
Cryptanalysis of the FLIP Family of Stream
Ciphers∗

Sébastien Duval, Virginie Lallemand and Yann Rotella

Inria, project-team SECRET, France
{Sebastien.Duval, Virginie.Lallemand, Yann.Rotella}@inria.fr

Abstract. At Eurocrypt 2016, Méaux et al. proposed FLIP, a new family
of stream ciphers intended for use in Fully Homomorphic Encryption
systems. Unlike its competitors which either have a low initial noise
that grows at each successive encryption, or a high constant noise, the
FLIP family of ciphers achieves a low constant noise thanks to a new
construction called filter permutator.
In this paper, we present an attack on the early version of FLIP that
exploits the structure of the filter function and the constant internal state
of the cipher. Applying this attack to the two instantiations proposed by
Méaux et al. allows for a key recovery in 254 basic operations (resp. 268),
compared to the claimed security of 280 (resp. 2128).
Keywords: Stream Cipher, Guess-and-determine attack, FLIP, FHE.

1 Introduction

One of the challenges of recent years is to create an acceptable system of Fully
Homomorphic Encryption (FHE) that would allow users to delegate compu-
tations to so-called Cloud Services. While Gentry showed in [6] the theoretic
feasibility of such a framework, two main difficulties remain: first, the impor-
tant computational and memory costs, and second the limited homomorphic
capacities.

In order to overcome these limitations, one of the important aspects that
have to be lessened is the cost of the evaluation of the symmetric encryption
algorithm used in the framework, which mainly depends on the multiplicative
depth of the circuit implementing the primitive. Since adapting the AES seems
hard [4,7,3], several new symmetric schemes purposed for FHE have been pro-
posed, among which the block cipher LowMC [1] and the stream ciphers Trivium
and Kreyvium [2].

At Eurocrypt 2016, Méaux et al. [13] proposed the new stream cipher con-
struction FLIP which aims at overcoming some of the drawbacks of previous
schemes by, among other things, allowing for constant and smaller noise. This

∗Partially supported by the French Agence Nationale de la Recherche through
the BRUTUS project under Contract ANR-14-CE28-0015 and by the Commission of
the European Communities through the Horizon 2020 program under project number
645622 PQCRYPTO.

achievement was made possible by the use of a new construction that resembles
a filter generator but with a constant register that is permuted before entering
the filtering function in order to limit the multiplicative depth of the circuit.

This design has been presented in October 2015 by the authors of FLIP at a
national workshop [11], and then submitted to Eurocrypt 2016. Our study shows
that the concrete instantiations proposed by the designers suffer from several
flaws that can be extended to a cryptanalysis. We reported our findings to the
authors which led them to change their design after their paper was accepted, in
order to resist our attack. A fixed version of the construction is then described
in the final version of the Eurocrypt 2016 article entitled Toward Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts [13].

In the following, we only deal with the preliminary version of the FLIP family
of stream ciphers: so everytime that we mention ”FLIP ” we mean the version
presented in [11] and submitted to Eurocrypt 2016 (which differs from the final
version of [13]).

This paper is organised as follows. We start by giving a description of the
submitted version of the FLIP family of stream ciphers in Section 2. Then, we
discuss its vulnerabilities against guess-and-determine attacks in Section 3 and
show how to break the cipher by exploiting these vulnerabilities through an alge-
braic attack (Section 4). The pseudocode of the attack is given in Section 5. Our
analyses are supported by experiments reported in Section 6. The last section
concludes this paper.

2 Description of the FLIP Family of Stream Ciphers

2.1 General Idea: the Filter Permutator Structure

When it comes to designing a symmetric construction tailored for FHE applica-
tions, both block and stream ciphers can be considered, each with advantages
and disadvantages, as discussed in [2].

Since the targeted applications use noise-based cryptography (such as lattice-
based cryptography), one of the pursued goals is to limit the growth of noise as
much as possible, which is equivalent to considering circuits with a limited mul-
tiplicative depth. This desirable property, also refered to as a high homomorphic
capacity, is hard to obtain with block ciphers since the round iterations lead to
an output with a large algebraic degree. However, the good point is that the
noise is constant per block, which implies that noise does not add any limitation
on the number of generated ciphertext blocks. On the other hand, the homomor-
phic capacity of stream ciphers is usually very high for the first ciphertext bits,
but decreases as more bits are generated, imposing to re-initialise the cipher or
to use techniques like bootstrapping.

The innovative design of Méaux et al. [13] succeeds in taking the best from
both sides and enjoys a very good homomorphic capacity that remains constant
with time. Their proposal is a family of stream ciphers named FLIP that is
based on the filter generator construction, but drops the register update part

2

to avoid the algebraic degree increase. Instead, the register bits are permuted
before entering the filter function, thus the name filter permutator.

Its operational principle is represented in Figure 1.

Key Register KPRNG

Permutation
Generator

Pi

F

pi

ci

zi

Fig. 1. General structure of the filter permutator construction used for the FLIP family
of stream ciphers.

