
Cryptanalysis of the ESSENCE Family of Hash

Functions⋆

Nicky Mouha1,2,⋆⋆, Gautham Sekar1,2,⋆ ⋆ ⋆, Jean-Philippe Aumasson3,†,
Thomas Peyrin4, Søren S. Thomsen5, Meltem Sönmez Turan6, and

Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
3 FHNW, Windisch, Switzerland.

4 Ingenico, France.
5 Department of Mathematics, Technical University of Denmark, Matematiktorvet

303S, DK-2800 Kgs. Lyngby, Denmark.
6 Computer Security Division, National Institute of Standards and Technology, USA.

{nicky.mouha,gautham.sekar,bart.preneel}@esat.kuleuven.be,
jeanphilippe.aumasson@gmail.com, thomas.peyrin@gmail.com,

ssth@win.dtu.dk, meltem.turan@nist.gov

Abstract. ESSENCE is a family of cryptographic hash functions, ac-
cepted to the first round of NIST’s SHA-3 competition. This paper
presents the first known attacks on ESSENCE. We present a semi-
free-start collision attack on 31 out of 32 rounds of ESSENCE-512, in-
validating the design claim that at least 24 rounds of ESSENCE are
secure against differential cryptanalysis. We develop a novel technique
to satisfy the first nine rounds of the differential characteristic. Non-
randomness in the outputs of the feedback function F is used to con-
struct several distinguishers on a 14-round ESSENCE block cipher and
the corresponding compression function, each requiring only 217 output
bits. This observation is extended to key-recovery attacks on the block
cipher. Next, we show that the omission of round constants allows slid
pairs and fixed points to be found. These attacks are independent of the
number of rounds. Finally, we suggest several countermeasures against
these attacks, while still keeping the design simple and easy to analyze.

Keywords: Cryptanalysis, hash function, ESSENCE, semi-free-start col-
lision, distinguisher, key-recovery, slide attack.

⋆ This work was supported in part by the IAP Program P6/26 BCRYPT of the Belgian
State (Belgian Science Policy), and in part by the European Commission through
the ICT program under contract ICT-2007-216676 ECRYPT II.

⋆⋆ This author is funded by a research grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

⋆ ⋆ ⋆ This author is supported by an ADAPID project.
† Supported by the Swiss National Science Foundation under project no. 113329.

1 Introduction

Recent attacks by Wang et al. on the widely used hash functions MD4 [17],
MD5 [18], RIPEMD [17] and SHA-1 [19], as well as other hash functions, show
that collisions for these hash functions can be found much faster than expected
by the birthday paradox [16].

In search for a new secure hash function standard, NIST announced the SHA-
3 hash function competition [13]. The ESSENCE family of cryptographic hash
functions, designed by Martin [9], advanced to the first round of this competition.
It is a family of block cipher-based hash functions using the Merkle-Damg̊ard
mode of operation. The ESSENCE family uses simple algorithms that are easily
parallelizable and well-established mathematical principles. ESSENCE comes
with a proof of security against linear and differential cryptanalysis, that until
this paper remained unchallenged.

First, we describe several undesired properties of the ESSENCE L function.
These can be used to build a semi-free-start collision attack [12, pp. 371–372] on
31 out of 32 rounds of the ESSENCE-512 compression function using a differ-
ential characteristic. This directly invalidates the design claim that at least 24
rounds of ESSENCE are resistant against differential cryptanalysis [9]. To build
our attack, we describe a novel technique to satisfy the conditions imposed by
the characteristic in the first nine rounds. We do not know of a similar technique
in existing literature.

Then, we find that the ESSENCE compression functions use a non-linear
feedback function F that is unbalanced. We first exploit this to build efficient
distinguishers on 14-round versions of the ESSENCE block ciphers as well as
the compression functions. These distinguishers require only 217 output bits.
We then show how to use these results to recover the key with a few known
plaintexts and a computational effort less than that of exhaustive search. We
also show that, under some circumstances, the attacks on 14-round ESSENCE
could be extended to the full 32-round block cipher and compression function.

Following this, we observe that the omission of round constants in ESSENCE
leads to several attacks that cannot be prevented by increasing the number of
rounds. A slide attack can be applied to any number of rounds of the ESSENCE
compression function. We also find fixed points for any number of rounds of the
ESSENCE block cipher, that lead to a compression function output of zero.

ESSENCE was not qualified to the second round of the SHA-3 competition;
however, its appealing features (like design simplicity and hardware efficiency)
make any effort on tweaking it appear worthwhile. Therefore, in this paper, we
also suggest some countermeasures to thwart the aforesaid attacks.

In later work, Naya-Plasencia et al. [14] present different results on ESSENCE.
Our paper presents not only differential cryptanalysis but also distinguishing
attacks and slide attacks. Furthermore, some of our techniques can easily be
generalized to other block ciphers and hash functions.

The paper is organized as follows. Section 2 describes the compression func-
tion of ESSENCE. In Sect. 3, we define and calculate the branching number
of the linear L function for both linear and differential cryptanalysis. As the

branching number turns out to be quite low, we use this observation to build
a semi-free-start collision attack for 31 out of 32 rounds in Sect. 4. To satisfy
the first nine rounds of the differential characteristic of the semi-free-start col-
lision attack, we develop a technique in Sect. 5. Our distinguishers that exploit
the weakness of F function are presented in Sect. 6. In the same section, we
also show how our distinguishing attacks can be converted into key-recovery at-
tacks on the block ciphers. Following this, we show how the omission of round
constants allows us to find slid pairs (Sect. 7) and fixed points (Sect. 8) for
any number of rounds. Finally, Sect. 9 enlists our countermeasures and Sect. 10
concludes the paper.

2 Description of the Compression Function of ESSENCE

The inputs to the compression function of ESSENCE are an eight-word chaining
value and an eight-word message block, where each word is 32 or 64 bits in length,
for ESSENCE-224/256 and ESSENCE-384/512 respectively. The compression
function uses a permutation E, that in turn uses a nonlinear feedback function
F , a linear transformation L, some XORs and word shifts.

