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Abstract. The LANE[4] hash function is designed by Sebastiaan In-
desteege and Bart Preneel. It is now a first round candidate of NIST’s
SHA-3 competition. The LANE hash function contains four concrete
designs with different digest length of 224, 256, 384 and 512.

The LANE hash function uses two permutations P and Q, which
consist of different number of AES[1]-like rounds. LANE-224/256 uses
6-round P and 3-round Q. LANE-384/512 uses 8-round P and 4-round
Q. We will use LANE-n-(a,b) to denote a variant of LANE with a-round
P , b-round Q and a digest length n.

We have found a semi-free start collision attack on reduced-round
LANE-256-(3,3) with complexity of 262 compression function evaluations
and 269 memory. This technique can be applied to LANE-512-(3,4) to
get a semi-free start collision attack with the same complexity of 262 and
269 memory. We also propose a collision attack on LANE-512-(3,4) with
complexity of 294 and 2133 memory.

Keywords: hash function, collision attack, rebound attack, LANE,
SHA-3 candidates.

1 Introduction

The SHA-3 competition hosted by NIST aims to find a new cryptographic hash
standard as a replacement of SHA-2. 51 of the 64 submitted designs are accepted
to entered the first round. The LANE hash function is one of the first round
candidates.

The attacks on widely used hash standards such as MD5[2] and SHA-1[3]
are based on differential analysis. Many of the first round candidates of SHA-
3 competition use AES[1]-like SPN structures and claim to resist differential
attacks.

Florian Mendel et al. have proposed a new tool of “Rebound”[5] attack for
cryptanalysis of AES-based designs. The main idea of rebound attack is to take
advantage of weakness implied by S-box’s optimal non-linearity. Random input
and output differences of an S-box match with surprisingly high probability of
1/2 and at least two values can be selected for each S-box. The complexity of
one round in the traditional truncated differential path can be totally eliminated
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at the cost of exhausting degrees of freedom of the active state values. In this
paper, we analyze reduced LANE with rebound techniques. There are other
parallel works of improved rebound techniques and applications in [7,8,9].

This paper is organized as follows. In section 2, we briefly describe the LANE
hash function. In section 3, we discuss inner collisions of only two lanes in the
first layer P. Then semi-free start collision attacks on reduced LANE-256 are
described in section 4. Section 5 describes the attacks on reduced LANE-512.
Section 6 is the conclusion.

2 Description of LANE Hash Function

The LANE hash function uses iterative MD structure with counters and out-
put transformation. Digest values of LANE-224 and LANE-384 are truncated
from LANE-256 and LANE-512 separately. Details of padding rules and output
transformation are omitted here since they do not influence this attack.

In this section we briefly describe the compression function of LANE-256
and LANE-512. LANE-256/512 is an iterative hash function, whose compression
function f(Hi−1, Mi, Ci) processes a 512/1024-bit message block, a 512/1024-
bit chaining value, a 64-bit counter, and outputs 256/512-bit digest length. The
chaining state Hi−1 and the message block Mi are expanded to six 256/512-
bit blocks. Each block enters a different lane of P . Different lanes use different
constants and counters. Output of the first three lanes and the last three lanes
are XORed separately as input of the Q permutations. At last, output of both
Q permutations are XORed as the next chaining value Hi. The structure of
compression function in LANE is shown in Figure 1.

Fig. 1. The compression function of LANE

2.1 Message Expansion

The compression function of LANE-256 expands chaining value Hi−1 = h0||h1

and message block Mi = m0||m1||m2||m3 to six 256-bit blocks W0, ...W5 as
shown in equation 1.
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W0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 || h1 ⊕m0 ⊕m2

W1 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3 || h0 ⊕m1 ⊕m2

W2 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2 || h0 ⊕m0 ⊕m3

W3 = h0 || h1

W4 = m0 || m1

W5 = m2 || m3

(1)

The message expansion in LANE-512 is analogous. The only difference is that
all blocks are double-sized.

2.2 Permutations P and Q

P and Q in Figure 1 are permutations with AES-like state update rounds. LANE-
256 uses 6-round P , 3-round Q and LANE-512 uses 8-round P and 4-round Q.
Each round contains five steps. One round of state update operation in LANE-
256 is shown in Figure 2. The difference in LANE-512 is that all operations are
on four 4× 4 matrices.

In this paper, we use Si to denote the state value after the i-th round. Between
Si and Si+1, the state values are denoted as S′

i, S′′
i , S′′′

i and S′′′′
i consecutively.

