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Abstract. Knapsack-based cryptosystems used to be popular in the 
beginning of public key cryptography before being all broken, all but 
the Chor-Rivest cryptosystem. In this paper, we show how to break this 
one with its suggested parameters: GF(p 24) and GF(25625). We also give 
direction on possible extensions of our attack. 

Recent interests about cryptosystems based on knapsacks or lattice reduc- 
t ion problems unearthed the problem of their security. So far, the Chor-Rivest 
was the only unbroken cryptosystem based on the subset sum problem [2, 3]. In 
this paper, we present a new attack on it which definitely breaks the system for 
all the proposed parameters in Chor-Rivest's final paper [3]. We also give direc- 
tions to break the general problem, and related cryptosystems such as Lenstra's 
Powerline cryptosystem [8]. 

1 T h e  C h o r - R i v e s t  C r y p t o s y s t e m  

We let q = ph be a power-prime (for a practical example, let p = 197 and 
h = 24). We consider the finite field GF(q) and we assume that  its representation 
is public (i.e. there is a public h-degreed polynomial P(x) irreducible on GF(p) 
and elements of GF(q) are polynomials modulo P(x)). We also consider a public 
numbering c~ of the subfield GF(p),  i.e. {c~0,..., ap-1} = GF(p) C_ GF(q). 

Secret keys consist of 

- an element t E GF(q) with algebraic degree h 
- a generator g of GF(q)* 
- an integer d E Z~-I 
- a permutat ion ~r of {0 , . . .  ,p - 1} 

Public keys consist of all 

c~ = d + loga(t + a .( i ))  mod q - 1 

for i = 0 , . . .  ,p - 1. For this reason, the public parameters must be chosen 
such that  the discrete logarithm is easy to calculate in GF(q). In the final 
paper, the authors suggested to use a relatively small prime power p and a 

* Part of this work was done when the author was visiting AT&T Labs Research. 
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smooth power h, i.e. an integer with only small factors so that  we can apply the 
Pohlig-Hellman algorithm [11]. 1 Suggested parameters corresponds to the fields 
GF(19724), GF(21124), GF(24324), and GF(25625). 

The Chor-Rivest cryptosystem works over a message space which consists 
of all p-bit strings with Hamming weight h. This means that  the message to 
be encrypted must first be encoded as a bitstring m = Ira0.. .  rnp_l] such tha t  
m0 + . . .  + rnp_l = h. The ciphertext space is Zq-1 and we have 

E(m) = moco +. . .  + mp-lCp-1 rood q - 1. 

To decrypt the ciphertext E(m), we compute 

p(t) = gS(,~)-hd 

as a polynomial in term of t over GF(p) with degree at most h - 1, which must 
be equal to 

H (t 
mi----1 

in GF(q). Thus, if we consider #(x) +p(x) where #(x) is the minimal polynomial 
of t, we must obtain the formal polynomial 

II 
ml----1 

whose factorization leads to m. 
Although the public key generation relies on intricate finite fields computa- 

tions, the decryption problem is based on the traditional subset sum problem 
(also more familiarly called knapsack problem): given a set of pieces Co,. . . ,  Cp-1 
and a target E(m), find a subset of pieces so that  its sum is E(m). This problem 
is known to be hard, but the cryptosystem hides a trapdoor which enables the 
legitimate user to decrypt. This modifies the genericity of the problem and the 
security is thus open. 

2 Prev ious  Work  

The Merkle-Hellman cryptosystem was the first subset-sum-based cryptosystem 
[10]. Although the underlying problem is NP-complete, it has surprisingly been 
broken by Shamir [12]. Later, many other variants have been shown insecure for 
any practical parameters by lattice reduction techniques (see [6] for instance). 
Actually, subset-sum problems can be characterized by the density parameter 
which is (with our notations) the ratio d = p~ log 2 q. When the density is far 
from 1 (which was the case of most of cryptosystems), the problem can efficiently 

1 This algorithm with Shanks' baby step giant step trick has a complexity of 
O(hav~logp) simple GF(p)-operations for computing one c~ where B is the largest 
prime factor of ph _ 1. (See Koblitz [7].) Since pr _ 1 is a factor of ph _ 1 when r is 
a factor of h, B is likely to be small when h only has small prime factors. 
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be solved by lattice reduction algorithms like the LLL algorithm [9]. The Chor- 
Rivest cryptosystem is an example of cryptosystem which achieves a density 
close to 1 (for p = 197 and h = 24, the density is 0.93). Its underlying problem 
has however the restriction that the subsets must have cardinality equal to h. 
Refinement of lattice reduction tools with this restriction have been studied by 
Schnorr and HSrner [13]. They showed that implementations of the Chor-Rivest 
cryptosystem with parameters p = 151 and h - 16 could be broken within a few 
days of computation on a single workstation (in 1995). 