The message block m = (m0, . . . ,m7) forms the initial value of an eight-
word state k = (k0, . . . , k7). In the case of the block cipher, m is the key
k = (k0, . . . , k7). Similarly, the chaining value c = (c0, . . . , c7) is the initial
chaining value of an eight-word state r = (r0, . . . , r7). In the case of the block
cipher, c is the plaintext. Both states are iterated N times. The designer rec-
ommends N to be a multiple of 8, N ≥ 24 for resistance to differential and
linear cryptanalysis and N = 32 as a measure of caution [9]. Figure 1 il-
lustrates one round of ESSENCE. The compression function uses a Davies-

❄ ❄ ❄ ❄ ❄ ❄ ❄

❄

✛✛✛✛✛✛✛

✲ ❄✲

L
❄

F

❄ ❄ ❄ ❄ ❄ ❄ ❄

❄

✛✛✛✛✛✛✛

✲ ❄✲

L
❄

F

✻
✛✛ ✛r7 r6 r5 r4 r3 r2 r1 r0 k7 k6 k5 k4 k3 k2 k1 k0

Fig. 1. One round of ESSENCE; each rn and kn (n = 0, . . . , 7) is a 32- or 64-bit word

Meyer feed-forward (see Fig. 2). That is, at the end of N rounds, the value
r7||r6||r5||r4||r3||r2||r1||r0 is XORed with the initial chaining value. The result
is the r7||r6||r5||r4||r3||r2||r1||r0 for the next iteration.

3 Branching Number of the L Function

The L function of ESSENCE is a linear transformation from 32 (or 64) bits to
32 (or 64) bits and it is the only component that causes diffusion between the

E ✲✲ ❄

✻

k

✲rini rfin

Fig. 2. The compression function of ESSENCE; E is the round function of ESSENCE
when iterated N times, k denotes the message block, rini denotes the initial value of
r7||r6||r5||r4||r3||r2||r1||r0 and rfin denotes the value of r for the next iteration

different bit positions of a word. Therefore, its properties are very important for
both linear and differential cryptanalysis.

In this section, we focus on the branching number of the L function for both
linear and differential cryptanalysis. Let the branching number for differential
cryptanalysis be the minimum number of non-zero input and output differences
for the L function. These branching numbers are 10 and 16 for the 32-bit and
64-bit L functions respectively. If we were to consider only one-bit differences
at either the input or the output of L, these numbers would be 14 and 27
respectively.

The branching number for linear cryptanalysis can be defined as the (non-
zero) minimum number of terms in a linear equation relating the input and
output bits of the L function. These branching numbers are 10 and 17 for the 32-
bit and 64-bit L function respectively. Considering linear relations that involve
only one bit at the input or one bit at the output, we would find branching
numbers of 12 and 26 respectively.

Although one-bit differences are spread out well by the L function, this is
clearly not the case for differences in multiple bits. This problem is most severe
with the 64-bit L function. In the next section, we will show how this property
can be used to build narrow trails for all digest sizes of ESSENCE.

4 A 31-Round Semi-Free-Start Collision Attack For

ESSENCE-512

In this section, we will focus only on ESSENCE-512 for the sake of brevity and
clarity. As the strategy is not specific to any particular digest size, these results
can easily be generalized to all digest sizes of ESSENCE.

Although the ESSENCE L function spreads out one-bit differences very well,
the previous section showed that this is not the case for differences in multiple
bits. We therefore propose to use the differential characteristic of Table 1, to
obtain 31-round semi-free-start collisions for ESSENCE-512.

To construct narrow trails, we use the non-zero difference A with the lowest
possible Hamming weight. For this difference, we impose the condition (¬A) ∧

L(A) = 0, where ¬ represents the negation operation and all logical operations
are to be performed bitwise. This can be formulated as follows: if there is a
difference at the output of the L function at a particular bit position, there must
be a difference at the input of L at this bit position as well. This requirement
is necessary, as the F function can absorb or propagate an input difference at
the output, but if no input difference is present, then there won’t be an output
difference either at this particular bit position. This places a restriction on the
output difference of the L function for this bit position.

There exist exactly 8 differences A with a weight of 17 and lower weight
differences A do not exist. These differences are available in Appendix A, along
with a method to calculate them efficiently.

The last two columns of Table 1 provide an estimate of the probability that
the characteristic is satisfied for every round. For these, we have assumed that
the F function propagates or absorbs an input difference with equal probability.
An more accurate calculation of these probabilities takes into account that the
shift register causes input values of the F function to be reused.

We find that this probability is different for bit positions where A and L(A)
both contain a difference, and for bit positions where only A contains a difference.
As such, of all differences A with weight 17, we select the difference that has
the highest weight of L(A). Five such differences exist, and we arbitrarily select
the difference with the smallest absolute value, A = 0A001021903036C3. The
corresponding L(A) = 0200100180301283 has weight 11. As such, we find that
rounds 10 to 16 of the key schedule, and rounds 18 to 24 of the compression
function, each have a probability of 2−8.415·6−8·11 = 2−138.49. For rounds 18 to
23 of the key schedule, we find a probability of 2−7.193·6−7·11 = 2−120.16.

To find semi-free-start collisions, we first search for a message pair that sat-
isfies the key expansion characteristic, and then afterwards search for a chain-
ing value pair that satisfies the compression function characteristic. These two
searches can be decoupled, as the chaining value does not influence the key
schedule. As such, the probabilities for the message pairs and IV pairs can be
summed up instead of multiplied.

As will be shown in the next section, only two round function calls are re-
quired to find a message (or IV) that satisfies the first nine rounds of the key
expansion (or compression function). To find a pair of messages (or IVs) that
satisfy the differential characteristic, we use the same depth-first search algo-
rithm that was introduced for SHA-1 in [2]. The memory requirements of this
search algorithm are negligible. We assume that the cost of visiting a node in
this search tree is equivalent to one round function call, or 2−5 compression
function calls. The complexity calculation of [2] then shows that a 31-round
semi-free-start collision can be found using the characteristic of Table 1 after
2138.49+120.16+1−5 + 2138.49+1−5 = 2254.65 equivalent compression function calls.
This is faster than a generic birthday attack, which requires about 2256 com-
pression function evaluations.

