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Abstract. We consider the security of the n-party EKE-U and EKE-
M protocols proposed by Byun and Lee at ACNS ’05. We show that
EKE-U is vulnerable to an impersonation attack, offline dictionary at-
tack and undetectable online dictionary attack. Surprisingly, even the
strengthened variant recently proposed by the same designers to counter
an insider offline dictionary attack by Tang and Chen, is equally vul-
nerable. We also show that both the original and strengthened EKE-M
variants do not provide key privacy, a criterion desired by truly contrib-
utory key exchange schemes and recently formalized by Abdalla et al.
We discuss ways to protect EKE-U against our attacks and argue that
the strengthened EKE-U scheme shows the most potential as a provably
secure n-party PAKE.

Keywords: Password-authenticated key exchange, n-party, cryptanal-
ysis, dictionary attack, collusion, key privacy.

1 Introduction

Password authenticated key exchange (PAKE) protocols [1, 5, 7, 8, 13, 16, 17, 20]
enable two or more parties to share a common secret key for securing (via secret-
key cryptography) subsequent communications among them. For systems that
depend on human interactions, using a password is more practical than a high-
entropy secret key since the former is easier for a human to memorize by heart
rather than be tempted to write it down somewhere [13].

One of the first PAKEs was the Encrypted Key Exchange (EKE) due to
Bellovin and Merritt [5] for establishing a secret key between 2 parties. This was
later extended to the 3-party case by Steiner et al. [20]. Further analysis and
variants of the latter are found in [11, 16, 17, 1].

� The second author acknowledges the Malaysia IRPA grant (04-99-01-00003-EAR).

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 226–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Cryptanalysis of the N-Party Encrypted Diffie-Hellman Key Exchange 227

In extending from a 2-party PAKE to a 3-party one, the basic question raised
is how the parties will share the password. Consequently, we can classify group-
based (involving more than 2 parties) PAKEs into two broad types [7], namely
those that use a single shared password among all parties (SPWA) [6] and those
where each party shares a distinct password with a trusted server (DPWA)
[20, 16, 17, 1].

DPWA-type PAKEs allow trust to be partitioned among all clients such that
in the event of any client being compromised or corrupted, it will not affect
the security of the entire group; e.g. only secrets (session keys shared with him,
and his password) known to the affected client need to be changed, but other
innocent clients can continue using their existing passwords. This also means that
less trust needs to be put on each individual client since the compromise of any
client is less devastating to the security of the group. In contrast, a compromise
of any client in an SPWA-type PAKE would require that the password shared by
all clients be updated and re-communicated to each of them. Further, DPWA-
type PAKEs are very much suited for mobile and distributed computing networks
which are increasingly becoming prevalent, where the parties (clients) come from
diverse environments thus are less understood. Under such circumstances, one
would not want to put too much trust on any client.

Abdalla et al. [1] presented a formal security model for 3-party DWPA-type
PAKEs by combining the Bellare et al. model [3] for 2-party PAKEs with the
Bellare-Rogaway model [4] for 3-party key distribution schemes generalized to
the password case. They also formally defined the notion of key privacy to dif-
ferentiate truly contributory key exchange protocols from key distribution pro-
tocols. This notion, first mentioned in [20], roughly means that even though a
third-party server’s help is required to establish a session key between two clients,
the server is not able to obtain any information on the value of that established
session key. The goal of key privacy is to limit the amount of trust put into the
server, where it is assumed that the server is honest but curious [1], thus clients
prefer to have their established session key known only to themselves. This ap-
propriately models real-life situations where privacy of secret information is well
guarded by individuals. In fact, some other work in related information security
fields are also moving in this direction, e.g. protocols proposed without the use
of trusted third parties (TTP) in [9, 22], and research showing the subtlety of
putting too much trust on TTPs [19, 12]. To achieve key privacy, it is neces-
sary [1] to have a 2-party authenticated key exchange (AKE) between the two
clients.