So far, the best known attack for secret key recovery is Brickell's attack 
which works within a complexity of O(p24"hh2 logp). It has been published in 
the final paper by Chor and Pdvest [3]. This paper also includes several attempts 
of attacks when parts of the secret key is disclosed. In Sect. 5, we briefly review 
a few of them in order to show what all quantities in the secret key are for. 

The Chor-Rivest cryptosystem has the unnatural property that the choice of 
the finite field GF(q) must be so that computing the discrete logarithm is easy. A 
variant has been proposed by Lenstra [8] which overcomes this problem. In this 
setting, any parameter can be chosen, but the encryption needs multiplications 
instead of additions. This variant has further been extended by Camion and 
Chabanne [1]. 

3 S y m m e t r i e s  i n  t h e  S e c r e t  K e y  

In the Chor-Rivest cryptosystem setting, one has first to choose a random secret 
key, then to compute the corresponding public key. It relies on the difficulty of 
finding the secret key from the public key. It shall first be noticed that there 
are several equivalent secret keys, i.e. several keys which correspond to the same 
public key and thus which define the same encryption and decryption functions. 

We first notice that if we replace t and g by their pth power (i.e. if we apply 
the Frobenius automorphism in GF(q)), the public key is unchanged because 

1 
loggp (t p + a~(~)) = P logg((t + c~(~)) p) = logg(t + c~(~)). 

Second, we can replace (t, ~ )  by (t + u, a~ - u) for any u E GF(p). Finally, we 
can replace (t, d, az) by (ut, d - logg u, u.a~) for any u E GF(p). Thus we have 
at least hp 2 equivalent secret keys. The Chor-Rivest problem consists of finding 
one of it. 

Inspired by the symmetry use in the Coppersmith-Stern-Vaudenay attack 
against birational permutations [4], these properties may suggest that the poly- 

h-1 (X t p') the equivalent t's are the roots nomial l'Ii=o - of whom all plays a crucial 
/ 

role. This is actually the case as shown by the attacks in the following sections. 

4 R e l a t i o n  t o  t h e  P e r m u t e d  K e r n e l  P r o b l e m  

Throughout this paper, we will use the following property of the Chor-Rivest 
cryptosystem. 
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Fact  1 For any factor r of h, there exists a generator g~. of the multiplicative 
group of the subfield GF(p r) of GF(q) and a polynomial Q with degree h / r  and 
coel~icients in G F ( f )  and such that - t  is a root and that for any i we have 
Q(a.(~)) = gp C,. 

Proof. We let 
h/r-1 

i--0 

where gp. = l'I g f '  (gp" can be considered as the norm of g when considering 
the extension GF(p r) C_ GF(q)). We notice that we have Q(x) E GF(p r) for any 
x E G F ( f ) .  Since f > h we obtain that all coefficients are in GF(pr). The 
property Q(a~(i)) = gp. c, is straightforward. [] 

Since h/r  is fairly small, it is unlikely that there exists some other (gp~, Q) 
solutions, and gp. is thus essentially unique. Throughout this paper we will use 
the notation q--1 

gq, = gq,-a. 

If we consider the Vandermonde matrix 

M a~ j) o<,<p 
= ( o<7<hl- 

and the vector V = (gp.C~)o<i<p, we know there exists some vector X such 
that M . X  = V,~-I where V,-I is permuted from V through the permutation 
7r -1. By using the parity check matrix H of the code spanned by M (which is 
actually a Reed-Solomon code), this can be transformed into a permuted kernel 
problem H.V~-I = O. It can be proved that all entries of H are actually in GF(p), 
thus this problem is in fact r simultaneous permuted kernel problems in GF(p). 
Actually, we can take H = ( A [ I )  where I is the identity matrix and A is the 
(p - h / r  - 1) x (h/r  + 1)-matrix defined by 

- H " '+" /"  - " '  ( 1  < < v -  h / r  
Aid  

0_<,<,/. aj -- ak k O < j < h l r  ) "  
k ~ j  

If we let V i denotes the vector of the ith coordinates in vector V, we have 

Vi H.V~_I = O. 