Table 1. A 31-round semi-free-start collision differential characteristic for the
ESSENCE-512 compression function; differences from R to Y are arbitrary, 0 rep-
resents the zero difference, A = 0A001021903036C3

Round Register R Register K Pr for CV Pr for m

0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 1 1
2 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 2−17 2−17

3 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 2−17 2−17

4 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 2−17 2−17

5 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 2−17 2−17

6 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 2−17 2−17

7 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 2−17 2−17

8 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 2−17 2−17

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 1 2−17

11 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 1 2−17

12 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 1 2−17

13 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 1 2−17

14 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 1 2−17

15 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 1 2−17

16 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 1 2−17

17 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 1 1
18 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 2−17 2−17

19 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 2−17 2−17

20 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 2−17 2−17

21 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 2−17 2−17

22 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 2−17 2−17

23 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 2−17 2−17

24 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 R 2−17 1
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R S 1 1
26 0 0 0 0 0 0 0 0 0 0 0 0 0 R S T 1 1
27 0 0 0 0 0 0 0 0 0 0 0 0 R S T U 1 1
28 0 0 0 0 0 0 0 0 0 0 0 R S T U V 1 1
29 0 0 0 0 0 0 0 0 0 0 R S T U V W 1 1
30 0 0 0 0 0 0 0 0 0 R S T U V W X 1 1
31 0 0 0 0 0 0 0 0 R S T U V W X Y 1 1

5 Finding Message Pairs for the First Nine Rounds

To find messages that satisfy the first few rounds of the characteristic, single-
message modification [18] cannot be used. This is because the entire message
is loaded into the r-registers before the round function is applied, instead of
injecting one message word every round. We therefore propose to use another
technique, that turns out to be even more efficient than single-message modifi-
cation. This concept is explained for the key schedule only, as it is completely
analogous for the compression function.

In this section, we will adopt a stream-based notation for the round function.
Denote the initial eight-word state (k7, k6, k5, k4, k3, k2, k1, k0) as (x−2, x−1, x0,
x1, x2, x3, x4, x5). After clocking one for one round, the value of the register k0 is
represented by x6, and so on. In this text, we will not make a distinction between
linear and affine equations, and use the term “linear equation” for any equation
that contains no monomials of a degree more than one.

Finding a pair of messages that satisfy the characteristic, can be seen as
solving a set of non-linear equations defined by the round function. Solving a
set of non-linear equations is a difficult problem in general. This is even more
the case as we are not looking for a single solution, but for a very large set of
solutions.

What we can do, however, is impose linear conditions on the variables x0

to x12, in such a way that the round function behaves as a linear function. We
then obtain a set of linear equations, of which every solution corresponds to a
message pair that follows the first nine rounds of the characteristic. Enumerating
the solutions of this linear space has a negligible computation cost compared to
a round function evaluation.

For every solution, we have to apply the round function twice to obtain x13

and x14. These are guaranteed to follow the characteristic as well. They serve
as a starting point to satisfy the conditions of the remaining characteristic in
a probabilistic way. After reaching round 31, we can calculate x−2 and x−1

by applying two inverse round functions. These values will always satisfy the
characteristic.

Let A[j] denote the j-th significant bit (j = 0 denotes the least significant bit
or LSB) of A. The only non-linear function of ESSENCE is the F function. As
the F function operates on every bit in parallel, the linear conditions that have
to be added, depend on the values A[j] and L(A)[j] at every bit position j. The
equations we use are given in Appendix B. Note that for bit positions j where
A[j] = 0, it is not a problem if x0[j] or x12[j] are represented by a non-linear
expression, as these bits are not involved in any of the linear conditions anyway.

As the equations in Appendix B show, we need to add 10 equations for every
bit position j where A[j] = 1, and 6 equations if A[j] = 0. Also, to represent the
64-bit values x8 to x12 resulting from the round function, we need to add 5 · 64
additional equations for outputs of the round function. In total, we obtain a set
of 10 · 17 + 6 · (64 − 17) + 5 · 64 = 772 linear equations in 13 · 64 = 832 binary
variables.

We build this system of equations by successively adding 10+5 = 15 or 6+5 =
11 more equations for every bit position j. With some small probability, the
system of equations becomes inconsistent. If this happens, we add a different set
of linear equations for this bit position. Even this may fail with some probability,
in which case we add a linearization of the F function using 7 + 5 instead of
6 + 5 equations for this particular bit position. This may or may not decrease
the number of solutions slightly, but it allows us to avoid backtracking.

For one particular run, using only the equations mentioned in Appendix C,
we find a consistent system of 772 linear equations in 832 binary variables. The
number of linearly independent equations turns out to be 771. As such, we have
found 2832−771/2 = 260 pairs of messages that satisfy the first 9 rounds. We
divide by two to avoid counting the same pair twice. If more than 260 pairs of
messages needed, we can simply run this program again to find the next set of
messages. As including these 771 equations would use up a lot of space, we give
only one of the 260 message pairs in Table 6.

This technique is very similar to the techniques of multi-message modifica-
tion [18], tunneling [8], neutral bits [1] and the amplified boomerang attack [7].
These 260 messages correspond to 60 auxiliary differential paths for the amplified
boomerang attack. No results are known to us where these auxiliary differential
paths were also obtained in a fully automated way.

6 Distinguishing Attacks

Our motivational observation is that the non-linear feedback function F is unbal-
anced. Exploiting this, we first construct distinguishers on 14-round ESSENCE
(both the block cipher and the compression function) and then for the full 32-
round ESSENCE. Towards the end of this section, we present key-recovery at-
tacks on the ESSENCE family of block ciphers. These attacks can be seen as an
immediate consequence of our distinguishing attacks.