In this paper, we are concerned with DPWA schemes for the n-party case. More
specifically, at ACNS ’05 Byun and Lee [7] presented two variants of an n-party
EKE protocol, respectively called n-party EKE-U and EKE-M for unicast and
multicast networks. These appear to be the first known n-party EKE protocols
with provable security. Tang and Chen [21] subsequently showed that EKE-U is
vulnerable to an offline dictionary attack, and that EKE-M is vulnerable to an
undetectable online dictionary attack [11]. Byun and Lee [8] promptly countered
with strengthened variants, which we will also discuss in Sections 3 and 4.
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Although PAKEs have been extensively studied especially in the last few years
[1, 3, 5, 6, 7, 8, 13, 16, 17, 20], most of them consider either the 2-party or 3-party
case. And it was only very recently that the first provably secure PAKEs for the
3-party and n-party cases were presented in [1] and [7] respectively. Thus this
field (that of provably secure group PAKEs) has potentially unexplored areas
of future work, e.g. how to extend the existing provably secure 2-party or 3-
party PAKEs to the n-party case in an efficient yet secure manner, i.e. without
involving too many inter-client communications that would cause a bottleneck
to the network especially when n is large.

We show attacks on both the original and strengthened EKE-U that exploit
the server as an oracle to generate messages supposedly from an innocent client.
Meanwhile for both the original and strengthened EKE-M, we point out that
they do not achieve the key privacy property that is desired of contributory key
exchange protocols.

In our concluding section, we discuss how to improve the strengthened EKE-U
to resist our attacks and argue that it is a worthwhile candidate for a provably
secure n-party PAKE.

2 The N-Party EKE Protocols

The n-party EKE protocols due to Byun and Lee [7] involve n − 1 clients and 1
server, and are specially designed to suit modern communication environments
such as ad-hoc networks and ubiquitous computing, in particular EKE-U for
unicast networks and EKE-M for multicast ones. Unicast networks allow for
communication only between a single sender and a single receiver, while multicast
networks allow for communication between a single sender and multiple receivers.
For multicast networks, all messages from individual single senders can be sent
in parallel during a single round to all receivers, thus more round-efficient group-
based protocols can be designed in such networks.

Note that all arithmetic operations in this paper are performed under cyclic
group G = 〈g〉 of prime order.

2.1 N-Party EKE-U Protocol Variants

The EKE-U makes use of three types of functions which differ mainly in the
number of elements produced at their respective outputs:

π(α1, . . . , αi−1, αi) = {α1, . . . , αi−1},

φ({α1, . . . , αi−1, αi}, x) = {αx
1 , . . . , αx

i−1, αi, α
x
i },

ξ({α1, . . . , αi−1, αi}, x) = {αx
1 , . . . , αx

i−1, α
x
i }.

Note that π produces an output that is simply equal to its input less the last
input element, and further π is only used by Cn−1. The functions φ and ξ take
in the same number of input elements, and their outputs are similar except that
φ has one more output element than ξ.
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C1 C2 . . . Cn−1 S

x1, v1 ∈R Z∗
q

X0 = {gv1 }
X1 = φc,1(X0, x1)
m1 = Epw1 (X1)

m1−−−−−−−−−−→

m′
1 = TF(m1)

X′
1 = Dpw2 (m′

1)

x2 ∈R Z∗
q

X2 = φc,2(X′
1, x2)

m2 = Epw2 (X2)
m2−−−−−−−−−−→

.

.

.
mn−2−−−−−−−−−−−−−→

m′
n−2 = TF(mn−2)

X′
n−2 = Dpwn−1(m′

n−2)

xn−1 ∈R Z∗
q

Xn−1 = πc,n−1(φc,n−1(X′
n−2, xn−1))

mn−1 = Epwn−1 (Xn−1)
mn−1−−−−−−−−−−−−−−−−→

Xn−1 = Dpwn−1 (mn−1)

vn ∈R Z∗
q

mn = ξs,n(Xn−1, vn)

Epwn−1 (mn,n−1)
←−−−−−−−−−−−−−−−−−−−−−−−

.