�Si is used to denote the XOR difference of state Si.
The five steps of one round are:

– SB: the non-linear operation SubBytes applies an S-Box to each byte of
the state. The S-box is the same as the one used in AES[1].

– SR: the cyclical permutation ShiftRows rotates the bytes of the i-th row
leftwards by i positions.

– MC: the diffusion layer MixColumns multiplies each column by a MDS
matrix which is the same as the one in AES.

– AC: the constants and counter additions AddConstants and AddCounter
add the round constants and the counter to the states. We use AC to denote
both of them. The last rounds of both P and Q don’t have AC operations.
Details of the AC operations are omitted here since they have nothing to do
with our attacks.

– SC: the mixing operation between different 4 × 4 states SwapColumns
reorders the columns in the state. LANE-256 and LANE-512 use different
SwapColumns operations which are shown in Figure 3.

Fig. 2. One round of state update operation in LANE-256
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Fig. 3. SwapColumns operations used in LANE-256 and LANE-512

3 Construct Inner Collisions Using Rebound Techniques

The LANE hash function has six lanes in the first layer P . In this section, we are
trying to construct collisions between only two lanes, namely the inner collisions.
It’s easy to see that two simultaneous inner collisions could directly lead to a
full collision.

3.1 Optimal Differential Pattern for LANE

The message expansion used in LANE is based on a linear (6,3,4)-code over GF4,
which means for any possible differential path, there are at least four active lanes
in the first layer P . Once the difference enters layer Q, there would be more active
S-Boxes. So we want to eliminate all differences before they enter layer Q.

This is the best differential pattern for LANE with four active lanes P1, P2, P4

and P5. Two inner collisions in layer P ensure no difference enter layer Q as
shown in Figure 4.

Let �m0 = �m2 �= 0 and �h0 = �h1 = �m1 = �m3 = 0, we have four
active lanes P1, P2, P4 and P5 and the differences in W are in the form of (�, 0)
and (0,�). Differential paths with initial difference of (�, 0) and (0,�) behave

Fig. 4. Optimal differential pattern for LANE
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Fig. 5. Rebound differential path of an inner collision for LANE-256



Cryptanalysis of the LANE Hash Function 131

in a similar way. So we only need to consider one type of differential path in the
final attack. We will talk about this in section 4.2.

3.2 Rebound Differential Path of Inner Collision

In this section, we only consider an inner collision of two lanes. Using rebound
techniques proposed by Florian Mendel et al. in [5], we can easily attack round 6
of layer P in LANE-256 with a complexity of 2100. The differential path is shown
in Figure 5.

In traditional truncated differential path, difference propagates from initial
state to hash value in forward direction. In a rebound attack, we search for an
inbound differential path in internal states first. Then the outbound part can be
considered as two truncated differential paths in different directions - forward
and backward. Since complexity of the inbound phase can be eliminated, we only
need to consider probability of the outbound phase.

Here, we briefly describe the attack of inner collision. This is similar to the at-
tack on Grøstl[5]. For more details of rebound attack, please refer to the original
paper.

Step 1: We start from choosing random differences in both S′′
2 and S4. Then

compute �S3 from �S′′
2 and �S′

3 from �S4. These difference propagations
�S′

2 →�S3 and �S′
3 ←�S4 hold with probability of 1 because all operations

between them are linear transformations SR, MC, AC and SC.

Step 2: We expect to find a match of possible differential character at the S-box
in the third round with probability of 2−32, because random difference in input
and output of an S-Box matches with probability of 1/2 and there are 32 active
S-boxes. Once we have found a match, we get 232 staring points (attempts) for
the outbound phase, since we have at least two values for each S-Box match. So
we can generate 232 attempts with complexity of 232. For any x ≥ 32 we can
generate 2x attempts with complexity of 2x.

Step 3: Each starting point (attempt) can lead to our demanded differential
pattern in S0 with a probability of 2−48 × 2−8 = 2−56. In other words, we can
generate a successful attempt in one lane with complexity of 256.

Step 4: In order to find a match in the three bytes of difference in S0 and eight
bytes in S′′

5 between two lanes, we need 28×(3+8)/2 = 244 successful attempts
in both lanes. So the complexity is 256 × 244 = 2100 for a inner collision with
the same initial difference in both lanes. The memory requirements of step 4 is
2× 244 = 245.

4 Semi-free Start Collision Attack on LANE-256-(3,3)

Even if we have successfully found two inner collisions of four lanes in layer P ,
we can not get a collision of full LANE. The problem is the message expansion
since rebound attack require a full control of the state values. Four initial state
values of the two inner collisions will probably lead to a contradiction since we
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have a degree of freedom for only three states, namely (h0, h1), (m0, m1) and
(m2, m3).