Unfortunately, there exists no known efficient algorithms for solving this prob- 
lem. Since the matrix has a very special form, the author of the present paper 
believes it is still possible to attack the problem in this direction, which may 
improve the present attack. 

5 Partial  Key  Disclosure Attacks  

In this section we show that we can mount an attack when any part of the secret 
key is disclosed. Several such attacks have already been published in [3]. Some 
have been improved below and will be used in the following. 
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Known t Attack. If we guess that  lr(0) = i and lr(1) = j (because of the sym- 
metry in the secret key, we know that  an arbitrary choice of (i,j) will work), we 
can compute log(t + ai) and log(t + a j )  then solve the equations 

Co = d + log(t + ai) 
logg 

cl = d + log(t + a j )  
logg 

with unknowns d and log 9. 2 

Known g Attack. If we guess that  7r(O) = i and 7r(1) = j (because of the 
symmetry in the secret key, we know that  an arbitrary choice of (i,j) will work), 
we can compute 

t +a l  f fCo--Cl  ~ - -  

t + a j  

then solve t. 3 

Known ~r Attack. We find a linear combination with the form 

p--1 

~ x~(c~ - co) = 0 
i----1 

with relatively small integral coefficients xi's. This can be performed through the 
LLL algorithm [9]. We can expect that  Izd < B with B ~ pp--~-~. Exponentiating 
this we get some equation 

I I ( t  + = I I ( t  + -=,  
i E l  j E J  

with non-negative small powers, which is a polynomial equation with low degree 
which can be solved efficiently. 4 

BrickeU's attack with nothing known consists of finding a similar equation 
but with a limited number s of a~(i) and then exhaustively finding for those 
7r(i)'s. There is a tradeoff on s the LLL algorithm may product xi 's smaller than 
B = p~, the root finding algorithm requires O(BUh logp) GF(p)-operations and 
the exhaustive search requires O(p t) trials. (For more details and better analysis, 
see [3].) 

Known gp. and ~r Attack. Since we will use this attack several times in the 
following, we put it here. We can interpolate the Q(x) polynomial of Fact 1 with 
h/r  + 1 pairs (a~(i), gp. e,). We thus obtain a h/r-degree polynomial whose roots 
are conjugates of - t .  We can thus solve it in order to get t and perform a known 
t attack. 

2 Another attack attributed to Goldreich was published in [3]. 
z Another attack was published in Huber [5]. 
a This attack was attributed to Odlyzko and published in [3]. 
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6 K n o w n  gp,, A t t a c k  

Here we assume we know the g f  value corresponding to a subfield GF(p r) (see 
Fact 1). 

Let i o , . . . ,  ih/r be h / r  + 1 pairwise distinct indices from 0 to p - 1. Because 
of Fact 1 we can interpolate Q(x)  on all a~(~j)'s, which leads to the relation 

g , ' "  = I I  "-('___A) (2) 
i----0 O < l * < h / .  O~Tr(iJ) - -  O/Tr(ia) 

h#j 

for i = 0 , . . .  ,p - 1. Actually, we can even write this as 

h/r 
_ g,,.O,o = (g,.o,, _ g,,.O,o) H o,,,(,) (3) 

i=1 o<h<h/, a~r(/j) -- a~r(ih) 

Because of the symmetry of r in the secret key, we can arbitrarily choose 
lr(Q) and ~r(i2) (see Sect. 3). 

A straightforward algorithm for finding ~r consists of exhaustively look for 
the values of ~r(ii) for j = 0, 3 , . . . ,  h / r  until Equation (2) gives a consistent 
permutat ion r .  It is illustrated on Fig. 1. The complexity of this method if 
roughly O(hp  h/r -1)  computations in GF(p). 

