
Cryptanalysis of the Chor-Rivest Cryptosystem

Serge Vaudenay*

Ecole Normale Supdrieure - - CNRS
e-mail: Serge. Vaudenay@ens. f r

Abstract. Knapsack-based cryptosystems used to be popular in the
beginning of public key cryptography before being all broken, all but
the Chor-Rivest cryptosystem. In this paper, we show how to break this
one with its suggested parameters: GF(p 24) and GF(25625). We also give
direction on possible extensions of our attack.

Recent interests about cryptosystems based on knapsacks or lattice reduc-
t ion problems unearthed the problem of their security. So far, the Chor-Rivest
was the only unbroken cryptosystem based on the subset sum problem [2, 3]. In
this paper, we present a new attack on it which definitely breaks the system for
all the proposed parameters in Chor-Rivest's final paper [3]. We also give direc-
tions to break the general problem, and related cryptosystems such as Lenstra's
Powerline cryptosystem [8].

1 T h e C h o r - R i v e s t C r y p t o s y s t e m

We let q = ph be a power-prime (for a practical example, let p = 197 and
h = 24). We consider the finite field GF(q) and we assume that its representation
is public (i.e. there is a public h-degreed polynomial P(x) irreducible on GF(p)
and elements of GF(q) are polynomials modulo P(x)). We also consider a public
numbering c~ of the subfield GF(p), i.e. {c~0,..., ap-1} = GF(p) C_ GF(q).

Secret keys consist of

- an element t E GF(q) with algebraic degree h
- a generator g of GF(q)*
- an integer d E Z~-I
- a permutat ion ~r of {0 , . . . ,p - 1}

Public keys consist of all

c~ = d + loga(t + a .(i)) mod q - 1

for i = 0 , . . . ,p - 1. For this reason, the public parameters must be chosen
such that the discrete logarithm is easy to calculate in GF(q). In the final
paper, the authors suggested to use a relatively small prime power p and a

* Part of this work was done when the author was visiting AT&T Labs Research.

244

smooth power h, i.e. an integer with only small factors so that we can apply the
Pohlig-Hellman algorithm [11]. 1 Suggested parameters corresponds to the fields
GF(19724), GF(21124), GF(24324), and GF(25625).

The Chor-Rivest cryptosystem works over a message space which consists
of all p-bit strings with Hamming weight h. This means that the message to
be encrypted must first be encoded as a bitstring m = Ira0.. . rnp_l] such tha t
m0 + . . . + rnp_l = h. The ciphertext space is Zq-1 and we have

E(m) = moco +. . . + mp-lCp-1 rood q - 1.

To decrypt the ciphertext E(m), we compute

p(t) = gS(,~)-hd

as a polynomial in term of t over GF(p) with degree at most h - 1, which must
be equal to

H (t
mi----1

in GF(q). Thus, if we consider #(x) +p(x) where #(x) is the minimal polynomial
of t, we must obtain the formal polynomial

II
ml----1

whose factorization leads to m.
Although the public key generation relies on intricate finite fields computa-

tions, the decryption problem is based on the traditional subset sum problem
(also more familiarly called knapsack problem): given a set of pieces Co,. . . , Cp-1
and a target E(m), find a subset of pieces so that its sum is E(m). This problem
is known to be hard, but the cryptosystem hides a trapdoor which enables the
legitimate user to decrypt. This modifies the genericity of the problem and the
security is thus open.

2 Prev ious Work

The Merkle-Hellman cryptosystem was the first subset-sum-based cryptosystem
[10]. Although the underlying problem is NP-complete, it has surprisingly been
broken by Shamir [12]. Later, many other variants have been shown insecure for
any practical parameters by lattice reduction techniques (see [6] for instance).
Actually, subset-sum problems can be characterized by the density parameter
which is (with our notations) the ratio d = p~ log 2 q. When the density is far
from 1 (which was the case of most of cryptosystems), the problem can efficiently

1 This algorithm with Shanks' baby step giant step trick has a complexity of
O(hav~logp) simple GF(p)-operations for computing one c~ where B is the largest
prime factor of ph _ 1. (See Koblitz [7].) Since pr _ 1 is a factor of ph _ 1 when r is
a factor of h, B is likely to be small when h only has small prime factors.