.

.
Epw2 (mn,2)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Epw1 (mn,1)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 1. Main protocol of n-party EKE-U

Ci S

mi−1−−−−−−−−−−−−−−→
Xi−1 = Dpwi−1(mi−1)
vi ∈R Z∗

q

X ′
i−1 = ξs,i(Xi−1, vi)

m′
i−1 = Epwi(X

′
i−1)

m′
i−1←−−−−−−−−−−−−−−

Fig. 2. TF protocol of n-party EKE-U

The main bulk of the EKE-U protocol is illustrated in Fig. 1, where clients
C1, . . . , Cn−1 and the server S are arranged in a line. During the up-flow stage
starting from C1, each client Ci basically chooses its own secret xi and calls
the φ function to raise the intermediate value X ′

i−1 to the power of this xi

in order to generate the value Xi. This is encrypted with client Ci’s password
pwi and sent to the next client Ci+1 as the message mi. Upon receipt of this,
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S C1 C2 · · · Cn−1

Round 1 si ∈R Z∗
q x1 ∈R Z∗

q x2 ∈R Z∗
q · · · xn−1 ∈R Z∗

q

Epwi(g
si) Epw1(g

x1) Epw2(g
x2) · · · Epwn−1(g

xn−1)

Round 2 N ∈R Z∗
q

sk1 ⊕ N‖ . . . ‖skn−1 ⊕ N

Fig. 3. N-party EKE-M

Ci+1 initiates an additional sub-protocol known as the TF protocol (see Fig. 2
and note that the function ξ is used here) with the server S so that the received
message which was encrypted under client Ci’s password could be decrypted and
re-encrypted under client Ci+1’s password to form m′

i. This then allows Ci+1 to
access the decrypted contents of m′

i, namely X ′
i and the same process repeats

until S receives the message mn−1 from Cn−1. The down-flow stage then starts
by having S compute from mn−1 the keying material mn,i meant for client Ci

(i = 1, . . . , n − 1), encrypt under pwi and send these out to each corresponding
client. Finally, each client with his own pwi and xi can perform the decryption
and compute the session key sk = (mn,i)xi = gvn

∏n−1
i=1 (vixi).

Byun and Lee [7] also mention that an optional mutual authentication step
based on key confirmation could be appended to the scheme if it is desired to
ensure that all other clients have really computed the agreed session key sk. In
this case, each client computes an authenticator H(Ci||sk), which is the hash
value of client index (Ci) and new session key (sk), and sends this to all other
clients for verification. Note however that even if this step is made compulsory,
it does not protect EKE-U against our attacks in Sections 3.3 and 3.4.

There is a strengthened version [8] of EKE-U and this will be explained in
Section 3.4.

2.2 N-Party EKE-M Protocol Variants

EKE-M is much simpler than EKE-U and is shown in Fig. 3. It consists of
two rounds. Round 1 is basically a simultaneous run of a 2-party PAKE be-
tween each client with the server to set up a secure channel (in the confiden-
tiality sense) between them. In Round 2, the server distributes a common key-
ing message to all clients via the secure channel. This will be used to form
the common secret session key sk among all clients. More precisely, denote
ski = H1(Epw1(gx1)‖ . . . ‖Epwn−1(gxn−1)‖gxisi) and sk = H2(Epw1(gx1)‖ . . . ‖
Epwn−1(gxn−1)‖sk1 ⊕ N‖ . . . ‖skn−1 ⊕ N‖N). Note that H1 and H2 are standard
hash functions.