Inpu t  GF(q) descriptors, a numbering, co, . . . ,C~-l ,  rlh, g f  
O u t p u t  a secret key whose corresponding public key is co, . . . ,  c~-1 

1. choose pairwise different io , . . .  ,ih/r in {0,.. .  ,p - 1} 
2. choose different lr(il) and ~r(i2) arbitrarily in {0,...  , p -  1} 
3. for all the possible values of ~r(io), ~r(i2),..., ~r(ih/r) (i.e. all values such that 

~r(io),..., ~r(ih/r) are pairwise different and in the set {0,. . .  , p -  1}), we set 
S = {r( i0) , . . . ,  7r(ihlr)} and do the following 
(a) for all j which is not in S, compute the right-hand term of Equation (2) 

with aj  instead of a~(0. If it is equal to gfC~ such that ~r(i) has not been 
defined, set lr(i) = j,  otherwise continue loop in step 3. 

(b) perform a known g f  and 7r attack. 

Fig. 1. An O(p~ -1) Known gp~ Attack. 

When r is large enough, there is a much better  algorithm. Actually, if h / r  <_ r 
(i.e. r > v/-h), the coefficients in Equation (2) are the only GF(p) coefficients 
which write gp Cl _ gp C~ o in the basis gp.C~o - gp~Cio,... ,gp Cih/. _ gfC~o. Let 

i be the coefficient of gp. c~i _ gpf C~o for gp. ci _ gp. c~o. We have aj 

a~ = u a ' ( o  - a,~(i~) (4) 
a] ar(O - a,r(i2) 
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where u is an element of GF(p) which does not depend on i. Hence, if we ran- 
domly choose ij for j = 0 , . . . ,  h / r ,  we can write all gpe~ _ gpe~ o,s in the basis 
(gp.C,o _ gp.Cio,. . . ,  gp~%,/. _ gp.C,o). Now if we guess the GF(p)-value of u, we 
obtain 7r(i) from the above equation. This is a polynomial algorithm in p, h, r 
for getting 7r. 

I npu t  GF(q) descriptors, a numbering, co,. . .  ,cp-1, rib, gp. s.t. r > 
O u t p u t  a secret key whose corresponding public key is co , . . . ,  cp-i 

1. choose pairwise different io , . . . ,  ih/r in {O,.. . ,p--1} and precompute the basis 
transformation matrix for the basis (gp.C~o - gpvCio, . . . ,  g p ,  c l h / "  - gprClo  ) 

2. choose different Ir(il) and 7r(iz) arbitrarily in {0,.. .  ,p - 1} 
3. for all possible u in GF(p), do the following 

(a) for all i, write gp~  -g~.r in the basis and get a~ and a~. From Equation 
(4) get ~r(i). If it is not consistent with other lr(i~), continue loop in step 
3. 

(b) perform a known gp. and Ir attack. 

Fig. 2. A Polynomial Known gp. Attack for r >_ Vrh. 

In the rest of the paper, we show how to find gp. with a choice of r so that  
these known gp. attacks can be applied. 

7 T e s t  f o r  gp ,  

Equation (3) means that  all gp. el's actually stand on the same h/r-dimensional  
atfme subspace of GF(p r) over GFfy).  Thus, if we assume that  h/r  + 1 < r (i.e. 

r > ~/~ + �88 + �89 this leads to a simple test for gp.. 

y / •  1 1 let de- F a c t  2 If there exists a factor r of h such that r > + ~ + ~ if we gp~ 

notes g l+~'+'' '+ph-~, then all gp C~ 's stands on the same h/r-dimensional affine 
space when considering GF(p r) as an r-dimensional GF(p)-a2~ine space. 

The existence of such an r can be seen as a bad requirement for this attack, 
but  since the parameters of the Chor-Rivest cryptosystem must make the discrete 
logarithm easy, we already know that  h has many factors, so this hypothesis is 
likely to be satisfied in practical examples. Actually, h with no such factors are 
prime and square-prime numbers. The real issue is tha t  r shall not be too large. 

Thus there is an algorithm which can check if a candidate for gp. is good: 
the algorithm simply check that  all gp. c~ 's are affine~dependent. The algorithm 
has an average complexity of O(h3/r) operations in GF(p). Since there are 
7~(p r - 1 ) / r  candidates, we can exhaustively search for gp. within a complexity 
of O(hSpr/r2). Since r has to be within the order of V~, this at tack is bet ter  
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than Brickell's at tack provided that  such an r exists. The algorithm is depicted 
on Fig. 3. 

