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Abstract. At Crypto’90, Koyama and Terada proposed a family of
cryptographic functions for application to symmetric block ciphers.
Youssef and Tavares showed that this family is affine and hence it is
completely insecure. In response to this, Koyama and Terada modified
their design, by including a data dependent operation between layers.
The modified family of circuits was presented in the first international
security workshop (ISW’97). In this paper, we show that the modified
circuit can be easily broken by a differential-like attack. More explic-
itly, we show that after d rounds, and for any specific key K, the input
space can be partitioned into M ≤ 2d sets such that the ciphertext Y
of each set is related to the plaintext X by an affine relation. The ex-
pected value of M � 2d. Our attack enables us to explicitly recover
these linear relations. We were able to break an 8−round 64−bit version
of this family in few minutes on a workstation using less than 220 chosen
plaintext-ciphertext pairs.
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1 Introduction and Definitions

Koyama and Terada [2] proposed a family of cryptographic functions called
“non-linear” parity circuits. Youssef and Tavares [7] showed that this family
of functions is affine over GF (2) and hence it is completely insecure. In [3],
Koyama and Terada introduced a random involution called Value-Dependent-
Swapping (VDS). In the VDS, the left half and the right half of a sequence of
bits are swapped if its parity is odd. In [4],[5] the VDS was incorporated into
DES in order to make it stronger against differential and linear cryptanalysis.
By including this VDS in the parity circuits proposed in [2], Koyama and Terada
obtained what they called an augmented version of their cryptographic functions
family. The following definitions are given in [3].

Definition 1. Let x = L||R be a sequence of 2k, k > 0 bits where L stands
for left half of x and R stands for right, length(L) = length(R) = k. A value
dependent swapping, or V (x), is defined to be
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V (x) =

{
R||L if h(x) = 0,
L||R if h(x) = 1,

(1)

where h(x) ∈ 0, 1.

Definition 2. Let x = xl||xr be a sequence of 2k, k > 0 bits where xl stands for
left half of x and xr stands for right, length(xl) = length(xr) = k. A VDS, which
is an involution value-dependent-swapping based on the parity of the weight of
x, is defined to be

V (x) =

{
xr||xl if weight(x) is odd,
xl||xr if weight(x) is even,

(2)

where weight(x) is the number of 1’s in the bit sequence x.

Definition 3. A parity layer with length n, or simply an L(n) circuit layer, is a
Boolean device with an n-bit input and n-bit output, characterized by a key that
is a sequence of n symbols from 0, 1,+,−.

Definition 4. A function B = f(K,A) computed by an L(n) circuit layer with
key K = k1k2 · · · kn ∈ {0, 1,+,−}n is the relation from an n-bit input sequence
A = a1a2 · · · an ∈ {0, 1}n to an n-bit sequence B = b1b2 · · · bn ∈ {0, 1}n defined
below. An L(n) circuit layer computes first the variable T modulo 2 such that

T =
n⊕

j=1

tj , (3)

where

tj =

{
1 if (kj = 0 and aj = 0) or (kj = 1 and aj = 1),
0 Otherwise.

(4)

The output B = b1b2 · · · bn of the circuit layer is then

bj =




aj if




kj = − and T = 1
or

kj = + and T = 0
or

kj = 1
aj Otherwise.

(5)

Definition 5. A parity circuit of width n and depth d, or simply C(n, d) circuit,
is a matrix of d L(n) circuit layers with keys denoted by K = K1||K2 · · ·Kd for
which the n output bits of the (i− 1)-th circuit layer are the n input bits for the
i-th circuit layer, for 2 ≤ i ≤ d. The key for the C(n, d) circuit is a d×n matrix
with its d lines containing circuit layer keys.
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Table 1. C+(n, d) with n = 10 and d = 3

Input 1 0 1 1 0 0 1 0 0 1 Swap
K1 - 0 1 - + + 1 1 - +
Output 0 0 1 1 1 0 0 0 0 0 yes
K2 + 1 0 1 1 + 0 - + -
Output 0 1 1 0 0 0 0 1 0 1 no
K3 - 0 1 + + 0 - + + -
Output 0 0 0 1 1 0 1 0 1 1 yes