It is made up of three main components:

– a register storing the N -bit key K,
– a bit permutation generator, parametrised by a public PseudoRandom Num-

ber Generator (PRNG), producing at each clock i an N -bit permutation Pi,
– a filtering (Boolean) function F , generating the keystream bit zi.

Once the PRNG is initialised using an IV, the master key K is loaded into
the register and encryption starts: at each step i, the permutation generator
produces a permutation Pi that shuffles the key bits right before they enter the
filtering function F . F produces the keystream bit zi which is XORed to the
corresponding plaintext bit pi and gives the ciphertext ci.

To recover the plaintext, the same process is used to generate the bits zi of
the keystream that are simply XORed back with the ci.

Every part of the scheme is public except the key.

2.2 The FLIP Family of Stream Ciphers

After an extensive analysis of the filter permutator construction with respect
both to FHE constraints and resistance against most common stream ciphers
attacks, the authors chose the concrete instantiation we now describe.

The PRNG used for the permutation generator is defined as a forward secure
PRNG based on AES-128, and the permutation generator itself is a Knuth shuf-
fle [9], which ensures that all the N -bit permutations have the same probability
to be generated (provided that it is used with a random generator).

F is anN -variable Boolean function defined by the direct sum of three specific
Boolean functions f1, f2 and f3 that are defined in [12] and that we now recall.

3

In the following, n and k are positive integers and operations are considered
over F2.

Definition 1 (L-type Function). The n-th L-type function Ln is the n-variable
linear function defined by:

Ln(x0, · · · , xn−1) =

n−1∑
i=0

xi.

Definition 2 (Q-type Function). The n-th Q-type function Qn is defined by
the 2n-variable quadratic function:

Qn(x0, · · · , x2n−1) =

n−1∑
i=0

x2ix2i+1

Definition 3 (T-type Function). The k-th T-type function is the k(k+1)
2 -

variable Boolean function defined by:

Tk(x0, · · · , x k(k+1)
2 −1) =

k∑
i=1

i−1∏
j=0

xj+
∑i−1

`=0 `.

For instance the 3rd T-type function is equal to:

T3 = x0 + x1x2 + x3x4x5

Each of these types of functions has nice properties according to one or several
security criteria (non-linearity, resiliency, algebraic immunity, . . .).

The filtering function used in the FLIP family of stream ciphers uses a com-
bination of 3 Boolean functions parameterised by the integers n1, n2 and n3,
chosen so that the resulting properties of F are good:

– f1(x0, · · · , xn1−1) = Ln1
,

– f2(xn1
, · · · , xn1+n2−1) = Qn2/2,

– f3(xn1+n2
, · · · , xn1+n2+n3−1) = Tk where k is such that n3 = k(k+1)

2 .

F is defined as the direct sum of f1, f2 and f3:

F (x0, · · · , xn1+n2+n3−1) = Ln1 +Qn2/2 + Tk where n1 + n2 + n3 = N

and thus inherits in some measure the good properties of f1, f2 and f3 (see [12]).
The initial analysis performed by Méaux et al. and presented in the submitted

version of the construction [12] takes into account the most common attacks on
filter generators (which are very similar to filter permutators) and resulted in
the selection of the parameters reported in Table 1.

4

Table 1. Parameters of the two concrete instantiations of FLIP with the corresponding
complexities of Algebraic Attacks (AA), Fast Algebraic Attacks (FAA) Higher-Order
Correlation attacks (HC).

FLIP (n1, n2, n3) key size (N) Security AI (F) FAI (F) res (F) AA FAA HC

FLIP (47,40,105) 192 80 14 15 47 194 88 119

FLIP (87,82,231) 400 128 21 22 87 323 136 180

The security analysis detailed in [12] and more precisely the study of weak
keys results in an additional limitation on the design which is that the key must
be balanced (in the submitted version of the Eurocrypt paper [12] it is stated
that: ”Since our N parameter will typically be significantly larger than the bit-
security of our filter permutator instances, we suggest to restrict the key space
to keys of Hamming weight N/2”).

Finally, note that the specification document does not give any limit on the
number of keystream bits that can be generated under the same key.

3 Preliminary Remarks on the Vulnerabilities of the FLIP
Family of Stream Ciphers

3.1 Attack Scenario and Computation Model

In the following we examine one of the most common attack scenarios considered
for stream cipher analysis, which is the known-plaintext scenario: we suppose
that we know a part of the plaintext together with the corresponding ciphertext,
which implies that we know the value of some bits of the keystream z. Needless
to say, our goal is to recover the secret key, which in the case of the FLIP family
of stream ciphers is equivalent to recovering the internal state.

To express the performance of our attack, we use the three usual metrics
which are time, data and memory complexities. Time complexity (hereafter de-
noted by CT) expresses the quantity of operations that the attacker has to
perform to execute the attack. In our case, we compute it in the same way as
in the specification paper [12] so we count the number of basic operations. Data
complexity (CD) corresponds to the required number of keystream bits and fi-
nally memory complexity (CM) measures the memory (in bits) needed during
the attack.