Inpu t  GF(q) descriptors, a numbering, co,. . .  ,Cp--1, r[h s.t. r > v / h - ~  -i - 
O u t p u t  possible values for g f  

I. choose pairwise different io , . . . ,  ih/r in {0,.. .  ,p - 1} 
2. for any generator 9p" of GF(p'), do the following 

(a) get the equation of the afline space spanned by (gfC~o,... ,  global.) 
(b) for all other i, check that gfC, in the space. If not, continue loop in step 

2. 
(c) perform the known g f  attack of Fig. 2. 

Fig. 3. An O(p r) Attack for r > y ~ " ~  + �89 

With the parameter  h -- 24, we can take r = 6. We have about  241 candidates 
for gp. so we can find it within 252 elementary operations, which is feasible with 
modern computers. 

Here we also believe we can still adapt  this at tack for smaller r values. The 
next section however gives an al ternate shortcut to this issue. 

8 On the  Use  of  all the  ci's 

In his paper [8], Lenstra suspected that  disclosing all the c~'s in the public key was 
a weakness. Actually, this property enables to drastically improve the previous 
algorithm by using all the factors of h. 

We have the following fact. 

Fac t  3 Let Q(x) be a polynomial over GF(p r) with degree d and let e be an 
integer such that 1 < e < ~d 1 . We have 

Q(a)  = O. 
a6GF(p) 

This comes from the fact tha t  Q(x) e has a degree less than p -  1 and that  
a i -- 0 for any i < p - 1. This proves the following fact. 

F a c t  4 For any 1 < e < ( p -  1)r /h  we have 

p--1 

~ g p  ~c, = 0. 
4=0 

This provides a much simpler procedure to select all gp~ candidates. Its main 
advantage is tha t  it works in any subfield. For instance, we can consider r -- 1 
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and find the only gp such that  for all 1 _~ e < ( p -  1)r we have ~'~gper = O. The 
average complexity of checking one candidate is O(p) GF(p)-computations: it is 
unlikely that  a wrong candidate will not be thrown by the e = 1 test. Hence, we 
can recover gp within O(p 2) simple computations. 

Unfortunately, the gp. cannot be used efficiently when r is too small. We 
can still use gp. in smaller subfields to compute it in large ones. Our goal is 
to  compute gp. with r large enough. Let  us consider the problem of computing 
gp. when r l , . . . ,  rk are factors of r with the knowledge of gp.~. Since we have 

gp.~ -- g~+P'~+'"+P~-~, we obtain that  

loggp., (rood p~' - 1). (5) log gp. = 1 + pr~ + . . .  + pr-ri 

The knowledge of all gp.~ 's thus gives the knowledge of log gp. modulo 

= lcm{p rl - 1,p r2 - 1 , . . .  ,pr~ _ 1}. 

Thus we need only (pr _ 1)/~ trials to recover gp.. The  algorithm is illustrated 
on Fig. 4. It  is easy to see that  each loop controlled in step 2 requires on average 
O(pr  2) operations in GF(p). 

Input GF(q) descriptors, a numbering, co, . . .  ,ep-1, ri[r[h and gp.~, i = 1, . . . ,  k 
O u t p u t  set of possible gp. values 

1. solve the Equation System (5) for i = 1 , . . . ,  k and obtain that gp. = ~.'/~ for 
unknown x 

2. for x = 0 , . . . ,  (p~ - 1)/lcm(p ~ - 1;i = 1,. . .  ,k} - 1 do the following 
(a) compute ~ ~cl  ~/~c~ for e = 1, . . .  ( p - 1 ) r / h - 1  and if one sum is non-zero 

continue loop on step 2. 
(b) output gp~ - ~.7 ~ 

Fig. 4. Getting gp. from the gp-~. 

Thus we can define an algorithm for dedicated h's by a graph. 

D e f i n i t i o n  5. Let G be a rooted labeled direct acyclic graph in which the root is 
labeled by a finite field GF(p r) and such that whenever there is a u --+ v edge in 
G then the label L(u)  of u is a subfield o] the label L(v)  of v and an extension 
of GF(p).  We call G a '~-factoring D A G  for GF(p r) ". 