6.1 Weakness in the Feedback Function of ESSENCE

In [9], the designer notes that the security of the algorithms is heavily dependent
on F , as it is the only nonlinear function in ESSENCE. This gave us some
motivation to study the properties of F . The function F takes seven 32-bit or
64-bit words (say, a, . . . , g) as inputs and produces a 32-bit or 64-bit word as
the output. The function works in a bitsliced manner. The exact description of
F is largely irrelevant to our analysis; hence, we refer the interested reader to
Appendix D.

Let F (a, b, c, d, e, f, g)[j] denote the j-th significant bit (j = 0 denotes the
LSB) of F (a, b, c, d, e, f, g). Our motivational observation is the following (con-
firmed both experimentally and from the tables in Appendix D of [9]).

Observation 1: If a, . . . , g are uniformly distributed, then

Pr[F (a, b, c, d, e, f, g)[j] = 0] =
1

2
+

1

27
. (1)

6.2 Distinguishers on 14-Round ESSENCE

In this section, we use Observation 1 to build distinguishers on 14 rounds of
ESSENCE. First, we consider the block cipher, then the compression function.

Let kn[j], rn[j] and L(rn)[j] respectively denote the j-th significant bits (j =
0 denotes the LSB) of kn, rn and L(rn). In the beginning, suppose the key k and
the initial value r are such that k0[0] = r0[0]. Then, after 7 rounds, k7[0] = r7[0].
Now, if after the 7th round, L(r0)[0] = 0 and F (r6, r5, r4, r3, r2, r1, r0)[0] = 0
(from Observation 1, this occurs with 0.5+2−7 probability1), then after the 8th
round, we will have r0[0] = 0. Note that the condition L(r0)[0] = 0 after the 7th
round is the same as the condition L(r1)[0] = 0 after the 8th round. Therefore,
when the key and the plaintext are initially related in the form k0[0] = r0[0], and
when the outputs after 8 rounds satisfy the condition L(r1)[0] = 0 (this occurs
with probability 1/2), then Pr[r0[0] = 0] = 1/2 + 2−7. Now, r0 and r1 after the
8th round are respectively equal to r6 and r7 after the 14th round. Hence, when
the key and the plaintext are related in the form k0[0] = r0[0], and when the
outputs after 14 rounds satisfy the condition L(r7)[0] = 0, then

Pr[r6[0] = 0] =
1

2
+

1

27
. (2)

6.3 The Distinguisher

A distinguisher is an algorithm that distinguishes one probability distribution
from another. In cryptography, a distinguisher is an algorithm that distinguishes
a stream of bits from a stream of bits uniformly distributed at random (i.e.,
bitstream generated by an ideal cipher).

Our distinguisher on ESSENCE is constructed by collecting n outputs r6[0],
after 14 rounds, generated by as many keys (so that the n samples are indepen-
dent) such that k0[0] = r0[0] initially. Let D0 and D1 denote the distributions of
the outputs from 14-round ESSENCE block cipher and a random permutation,
respectively. Given L(r7)[0] = 0, let p0 and p1 respectively denote the probability
that r6[0] = 0 holds given the outputs are collected from 14-round ESSENCE
and the probability that r6[0] = 0 holds given the outputs are generated by
a random source. That is, p0 = 1/2 + 2−7 (from (2)) and p1 = 1/2. Then,
µ0 = n · p0 and µ1 = n · p1 are the respective means of D0 and D1. Similarly,
σ0 =

√

n · p0 · (1 − p0) and σ1 =
√

n · p1 · (1 − p1) denote the respective stan-
dard deviations of D0 and D1. When n is large, both these binomial distributions
can be approximated with the normal distribution. Now, if |µ0−µ1| > 2(σ0+σ1),
i.e., n > 216, the output of the cipher can be distinguished from a random per-
mutation with a success probability of 0.9772 (since the cumulative distribution
function of the normal distribution gives the value 0.9772 at µ + 2σ) provided

1 The bit L(r0)[0] is the XOR-sum of r0[0] and several other bits of r0. We as-
sume that all r0[j] are independent and uniformly distributed. Then the con-
dition L(r0)[0] = 0 does not affect Pr[r0[0] = 0] and therefore the bias in
Pr[F (r6, r5, r4, r3, r2, r1, r0)[0] = 0] is also unaffected.

L(r7)[0] = 0. To test whether n is large enough for the normal approximation to
the binomial distribution to hold, we use a commonly employed rule of thumb:
n ·p > 5 and n · (1−p) > 5, where p ∈ {p0, p1}. A simple calculation proves that
both the above inequalities hold when n = 216. Since the condition L(r7)[0] = 0
holds with 0.5 probability, we need to generate 2 ·216 = 217 samples of r6[0] from
as many keys (such that k0[0] = r0[0] initially) to build the distinguisher with a
success probability of 0.9772. Our simulations support this result.

6.4 Distinguishers using Biases in Other Bits

Since the function F operates on its input bits in a bitsliced manner, it is easy
to see that the distinguisher presented for the LSB of r6 also works for more
significant bits. In other words, if initially k0[j] = r0[j], for any j in {0, . . . , 31},
then with 216 samples of r6[j] at the the end of 14 rounds, it is possible to
distinguish 14-round ESSENCE block cipher from a random permutation with
a success probability of 0.9772.

6.5 Distinguishers for the Compression Function

The ESSENCE compression function is a Davies-Meyer construction in which
the output of the block cipher is XORed with the initial chaining value. In other
words, the output of the compression function is the XOR-sum of the values
of r7||r6||r5||r4||r3||r2||r1||r0 before and after applying the permutation E. This
XOR-sum is the chaining value r7||r6||r5||r4||r3|| r2||r1||r0 for the next iteration.
As we assume that an attacker can observe both the chaining value input and the
compression function output, it is trivial to undo the Davies-Meyer feedforward
and apply the distinguishers of the 14-round block cipher.

These observations are extended to 32-round ESSENCE in Appendix E.

6.6 Key-Recovery Attacks

In this section, we show that the distinguishing attacks on the ESSENCE family
of block ciphers can be converted into key-recovery attacks.