There is also a strengthened version of EKE-M proposed by Byun and Lee [8]
to prevent the undetectable online dictionary attack in [21]. The basic idea is to
add an extra step after Round 1 where an authenticator H(ski||Ci) is broadcast
by each client (or server) to be checked by all parties before Round 2 starts.
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3 Cryptanalysis of the N-Party EKE-U Variants

In view of the low entropy password, the basic requirement for a PAKE is secu-
rity against dictionary attacks on the password. Such attacks are typically online
or offline, depending on whether or not the attacker needs to verify each guessed
password by interacting online (being involved in a protocol run) with other
parties. Another basic requirement of PAKEs is that they do not allow imper-
sonation attacks where an attacker masquerades as any legitimate party because
if this happens, there will be a non-achievement of mutual authentication.

3.1 Tang-Chen Attack

Before describing our attacks, we first briefly discuss an insider offline dictionary
attack on EKE-U given by Tang and Chen [21]. See [15] for a formal treatment
of insider attacks on group AKEs.

The basic idea behind this attack is that a malicious client Cj modifies the
first two components (g1, g2) in the message Xj of mj = Epwj (Xj) that it sends
to Cj+1 during the up-flow stage of the main protocol, such that they satisfy the
relation gα

1 = g2. Then right at the end of the TF protocol when the server S
returns m′

j = Epwj+1(X ′
j) to Cj+1, this is intercepted by the malicious Cj who

then guesses the value of pwj+1 and verifies his guess by checking if the first two
components that he had initially modified satisfy the given relation.

At first glance, it seems that this attack requires having to modify the message
mj = Epwj (Xj). However, as later pointed out in the same paper [21], this attack
could work without this requirement. Instead, it suffices to decrypt m′

j with the
guessed password pwj+1 and check if the last two components (β, γ) of X ′

j satisfy
the relation βxj = γ.

Note however that even with this relaxation, the latter attack still limits the
malicious Cj to attack only his next neighbour Cj+1 but not on the other clients
because the components within in his possessed X ′

j−1, Xj do not allow him to
verify any two components of these other clients’ messages without having to
guess the secrets of the server vi, i ∈ {1, . . . , n} or the secrets of other clients xt

(t �= j).

3.2 By Any Outsider

Byun and Lee [7] have cleverly designed the EKE-U protocol such that the
mn,i within each keying material message Epwi(mn,i) distributed by S to each
client Ci in the down-flow stage does not have the random secret xi chosen by
client Ci in its exponent, thus only client Ci would be able to make use of its
mn,i (ith component of the message mn) to generate the session key material
K = (mn,i)xi = (gx1...xn−1)v1...vn . Further, different functions (φ, π, ξ) are used
in the main and TF protocols, e.g. each of the three functions produces an
output having different number of elements, and φ is used in the main protocol
while ξ is used in the TF protocol; thus it appears an attacker cannot exploit
one protocol as an oracle for answering challenge-response-like queries in the
other protocol.
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However, note that this is only true for the communications during the up-
flow stage of the main protocol from C1 through Cn−1, but not true from Cn−1
to S because for the latter there is an extra function π (see Fig. 1 in addition
to the function φ that is used by Cn−1. Thus the output of the composition of
the functions π ◦ φ done by Cn−1 during the main protocol results in the same
number of elements as that of the output of the ξ function computed by S in
the TF protocol; i.e. S can be exploited during the TF protocol as an oracle
to generate messages supposedly generated by Cn−1 during the main protocol
when in fact Cn−1 need not be present at all.

Our attack further exploits the fact that the messages transmitted during the
TF protocol (Fig. 2) between a client and the server are similar in form to the
messages transmitted during the up- or down-flow of the main unicast protocol
(Fig. 1). In particular, message mi and m′

i−1 are both functions of Epwi(·). Thus,
the server S which is intended by the designers to act as an interpreter between
two neighbouring clients, Ci and Ci−1 could be used by the attacker as an oracle
to generate messages mi supposedly generated by the next neighbouring client
Ci even when Ci is not present.