To G and an integer p we associate the quantity 

# L ( v )  - 1 
c(a) = ~ icm{#L---(-(~- 7;v +- w}" 

(By convention, lcm of an empty set is 1.) We can define an algorithm for com- 
puting gp. with complexity O(pr2C(G)).  Thus, we can break the Chor-Rivest 
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cryptosystem with parameter h which is neither prime nor a square prime within 
a complexity essentially 

O ( m i n  min p r 2 C ( G ) ~ .  
1"[h G is a p--fLetoring 

~ ' _ ~ V ~  D A G  for GF(p r) / 

The corresponding algorithm is illustrated on Fig. 5. 

Inpu t  GF(p h) descriptors, a numbering, co, . . . ,  cp-1, 
Ou tpu t  a possible secret key 

1. for the smallest factor r of h such that r ~ X / r ~  �88 + �89 find the p-factoring 
DAG with minimal C(G) 

2. for any u in G such that for all u ~ ui, u~ has been visited, visit u by doing 
the following 
(a) perform the algorithm of Fig. 4 with GF(p r) = L(u) and GF(p r~) = L(u~) 

and obtain g f  
3. perform the known gp. attack of Fig. 2 

Fig. 5. An Efficient Attack Dedicated for h. 

Example 6 (h = 25). We can solve the h = 25 case with a trivial G p-factoring 
DAG for GF(p 5) which consists of two vertices labeled with GF(p) and GF(pS). 
From gp~ we can then apply the algorithm of Fig. 2. We have 

C(G) = p s i _  1 + P_ 1 .~ p4 
p - 1  

so the corresponding complexity is O(pS). 

Example 7 (h = 24). Here is another dedicated attack for h = 24. We can choose 
r = 6 for which we have h/r + 1 < r. Recovering gp~ requires firstly, O(p) trials 
to get gp, secondly, O(p) trials to get gp2 with gp, thirdly, O(p 2) trials to get gp3 
with gp, finally, O(p 2) trials to get gp6 with gp2 and gps. The maximum number 

3 6 of trials is thus O(p2). Hence the complexity is O(p ) multiplications in GF(p ). 
Actually, this attack corresponds to the p-factoring DAG for GF(p 6) depicted 
on Fig. 6. For this DAG we have 

p6 _ 1 p 3  _ 1 p 2  _ 1 

C(G) : Icm(p 2 - 1,p 3 - 1) + ~ + - - p - 1  + p -  1 

thus C(G) = 78014 for p = 197. We thus need about 229 operations in GF(197) 
to break the Chor-Rivest cryptosystem in GF(1972a). 
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GF(p e) 

GF(p2) 

GF~x) 

GF(p 3) 

Fig. 6. A Factoring DAG for GF(p6). 

9 General ization 

In this section we generalize our attack in order to cover the GF(25625) case i.e. 
when p is a power-prime: there is no reason why to restrict our attacks to finite 
fields which are extensions of GF(p) since we have many other subfields. For this 
we need to adapt  the algorithm of Fig. 5 with generalized factoring DAGs, i.e. 
when the labels are not extensions of GF(p). We first state generalized version 
of Fact 1. 

F a c t  8 Let GF(q') be a subfield of GF(q) i.e. q -- q,8. We let 

Q(x) = y ( g d ( x  + t)) mod (x p - x) 

where N(y)  = y~ 4z=~-~ . Q(x) is a polynomial such that Q(c~(i) ) = N(g) e'. In 

addition, if we have gcd(s, h) < po where Po = q ~  then the degree of Q(x) 
is gcd(s,h) ~oll �9 

Proof. Q(a~(i)) = N(g) c~ is obvious since a~(i) is a root of x p - x. The useful 
par t  of this fact is the distance between the degree of Q(x) and p. 

We have 
s--1 

Q(x) = N(g) .N(x  + t)~- N(g) H ( x q ' ' +  tq") (mod (x" - x ) ) .  
i----0 

We notice that  

thus if we let 

x i rood (x p - x) : x (i-l) rood (p-1)+l 

s - - 1  

i----0 

the degree of Q(x) is d provided that d < p. Let po = q ~  and p = P~o. We 
have 

g--1 g--i 8 ~ p ~  = 8 p - 1  
d =  s ~ ( ( p ~ _ l )  m o d ( p g _ l ) + l ) = g i = 0  

- g p 0 -  1" 
g i=0  
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We further notice that  ~ = gcd(s, h) and that  d < p. [3 

As a consequence we obtain a generalized form of Fact 4. 