245

be solved by lattice reduction algorithms like the LLL algorithm [9]. The Chor-
Rivest cryptosystem is an example of cryptosystem which achieves a density
close to 1 (for p = 197 and h = 24, the density is 0.93). Its underlying problem
has however the restriction that the subsets must have cardinality equal to h.
Refinement of lattice reduction tools with this restriction have been studied by
Schnorr and HSrner [13]. They showed that implementations of the Chor-Rivest
cryptosystem with parameters p = 151 and h - 16 could be broken within a few
days of computation on a single workstation (in 1995).

So far, the best known attack for secret key recovery is Brickell's attack
which works within a complexity of O(p24"hh2 logp). It has been published in
the final paper by Chor and Pdvest [3]. This paper also includes several attempts
of attacks when parts of the secret key is disclosed. In Sect. 5, we briefly review
a few of them in order to show what all quantities in the secret key are for.

The Chor-Rivest cryptosystem has the unnatural property that the choice of
the finite field GF(q) must be so that computing the discrete logarithm is easy. A
variant has been proposed by Lenstra [8] which overcomes this problem. In this
setting, any parameter can be chosen, but the encryption needs multiplications
instead of additions. This variant has further been extended by Camion and
Chabanne [1].

3 S y m m e t r i e s i n t h e S e c r e t K e y

In the Chor-Rivest cryptosystem setting, one has first to choose a random secret
key, then to compute the corresponding public key. It relies on the difficulty of
finding the secret key from the public key. It shall first be noticed that there
are several equivalent secret keys, i.e. several keys which correspond to the same
public key and thus which define the same encryption and decryption functions.

We first notice that if we replace t and g by their pth power (i.e. if we apply
the Frobenius automorphism in GF(q)), the public key is unchanged because

1
loggp (t p + a~(~)) = P logg((t + c~(~)) p) = logg(t + c~(~)).

Second, we can replace (t, ~) by (t + u, a~ - u) for any u E GF(p). Finally, we
can replace (t, d, az) by (ut, d - logg u, u.a~) for any u E GF(p). Thus we have
at least hp 2 equivalent secret keys. The Chor-Rivest problem consists of finding
one of it.

Inspired by the symmetry use in the Coppersmith-Stern-Vaudenay attack
against birational permutations [4], these properties may suggest that the poly-

h-1 (X t p') the equivalent t's are the roots nomial l'Ii=o - of whom all plays a crucial
/

role. This is actually the case as shown by the attacks in the following sections.

4 R e l a t i o n t o t h e P e r m u t e d K e r n e l P r o b l e m

Throughout this paper, we will use the following property of the Chor-Rivest
cryptosystem.

246

Fact 1 For any factor r of h, there exists a generator g~. of the multiplicative
group of the subfield GF(p r) of GF(q) and a polynomial Q with degree h / r and
coel~icients in G F (f) and such that - t is a root and that for any i we have
Q(a.(~)) = gp C,.

Proof. We let
h/r-1

i--0

where gp. = l'I g f ' (gp" can be considered as the norm of g when considering
the extension GF(p r) C_ GF(q)). We notice that we have Q(x) E GF(p r) for any
x E G F (f) . Since f > h we obtain that all coefficients are in GF(pr). The
property Q(a~(i)) = gp. c, is straightforward. []

Since h/r is fairly small, it is unlikely that there exists some other (gp~, Q)
solutions, and gp. is thus essentially unique. Throughout this paper we will use
the notation q--1

gq, = gq,-a.