3.2 The FLIP Family of Stream Ciphers and Guess-and-Determine
Attacks

The attack we propose uses a variant of the guess-and-determine technique. This
approach, which seems to have been named first in [5,8], has been extensively
used to analyse stream ciphers, starting with the ones submitted to the NESSIE

5

project. The idea is to start by making a hypothesis on the value of some bits of
the internal state or of the key (the ’Guess’) and to use the information coming
from keystream bits to deduce the unknown ones (to ’Determine’ them). Most
of the time the attack is completed thanks to algebraic techniques.

Two features of the FLIP family of stream ciphers seem to indicate that an
attack using guess-and-determine techniques would be efficient: first its fixed
internal state and second the definition of its filtering function. More precisely,
the fact that the register is not updated implies that a guess of one key/internal
state bit at any time would give an information of one bit at any other time. This
is different from common stream ciphers for which the update function mixes the
internal state bits together, implying that a one-bit information quickly vanishes
after some (forward or backward) rounds.

The second feature that seems exploitable for a guess-and-determine attack
is the definition of the filtering function F which contains very few monomials
of high-degree. This is what we detail now.

3.3 Observations on the Boolean Function F

As reported before, the Boolean function F is made of the direct sum of 3
Boolean functions f1, f2 and f3 which are respectively of L-, Q- and T-type.
This definition implies that all the monomials of degree greater than or equal to
3 are present in f3, which is given by the following formula:

f3(xn1+n2
, · · · , xn1+n2+n3−1) = Tk(xn1+n2

, · · · , xn1+n2+n3−1)

=

k∑
i=1

n1+n2+i−1∏
j=n1+n2

xj+
∑i−1

`=0 `

where k is the algebraic degree of f3 and is such that n3 = k(k+1)
2 .

From this expression, we see that there are k−2 monomials of degree greater
than or equal to 3 in F , in a total of n3 − 3 variables. Given the multiplicative
depth constraint, k has to be low1, which implies that the T-type function has
few monomials and therefore easy to cancel, as we show in the next section.

The core idea of our attack is to notice that since there are few high-degree
monomials but a lot of null key bits, there is a high probability that the high-
degree monomials of F are cancelled. In these cases, it also means that the
keystream bits can be seen as expressions of degree less than or equal to 2 in the
non-null key bits.

The attack we perform uses this specificity by doing a slight variant of the
guess-and-determine technique: instead of making a hypothesis on the value of
key/internal state bits, we guess the indices of some null key bits2. We deduce

1To give the order of magnitude, we recall here that the 2 concrete instantiations
described in [12] use k = 14 and k = 21 for respective security of 80 and 128 bits.

2As we saw in Section 2, we are sure that there are N
2

null key bits.

6

from that the clocks when the keystream bits are an expression of low-degree
in the other key bits and build a system from it. Finally we solve the system
with linearisation techniques, which in the case of low-degree equations is of
reasonable cost.

3.4 Probability of Cancelling all the High-Degree Monomials of F
given that ` Input Variables are Null

To figure out the feasibility of such a procedure, we have to evaluate the prob-
ability that, given exactly ` positions of null bits in K, the expression of the
keystream bit zi is of degree less than or equal to 2 in the remaining key bits3.

This probability is directly linked to the amount of data that is required
to lead to the attack since it determines the amount of keystream bits that an
attacker needs such that enough of them are exploitable to construct the system.

From the previous discussion, we know that there are exactly k − 2 dis-
joint monomials of degree greater than or equal to 3 in the expression of zi =
F (Pi(k0, k1, · · · kN−1)). Then, if the attacker is only aware of ` < k − 2 zero po-
sitions, she won’t be able to determine exploitable clocks, which forces ` ≥ k−2,
i.e. at minimum one zero bit that could be positioned in each of the high-degree
monomials.

First case: if ` = k − 2` = k − 2` = k − 2. The first possibility is to choose the number of null
positions equal to the number of high-degree monomials that we want to cancel,
i.e. ` = k− 2. In this case, exactly one null bit has to go into each monomial: for
instance, if we are looking at a specific monomial of degree d: x0x1 · · ·xd−1, it is
equivalent to choosing which of the variables is null, so there are d possibilities.
From that, we can enumerate the set of valid configurations, which corresponds
to choosing one index in each monomial, so since there are 3 possible choices for
the monomial of degree 3, 4 possibilities for the one of degree 4 and so on up
to the monomial of degree k, there is a total of 3 × 4 × 5 · · · × k = k!/2 valid
configurations. To obtain the probability, this amount has to be compared with
the total number of possibilities for choosing the null positions, which is

(
N
`

)
so

we have:

P`=k−2 =
k!/2(
N
`

) .
General case: if ` ≥ k − 2` ≥ k − 2` ≥ k − 2. To increase the probability that a clock is ex-

ploitable, the attacker can guess more null key bit positions and choose ` ≥ k−2.
A first way of computing this probability is:

P` =

∑
i1+i2+···+ik−2≤`

(
3
i1

)(
4
i2

)
· · ·
(

k
ik−2

)(
N−m
`−I

)(
N
`

)
where m is the number of variables that occur in the monomials of degree

greater than or equal to 3 and I = i1 + i2 + · · ·+ ik−2.