Fac t  9 Let q = ph = q,, and Po = q ~  be such that gcd(s, h) < Po - 1. 
have 

p--1 

i=O 

We 

for any 1 < e < ~ .  

We can thus generalize the attack of Fig. 5 whenever each GF(q 1/') label fulfill 

the assumption gcd(s, h) < Po - 1 where po = q ~ .  

Example 10 (q = 25625). The GF(16) field does not fulfill the assumption. How- 
ever, the GF(256), GF(165) and GF(2565) fields do. We can thus start  the attack 
with the field GF(256) and then obtain g16 from g162 as illustrated by the (gen- 
eralized) factoring DAG of GF(2565) illustrated on Fig. 7. We have 

256 s - 1 16 s - 1 15 1 
C(G) = lcm(255, 16 s - 1) § 1---~ § 2-~ § 255 = 131841 + 1-~ 

thus we need about 229 GF(16)-operations to break the Chor-Rivest cryptosys- 
tern in GF(25625). 

GF(2565) 

GF(16~) 

~F(Z6) 

GF(256) 

Fig. 7. A Generalized Factoring DAG for GF(2565). 

We believe there is no need for formalizing further generalizations in the 
Chor-Rivest cryptosystem context. We believe that the more we have some sub- 
field choices of GF(q), the lower is the complexity of the best attack. 
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10 Conclusion 

We have described general attack when the parameter h has a small factor r 

greater than ~ + ~ which has a complexity O(hap r/r2). We also have 

solved one of Lenstra's conjectures arguing that keeping all the c~ coefficients in 
the public key is a weakness by exhibiting a shortcut algorithm in the previous 
attack. 

The attack has been successfully implemented on an old laptop with the 
suggested parameters GF(p 24) by using hand-made (inefficient) arithmetic li- 
braries. Recovering the secret key from the public key takes about 15 minutes. 
But computing the public key from the secret key takes much longer... 

We also generalized our attack in order to break the GF(256 ~5) proposal. 
In Appendix, we even suggest an improvement of the presented attacks when h 

does not have a small factor r greater than ~ + �89 

In order to repair the Chor-Rivest cryptosystem, we believe that 

- we must choose a finite field GF(p h) where p and h are both prime; 
- we must not put all the c~s in the public key. 

It is then not clear how to choose the parameters in order to make the discrete 
logarithm problem easy, and to achieve a good knapsack density in order to 
thwart the Schnorr-HSrner attack. 

One solution is to use Lenstra's Powerline cryptosystem, or even its recent 
generalization: the Fractional Powerline System (see Camion-Chabanne [1]). We 
however have to fulfill the two requirements above. The security in this setting 
is still open, but we suspect that the simultaneous permuted kernel character- 
ization of the underlying problem may lead to a more general attack on this 
cryptosystem with any parameters. We highly encourage further work in this 
direction. 
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A Extension of Algorithm of Fig. 2 

Equation (4) is a simple way to solve the problem when r > V~. We still 
believe we can adapt  the above attack for any value of r by more tricky algebraic 
computations. 

Actually, let us consider a value r such that  h _> r and s = h _ r. Let ei 
denotes gp.% - gprClo for i = 1 , . . . ,  h/r .  There may exist some ~ j  u k j e j  - 0 

equations, namely s of it. Hence if we write gnr c' gp, C'o i . - = ~']~j aje~, there may 

exist some x~ coefficients such that  

k o< _ / ~  ~ T r ( i j )  - -  C~Tr(i~) 

for j = 1 , . . . ,  h/r .  When considering a set o f n  values of i ,  we have n h / r  algebraic 
equations with n(s + 1) - 1 + h / r  unknowns x~, a~(i~), a~(i). Thus if r > 1 we 
can take n large enough as long as p(r  - 1) + 1 >_ h/r .  We thus believe further 
algebraic tricks may leads to the solution for any r > 1 as long as p + 1 > hi2.  