Let us say that we have n known plaintexts. Considering that the plaintexts
are initially loaded directly into the r-registers [10], we expect n/2 plaintexts
to have r0[j] = 0. Without loss of generality, let us consider this partition of
the plaintext space where r0[j] = 0. Now, from our analysis in Sect. 6.2, we can
collect statistics on L(r7)[j] ⊕ r6[j] at the end of the 14 rounds and observe its
tendency for sufficiently large n — if L(r7)[j] ⊕ r6[j] = 0 more often, then the
key bit k0[j] = 0; likewise, if L(r7)[j] ⊕ r6[j] = 1 more often, then the key bit
k0[j] = 1 (the results are swapped if we begin with plaintexts in which r0[j] = 1).

Using a similar analysis, we can recover the rest of the key bits in k0. The
number of known plaintexts required is 215. This is obtained as follows, using
standard linear cryptanalysis [11]. We are interested in finding whether, after 14
rounds, the number of times that L(r7)[j]⊕ r6[j] = 0 holds is greater than n/4.

Accordingly, we determine the key bit k0[j]. Unlike in the distinguishing attacks,
a confidence interval for the uniform distribution is not required. From [11]
we obtain that the success probability of this method is 0.9772 when n/2 =
|p−1/2|−2, where p is the probability that L(r7)[j]⊕r6[j] = 0 (or 1). Substituting
p = 1/2 ± 2−7 in the above formula for n, we get n = 215. It follows that the
probability that this recovered key word (k0) is correct is (0.9772)32 ≈ 0.48. The
other 224 bits of the key can be exhaustively searched. Thereby, we expect that
2224/0.48 ≈ 2225.1 keys have to be tested before the correct key is obtained with
guaranteed success. This key-recovery attack can also be applied on the block
cipher of ESSENCE-224 (which is identical to the block cipher of ESSENCE-
256) with the same complexities. For the block ciphers of ESSENCE-384/512,
we require 215 known plaintexts and a computational effort equivalent to testing
2448/(0.9772)64 ≈ 2450.1 keys (where exhaustive search requires testing 2512 keys)
for guaranteed success.

These observations are extended to 32-round ESSENCE in Appendix F.

7 Slide Attack

In this part of the study, we provide an efficient method to find two inputs
(c,m) and (c′,m′) such that their output (after feed-forward) r and r′ are shifted
versions of each other; i.e., if ri = r′i+1 for 0 ≤ i < 7.

The necessary conditions on (c,m) and (c′,m′) are

1. ci = c′i+1 for 0 ≤ i ≤ 7 ,
2. c′0 = m7 ⊕ c7 ⊕ F (c6, . . . , c0) ⊕ L(c0) ,
3. mi = m′

i+1 for 0 ≤ i ≤ 7 ,
4. m′

0 = m7 ⊕ F (m6, . . . ,m0) ⊕ L(m0) .

If these conditions hold, then after 32 rounds (and XORing with the initial
value), the output of the compression function satisfies ri = r′i+1 for 0 ≤ i < 7.

As an example, let mi = 0 for all i. Then we must choose m′
i = 0 for all

i > 0, and m′
0 = 1n where 1n represents the 32-bit or 64-bit unsigned integer of

which all bits are set. Let ci = 0 for all i, let c′i = 0 for all i > 0, and let c′0 = 1n.
Then, the two outputs of the compression function (with N = 32) are:

c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

c′ FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m′ FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF B8EE4A3C B6118DC5 775F7BBF

R′ C07ABCFA 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF B8EE4A3C B6118DC5

For every choice of (c,m), an input (c′,m′) such that this property on the
compression function outputs is obtained can be found in time equivalent to

about one compression function evaluation. Hence, in total about 2512 pairs of
inputs producing slid pairs can be found by the above method. This observation
can easily be extended to slide the output by 2, 3, . . . , 7 steps.

7.1 Slid Pairs with Identical Chaining Values

It is also possible to find slid pairs with c = c′. Let the initial state of the register
R be of the form (c0, c0, . . . , c0), where c0 is selected randomly. For a message
block m of the form (m0,m1, . . . ,m7) where m7 = F (c0, . . . , c0)⊕L(c0) and the
rest of the mi’s are selected arbitrarily, select m′ as (m′

0,m
′
1, . . . ,m

′
7), such that

m′
i+1 = mi for i = 0, 1, 2, . . . , 6 and m′

0 = m7 ⊕ F (m6, . . . ,m0) ⊕ L(m0). Then,
the outputs of the compression function for m and m′ also satisfy ri = r′i+1 for
0 ≤ i < 7. It is possible to select c in 232 different ways, and for each selected
c, we can choose 27·32 different message blocks, therefore the number of such
slid pairs is 2256. As an example, assume c0 = 243f6a88, which is the truncated
fractional part of π, and all “free” message words are zero.

c, c′ 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88

m 00000000 00000000 00000000 00000000 00000000 00000000 00000000 F6B1EB63

m′ 094E149C 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R BE31AA01 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AA0F6 6E80148E

R′ F86D77C6 BE31AA01 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AA0F6

8 Fixed Points for the ESSENCE Block Cipher

If a fixed point for one round of the ESSENCE block cipher can be found, this
automatically leads to a fixed point for all 32 steps of the block cipher. After ap-
plying the Davies-Meyer feed-forward, the resulting compression function output
will then be zero.

If two different fixed points are found, this would lead to a free-start collision.
This free-start collision is preserved after the output padding is applied.

For a fixed point for one round, c0 = c1 = . . . = c7 and m0 = m1 = . . . = m7

should hold. This is obvious: after one step, all register values move one place,
but must have the same value as in the previous step to form a fixed point.
Moreover, the round update functions should satisfy the following equations.

F (c0, c0, c0, c0, c0, c0, c0) ⊕ c0 ⊕ L(c0) ⊕ m0 = c0 ,

F (m0,m0,m0,m0,m0,m0,m0) ⊕ m0 ⊕ L(m0) = m0 .

Solving the equations, one gets the following values for ESSENCE-256 and
ESSENCE-512:

ESSENCE-256 ESSENCE-512
c0 993AE9B9 D5B330380561ECF7

m0 307A380C 10AD290AFFB19779

Using similar methods, we have found that the only fixed points for two,
three or four rounds is the same fixed point for one round applied two, three
or four times respectively. We have not been able to extend this result for more
rounds. As such, we have not been able to find a free-start collisions using this
technique. Depending how the compression function is used, however, it might
be undesirable that we can easily find inputs that fix the compression function
output to zero.