3This is what we denote by an exploitable equation or exploitable clock.

7

Proof. Suppose that we are given ` null bit positions in K. We are interested
in the probability that a random permutation Pi shuffles the key bits in a way
that the evaluation of F does not contain any monomial of degree greater than
or equal to 3. As previously, we count the number of valid configurations among
the total number of permutations.

The idea is to list all the possible ways of positioning at least one null bit
in each monomial: we set i1 null bits in the monomial of degree 3, i2 null bits
in the monomial of degree 4, and so on up to ik−2 null bits in the monomial of
highest degree (k). If we denote by I = i1+i2+ · · ·+ik−2 the number of null bits
positioned in such a way, we are left with `− I null bits to position in the other
N −m monomials. To obtain the probability, we have to divide this quantity by
the number of ways to position ` guesses among N bits.

Another way of obtaining the probability is to compute the number of con-
figurations that do not cancel the monomials of degree greater than or equal to
3, which is the complementary probability of the one we are looking for. The
advantage is that this complementary can be easily expressed with the inclusion-
exclusion principle. Let us denote AJ the event that our guess doesn’t cancel
the monomials of degrees included in the set J , i.e.

AJ is the event: {∀j ∈ J, Mj 6= 0}

where Mj is the unique monomial of degree j in Tk.
P(AJ) is the probability of setting the ` bits among the monomials whose

degrees are not in J so is equal to:

P(AJ) =

(N−∑
j 6∈J

j

`

)
(
N
`

)
Then we can express the probability that our guess yields a polynomial of

degree higher than or equal to 3 by:

P(
⋃

d∈{3,··· ,k}

A{d}) =

k−2∑
s=1

(
(−1)s

∑
J⊆{3,··· ,k}
|J|=s

P(AJ)

)

which can be expressed as

P(
⋃

d∈{3,··· ,k}

A{d}) =

k−2∑
s=1

(
(−1)s

∑
J⊆{3,··· ,k}
|J|=s

(N−∑
j 6∈J

j

`

))
(
N
`

)
From which we get the expression of the probability that we are looking for:

P` = P(
⋂

d∈{3,··· ,k}

A{d}) = 1− P(
⋃

d∈{3,··· ,k}

A{d})

8

The evaluation of these formulas gives the results reported in Tables 3, 4 and
5 in Appendix, and we will see in the next section that they are good enough
to build a cryptanalysis. For instance, if we attack the small version4 of FLIP
and do the minimal number of guesses (i.e. ` = 12) we will have a probability of
having an exploitable equation of P`=12 = 2−26.335. For the other version5 and
a minimal number of guesses we have P`=19 = 2−42.382.

4 Our Attack

4.1 Description

Setting. Since we consider a known-plaintext scenario, we suppose that we are
given CD keystream bits that we denote by zi, i = 0, · · · , CD − 1. Addition-
ally, the associated permutations Pi are public so we have expressions of the
keystream bits as function of the unknown key bits k0, · · · , kN−1:

zi = F (Pi(k0, k1, · · · , kN−1)) ∀i ≥ 0

Our attack takes advantage of the two vulnerabilities detailed in the previous
section to boil down the key recovery problem to the solving of a linearised
system.

First step: initial guess. The first step consists in making a hypothesis on
the positions of ` null key bits, where ` ≥ k − 2. Assuming that these bits are
null gives us a simplified expression of zi in only N − ` unknowns. Since the key
K is balanced, the probability of our guess being right is6:

Prg =

(N
2
`

)(
N
`

)
Second step: extraction of low-degree equations. The objective of

step 2 is to collect equations of low-degree in the unknown key bits. To do
so, we look at the expressions of the available zi and pick up all the equations
for which the null key bits cancel the monomials of degree greater than or equal
to 3. As seen in previous section, this event is of probability P`.

Third step: solving the system. One of the easiest ways of solving the
quadratic system is to use linearisation techniques, which consist in converting
the system into a linear one by introducing a new variable for each non-linear
monomial that appears. In our specific case, the only non-linear expressions we
have to deal with are the monomials of degree 2. Since F takes as input N
variables but we guessed ` of them, we are left with N − ` unknown variables,

4FLIP (47,40,105)
5FLIP (87,82,231)
6This probability is slightly smaller than in the case of a random key (2−`), but the

advantage is that as long as we guess ` < N
2

we are sure that at least one guess will be
correct while it could fail for a random key that does not have enough null bits.

