputs
(chaining values) of the compression function of SHAvite-512 leading to outputs
with H1 equal to zero. Note that we can repeat this attack for all choices of X
and hence, 2128 times.

13

To construct a collision and preimage for the whole output of the compression
function, we need to repeat the partial preimage algorithm 2192 and 2384 times,
respectively. Note that we can construct up to 2128+288 = 2416 partial preimages
using the freedom in X and the message expansion.

4.5 Collision and Preimages for 14 Rounds

The 14-round attack follows the characteristic of Table 3. In order to extend
the 13-round attack to 14 rounds, we simply add one round at the end. In this
case, the conditions on the message, salt and counter value are the same as for
13 rounds. Again, we compute backwards to get the input of the compression
function as a function of X, Y and Z (see Equation (12) and Table 4). Notice
that after applying the feed-forward we get for the output word H2:

H2 = C0 + C14 = F2(X) + F ′0(X + F1(Z + F4(Y) + F ′2(Y + F3(Z))))

which can be rewritten as:

F ′−1
0 (H2 + F2(X)) + X = F1(Z + F4(Y) + F ′2(Y + F3(Z))) (14)

This equation is nicely split using X only on the left-hand side, and Y only on
the right-hand side. Any solution X, Y to the equation gives a 128-bit partial
preimage for any chosen value of H2. Note that we can also shift the characteristic
by one round to get a partial preimage for H1.

One easy way to find solutions for Equation (14) is to use a collision-finding
algorithm: if we compute the left-hand side with 264 random values for X, and
the right-hand side with 264 random values for Y , we expect to find one solution
due to the birthday paradox with complexity 264. Note that this can be done
with a memoryless collision-finding algorithm. The complexity can be reduced
at the cost of higher memory requirements. By first saving 2128 candidates for X
and then computing 2128 candidates for Y we get 2128 solutions for Equation (14)
with a complexity of 2128. Hence, we get an amortized cost of 1 computation per
solution.

More generally, we can make a trade-off between time and memory using a
distinguished point based collision-finding algorithm, as given in [17, Section 4.2].
Using 2k bits of memory (k ≤ 128) and 2l processors, we can generate 2128

solutions choosing 128 bits of the output of the compression with complexity
2192−k/2−l. If we repeat this with several salts, we obtain the following attacks
on the compression function:

– a collision attack in time 2256−k/2−l

– a preimage attack in time 2448−k/2−l

5 Attack on 10 Rounds of the Hash Function

The 10-round attack on the SHAvite-3-512 hash function is an extension of the
9-round attack from [5]. The extension is the same as the extension from 13 to
14 rounds of the compression function. Since the attack does not require freedom
from the salt or counter values, it is a real attack on the 10-round SHAvite-3-512.

14

5.1 Extending the 9 Round Attack

We extend the 9-round attack by adding one round at the beginning according
to the characteristic of Table 7. In order to satisfy the conditions in round 6 and
8, it is enough to have:

– (k1
0,4, k

2
0,4, k

3
0,4) = (k1

1,6, k
2
1,6, k

3
1,6) and k0

0,4 + k0
1,6 = F5(Z5)

– (k1
0,6, k

2
0,6, k

3
0,6) = (k1

1,8, k
2
1,8, k

3
1,8) and k0

0,6 + k0
1,8 = F7(Z7)

The condition on the keys (k1
0,4, k

2
0,4, k

3
0,4) = (k1

1,6, k
2
1,6, k

3
1,6) and (k1

0,6, k
2
0,6, k

3
0,6) =

(k1
1,8, k

2
1,8, k

3
1,8) will be satisfied by carefully building a suitable message, follow-

ing the algorithm given in [5]. Then, Z5 and Z7 are computed to satisfy the re-
maining conditions as follows: Z5 = F−1

5 (k0
0,4 + k0

1,6) and Z7 = F−1
7 (k0

0,6 + k0
1,8).

Table 7. Characteristic for the attack on 10 of the hash function. We can fix
the output Ci = Z5 as long as the conditions are fulfilled.

i Ai Bi Ci Di condition

0 ? ? ? ?
1 ? ? ? ?
2 ? X ? ?
3 ? Z7 X ?
4 ? Y Z7 D4

5 D4 Z5 Y Z7 + F ′4(D4)
6 Z7 + F ′4(D4) D4 + F5(Z5) Z5 D6 F6(D4 + F5(Z5)) = F ′4(D4)
7 D6 Z7 ? Z5 + F ′6(D6)
8 Z5 + F ′6(D6) D6 + F7(Z7) Z7 ? F8(D6 + F7(Z7)) = F ′6(D6)
9 ? Z5 ? ?
10 ? ? Z5 ?