9 Measures to Improve the Security of ESSENCE

From the analysis in Sect. 3–6, it is clear that ESSENCE has weaknesses in L
and F .

The concatenation of both the input and output of the L function can be
seen as an error-correcting code with [n, k] = [64, 32] or [128, 64]. The branching
number is then equal to the error-correcting code of these dimensions with the
highest minimum weight. Best known results from coding theory [6] can be used
to construct an L function with a branching number for both linear and differ-
ential cryptanalysis of 12 or 22 respectively. Better codes may exist according
to currently known upper bounds for the minimum weight, but have so far not
been found.

A search can be made for variants of these codes (possibly with a slightly
lower branching number) that satisfy all design criteria for the L function. Al-
though the resulting function will always be linear, it may however not be pos-
sible to implement it as an LFSR.

In (5), the function F is in algebraic normal form (ANF). We know that the
coefficient of the maximum degree monomial in this ANF is equal to the XOR-
sum of all the entries in the truth table of F . To thwart the attacks in Sect. 6
and Appendix F, it is necessary that F is balanced. Discarding the maximum
degree monomial is a possible solution.

Other countermeasures include increasing the number of rounds and adding
round constants. In Sect. 7 and Sect. 8, we saw how the omission of round
constants allowed slid pairs and fixed points to be found. Increasing the number
of rounds does not thwart these attacks, but it increases the security margin
against the semi-free-start collision attacks of this paper.

10 Conclusions and Open Problems

In this paper, we first presented a semi-free-start collision attack on 31 out of 32
rounds with a complexity of 2254.65 compression function evaluations. We find
messages that satisfy the first nine rounds of the differential characteristic of the
semi-free-start collision attack as the solution of a large set of linear equations.

We found that six linear input conditions are sufficient to make F behave as a
linear function in Table 5. It is an open problem if solutions using fewer equations
exist.

We also presented a set of distinguishers on 14-round ESSENCE. The distin-
guishers can be applied to the block cipher as well as the compression function.
Each of the distinguishers on 14-round ESSENCE requires 217 output bits. The
distinguishers work on all digest sizes of ESSENCE with the same complex-
ity. It has also been shown how the distinguishing attacks can be turned into
key-recovery attacks.

We then showed how the omission of round constants allowed slid pairs and
fixed points to be found. This cannot be prevented by increasing the number of
rounds.

Finally, we suggested some measures to improve the security of ESSENCE.
These suggestions are rather preliminary and need to be worked on further in
order to obtain a more secure family of hash functions.

Acknowledgments. The authors would like to thank Christophe De Cannière,
Sebastiaan Indesteege, Gaëtan Leurent, Willi Meier, Tomislav Nad, Maŕıa Naya-
Plasencia, Vincent Rijmen and Andrea Röck for their useful comments and sug-
gestions.

Special thanks go out to the designer of ESSENCE, Jason Worth Martin, who
not only gave us useful feedback, but was also very supportive when we wanted
to make these results public. He has verified the correctness of the results in this
paper.

Part of this work was performed at the Hash Function Retreat, hosted by
the Graz University of Technology as an initiative of the SymLab group of the
ECRYPT II project. We are very grateful to Mario Lamberger, Florian Mendel,
Tomislav Nad, Christian Rechberger, Vincent Rijmen and Martin Schläffer for
their excellent organization of this retreat.

Maŕıa Naya-Plasencia, Andrea Röck, Thomas Peyrin, Jean-Philippe Aumas-
son, Gaëtan Leurent and Willi Meier have obtained other, non-overlapping re-
sults on ESSENCE [14] in parallel with these results. Their paper uses different
characteristics and another way of finding conforming messages.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin,
editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 290–
305. Springer, 2004.

2. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteris-
tics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2006.

3. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture

Notes in Computer Science. Springer, 2005.
4. Itai Dinur and Adi Shamir. Side Channel Cube Attacks on Block Ciphers. Cryp-

tology ePrint Archive, Report 2009/127, 2009. http://eprint.iacr.org/.
5. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography. In

FOCS, pages 293–302. IEEE Computer Society, 2008.
6. Markus Grassl. Tables of Linear Codes and Quantum Codes. http://www.

codetables.de/, June 2008.
7. Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified) Boomerang

Attack. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 244–263. Springer, 2007.
8. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute.

Cryptology ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.
9. Jason Worth Martin. ESSENCE: A Family of Cryptographic Hashing Algo-

rithms. Submitted to the NIST SHA-3 hash function competition. Avail-
able: http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/

essence_compression.pdf (2009/01/20).
10. Jason Worth Martin. Personal communication, 2009.
11. Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In EUROCRYPT,

pages 386–397, 1993.
12. Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.
13. National Institute of Standards and Technology. Announcing Request for Candi-

date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-
3) Family. Federal Register, 27(212):62212–62220, November 2007. Avail-
able: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(2008/10/17).
14. Maŕıa Naya-Plasencia, Andrea Roeck, Thomas Peyrin, Jean-Philippe Aumasson,

Gaëtan Leurent, and Willi Meier. Cryptanalysis of ESSENCE. Unpublished, 2009.
15. Krzysztof Pietrzak. A Leakage-Resilient Mode of Operation. In Antoine Joux,

editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages
462–482. Springer, 2009.

16. Bart Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

17. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Cramer [3], pages 1–18.

18. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Cramer [3], pages 19–35.

19. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks
on SHA-0. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in

Computer Science, pages 1–16. Springer, 2005.

A Finding the Lowest Weight Difference A

We wish to find a difference A that satisfies

(¬A) ∧ L(A) = 0 (3)

and

hw(A) ≤ w , (4)

where hw(A) is the number of bits set in A and w is to be as small as possible.