Let F be the function from {0, 1}n to {0, 1}n computed by a circuit C(n, d)
with key = K||K2 · · ·Kd. That is F (K,A) is defined as

F (K,A) = f(Kd, f(Kd−1, · · · , f(K1, A) · · ·). (6)

By showing that, for any fixed key, the C(n, d) circuit can be constructed using
XOR gates only, Youssef and Tavares [7] showed that F (K,A) above is affine
over GF (2).

Definition 6. A function B = f+(K,A) computed by an augmented L(n) cir-
cuit layer with key K, or simply L+(n) layer, is the function V (f(K,A)), where
V is the VDS function as in Definition 2, and f is the function computed by an
L(n) circuit layer.

Definition 7. A augmented parity circuit of width n and depth d, or simply
C+(n, d) circuit, is a matrix of d L+(n) circuit layers with keys denoted by
K = K1||K2 · · ·Kd for which the n output bits of the (i − 1)-th circuit layer
are the n input bits for the i-th circuit layer, for 2 ≤ i ≤ d. The key for the
C+(n, d) circuit is a d × n matrix with its d lines containing circuit layer keys.
A F+ function from {0, 1}n to {0, 1}n computed by a circuit C(n, d) with key
= K||K2 · · ·Kd as

F+(K,A) = f+(Kd, f+(Kd−1, · · · , f+(K1, A) · · ·). (7)

Table 1 shows the example given in [3] for a C+(n, d) circuit with n = 10 and
d = 3

2 Cryptanalysis of the C+(n, d) Circuit

Since the C(n, d) circuit is affine [7], the C+(n, d) circuit can be viewed as a
composition of key-dependent affine transformations and the VDS layer (see
Figure 1). Thus the security of the C+(n, d) relies heavily on the cryptographic
strength of the VDS layer.



32 A.M. Youssef

❄

❄

❄

❄

❄

❄

....................................................................................................

❄

Y

X

Affine Layer

VDS

Affine Layer

Affine Layer

VDS

VDS

Fig. 1. The C+(n, d) viewed as a composition of affine and VDS layers

Observation 01 For any specific key k, the ciphertext Y of the C+(n, d) circuit
is related to the plaintext X by one of the affine relations

Y = Ai(k)X ⊕ bi(k), (8)

where i = 1, 2, · · · ,M , Ai(k) is a key-dependent non singular binary matrix,
bi(k) is a key-dependent n× 1 binary vector and M ≤ 2d.

Proof. Let V DSi denote the swap variable at round i. I.e., V DSi = 0 if the parity
of the input to the VDS layer at round d is even and V DSi = 1 if this parity is
odd. Thus V DSi ∈ {0, 1} and hence for a C+(n, d) circuit, V DS1, · · · , V DSd ∈
{0, 1}d. Thus the input space of the C+(n, d) circuit can be partitioned into 2d

sets
S1, S2 · · · , S2d , (9)

where for any fixed 1 ≤ i ≤ 2d, V DS1, · · · , V DSd is fixed and hence the d VDS
layers can be modeled by fixed bit permutation layers. The output Y corre-
sponding to the input X ∈ Si can be obtained by a composition of fixed affine
relations and hence Y is related to X by a fixed affine relation for all X ∈ Si.
Since there is no guarantee that all the 2d possible values of V DS1, · · · , V DS2d

will appear, then M ≤ 2d. 
�
Figure 2 illustrates the C+(n, d) equivalent circuit according to observation

01 above. The following observation illustrates how the “swap control” function
in this figure operates. By noting that V DSi is a linear function of the input to
layer i, then we have

Observation 02 Inputs that belong to the same set in observation 01 above
must satisfy a set of d linear equations.
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A1X ⊕ b1
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AMX ⊕ bM