For ease of illustration, we take n = 4 (as in Fig. 4) though it similarly applies
for any n. Note that in this case, Cn−1 = C3.

1. The attacker captures the message m2 = Epw2(X2) sent from C2 to C3 during
the up-flow stage of the main protocol.

2. The attacker then initiates the TF protocol by forwarding this m2 to S.
3. S thinks1 this is from C3 and decrypts it with pw2 to obtain X2. It then

computes

X ′
2 = ξ(X2, v3) = {gv1v2x2v3 , gv1x1v2v3 , gv1x1v2x2v3} (1)

and encrypts this with pw3 to get m′
2 = Epw3(X ′

2) and returns this m′
2 thus

completing the TF protocol.
4. The attacker now has m′

2 which he simply reuses as m3 = Epw3(X3) =
Epw3(X ′

2) and then impersonates C3 by sending this to S in the main proto-
col. This completes the up-flow stage.

5. To start the down-flow stage, S decrypts m3 to obtain

X3 = {gv1v2x2v3 , gv1x1v2v3 , gv1x1v2x2v3} (2)

and then chooses v4 to compute

m4 = ξ(X3, v4) = {gv1v2x2v3v4 , gv1x1v2v3v4 , gv1x1v2x2v3v4}. (3)

Each of these elements of m4, denoted in turn as m4,1, m4,2, m4,3 are then
encrypted with the respective passwords pwi of client Ci (i = 1, . . . , 3) and
sent to each client respectively as Epwi(m4,i) for (i = 1, . . . , 3).

1 Note that there is no explicit authentication of a client by S. An apparent way for S
to properly keep in sequence is to track the number of TF sessions that have been
initiated with it. The ith session would be taken to come from client Ci+1 since C1

does not initiated any TF with S.
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C1 C2 C3 S

X1 = {gv1 , gv1x1}
m1 = Epw1 (X1)

m1−−−−−−−−−−−−−−→

X′
1 = {gv1v2 , gv1x1v2 }

X2 = {gv1v2x2 , gv1x1v2 ,
gv1x1v2x2}

m2 = Epw2 (X2)

m2−−−−−−−−−−−−−−→

X′
2 = {gv1v2x2v3 , gv1x1v2v3 ,

gv1x1v2x2v3 }
X3 = {gv1v2x2v3x3 , gv1x1v2v3x3 ,

gv1x1v2x2v3 }
m3 = Epw3 (X3)

m3−−−−−−−−−−−−−−−−−→

m4 = {gv1v2x2v3x3v4 ,
gv1x1v2v3x3v4 ,
gv1x1v2x2v3v4 }

Epw3 (gv1x1v2x2v3v4 )
←−−−−−−−−−−−−−−−−−−−

Epw2 (gv1x1v2v3x3v4 )
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Epw1 (gv1v2x2v3x3v4 )
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 4. An example of n-party EKE-U main protocol for n=4

6. Each client Ci (i = 1, . . . , 3) can then decrypt Epwi(m4,i) and thus compute
sk = (m4,i)xi = (gx1x2)v1v2v3v4 .

Note that though our attack can be used to attack only Cn−1 and not any other
client, the main plus is that it can be mounted by any outsider (in contrast to
the attack in [21] which requires a malicious insider) and applies even without
needing client Cn−1 to be present. Having said that, Cn−1’s presence would pose
no problem for the attacker either. Though the attacker is unable to recover the
session key sk himself, he has successfully led all parties (except client Cn−1 who
is not present) to establish a totally new session key among them. This could
also be viewed as a variant of the unknown key-share attack [10, 2, 14] in the
n-party case since each client (except Cn−1) believes it is sharing a session key
with all other clients including Cn−1 which is true, but Cn−1 is not present and
does not know that such a key has been established. In constrast, recall that
an unknown key-share attack on a 2-party case is where one party A believes it
is sharing a session key with B which is rightly so, but B instead believes it is
sharing a session key with E �= A.