We proceed as follows. Let w represent the (still unknown) weight of the
lowest weight difference A. We then split w into two integers w0 and w1, such
that w0 + w1 = w and |w1 − w0| ≤ 1. Let L−1 represent the inverse L function,
such that L−1(L(x)) = x. Let M(x) = L(x) ⊕ x. The design of ESSENCE
guarantees that M is invertible, as L is not allowed to have any eigenvalues in
the ground field.

First step: We enumerate all x where hw(x) ≤ w0. After calculating A =
L−1(x), we check (3) and (4).

Second step: We enumerate all y where hw(y) ≤ w1. After calculating A =
M−1(y), we check if (3) and (4).

Equation (3) implies that the bit positions where L(A) is 1, is always a subset
of bit positions where A is 1. Therefore, we only have to consider two cases: the
case where the set of bit positions where L(A) is 1 contains no more than w0

elements, and the case where the set bit positions where L(A) is 0 and A is
1 contains not more than w1 elements. As w0 + w1 = w, these two steps are
guaranteed to find all A that satisfy (3) and (4). If no solution is found, we
increase w by one and perform the two steps again, enumerating only the new
values of x and y.

The total complexity of this search is
(
∑w0

i=0 C64
i

)

+
(

∑w1

j=0 C64
j

)

. As we

find w = 17 here, the total number of 64-bit linear function evaluations is
(

∑8
i=0 C64

i

)

+
(

∑9
j=0 C64

j

)

≈ 235. This calculation can be performed in less

than a minute on a recent desktop computer. The solutions are shown in Ta-
ble 2.

Table 2. All differences A with hw(A) = 17 that satisfy (3); there are no solutions
where hw(A) < 17 and (3)

A

2461822430680025

48C3044860D0004A

91860890C1A00094

0A001021903036C3

1400204320606D86

2800408640C0DB0C

5000810C8181B618

A001021903036C30

B Making F Behave as a Linear Transformation

We consider three separate cases, depending on the values of A and L(A) for a
particular bit position j.

If A[j] = 1, we can enumerate all possible input conditions, such that F be-
haves linearly and has the required differential behavior. Because we enumerate
all possibilities, we obtain an optimal result: it is not possible to add fewer than
10 linear equations. All existing solutions where 10 linear equations are added,
are shown in Table 3 (for L(A)[j] = 1) and Table 4 (for L(A)[j] = 0).

If A[j] = 0: the differential behavior is always satisfied: if there is no input
difference, there will not be an output difference either. We found that adding
6 equations is sufficient. We do not rule out the possibility that fewer than 6
equations are sufficient. The solutions we found are given in Table 4.

We will omit the index j, so that x0 to x12 represent one-bit variables. The
expressions F (x0, . . . , x6) and F (x6, . . . , x12) are not added to the system of
linear equations of the attack, as this is not necessary. They are only mentioned
to show that their differential behavior is correct.

Table 3. Making F linear and imposing the required differential behavior for position
j where A[j] = L(A)[j] = 1 can be done by adding no more than 10 linear equations;
exactly four such solutions exist

Solution 1 Solution 2 Solution 3 Solution 4
x0 ⊕ x2 = 1 x1 = 1 x1 = 1 x1 = 1

x1 = 0 x2 ⊕ x5 = 0 x2 ⊕ x5 = 0 x2 = 1
x3 = 1 x2 ⊕ x7 = 1 x2 ⊕ x7 = 1 x3 = 0
x4 = 1 x2 ⊕ x8 = 0 x2 ⊕ x8 = 0 x4 = 1
x5 = 1 x2 ⊕ x9 = 0 x2 ⊕ x9 = 0 x5 = 1
x7 = 0 x2 ⊕ x12 = 1 x3 = 0 x7 = 0
x8 = 1 x3 = 0 x4 = 1 x8 = 1
x9 = 0 x4 = 1 x10 = 0 x9 = 1
x10 = 0 x10 = 0 x11 = 0 x10 = 0
x12 = 1 x11 = 0 x12 = 1 x11 = 0

F (x0, . . . , x6) = x6 ⊕ 1 x0 ⊕ x6 x0 ⊕ x6 x0 ⊕ x6

F (x1, . . . , x7) = x2 ⊕ 1 x2 ⊕ 1 x2 ⊕ 1 0
F (x2, . . . , x8) = 0 x2 ⊕ 1 x2 ⊕ 1 0
F (x3, . . . , x9) = 0 x5 x5 1

F (x4, . . . , x10) = 1 1 1 1
F (x5, . . . , x11) = 1 0 0 0
F (x6, . . . , x12) = 0 x7 ⊕ 1 0 x12 ⊕ 1

C A Message Pair for the First Nine Rounds

We give a message pair that satisfies the first 9 rounds of the characteristic of
Table 1 in Table 6.

Table 4. Making F linear and imposing the required differential behavior for position
j where A[j] = 1 and L(A)[j] = 0 can be done by adding no more than 10 linear
equations; exactly one such solution exists

Solution 1
x0 ⊕ x2 = 0

x1 = 0
x3 = 1
x4 = 1
x5 = 1
x7 = 0
x8 = 1
x9 = 0
x10 = 0
x12 = 1

F (x0, . . . , x6) = 1
F (x1, . . . , x7) = x2 ⊕ 1
F (x2, . . . , x8) = 0
F (x3, . . . , x9) = 0

F (x4, . . . , x10) = 1
F (x5, . . . , x11) = 1
F (x6, . . . , x12) = 0

Table 5. Making F linear for position j where A[j] = L(A)[j] = 0 can be done by
adding no more than 6 linear equations; at least six such solutions exist

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

x3 = 0 x3 = 0 x3 = 1 x4 = 0 x4 = 0 x4 = 0
x4 = 0 x4 = 0 x4 = 1 x5 = 1 x5 = 1 x5 = 1
x5 = 1 x5 = 1 x5 = 1 x6 = 1 x6 = 1 x6 = 1
x6 = 0 x6 = 1 x6 = 1 x7 = 0 x7 = 0 x7 = 0
x7 = 1 x7 = 1 x7 = 1 x8 = 1 x8 = 1 x8 = 1
x9 = 1 x8 = 1 x8 = 1 x9 = 0 x10 = 0 x11 = 1