9

which in the worst case scenario form
(
N−`
2

)
monomials of degree two. This

implies that once linearised, our converted system will contain

v` = N − `+

(
N − `

2

)
variables.

Assuming that the equations are independent, the number of equations that
are necessary to give a unique solution (or show a contradiction) is roughly
equal to the number of unknowns7. This implies that the necessary amount of
keystream bits that the attacker needs is the product of the number of variables
and the inverse of the probability that a zi is exploitable:

CD = v` ×
1

P`

The time complexity is determined by the time to solve the system8 multi-
plied by the number of times we have to repeat the guess of ` null bit positions
before finding a correct one:

CT = v3` ×
1

Prg

The final memory complexity is dominated by the memory necessary to store
the system, so is roughly equal to:

CM = v2`

Tables 3, 4 and 5 in Appendix give the possible trade-offs between time and
data complexity for the two versions of FLIP. As we can see, increasing the
number of initial guesses ` allows to reduce the amount of data necessary to
conduct the attack at the cost of an increased time complexity.

4.2 Discussion and Possible Improvements

Data Complexity Reduction. The data complexity can be further improved
if, rather than choosing the guesses at random, the attacker chooses them ac-
cording to the observed permutations. With the PRNG seed being public, at
any point in time, she knows all the upcoming permutations so she can deduce a
guess that cancels the triangular part for many of the upcoming permutations.

Possibility of Precomputations. Most of the computational cost of the
attack lies in the linear system solving. Notice that this linear system depends
only on the permutation and the guess, which are all known to the attacker,
who can therefore compute the system inversion for several guesses without any

7This will be confirmed by our experiments detailed in Section 6.
8Which is v3` for a basic Gaussian elimination or v2.8` with Strassen’s algorithm. We

will use the first one for simplicity.

10

knowledge of the keystream. Once she receives the keystream bits, she plugs
them into her precomputations to obtain the results. The drawback of this tech-
nique is its increase in memory complexity.

Seed Independence. Our attack has the property of being unaffected by a
re-initialisation of the system. What we mean here is that a change of the PRNG
seed in the middle of the attack will not force the attacker to restart her attack:
she can combine the previously obtained equations with the one obtained under
the new seed.

Security. The security level of the FLIP family of stream ciphers is at most
proportional to

√
N bits, where N is the key size.

Proof. The time complexity of our attack is

CT = v3` ×
1

Prg

As ` � N , one can say that Prg is roughly equivalent to 2−`. Also, as v` =

N − `+
(
N−`
2

)
, we can give an approximation of CT which is

CT ∼ N6 × 2`

Additionally, the number of guesses we need to perform our attack is the number
of monomials of degree greater than or equal to 3 in Tn3

. Thus n3 = (`+ 2)(`+
3)/2, so ` ∼ √n3, from which we get:

logCT ∼ α
√
N

Figure 2 represents the evolution of the time complexity of our attack as func-
tion of the key size when we consider instances of FLIP of the form FLIP (n1, n2, n3)
where N = n1 + n2 + n3 = 2n3 (which is consistent with the parameters pro-
posed in [12]). ` is chosen as the minimal number of guesses needed to perform
the attack, i.e. ` = k − 2.

Attempt to Cancel the Quadratic Part. Our attack consists in guessing
key bits to cancel the triangular part of the filtering function: another possibility
would be to cancel the monomials of degree 2 in order to reduce the resistance
of the scheme against correlation attacks. We considered this option but our
studies showed that the complexity of such an attack would be too high. We
also thought of cancelling both quadratic and triangular parts, thus leaving only
linear relations, but the data complexity of such an attack makes it less practical.

11

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 200 300 400 500 600 700 800 900 1000

L
o

g
 o

f
th

e
 T

im
e

 C
o

m
p

le
x
it
y

N

Fig. 2. Evolution of the Time Complexity as function of the Key Size N .

5 Description of the Algorithm

The main computation part of our attack is a linear system solving over F2. If
the solving detects a contradiction, we deduce that our guess is wrong and we
start again with another guess. Otherwise, the guess was right and the solving
yields the key. The intuition is that we don’t always need a full-rank system to
detect a contradiction. We can therefore improve the attack by treating every
equation as they come, rather than waiting for a full-rank system.

A pseudocode description of the attack using this improvement is given in
Algorithm 1. In this algorithm, an equation will be represented as a (v` + 1)-bit
word containing 1 where a variable is present in the equation and 0 otherwise.
The least significant bit of this representation contains the value of the keystream
bit of the equation. We also memorise if equation i is present in the system
through the vector Exists. If Exists[i] = 1, then equation i is in the system.