If we consider the Vandermonde matrix

M a~ j) o<,<p
= (o<7<hl-

and the vector V = (gp.C~)o<i<p, we know there exists some vector X such
that M . X = V,~-I where V,-I is permuted from V through the permutation
7r -1. By using the parity check matrix H of the code spanned by M (which is
actually a Reed-Solomon code), this can be transformed into a permuted kernel
problem H.V~-I = O. It can be proved that all entries of H are actually in GF(p),
thus this problem is in fact r simultaneous permuted kernel problems in GF(p).
Actually, we can take H = (A [I) where I is the identity matrix and A is the
(p - h / r - 1) x (h/r + 1)-matrix defined by

- H " '+" /" - " ' (1 < < v - h / r
Aid

0_<,<,/. aj -- ak k O < j < h l r) "
k ~ j

If we let V i denotes the vector of the ith coordinates in vector V, we have

Vi H.V~_I = O.

Unfortunately, there exists no known efficient algorithms for solving this prob-
lem. Since the matrix has a very special form, the author of the present paper
believes it is still possible to attack the problem in this direction, which may
improve the present attack.

5 Partial Key Disclosure Attacks

In this section we show that we can mount an attack when any part of the secret
key is disclosed. Several such attacks have already been published in [3]. Some
have been improved below and will be used in the following.

247

Known t Attack. If we guess that lr(0) = i and lr(1) = j (because of the sym-
metry in the secret key, we know that an arbitrary choice of (i,j) will work), we
can compute log(t + ai) and log(t + a j) then solve the equations

Co = d + log(t + ai)
logg

cl = d + log(t + a j)
logg

with unknowns d and log 9. 2

Known g Attack. If we guess that 7r(O) = i and 7r(1) = j (because of the
symmetry in the secret key, we know that an arbitrary choice of (i,j) will work),
we can compute

t +a l f fCo--Cl ~ - -

t + a j

then solve t. 3

Known ~r Attack. We find a linear combination with the form

p--1

~ x~(c~ - co) = 0
i----1

with relatively small integral coefficients xi's. This can be performed through the
LLL algorithm [9]. We can expect that Izd < B with B ~ pp--~-~. Exponentiating
this we get some equation

I I (t + = I I (t + -=,
i E l j E J

with non-negative small powers, which is a polynomial equation with low degree
which can be solved efficiently. 4

BrickeU's attack with nothing known consists of finding a similar equation
but with a limited number s of a~(i) and then exhaustively finding for those
7r(i)'s. There is a tradeoff on s the LLL algorithm may product xi 's smaller than
B = p~, the root finding algorithm requires O(BUh logp) GF(p)-operations and
the exhaustive search requires O(p t) trials. (For more details and better analysis,
see [3].)

Known gp. and ~r Attack. Since we will use this attack several times in the
following, we put it here. We can interpolate the Q(x) polynomial of Fact 1 with
h/r + 1 pairs (a~(i), gp. e,). We thus obtain a h/r-degree polynomial whose roots
are conjugates of - t . We can thus solve it in order to get t and perform a known
t attack.

2 Another attack attributed to Goldreich was published in [3].
z Another attack was published in Huber [5].
a This attack was attributed to Odlyzko and published in [3].

248

6 K n o w n gp,, A t t a c k

Here we assume we know the g f value corresponding to a subfield GF(p r) (see
Fact 1).

Let i o , . . . , ih/r be h / r + 1 pairwise distinct indices from 0 to p - 1. Because
of Fact 1 we can interpolate Q(x) on all a~(~j)'s, which leads to the relation

g , ' " = I I "-('___A) (2)
i----0 O < l * < h / . O~Tr(iJ) - - O/Tr(ia)

h#j

for i = 0 , . . . ,p - 1. Actually, we can even write this as

h/r
_ g,,.O,o = (g,.o,, _ g,,.O,o) H o,,,(,) (3)

i=1 o<h<h/, a~r(/j) -- a~r(ih)

Because of the symmetry of r in the secret key, we can arbitrarily choose
lr(Q) and ~r(i2) (see Sect. 3).