Swap Control V DS1, · · · , V DSd

Fig. 2. Equivalent circuit of the C+(n, d) according to observation 01

For a given known key, these 2d (d linear relations) can be derived by cal-
culating the parity of the input to the d VDS layers in terms of the input X.
If some of these linear relations don’t have a solution, then M will be less than
2d. Figure 4 shows the linear relations corresponding to Example 1 in [3]. Note
that for this particular example, we have more than one possible solution for
Ais and bis. Figure 4 shows only one of these possible solutions. While obser-
vations 01 and 02 are enough to cause uneasy feeling when using the C+(n, d)
for most practical values of d, we extend our attack to find these linear rela-
tions. The main idea is to develop an algorithm that can be used to group the
input/output pairs that belong to the same set Si and then solve a set of linear
equations to find the Matrix Ai and the vector bi. The attack makes use of the
following observation

Observation 03 For the C+(n, d), if the input R1, R2 and R3 belong to the set
Si, then

R4 = R3 ⊕ (R1 ⊕R2)

belongs to the same set Si.

Proof. If R1, R2 and R3 ∈ Si then they must satisfy a set of d linear equations
in the form

CR1 = b, CR2 = b, CR3 = b,

where C is an d × n matrix and b is a d × 1 vector. The observation is proved
by noting that

CR4 = CR3 ⊕ CR2 ⊕ CR2 = b
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1. R1 = Random()
2. do

3. {
4. pass = 0
5. R2 = Random()
6. δx = R1 ⊕ R2

7. for i = 1 to i = Trials

8. {
9. R3 = Random()
10. R4 = R3 ⊕ δx

11. δy = F+(R1) ⊕ F+(R2) ⊕ F+(R3) ⊕ F+(R4)
12. if (δy = 0) increment pass
13. }
14. if(pass ≥ Threshold) Declare R1 and R2 ∈ same set
15. }while number of collected pairs ≤ P

Fig. 3. Basic steps in the attack

and hence R4 also satisfy this set of equation. Thus R4 must belong to the same
set Si. 
�

Note that if R1, R2, and R3 ∈ Si then for any key K

F+(K,R1) ⊕ F+(K,R2) ⊕ F+(K,R3) ⊕ F+(K, (R3 ⊕ (R1 ⊕R2))) = 0 (10)

In our attack, we pick random triples R1, R2 and R3 and test for the condition
in equation (10). Since there is no guarantee that R3 will belong to Si even if R1
and R2 do, we repeat the test for different values of R3 (Trials in Figure 3). We
decide that R1 and R2 are in the same set if the condition is satisfied for a large
number of times (Threshold in Figure 3). Wrong decisions by the algorithm
(i.e., if the algorithm declares that R2 and R1 are in the same set while they
are not) can be filtered out by collecting more than n + 1 pairs (e.g., P = 2n
pairs) because with high probability the resulting set of equations we will try to
solve will be inconsistent if the algorithm accepts wrong pairs. Another method
to prevent the algorithm from accepting wrong pairs is to increase the value of
Trials and make the value of Threshold very close to Trials. However, this
may increase the number of plaintext-ciphertext pairs required to break the
algorithm. Throughout these experiments, the value of Threshold was set based
on the statistics of the pass variable (see Figure 3). We set Threshold close to
the maximum value of pass.

3 Analysis of the Algorithm and Experimental Results

Assuming that the size of the input sets are equal, then the probability that
R1, R2 and R3 are in the same set is 1

M3 where M is the number of partitions.
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Table 2. Average number of sets versus optimal value for n = 10

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Average(M) 2 3 4 7 11 15 25 37 57 62 100 143 162 232 325 393
min(2d, 2n) 2 4 8 16 32 64 128 256 512 1024 1024 1024 1024 1024 1024 1024