To prevent this attack, the mutual authentication step (e.g. via key confir-
mation [14]) must be made compulsory. Nevertheless, when performed by a ma-
licious insider, the mutual authentication step is no longer effective to prevent
this attack, and it further becomes an offline dictionary attack allowing him to
retrieve the password of Cn−1, as will be explained next.
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3.3 By a Malicious Insider

A malicious client Ci could launch a more devastating variant of the previous
attack since he could exploit it to further obtain the password of the innocent
client Cn−1. This offline dictionary attack works as follows:

1. The attacker, client Ci (i �= n−1) performs steps 1 through 5 of Section 3.2.
2. Further, since the attacker is an insider, he could also decrypt the keying ma-

terial intended for him Epwi(m4,i). We illustrate with an example. Consider
C1 is the malicious client. It can be similarly shown for all other clients Ci for
(i �= n − 1). He can obtain gv1v2x2v3v4 from Epw1(m4,1) = Epw1(gv1v2x2v3v4).

3. With his value of x1, he can compute y = (gv1v2x2v3v4)x1 = gv1x1v2x2v3v4 .
4. He intercepts Epw3(m4,3) = Epw3(gv1x1v2x2v3v4) meant for client C3, and

makes guesses for all possible values of pw3. For each guessed pw3, he de-
crypts Epw3(m4,3) and obtains z = gv1x1v2x2v3v4 . He then checks if z equals
y. The correct pw3 would satisfy this.

This attack can be mounted by any client Ci against Cn−1, thus it complements
the attack in [21] where the attack is mounted by any client Ci against his
neighbour Ci+1.

Note also that this attack works even with the mutual authentication step
included since Ci has no problem in computing sk.

3.4 Attacking the Strengthened N-Party EKE-U

In [8], Byun and Lee suggested a strengthened n-party EKE-U protocol to
counter the insider offline dictionary attack due to Tang and Chen [21].

Their basic idea to counter the attack is to use an ephemeral session key
ski = H(Ci‖S‖gai‖gbi‖gaibi) instead of the password pwi to encrypt keying
material during both the up- and down-flow of the main protocol, where ai and
bi are the random number chosen by Ci and S respectively.

Nevertheless, we first remark that this strengthened variant also falls to our
attacks in the Sections 3.2 and 3.3 since it inherits from the original version
the same properties we exploited, i.e. (1) the composition of functions π ◦ φ
produces an output with the same number of elements as that produced by
ξ; (2) messages transmitted during the TF protocol are the same in form to
messages transmitted during the main protocol.

More interestingly, we have a further undetectable online dictionary attack
[11] on this strengthened variant as follows, again assuming for the purpose of
illustration that n = 4 thus we have the parties C1, C2, C3 and S:

1. All malicious clients except C1 collude [18], meaning they share their secrets
xi.

2. They choose v and x, and for each guess of pw1,
(a) They compute m1 = Epw1(X1) where X1 = {gv, gvx}.
(b) Then C2 starts the TF protocol with S, etc., and the rest of the up-flow

proceeds as normal.
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(c) Then during the down-flow, the keying material messages sent by S
to C1, C2 and C3 would be Epw1(gvv2v3v4x2x3), Epw2(gvv2v3v4xx3) and
Epw3(gvv2v3v4xx2).

(d) Now the colluding clients C2 and C3 can easily obtain y = gvv2v3v4 from
Epw2(gvv2v3v4xx3) or Epw3(gvv2v3v4xx2), and their knowledge of x, x2 and
x3.

(e) They then use their current guess of pw1 to decrypt Epw1(gvv2v3v4x2x3)
to get z. They compare this z with yx2x3 , where y was computed in the
previous step. A match means the guess of pw1 is correct.