A straightforward algorithm for finding ~r consists of exhaustively look for
the values of ~r(ii) for j = 0, 3 , . . . , h / r until Equation (2) gives a consistent
permutat ion r . It is illustrated on Fig. 1. The complexity of this method if
roughly O(hp h/r -1) computations in GF(p).

Inpu t GF(q) descriptors, a numbering, co, . . . ,C~-l , rlh, g f
O u t p u t a secret key whose corresponding public key is co, . . . , c~-1

1. choose pairwise different io , . . . ,ih/r in {0,.. . ,p - 1}
2. choose different lr(il) and ~r(i2) arbitrarily in {0,... , p - 1}
3. for all the possible values of ~r(io), ~r(i2),..., ~r(ih/r) (i.e. all values such that

~r(io),..., ~r(ih/r) are pairwise different and in the set {0,. . . , p - 1}), we set
S = {r(i0) , . . . , 7r(ihlr)} and do the following
(a) for all j which is not in S, compute the right-hand term of Equation (2)

with aj instead of a~(0. If it is equal to gfC~ such that ~r(i) has not been
defined, set lr(i) = j, otherwise continue loop in step 3.

(b) perform a known g f and 7r attack.

Fig. 1. An O(p~ -1) Known gp~ Attack.

When r is large enough, there is a much better algorithm. Actually, if h / r <_ r
(i.e. r > v/-h), the coefficients in Equation (2) are the only GF(p) coefficients
which write gp Cl _ gp C~ o in the basis gp.C~o - gp~Cio,... ,gp Cih/. _ gfC~o. Let

i be the coefficient of gp. c~i _ gpf C~o for gp. ci _ gp. c~o. We have aj

a~ = u a ' (o - a,~(i~) (4)
a] ar(O - a,r(i2)

249

where u is an element of GF(p) which does not depend on i. Hence, if we ran-
domly choose ij for j = 0 , . . . , h / r , we can write all gpe~ _ gpe~ o,s in the basis
(gp.C,o _ gp.Cio,. . . , gp~%,/. _ gp.C,o). Now if we guess the GF(p)-value of u, we
obtain 7r(i) from the above equation. This is a polynomial algorithm in p, h, r
for getting 7r.

I npu t GF(q) descriptors, a numbering, co,. . . ,cp-1, rib, gp. s.t. r >
O u t p u t a secret key whose corresponding public key is co , . . . , cp-i

1. choose pairwise different io , . . . , ih/r in {O,.. . ,p--1} and precompute the basis
transformation matrix for the basis (gp.C~o - gpvCio, . . . , g p , c l h / " - gprClo)

2. choose different Ir(il) and 7r(iz) arbitrarily in {0,.. . ,p - 1}
3. for all possible u in GF(p), do the following

(a) for all i, write gp~ -g~.r in the basis and get a~ and a~. From Equation
(4) get ~r(i). If it is not consistent with other lr(i~), continue loop in step
3.

(b) perform a known gp. and Ir attack.

Fig. 2. A Polynomial Known gp. Attack for r >_ Vrh.

In the rest of the paper, we show how to find gp. with a choice of r so that
these known gp. attacks can be applied.

7 T e s t f o r gp ,

Equation (3) means that all gp. el's actually stand on the same h/r-dimensional
atfme subspace of GF(p r) over GFfy). Thus, if we assume that h/r + 1 < r (i.e.

r > ~/~ + �88 + �89 this leads to a simple test for gp..

y / • 1 1 let de- F a c t 2 If there exists a factor r of h such that r > + ~ + ~ if we gp~

notes g l+~'+'' '+ph-~, then all gp C~ 's stands on the same h/r-dimensional affine
space when considering GF(p r) as an r-dimensional GF(p)-a2~ine space.