F (x1, . . . , x7) = x1 ⊕ 1 x2 x1 x1 ⊕ x2 ⊕ 1 x1 ⊕ x2 ⊕ 1 x1 ⊕ x2 ⊕ 1
F (x2, . . . , x8) = x2 ⊕ x8 ⊕ 1 x2 ⊕ 1 x2 x3 ⊕ 1 x3 ⊕ 1 x3 ⊕ 1
F (x3, . . . , x9) = x8 ⊕ 1 x9 ⊕ 1 x9 0 x9 x9

F (x4, . . . , x10) = x8 0 x9 ⊕ x10 ⊕ 1 x10 ⊕ 1 x9 ⊕ 1 x9 ⊕ x10 ⊕ 1
F (x5, . . . , x11) = x8 ⊕ x10 ⊕ 1 x10 ⊕ x11 ⊕ 1 x10 ⊕ x11 ⊕ 1 x10 ⊕ 1 x9 ⊕ 1 x9 ⊕ x10 ⊕ 1

Table 6. A message pair satisfying the first 9 rounds of the characteristic of Table 1

i mi m′
i mi ⊕ m′

i

0 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 0000000000000000

1 1A001021983836CB 1A001021983836CB 0000000000000000

2 5809832A1DEA2458 5809832A1DEA2458 0000000000000000

3 8AEF5FEBEB9FDAAB 8AEF5FEBEB9FDAAB 0000000000000000

4 32F9D8578015D297 32F9D8578015D297 0000000000000000

5 0D031372423B91AC 0D031372423B91AC 0000000000000000

6 B804AC08CD97E348 B804AC08CD97E348 0000000000000000

7 E8BB8E649DC3B35F E2BB9E450DF3859C 0A001021903036C3

D The Feedback Function F

We denote the field of two elements by F2. The nonlinear feedback function,
F , of ESSENCE-224/256 (respectively ESSENCE-384/512) takes seven 32-bit
(respectively 64-bit) input words and outputs a single 32-bit (respectively 64-bit)
word as follows:

F (a, b, c, d, e, f, g) = abcdefg + abcdef + abcefg + acdefg +

abceg + abdef + abdeg + abefg +

acdef + acdfg + acefg + adefg +

bcdfg + bdefg + cdefg +

abcf + abcg + abdg + acdf + adef +

adeg + adfg + bcde + bceg + bdeg + cdef +

abc + abe + abf + abg + acg + adf +

adg + aef + aeg + bcf + bcg + bde +

bdf + beg + bfg + cde + cdf + def +

deg + dfg +

ad + ae + bc + bd + cd +

ce + df + dg + ef + fg +

a + b + c + f + 1 , (5)

where the multiplication and addition are taken in F2 (i.e., they are the same as
bitwise XOR and bitwise AND, respectively).

E Distinguishing Attacks on the Full 32-Round

ESSENCE-256

The attacks described in Sect. 6.2 can be easily extended to the full ESSENCE-
256 block cipher. Let us suppose the key k and the plaintext are related such
that after 18 rounds, r0[0] = k0[0]. Given this, using similar arguments as those
used to derive (2), we obtain that at the end of 32 rounds, if L(r7)[0] = 0, then

Pr[r6[0] = 0] =
1

2
+

1

27
. (6)

We can thus construct a distinguisher by collecting 217 outputs r6[0], after 32
rounds, generated by as many keys (so that the samples are independent) given
that after 18 rounds, k0[0] = r0[0]. In other words, the adversary first tests
whether k0[0] = r0[0] after 18 rounds. If this condition is satisfied, she collects
the output r6[0] after 32 rounds provided L(r7)[0] = 0. Therefore, this consti-
tutes a known-key distinguishing attack which one may view as an attack on
a large set of weak keys. Alternatively, the attack scenario may be such that
two bits of the internal state after 18 rounds are leaked to the adversary. A

similar assumption was made in [4], as a model for certain side-channel attacks.
More generally, this scenario is captured by the notion of leakage resilience [5,
15], i.e., security when “even a bounded amount of arbitrary (adversarially cho-
sen) information on the internal state (. . .) is leaked during computation” [5].
Although this assumption leads to trivial attacks (e.g., observe the full internal
state of AES at the penultimate rounds), it assists to evaluate security against a
wider range of adversaries, and to better understand the resilience of algorithms
against “extreme” adversaries.

Since the condition k0[0] = r0[0] (after 18 rounds) holds with 0.5 probability,
the attacker would need to examine with 217 · 2 = 218 randomly generated keys
to mount the distinguishing attack with a success probability of 0.9772.

It is easy to see that distinguishers of the same complexity can be built by
collecting any other bit of r6 (after 32 rounds) because F operates in a bitsliced
manner. As in Sect. 6.5, when the attacker can observe both the chaining value
input and the compression function output, the above distinguishers can be
applied onto the compression function as well.

F Key-Recovery Attacks on 32-Round ESSENCE

In Appendix E, we extended the distinguisher on 14-round ESSENCE-256 to 32
rounds by selecting plaintexts based upon the intermediate value of r0[j] and
k0[j] at round 18. This result may be viewed in terms of a known plaintext key-
recovery attack against a vulnerable implementation of the ESSENCE-256 block
cipher. Let us say that we are attacking such an implementation of the 32-round
ESSENCE-256 block cipher where through some means (side-channel analysis,
cache pollution, etc.) we can read bit j of r0 after 18 rounds. Like in Sect. 6.6, we
focus on a subset of 214 plaintexts where r0[j] = 0 (or 1) for all 214 texts after 18
rounds. Applying the same analysis as in Sect. 6.6 to the remaining 14 rounds
gives us the value of k0[j] at round 18. If our vulnerable implementation allows
us to read all the bit positions of r0, then with probability 0.48, we can recover
the full key-word k0 at round 18. Since the key schedule is a bijection (and easily
invertible) we can recover the original key with minimal effort. Again, a similar
analysis can be applied to the other members of the ESSENCE family of block
ciphers.