More precisely, from two inner collisions we get the exact values of W1, W2, W4

and W5. Recall equation (1), and we can see that W4 and W5 can determine
values of m0, m1, m2 and m3. By selecting the values of h0 and h1, we can
change the value of (h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3, h0 ⊕m1 ⊕m2) to W1 which we
have got from the first inner collision. Since all degrees of freedom are used, we
have to leave W2 satisfied by chance.

There are 256 bits left in W2 along with the 24-bit initial difference. We need
2(256+24)/2 = 2140 inner collisions in both P1, P2 and P4, P5 to find a match in
256 + 24 = 280 bits. So in both lanes of one inner collision, we need 2140/2 =
270 times more attempts. The complexity of semi-free start collision attack on
LANE-256 is 2100 × 270 = 2170 > 2128 which exceeds the birthday bound of
256-bit hash functions and this attack fails.

4.1 Rebound Differential Path with Partially Fixed State Values

We are inspired by Dmitry Khovratovich et al. of their meet-in-the-middle at-
tacks on several SHA-3 candidates[6]. The idea is to fix values of certain bits to
get an actually smaller size in the meet-in-the-middle part of the target state
and lower the complexity.

If we fix some bytes in an AES state, they would be affected by other bytes
in at most two rounds. We have got an observation that diffusion in LANE is
not as efficient as in AES. Fixed values in certain positions of the initial state
can proceed to the third round in both LANE-256 and LANE-512.

Combining this small observation and rebound techniques, we have found a
solution for LANE-256-(3,3) as shown in Figure 6.

In this figure, one byte with a mark of “X” means its value can be pre-
computed and fixed during the attack. In our attack, we let all the X bytes
in S0 to be zeros and calculate values of the following ones. When we choose
differences in S′

1 and S′′
2 , we also set the values of fixed bytes in S′

1 and S′′
2 to

what we have pre-computed.
In the four active lanes of this attack, the round constants and counters are

different. So the exact values of fixed bytes in S′
1 and S′′

2 are different in four
lanes. But they would all lead to zero values in the certain positions of initial
states.

We also let the values of marked bytes in h0 and h1 to be zeros. So when we
have got W1, W2, W4 and W5 from two inner collisions, we calculate the values
of the non-zero bytes of h0, h1, m0, m1, m2 and m3 from W1, W4 and W5. Then
there are only 128 bits of state values left unsatisfied in W2 instead of 256 bits,
since all zero bytes are already satisfied in advance.

4.2 Details of the Attack

In this attack, We use two inner collision differential paths with initial differences
of the patterns (�, 0) and (0,�) separately. If we change the position of two
4× 4 matrices in the initial state of one path, the differential path don’t change
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Fig. 6. Rebound differential path for LANE-256-(3,3)
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Fig. 7. Outline of the attack on LANE-256-(3,3)

substantially. Especially, the positions of fixed bytes don’t change. So we consider
these two differential paths equivalent and only need to analyze one of them in
the following steps. Figure 7 shows outline of this attack.

This attack is described in six steps. Step 1 is the pre-computation. Steps 2 to
4 are the details in one lane of an inner collision. Step 5 is the meet-in-the-middle
step of the initial difference between two lanes. Step 6 is the meet-in-the-middle
step of the state values and the difference byte between two inner collisions
except for the X bytes.

Step 1: Set all fixed bytes in the initial states in four lanes to zeros and compute
the consecutive exact values of all fixed bytes in the following states.

Step 2: Choose random differences in both S′
1 and S′′

2 . Here is a little difference
from the attack above. We choose differences in S′′

2 to be the same in both lanes
of one inner collision. These two differences will remain the same when they
proceed to S3 because of the linear transformations from S′′

2 to S3. Even though
we don’t know the exact value of �S3 in both lanes, they must be the same and
will offset each other before they enter layer Q.

Step 3: We expect to find a match of possible differential character at the S-
box in the second round with probability of 2−32 as in the attack above. Once
we have found a match, we get 232 staring points (attempts) for the outbound
phase. Now assume that we generated 2x attempts with complexity of 2x.

Step 4: We can find a successful attempt in one lane in every 224 attempts.
With 2x attempts, we expect to find 2x−24 successful ones.
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Step 5: Now we have 2x−24 successful attempts in both lanes, so we can find
22(x−24)−8 = 22x−56 matches in the only one byte difference in S0. So we have
got 22x−56 inner collisions in P1,P2 and the same number of inner collisions in
P4,P5. This step requires 4× 2x−24 memory.