Then, we start with the state B2 = X, B3 = Z7, B4 = Y , and B5 = Z5

and compute backward to the input of the compression function, similar to
Equation (12) and Table 4 of Section 4.1. In particular, we get for the input C0:

C0 = Z7 + F2(X) + F ′0(X + F1(Z5 + F4(Y) + F ′2(Y + F3(Z7))))

and after applying the feed-forward, we get for the output word H2:

H2 = C0 + C10 = Z5 + Z7 + F2(X) + F ′0(X + F1(Z5 + F4(Y) + F ′2(Y + F3(Z7))))

Just like in the 14-round attack, we can rewrite this equation such that one side
depends only on X, and one side depends only on Y :

F ′−1
0 (H2 + Z5 + Z7 + F2(X)) + X = F1(Z5 + F4(Y) + F ′2(Y + F3(Z7)))

To extend this partial preimage to a full preimage attack on the hash function
we repeat the following steps:

15

– find a suitable message (cost: 2224);
– find about 2128 solutions X and Y using a memoryless collision-search algo-

rithm (cost: 2196).

This generates 2128 inputs of the compression function such that 128 bits of
the output are chosen. We need to repeat these steps 2256 times to get a full
preimage on the compression function reduced to 10 rounds with a cost of 2480

and negligible memory requirements.

5.2 Second Preimage Attack

Using a first message block and by applying a generic unbalanced meet-in-the-
middle attack, we can extend the preimage attack on the compression function
to a second preimage attack on the hash function reduced to 10 rounds. The
complexity is about 2497 compression function evaluations and 216 memory. By
using a tree based approach [7,12,13], the complexity of the attack can be reduced
at the cost of higher memory requirements. Note that a preimage attack is not
possible as we cannot ensure a correctly padded message block.

6 Conclusion

SHAvite-3-512 as considered during round 1 of the SHA-3 competition was
shown to be subject to a chosen salt, chosen counter (pseudo) collision attack on
the compression function. As a result, the compression function was tweaked by
the designers. The tweaked SHAvite-3-512, as considered during round 2 of the
SHA-3 competition, is here shown to still be succeptible to attacks in the same
model, albeit at a higher cost. Although these attacks on the compression func-
tion do not imply an attack on the full hash function, they violate the collision
resistance reduction proof of HAIFA. This illustrates that great care most be
taken when salt and counter inputs are added to a compression function design.
Furthermore, our analysis also illustrates that more than 70% (10 out of 14) of
the rounds are not enough to defend the hash function SHAvite-3-512 against
second preimage attacks.

Acknowledgements

We would like to thank Hitachi, Ltd. for supporting a predecessor of this work.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In: Smart, N.P.
(ed.) Advances in Cryptology - EUROCRYPT Proceedings. LNCS, vol. 4965, pp.
270–288. Springer (2008)

16

2. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007), http://eprint.iacr.org/

2007/278 (Accessed on 10/1/2010)
3. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to

NIST (2008), available online at http://ehash.iaik.tugraz.at/uploads/f/f5/

Shavite.pdf (Accessed on 10/1/2010).
4. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Second round SHA-

3 candidate (2009), available at http://ehash.iaik.tugraz.at/wiki/SHAvite-3

(Accessed on 10/1/2010).
5. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Attacks on Hash Func-

tions based on Generalized Feistel - Application to Reduced-Round Lesamnta and
SHAvite-3-512. Cryptology ePrint Archive, Report 2009/634 (2009), available at
http://eprint.iacr.org/2009/634 (Accessed on 10/1/2010).

6. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. LNCS, vol. 4284, pp.
1–20. Springer (2006)

7. De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) Advances in Cryptology – CRYPTO 2008, Proceedings. LNCS,
vol. 5157, pp. 179–202. Springer (2008)

8. Dean, R.D.: Formal Aspects of Mobile Code Security. Ph.D. thesis, Princeton Uni-
versity (1999)

9. Gauravaram, P., Knudsen, L.R.: On Randomizing Hash Functions to Strengthen
the Security of Digital Signatures. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT. LNCS, vol. 5479, pp. 88–105. Springer (2009)

10. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hash-
ing. In: Dwork, C. (ed.) Advances in Cryptology – CRYPTO. LNCS, vol. 4117, pp.
41–59. Springer (2006)

11. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) Advances in Cryptology–EUROCRYPT-2005.
LNCS, vol. 3494, pp. 474–490. Springer (2005)

12. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE. LNCS, vol. 5086,
pp. 412–428. Springer (2008)

13. Mendel, F., Rijmen, V.: Weaknesses in the HAS-V Compression Function. In: Nam,
K.H., Rhee, G. (eds.) ICISC. LNCS, vol. 4817, pp. 335–345. Springer (2007)

14. NIST: FIPS PUB 180-2-Secure Hash Standard (Aug 2002), available at http:

//csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf(Accessed on
10/1/2010)

15. NIST: Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. Docket No: 070911510-7512-01
(November 2007)

16. NIST: Second Round Candidates. Official notification from NIST (2009), avail-
able at http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_

rnd2.html (Accessed on 8/1/2010).
17. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic

Applications. J. Cryptology 12(1), 1–28 (1999)
18. Peyrin, T.: Chosen-salt, chosen-counter, pseudo-collision on SHAvite-3 compres-

sion function (2009), available online at http://ehash.iaik.tugraz.at/uploads/
e/ea/Peyrin-SHAvite-3.txt (Accessed on 10/1/2010)

19. Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced Security Notions for Dedicated-
Key Hash Functions: Definitions and Relationships. In: Hong, S., Iwata, T. (eds.)
FSE. LNCS, Springer (2010), to appear

17

http://eprint.iacr.org/2007/278
http://eprint.iacr.org/2007/278
http://ehash.iaik.tugraz.at/uploads/f/f5/Shavite.pdf
http://ehash.iaik.tugraz.at/uploads/f/f5/Shavite.pdf
http://ehash.iaik.tugraz.at/wiki/SHAvite-3
http://eprint.iacr.org/2009/634
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt
http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt

20. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. LNCS, vol. 3621, pp. 17–36. Springer (2005)

A Partial Preimage for 13 Rounds of the Compression of
SHAvite-512

We give 3 examples for chaining inputs that all lead to a partial (128-bit) preim-
age of 0 for the compression function of SHAvite-512 reduced to 13 rounds. Note
that the message block, the salt and counter values are equal in these examples.

counter: 00 00 00 00 FF FF FF FF 00 00 00 00 00 00 00 00

salt: 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52

message block M: d1 58 6a 59 5f 1e ac c3 89 02 6a 23 8b 18 3d 35

a3 7b a6 8d 26 62 da 9a a6 8d 25 50 da 67 1e 62

0d fa 2b 8f a0 08 a4 97 b2 9b 25 0a 3e c3 6d c0

0b f7 12 3b d5 92 dd dc cf fa 79 ec 05 83 6e 9e

94 97 dd 03 4e e7 c1 07 8b f4 3d 9a df da 97 72

cc 24 50 90 0c 0a 0a b3 7c 58 d5 5d 7c 4d f9 ed

41 72 19 1a 8a ce 36 db ed fa 2e 40 23 66 8b d3

fa 1e 72 00 7b 8a 00 23 d3 00 49 88 00 96 79 19

chaining value 1: 73 ae 12 97 3f 8f 59 33 83 e5 b8 79 9f 39 3f d6

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

3f e8 9e 31 8c 13 5b 51 05 f6 26 2f ab 50 d0 2f

7e d4 37 2c 7e b3 6f e2 a3 8c 10 c1 30 cb 43 1f

output 1: f5 bb 28 52 27 67 80 b5 8d 68 2d 1b 66 f2 0c 1e

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

94 49 61 0d cc ed ea 7b 89 2a 90 ee e4 cc 49 0c

9c 3e 2e 17 78 f2 60 44 f5 f9 95 6c c0 dd 70 4f

chaining value 2: 4d 96 cb 1f d7 26 9b f1 b8 84 e7 37 69 20 85 ee

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

9c 0a 66 73 3f 9d 8e 4f 7d 15 85 71 6a cd fb 07

14 e6 c4 31 41 26 44 15 3a f8 a6 db b7 06 9a 4f

output 2: 2a bf 6d c0 ef f7 78 b2 29 88 60 cc 04 63 22 6d

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8b 45 69 a9 7f 67 5e 20 e4 8d 9b 01 d6 74 a9 dd

d3 9c 37 d1 ae ed 12 4d 47 d1 7c 28 72 26 1e 97

chaining value 3: b3 56 96 56 1a 43 91 1e 7b 0c 3f 99 9c f2 6b be

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

70 04 fd 88 dd b1 28 f2 03 6a 04 9c c2 65 b4 7b

2c d9 e6 74 aa 0b c5 78 85 e0 0c 21 89 ba 7f 8e

output 3: 31 a4 76 86 fa 16 f4 41 7a 93 6b 68 33 2d 46 c9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

b1 a3 15 94 bc 41 2d fc 69 83 82 13 76 76 17 92

af 7e d8 93 c5 06 13 8e 05 2b 31 ab 65 cd 2a 51

18

	Introduction
	The SHAvite-3-512 Hash Function
	State Update
	Message Expansion

	Basic Attack Strategy
	The Cancellation Property
	Interleaving
	From Partial Preimages to Preimages and Collisions

	Attacks on the Compression Function
	Outline of the Attack
	Finding the Message
	Using Different Salt Values
	Collision and Preimages for 13 Rounds
	Collision and Preimages for 14 Rounds

	Attack on 10 Rounds of the Hash Function
	Extending the 9 Round Attack
	Second Preimage Attack

	Conclusion
	Partial Preimage for 13 Rounds of the Compression of SHAvite-512