The maximum value forM is min(2d, 2n). Thus the number of chosen plaintext-
ciphertext pairs required for the attack increases with M3. In other words, the
success of the attack depends heavily on the number of the input partitions. The
intensive use of bit oriented operations in the C+(n, d) circuits puts an upper-
bound on d, and consequently M , for any efficient software implementation.
The average number of partitions for n = 10 is shown in Table 2. Each point
represents an average over 100 C+(n, d) circuits with randomly selected keys. It
is clear that this number is much less than the optimum value max(2d, 2n). Our
experimental results shows that this large deviation from the optimum case holds
for larger block lengths. It is also easy to prove that if the key K is restricted
to the set {0, 1} instead of {0, 1,+,−} , then M ≤ 2 for all d ≥ 1. Note that
because we don’t knowM in advance, it is hard to optimize the choice of Trials
and Threshold to minimize the number of plaintext-ciphertext pairs required
for the attack. Moreover, our experiments shows that the C+(n, d) circuit fails
to behave like a random function for practical values of d and hence it is not
easy to predict the probability of wrong pairs satisfying equation (10) based on
the random function model. The good point (from the attacker point of view) is
that the attack works almost all the time. In many cases, we were able to break
an 8−round 64−bit version of this family in few minutes on a workstation using
less than 220 chosen plaintext-ciphertext pairs.

Remark 1. The non-affineness defined in [3] doesn’t provide a useful measure of
resistance against linear attacks. The nonlinearity of a function f is defined as
the minimum distance between the set of affine functions and all the non-zero
linear combinations of the output coordinates of f [6]. Our experiments shows
that for practical values of d, the average nonlinearity of the C+(n, d) circuits is
very poor compared to the expected nonlinearity of randomly selected functions
of the same size n. Thus it is conceivable that the C+(n, d) circuit be broken
using a variant of linear cryptanalysis [6].

4 Conclusion

The security of the C+(n, d) circuit relies only on the cryptographic strength
of the VDS function because the rest of the circuit is affine. Controlling the
swapping based on the parity results in a cryptographically weak function. Thus
for practical values of n and d, the augmented family of parity circuits C+(n, d)
proposed by Koyama and Terada is insecure.
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5 Appendix

if

[
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1 1 1
1 1 1 1 1 0 0 0 1 1

]
X =

[
0
1
0

]
then Y =




1 1 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 0 1 0 0
0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0 0 1




X ⊕




1
1
0
1
0
0
1
1
0
1




,

if

[
1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1

]
X =

[
1
1
0

]
then Y =




1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 1 0 0




X ⊕




0
0
0
1
0
1
0
1
0
1




,

if

[
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1 1 1
0 1 1 0 0 1 0 1 1 1

]
X =

[
0
0
0

]
then Y =




1 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 0
1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1 0 1
1 0 0 1 1 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 1 0 0




X ⊕




0
1
1
0
0
1
1
0
1
1




,

if

[
1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 0
1 0 1 1 1 0 1 1 0 0

]
X =

[
1
0
0

]
then Y =




1 0 1 0 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 1 1
0 0 1 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1
0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0 0 1




X ⊕




1
0
1
0
0
0
0
0
1
1




,

Fig. 4. Linear relations for Example 1 in [3]
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if

[
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1 1 1
1 1 1 1 1 0 0 0 1 1

]
X =

[
0
1
1

]
then Y =




0 0 0 1 1 1 0 1 0 0
0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0 0 1
1 1 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0




X ⊕




0
1
0
1
1
1
0
1
0




,

if

[
1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1

]
X =

[
1
1
1

]
then Y =




1 0 1 0 0 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 1 0 0
1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0




X ⊕




1
0
1
0
1
0
0
0
1
0




,

if

[
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1 1 1
0 1 1 0 0 1 0 1 1 1

]
X =

[
0
0
1

]
then Y =




1 0 1 0 0 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 1 0 0
1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0




X ⊕




1
0
1
0
1
0
0
0
1
0




,

if

[
1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 0
1 0 1 1 1 0 1 1 0 0

]
X =

[
1
0
1

]
then Y =




1 0 1 0 0 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 1 0 0
1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0




X ⊕




1
0
1
0
1
0
0
0
1
0




.

Fig. 4. (continued)
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