6 Verification of the Attack on a Toy Version

To support our findings, we implemented our attack on a toy version of the
cipher. We reduced the key size to N = 64 bits and adapted accordingly the
values of the parameters to n1 = 14, n2 = 14 and n3 = 36 (the proportions be-
tween the size of the parameters are kept). The filtering function F has algebraic
degree 8 and is defined as follows:

F (x0, · · ·x63) = f1(x0, · · ·x13) + f2(x14, · · ·x27) + f3(x28 · · ·x63)

where:

f1(x0, · · · , x13) = L14(x0, · · · , x13) = x0 + x1 + · · ·+ x13

f2(x14, · · · , x27) = Q7(x14, · · · , x27) = x14x15 + x16x17 + · · ·+ x26x27

f3(x28, · · · , x63) = T8(x28, · · · , x63) = x28 + x29x30 + x31x32x33 + · · ·+ x56x57 · · ·x63

12

Algorithm 1 FLIP Key recovery

Input: Keystream, PRNG seed
Output: Key
1: SYSTEM← Vector of v` null words
2: Exists← Vector of v` null bits
3: KeyNotFoundY et← true
4: while KeyNotFoundY et do
5: G← NewRandomGuess
6: NoContradiction← true
7: Neq ← 0
8: while NoContradiction and Neq ≤ v` do
9: E ← NewEquation

10: NewIndex← −1
11: i← MSB(E)
12: while i ≤ v` do
13: if Exists[i] then
14: E ← E ⊕ SYSTEM[i]
15: i← MSB(E)
16: else
17: if NewIndex = −1 then
18: NewIndex← i
19: end if
20: i← Index of the next bit with value 1 starting from index i + 1

and going towards the LSB
21: end if
22: end while
23: for j = 1 to NewIndex do
24: if Exists[i] and SYSTEM[i][NewIndex] = 1 then
25: SYSTEM[i]← SYSTEM[i]⊕ E
26: end if
27: end for
28: if E = 1 then
29: NoContradiction← false
30: else
31: if E 6= 0 then
32: SYSTEM[NewIndex]← E
33: Neq ← Neq + 1 {If E = 0, the equation is linearly dependent

from the first ones but brings no contradiction, we then don’t
increment Neq}

34: end if
35: end if
36: end while
37: if NoContradiction then
38: Get xi and xixj and Test if there is a contradiction
39: if There is no contradiction then
40: KeyNotFoundY et← false
41: Key = (xi)1≤i≤n

42: end if
43: end if
44: end while
45: return Key

13

According to our analysis, the parameters of the attacks are the ones de-
scribed in Table 6: for instance if we decide to make a hypothesis on ` = 8 null
indices, the probability that our guess is correct is

Prg = 2−8.717.

The probability that a permutation is exploitable is equal to:

P` = 2−7.814

and the linearised system depends on v` = 1596 variables. We expect that CD =
218.454 bits are necessary to conduct the analysis and that the attack requires
CT = 240.638 basic operations.

We implemented our own version of this toy instance of FLIP on which we
performed our attack with ` = 8 guesses. The statistics we obtain are given in
Table 2.

Although the equations have a very specific structure, we noticed that they
behave like random equations in the following sense: the first linearly dependent
equation is only found after generating 1590 equations, which fits with the theory
in the case of random equations [10]. However, treating the equations as they
come allows us to discard right away any equation that is linearly dependent
from the others. This way, we can stop collecting equations as soon as we have
as many equations in our system as are variables 9.

Table 2. Comparison of the experimental results with theory: attack on the toy version
FLIP (14,14,36) with a hypothesis on ` = 8 null bit positions (average on 1000 tests,
launched on an Intel(R) Xeon(R) CPU W3670 at 3.20GHz (12MB cache), and with
8GB of RAM)

Guesses Data Generated Ratio Exploited Elementary Op. Time (sec)

Practice 437.1 218.455 2−7.813 238.588 280.93

Theory P−1
rg = 420.8 CD = 218.454 P` = 2−7.814 CT = 240.638 ∅

As we can see in Table 2, experimental results fit pretty well with the theory.

7 Conclusion

In this paper we presented a cryptanalysis of the FLIP family of stream ciphers.
Our attack makes use of the weaknesses of the FLIP structure against guess-and-
determine attacks to reduce the degree of the filtering function, after what an

9The experiments show that we discard about 500 equations before we get 1596
independent equations.

14

algebraic attack suffices to recover the key. We obtained theoretical estimations
of the complexity of the attack and an implementation of the attack on a toy
version shows that this complexity holds in practice. This attack can be per-
formed in 254 basic operations (resp. 268), compared to the claimed security of
280 (resp. 2128), and we discussed trade-offs and improvements that can lower
this complexity even more. We also underlined that a simple increase of the key
size is not an efficient countermeasure as the complexity of the attack doesn’t
increase much with the key size.
Finally, in view of fixing this attack, one should keep in mind the inherent weak-
ness of the filter permutator construction against guess-and-determine attacks
due to its constant register. The biggest issue of the FLIP family of stream ciphers
is that its filtering function increases the fragility against guess-and-determine
attacks. To strengthen the security of the filter permutator, a possible direction
would be to refine its filtering function, for instance by using more high-degree
monomials.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology -
EUROCRYPT 2015. Lecture Notes in Computer Science, vol. 9056, pp. 430–454.
Springer (2015)

2. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: How to Compress Homomorphic Ciphertexts. In: Fast Software
Encryption FSE 2016 (to appear), also available at http://eprint.iacr.org/

2015/113
3. Coron, J., Lepoint, T., Tibouchi, M.: Scale-Invariant Fully Homomorphic Encryp-

tion over the Integers. In: Krawczyk, H. (ed.) Public-Key Cryptography - PKC
2014. Lecture Notes in Computer Science, vol. 8383, pp. 311–328. Springer (2014)

4. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES Evaluation using NTRU. IACR
Cryptology ePrint Archive 2014, 39 (2014), http://eprint.iacr.org/2014/039

5. Ekdahl, P., Johansson, T.: SNOW - A new stream cipher (2000)
6. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: Mitzenmacher,

M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009. pp. 169–178. ACM (2009)

7. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012.
Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer (2012)

8. Hawkes, P., Rose, G.G.: Exploiting Multiples of the Connection Polynomial in
Word-Oriented Stream Ciphers. In: Okamoto, T. (ed.) Advances in Cryptology -
ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976, pp. 303–316.
Springer (2000)

9. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms. Addison-Wesley (1969)

10. Lidl, R., Niederreiter, H.: Finite fields. Cambridge university press (1983)
11. Méaux, P.: Symmetric Encryption Scheme adapted to Fully Homomorphic Encryp-

tion Scheme. In: Journées Codage et Cryptographie - JC2 2015 - 12ème édition
des Journées Codage et Cryptographie du GT C2, 5 au 9 octobre 2015, La Londe-
les-Maures, France (2015), http://imath.univ-tln.fr/C2/

15

http://eprint.iacr.org/2015/113
http://eprint.iacr.org/2015/113
http://eprint.iacr.org/2014/039
http://imath.univ-tln.fr/C2/

12. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. personal communication (October
2015)

13. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. Advances in Cryptology - EURO-
CRYPT 2016 (to appear), also available at http://eprint.iacr.org/2016/254

A Possible Trade-Offs

A.1 FLIP (47,40,105)

Table 3. Log of the complexities of the attacks as function of the number of initial
guesses (`) for the instantiation FLIP (47,40,105)

` P` v` Prg CD CT CM

12 -26.335 13.992 -12.528 40.326 54.503 27.983

13 -23.049 13.976 -13.627 37.025 55.554 27.951

14 -20.653 13.960 -14.736 34.613 56.615 27.919

15 -18.738 13.943 -15.854 32.682 57.684 27.887

16 -17.141 13.927 -16.982 31.069 58.763 27.854

17 -15.775 13.911 -18.120 29.686 59.852 27.821

18 -14.585 13.894 -19.267 28.480 60.950 27.788

19 -13.536 13.878 -20.425 27.414 62.057 27.755

20 -12.601 13.861 -21.592 26.462 63.175 27.722

21 -11.762 13.844 -22.771 25.606 64.303 27.688

22 -11.004 13.827 -23.960 24.831 65.442 27.654

23 -10.315 13.810 -25.160 24.125 66.591 27.621

24 -9.686 13.793 -26.371 23.479 67.750 27.586

25 -9.110 13.776 -27.593 22.886 68.921 27.552

26 -8.580 13.759 -28.827 22.339 70.103 27.517

27 -8.092 13.741 -30.073 21.833 71.297 27.483

28 -7.640 13.724 -31.331 21.364 72.502 27.448

29 -7.221 13.706 -32.601 20.927 73.720 27.413

30 -6.832 13.689 -33.883 20.520 74.949 27.377

31 -6.469 13.671 -35.179 20.140 76.191 27.342

32 -6.131 13.653 -36.487 19.784 77.446 27.306

33 -5.816 13.635 -37.809 19.450 78.714 27.270

34 -5.520 13.617 -39.145 19.137 79.995 27.233

> 34 > 80 ...

35 -5.243 13.598 -40.495 18.842 81.290 27.197

16

http://eprint.iacr.org/2016/254

A.2 FLIP (87,82,231)

Table 4. Log of the complexities of the attacks as function of the number of initial
guesses (`) for the instantiation FLIP (87,82,231)