The existence of such an r can be seen as a bad requirement for this attack,
but since the parameters of the Chor-Rivest cryptosystem must make the discrete
logarithm easy, we already know that h has many factors, so this hypothesis is
likely to be satisfied in practical examples. Actually, h with no such factors are
prime and square-prime numbers. The real issue is tha t r shall not be too large.

Thus there is an algorithm which can check if a candidate for gp. is good:
the algorithm simply check that all gp. c~ 's are affine~dependent. The algorithm
has an average complexity of O(h3/r) operations in GF(p). Since there are
7~(p r - 1) / r candidates, we can exhaustively search for gp. within a complexity
of O(hSpr/r2). Since r has to be within the order of V~, this at tack is bet ter

250

than Brickell's at tack provided that such an r exists. The algorithm is depicted
on Fig. 3.

Inpu t GF(q) descriptors, a numbering, co,. . . ,Cp--1, r[h s.t. r > v / h - ~ -i -
O u t p u t possible values for g f

I. choose pairwise different io , . . . , ih/r in {0,.. . ,p - 1}
2. for any generator 9p" of GF(p'), do the following

(a) get the equation of the afline space spanned by (gfC~o,... , global.)
(b) for all other i, check that gfC, in the space. If not, continue loop in step

2.
(c) perform the known g f attack of Fig. 2.

Fig. 3. An O(p r) Attack for r > y ~ " ~ + �89

With the parameter h -- 24, we can take r = 6. We have about 241 candidates
for gp. so we can find it within 252 elementary operations, which is feasible with
modern computers.

Here we also believe we can still adapt this at tack for smaller r values. The
next section however gives an al ternate shortcut to this issue.

8 On the Use of all the ci's

In his paper [8], Lenstra suspected that disclosing all the c~'s in the public key was
a weakness. Actually, this property enables to drastically improve the previous
algorithm by using all the factors of h.

We have the following fact.

Fac t 3 Let Q(x) be a polynomial over GF(p r) with degree d and let e be an
integer such that 1 < e < ~d 1 . We have

Q(a) = O.
a6GF(p)

This comes from the fact tha t Q(x) e has a degree less than p - 1 and that
a i -- 0 for any i < p - 1. This proves the following fact.

F a c t 4 For any 1 < e < (p - 1)r /h we have

p--1

~ g p ~c, = 0.
4=0

This provides a much simpler procedure to select all gp~ candidates. Its main
advantage is tha t it works in any subfield. For instance, we can consider r -- 1

251

and find the only gp such that for all 1 _~ e < (p - 1)r we have ~'~gper = O. The
average complexity of checking one candidate is O(p) GF(p)-computations: it is
unlikely that a wrong candidate will not be thrown by the e = 1 test. Hence, we
can recover gp within O(p 2) simple computations.

Unfortunately, the gp. cannot be used efficiently when r is too small. We
can still use gp. in smaller subfields to compute it in large ones. Our goal is
to compute gp. with r large enough. Let us consider the problem of computing
gp. when r l , . . . , rk are factors of r with the knowledge of gp.~. Since we have

gp.~ -- g~+P'~+'"+P~-~, we obtain that

loggp., (rood p~' - 1). (5) log gp. = 1 + pr~ + . . . + pr-ri

The knowledge of all gp.~ 's thus gives the knowledge of log gp. modulo

= lcm{p rl - 1,p r2 - 1 , . . . ,pr~ _ 1}.

Thus we need only (pr _ 1)/~ trials to recover gp.. The algorithm is illustrated
on Fig. 4. It is easy to see that each loop controlled in step 2 requires on average
O(pr 2) operations in GF(p).