Step 6: After we select the values of h0 and h1, there are 128 bits in W2 and
8 bits in the initial difference unsatisfied. So we expect 22(2x−56)−136 = 24x−248

matches in these 136 bits. This step requires 2× 22x−56 memory.
If x = 62, we expect to find a final match. Memory requirements of step 5 and

step 6 are 240 and 269. So the semi-free start collision attack on LANE-256-(3,3)
has an overall complexity of 262 and requires about 269 memory.

5 Applications to LANE-512

We can also use rebound techniques to find inner collisions for LANE-512. By
fixing certain bytes in the state values, we can find semi-free collision and collision
attacks on LANE-512-(3,4).

5.1 Inner Collision of LANE-512

For LANE-512, we can proceed to round 8 of P in an inner collision attack of two
lanes. The differential path will be shown in Figure 8 as an appendix. Details of
this attack is similar to inner collision attack on LANE-256 in section 3.2.

For any given attempt, it is successful with probability of 2−24×2−96 = 2−120,
which means we can generate one successful attempt with complexity of 2120.
Then we have to match in 8 × (16 + 16) = 256 bits, and we need 2256/2 = 2128

successful attempts in both lanes. The complexity of inner collision on LANE-
512 is 2120 × 2128 = 2248 and the memory requirement of meet-in-the-middle
step is 2× 2128 = 2129.

5.2 Semi-free Start Collision Attack and Collision Attack on
LANE-512-(3,4)

Using the fixed bytes techniques, we can find a semi-free start collision of reduced
LANE-512-(3,4) with a differential path shown in Figure 9 as an appendix. This
attack is almost the same as the attack in section 4.2 with the same complexity
of 262 and 269 memory.

As you can see in Figure 9, we can fix more bytes in the 3-round path for
LANE-512. If we don’t use the degrees of freedom in the initial chaining values
h0 and h1, we have 16 more bytes in the final meet-in-the-middle part. The
difference is that fixed bytes in W1 and W2 are not set to zeros in the marked
positions. Recall equation 1, since now values of h0 and h1 are fixed, if we set
fixed bytes of W4 and W5 to zeros, values of W1 and W2 in the marked positions
are determined by the value of standard IV = (h0, h1).

Assume that we have generated 2x attempts in each lanes, we expect 22x−56

inner collisions in both P1, P2 and P4, P5. The difference is now we have to match
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256 + 8 = 264 bits. So we expect 22×(2x−56)−264 = 24x−376 final matches with
memory requirement of 2× 22x−56. If x = 94, we expect to find one final match.

So, we have found a collision attack on LANE-512-(3,4). The complexity of
collision attack on LANE-512-(3,4) is 294 and memory requirement is 2133.

5.3 Semi-free Start Collision Attack on LANE-512-(4,4)

If we want to attack more than three round in P, we can no longer use fixed val-
ues, since fixed values can only proceed to the third round. Without fixed values,
we can attack LANE-512-(4,4) with a differential path shown in
Figure 10 which is part of the one shown in Figure 8.

Assume that we have generated 2x attempts in each lanes, and only 2x−120

of them will be successful ones. Then we expect 22(x−120)−8 = 22x−248 inner
collisions in both P1, P2 and P4, P5. Here, we have to match 512 + 8 = 520 bits.
So we expect 22×(2x−248)−520 = 24x−1016 final matches with memory requirement
of 2× 22x−248. If x = 254, we expect to find one final match.

So, the complexity of semi-free start collision attack on LANE-512-(4,4) is
2254 and memory requirement is 2261. Though computational complexity is less
than birthday bound, memory requirement of this attack is more than 2256. This
attack can be considered unsuccessful.

6 Conclusion

In this paper, we analyzed the LANE hash function using rebound and meet-in-
the-middle techniques. We give several attacks on reduced variants of LANE-256
and LANE-512. Table 1 shows all the results of these attacks. Notation “ † ” in
this table means the attack can be considered unsuccessful.

The memory requirements of all these attacks come from the meet-in-the-
middle steps. But the memoryless variants seem not easy to be implemented in
our attacks.

We can hardly attack more than three rounds of P with method of fixing
certain bytes, since the fixed values can only proceed to the third round. Our
attacks on reduced variants do not hurt collision resistance of full LANE.
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Appendix

Fig. 8. Rebound differential path of inner collision for LANE-512
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Fig. 9. Rebound differential path for LANE-512-(3,4)
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Fig. 10. Rebound differential path for LANE-512-(4,4)
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