This is online because every time pw1 is guessed, the attackers have to initiate
a protocol run with S, but this is undetectable because S would not notice
anything wrong while C1 does not even have to be present.

The weakness exploited here is that the message from C1 to C2 is encrypted
with a low-entropy password pw1 instead of sk1. Thus a direct fix is to use sk1
in place of pw1 similar to how ski (for i �= 1) were used in place of pwi for this
strengthened EKE-U scheme.

4 N-Party EKE-M Does Not Provide Key Privacy

Byun and Lee [7] also proposed a multicast variant known as the n-party EKE-M
protocol. It is illustrated in Fig. 3.

This variant does not exhibit the ‘S-oracle’ property of the U variant, i.e.
the server S cannot be exploited as an oracle to generate messages that appear
to be from a client, thus it does not appear to fall to our attacks on EKE-U.
Nevertheless, there is one major problem with this M variant, namely that the
server S is able to compute the session key sk established by the clients. This
is quite unlike the U variant where even S is unable to know what sk is, and
thus this M variant is undesirable in the sense that the privacy of the clients’
communications cannot be safeguarded against a third-party server.

This key privacy property is important because it would mean less trust
[12, 19] needs to be put on a third-party server, who may not always be ma-
licious but could sometimes be curious [1]. The first known n-party (for n=3)
EKE scheme to have this property is due to Steiner et al. [20] and this concept
was later formally treated by Abdalla et al. [1]. Abdalla et al. argue that key
privacy is the main difference between a key distribution protocol (for which the
session key is known to the server) and a key exchange protocol (for which the
session key remains unknown to the server). Thus, a true key exchange protocol
where each party (in this case the client) contributes equal parts to the estab-
lished session key, should have key privacy because the third-party server should
not be able to listen in on future secret communications among the clients, and
hence should not be able to know what this session key is.

Note that the strengthened EKE-M variant in [8] has the same problem even
when mutual authentication via key confirmation is included, because the point
here is that the server can compute sk even when Ci is not present, so mutual
authentication is irrelevant.
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We do not see any way to fix this with minor tweaks without destroying the
basic structure of this M scheme, because essentially each client interacts only
with the server, and never with each other, thus the keying material compo-
nents that they contribute to the final establishment of the session key via a
Diffie-Hellman way, can only be translated (decrypted with one password and
re-encrypted with another) by the middleman S, thus S is able to view all com-
municated messages that it translates.

Alternatively, one could adopt the approach in [1] by appending one more
phase where each client interacts directly with the other clients by contributing
its secret part to jointly form the key but this would be infeasible for n > 3
parties. Unless one resorts to using the method used for EKE-U where each client
in turn adds his secret to the key material accummulatively while forwarding
from one client to the next until it reaches the server. However, this is then
essentially EKE-U and thus we end up destroying the original EKE-M structure.

If it is desired that this key privacy against the server be upheld, then this
variant should not be used.

5 Conclusion

We have illustrated attacks (impersonation, dictionary or collusion attacks) on
the n-party EKE-U variants proposed by Byun and Lee [7, 8].

EKE-U [7], even with strengthening [8], falls to our attacks in Sections 3.2
to 3.4, while EKE-M is not desirable as it does not provide key privacy. But
to fix the key privacy problem requires clients to directly communicate with
one another to contribute their secret key parts accummulatively, leading us
therefore to EKE-U.

Thus it appears that strengthened EKE-U is the potential way to proceed for
provably secure n-party PAKEs. Hence, to fix EKE-U, the mutual authentication
step is compulsory in order to prevent the attack in Section 3.2, though attacks
in Sections 3.3 and 3.4 still apply. A simple fix to prevent the attack in Section
3.3 is to require the server to check that xn−1 �= 1 before replying so that it is
not exploited as an oracle. To prevent the attack in Section 3.4, C1 needs to also
initiate the TF protocol to generate sk1 with the server and use sk1 instead of
pw1 in constructing m1.
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