Input GF(q) descriptors, a numbering, co, . . . ,ep-1, ri[r[h and gp.~, i = 1, . . . , k
O u t p u t set of possible gp. values

1. solve the Equation System (5) for i = 1 , . . . , k and obtain that gp. = ~.'/~ for
unknown x

2. for x = 0 , . . . , (p~ - 1)/lcm(p ~ - 1;i = 1,. . . ,k} - 1 do the following
(a) compute ~ ~cl ~/~c~ for e = 1, . . . (p - 1) r / h - 1 and if one sum is non-zero

continue loop on step 2.
(b) output gp~ - ~.7 ~

Fig. 4. Getting gp. from the gp-~.

Thus we can define an algorithm for dedicated h's by a graph.

D e f i n i t i o n 5. Let G be a rooted labeled direct acyclic graph in which the root is
labeled by a finite field GF(p r) and such that whenever there is a u --+ v edge in
G then the label L(u) of u is a subfield o] the label L(v) of v and an extension
of GF(p). We call G a '~-factoring D A G for GF(p r) ".

To G and an integer p we associate the quantity

L (v) - 1
c(a) = ~ icm{#L---(-(~- 7;v +- w}"

(By convention, lcm of an empty set is 1.) We can define an algorithm for com-
puting gp. with complexity O(pr2C(G)). Thus, we can break the Chor-Rivest

252

cryptosystem with parameter h which is neither prime nor a square prime within
a complexity essentially

O (m i n min p r 2 C (G) ~ .
1"[h G is a p--fLetoring

~ ' _ ~ V ~ D A G for GF(p r) /

The corresponding algorithm is illustrated on Fig. 5.

Inpu t GF(p h) descriptors, a numbering, co, . . . , cp-1,
Ou tpu t a possible secret key

1. for the smallest factor r of h such that r ~ X / r ~ �88 + �89 find the p-factoring
DAG with minimal C(G)

2. for any u in G such that for all u ~ ui, u~ has been visited, visit u by doing
the following
(a) perform the algorithm of Fig. 4 with GF(p r) = L(u) and GF(p r~) = L(u~)

and obtain g f
3. perform the known gp. attack of Fig. 2

Fig. 5. An Efficient Attack Dedicated for h.

Example 6 (h = 25). We can solve the h = 25 case with a trivial G p-factoring
DAG for GF(p 5) which consists of two vertices labeled with GF(p) and GF(pS).
From gp~ we can then apply the algorithm of Fig. 2. We have

C(G) = p s i _ 1 + P_ 1 .~ p4
p - 1

so the corresponding complexity is O(pS).

Example 7 (h = 24). Here is another dedicated attack for h = 24. We can choose
r = 6 for which we have h/r + 1 < r. Recovering gp~ requires firstly, O(p) trials
to get gp, secondly, O(p) trials to get gp2 with gp, thirdly, O(p 2) trials to get gp3
with gp, finally, O(p 2) trials to get gp6 with gp2 and gps. The maximum number

3 6 of trials is thus O(p2). Hence the complexity is O(p) multiplications in GF(p).
Actually, this attack corresponds to the p-factoring DAG for GF(p 6) depicted
on Fig. 6. For this DAG we have

p6 _ 1 p 3 _ 1 p 2 _ 1

C(G) : Icm(p 2 - 1,p 3 - 1) + ~ + - - p - 1 + p - 1

thus C(G) = 78014 for p = 197. We thus need about 229 operations in GF(197)
to break the Chor-Rivest cryptosystem in GF(1972a).

253

GF(p e)

GF(p2)

GF~x)

GF(p 3)

Fig. 6. A Factoring DAG for GF(p6).

9 General ization

In this section we generalize our attack in order to cover the GF(25625) case i.e.
when p is a power-prime: there is no reason why to restrict our attacks to finite
fields which are extensions of GF(p) since we have many other subfields. For this
we need to adapt the algorithm of Fig. 5 with generalized factoring DAGs, i.e.
when the labels are not extensions of GF(p). We first state generalized version
of Fact 1.