` P` v` Prg CD CT CM

19 -42.382 16.151 -19.647 58.533 68.100 32.302

20 -38.522 16.144 -20.721 54.666 69.151 32.287

21 -35.589 16.136 -21.799 51.725 70.206 32.272

22 -33.169 16.128 -22.881 49.298 71.266 32.257

23 -31.097 16.121 -23.967 47.218 72.329 32.241

24 -29.282 16.113 -25.058 45.395 73.397 32.226

25 -27.667 16.105 -26.153 43.772 74.469 32.211

26 -26.214 16.098 -27.253 42.311 75.546 32.195

27 -24.895 16.090 -28.357 40.985 76.627 32.180

28 -23.691 16.082 -29.465 39.773 77.712 32.164

29 -22.584 16.074 -30.578 38.658 78.802 32.149

30 -21.562 16.067 -31.696 37.629 79.896 32.133

31 -20.615 16.059 -32.818 36.674 80.994 32.118

32 -19.734 16.051 -33.944 35.785 82.097 32.102

33 -18.912 16.043 -35.075 34.955 83.205 32.086

34 -18.142 16.035 -36.211 34.178 84.317 32.071

35 -17.421 16.027 -37.352 33.448 85.434 32.055

36 -16.743 16.020 -38.497 32.762 86.556 32.039

37 -16.104 16.012 -39.648 32.116 87.683 32.023

38 -15.502 16.004 -40.803 31.505 88.814 32.007

39 -14.932 15.996 -41.963 30.928 89.950 31.991

40 -14.393 15.988 -43.128 30.381 91.091 31.975

41 -13.883 15.980 -44.298 29.862 92.237 31.959

42 -13.398 15.972 -45.473 29.370 93.388 31.943

43 -12.937 15.964 -46.653 28.901 94.543 31.927

44 -12.499 15.956 -47.838 28.455 95.704 31.911

45 -12.082 15.947 -49.028 28.029 96.870 31.895

46 -11.684 15.939 -50.224 27.624 98.042 31.879

47 -11.305 15.931 -51.425 27.236 99.218 31.862

48 -10.942 15.923 -52.631 26.865 100.400 31.846

49 -10.596 15.915 -53.842 26.511 101.586 31.830

17

Table 5. Log of the complexities of the attacks as function of the number of initial
guesses (`) for the instantiation FLIP (87,82,231)

` P` v` Prg CD CT CM

50 -10.265 15.907 -55.059 26.171 102.779 31.813

51 -9.948 15.898 -56.282 25.846 103.976 31.797

52 -9.644 15.890 -57.509 25.534 105.180 31.780

53 -9.353 15.882 -58.743 25.235 106.388 31.763

54 -9.074 15.873 -59.982 24.947 107.602 31.747

55 -8.806 15.865 -61.227 24.671 108.822 31.730

56 -8.548 15.857 -62.477 24.405 110.048 31.713

57 -8.301 15.848 -63.734 24.149 111.279 31.697

58 -8.063 15.840 -64.996 23.903 112.516 31.680

59 -7.835 15.831 -66.264 23.666 113.758 31.663

60 -7.614 15.823 -67.538 23.437 115.007 31.646

61 -7.402 15.815 -68.818 23.217 116.262 31.629

62 -7.198 15.806 -70.104 23.004 117.522 31.612

63 -7.001 15.797 -71.397 22.799 118.789 31.595

64 -6.812 15.789 -72.695 22.601 120.062 31.578

65 -6.629 15.780 -74.000 22.409 121.341 31.561

66 -6.452 15.772 -75.311 22.224 122.627 31.543

67 -6.281 15.763 -76.629 22.044 123.918 31.526

68 -6.116 15.754 -77.953 21.871 125.216 31.509

69 -5.957 15.746 -79.284 21.703 126.521 31.491

70 -5.803 15.737 -80.621 21.540 127.832 31.474

> 70 > 128 ...

71 -5.655 15.728 -81.965 21.383 129.150 31.457

18

B Complexities of the Attack on the Toy Version of FLIP

Table 6. Log of the complexities of the attacks as function of the number of initial
guesses (`) for the toy version FLIP (14,14,36)

` P` v` Prg CD CT CM

6 -11.861 10.741 -6.370 22.601 38.592 21.481

7 -9.436 10.691 -7.528 20.126 39.601 21.382

8 -7.814 10.640 -8.717 18.454 40.638 21.280

9 -6.602 10.589 -9.939 17.191 41.706 21.177

10 -5.649 10.536 -11.197 16.185 42.806 21.072

11 -4.876 10.483 -12.493 15.359 43.941 20.966

12 -4.235 10.428 -13.828 14.663 45.113 20.857

13 -3.696 10.373 -15.207 14.069 46.325 20.746

14 -3.237 10.316 -16.631 13.553 47.580 20.633

15 -2.843 10.259 -18.105 13.102 48.881 20.517

16 -2.503 10.200 -19.632 12.703 50.231 20.399

17 -2.208 10.140 -21.217 12.347 51.636 20.279

18 -1.950 10.078 -22.865 12.028 53.100 20.156

19 -1.723 10.015 -24.581 11.739 54.628 20.031

20 -1.524 9.951 -26.373 11.476 56.227 19.903

21 -1.349 9.886 -28.247 11.235 57.904 19.771

22 -1.194 9.819 -30.214 11.013 59.670 19.637

23 -1.057 9.750 -32.284 10.807 61.534 19.500

24 -0.935 9.679 -34.472 10.615 63.510 19.359

> 24 > 64 ...

25 -0.827 9.607 -36.794 10.435 65.616 19.215

19

	Cryptanalysis of the FLIP Family of Stream Ciphers