F a c t 8 Let GF(q') be a subfield of GF(q) i.e. q -- q,8. We let

Q(x) = y (g d (x + t)) mod (x p - x)

where N(y) = y~ 4z=~-~ . Q(x) is a polynomial such that Q(c~(i)) = N(g) e'. In

addition, if we have gcd(s, h) < po where Po = q ~ then the degree of Q(x)
is gcd(s,h) ~oll �9

Proof. Q(a~(i)) = N(g) c~ is obvious since a~(i) is a root of x p - x. The useful
par t of this fact is the distance between the degree of Q(x) and p.

We have
s--1

Q(x) = N(g) .N(x + t)~- N(g) H (x q ' ' + tq") (mod (x" - x)) .
i----0

We notice that

thus if we let

x i rood (x p - x) : x (i-l) rood (p-1)+l

s - - 1

i----0

the degree of Q(x) is d provided that d < p. Let po = q ~ and p = P~o. We
have

g--1 g--i 8 ~ p ~ = 8 p - 1
d = s ~ ((p ~ _ l) m o d (p g _ l) + l) = g i = 0

- g p 0 - 1"
g i=0

254

We further notice that ~ = gcd(s, h) and that d < p. [3

As a consequence we obtain a generalized form of Fact 4.

Fac t 9 Let q = ph = q,, and Po = q ~ be such that gcd(s, h) < Po - 1.
have

p--1

i=O

We

for any 1 < e < ~ .

We can thus generalize the attack of Fig. 5 whenever each GF(q 1/') label fulfill

the assumption gcd(s, h) < Po - 1 where po = q ~ .

Example 10 (q = 25625). The GF(16) field does not fulfill the assumption. How-
ever, the GF(256), GF(165) and GF(2565) fields do. We can thus start the attack
with the field GF(256) and then obtain g16 from g162 as illustrated by the (gen-
eralized) factoring DAG of GF(2565) illustrated on Fig. 7. We have

256 s - 1 16 s - 1 15 1
C(G) = lcm(255, 16 s - 1) § 1---~ § 2-~ § 255 = 131841 + 1-~

thus we need about 229 GF(16)-operations to break the Chor-Rivest cryptosys-
tern in GF(25625).

GF(2565)

GF(16~)

~F(Z6)

GF(256)

Fig. 7. A Generalized Factoring DAG for GF(2565).

We believe there is no need for formalizing further generalizations in the
Chor-Rivest cryptosystem context. We believe that the more we have some sub-
field choices of GF(q), the lower is the complexity of the best attack.

255

10 Conclusion

We have described general attack when the parameter h has a small factor r

greater than ~ + ~ which has a complexity O(hap r/r2). We also have

solved one of Lenstra's conjectures arguing that keeping all the c~ coefficients in
the public key is a weakness by exhibiting a shortcut algorithm in the previous
attack.

The attack has been successfully implemented on an old laptop with the
suggested parameters GF(p 24) by using hand-made (inefficient) arithmetic li-
braries. Recovering the secret key from the public key takes about 15 minutes.
But computing the public key from the secret key takes much longer...

We also generalized our attack in order to break the GF(256 ~5) proposal.
In Appendix, we even suggest an improvement of the presented attacks when h

does not have a small factor r greater than ~ + �89

In order to repair the Chor-Rivest cryptosystem, we believe that

- we must choose a finite field GF(p h) where p and h are both prime;
- we must not put all the c~s in the public key.

It is then not clear how to choose the parameters in order to make the discrete
logarithm problem easy, and to achieve a good knapsack density in order to
thwart the Schnorr-HSrner attack.

One solution is to use Lenstra's Powerline cryptosystem, or even its recent
generalization: the Fractional Powerline System (see Camion-Chabanne [1]). We
however have to fulfill the two requirements above. The security in this setting
is still open, but we suspect that the simultaneous permuted kernel character-
ization of the underlying problem may lead to a more general attack on this
cryptosystem with any parameters. We highly encourage further work in this
direction.

Acknowledgment

The author thanks Andrew Odlyzko for many helpful discussions and AT&T for
inviting to perform those researches.

References

1. P. Camion, H. Chabanne. On the Powerline system. In Advances in Cryptology,
ICICB'97, Beijing, China, Lectures Notes in Computer Science 1334, pp. 381-385,
Springer-Verlag, 1997.

2. B. Chor, R.L. Rivest. A knapsack-type public key cryptosystem based on arith-
metic in finite fields. In Advances in Cryptology CRYPTO'8~, Santa Barbara, Cal-
ifornia, U.S.A., Lectures Notes in Computer Science, pp. 54--65, Springer-Verlag,
1985.

256

3. B. Chor, R.L. Rivest. A knapsack-type public key cryptosystem based on arith-
metic in finite fields. IEEE Transactions on Information Theory, vol. IT-34, pp.
901-909, 1988.

4. D. Coppersmith, J. Stern, S. Vaudenay. The security of the birational permutation
signature schemes. Journal of Cryptology, vol. 10, pp. 207-221, 1997.

5. K. HHuber. Specialised attack on Chor-Rivest public key cryptosystem. Electronics
Letters, vol. 27, no. 23, pp. 2130, 1991.

6. A. Joux, J. Stern. Lattice Reduction: a Toolbox for the Cryptanalyst. To appear
in Journal of Cryptology.

7. N. Koblitz. A Course in Number Theory and Cryptography, 2nd Edition, Graduate
Texts in Mathematics 114, Springer-Verlag, 1994.

8. H.W. Lenstra, Jr. On the Chor-Rivest Knapsack Cryptosystem. Journal of Cryp-
tology, vol. 3, pp. 149-155, 1991.

9. A.K. Lenstra, H.W. Lenstra Jr., L. Lov~sz. Factoring polynomials with rational
coefficients. Math. Ann., vol. 261, pp. 515-534, 1982.

10. R.C. Merkle, M. Hellman. Hiding information and signatures in trap-door knap-
sacks. IEEE Transactions on Information Theory, vol. IT-24, pp. 525-530, 1978.

11. S. Pohlig, M. Hellman. An improved algorithm for computing logarithms over
GF(q) and its cryptographic significance. IEEE Transactions on Information The-
ory, vol. IT-24, pp. 106-110, 1978.

12. A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In Proceedings of the 23rd IEEE Symposium on Foundations of Com-
puter Science, Chicago, Illinois, U.S.A., pp. 145-152, IEEE, 1982.

13. C.P. Schnorr, H.H. I-ISrner. Attacking the Chor-Rivest Cryptosystem by improved
lattice reduction. In Advances in Cryptology EUROCRYPT'95, Saint-Malo, France,
Lectures Notes in Computer Science 921, pp. 1-12, Springer-Verlag, 1995.

A Extension of Algorithm of Fig. 2

Equation (4) is a simple way to solve the problem when r > V~. We still
believe we can adapt the above attack for any value of r by more tricky algebraic
computations.

Actually, let us consider a value r such that h _> r and s = h _ r. Let ei
denotes gp.% - gprClo for i = 1 , . . . , h/r . There may exist some ~ j u k j e j - 0

equations, namely s of it. Hence if we write gnr c' gp, C'o i . - = ~']~j aje~, there may

exist some x~ coefficients such that

k o< _ / ~ ~ T r (i j) - - C~Tr(i~)

for j = 1 , . . . , h/r . When considering a set o f n values of i , we have n h / r algebraic
equations with n(s + 1) - 1 + h / r unknowns x~, a~(i~), a~(i). Thus if r > 1 we
can take n large enough as long as p(r - 1) + 1 >_ h/r . We thus believe further
algebraic tricks may leads to the solution for any r > 1 as long as p + 1 > hi2.

