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Abstract. Multilinear maps serve as a basis for a wide range of cryp-
tographic applications. The first candidate construction of multilinear
maps was proposed by Garg, Gentry, and Halevi in 2013, and soon
afterwards, another construction was suggested by Coron, Lepoint, and
Tibouchi (CLT13), which works over the integers. However, both of these
were found to be insecure in the face of so-called zeroizing attacks, by Hu
and Jia, and by Cheon, Han, Lee, Ryu and Stehlé. To improve on CLT13,
Coron, Lepoint, and Tibouchi proposed another candidate construction
of multilinear maps over the integers at Crypto 2015 (CLT15).

This article presents two polynomial attacks on the CLT15 multilin-
ear map, which share ideas similar to the cryptanalysis of CLT13. Our
attacks allow recovery of all secret parameters in time polynomial in the
security parameter, and lead to a full break of the CLT15 multilinear
map for virtually all applications.
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1 Introduction

Cryptographic multilinear maps are a powerful and versatile tool to build crypto-
graphic schemes, ranging from one-round multipartite Diffie-Hellman to witness
encryption and general program obfuscation. The notion of cryptographic mul-
tilinear map was first introduced by Boneh and Silverberg in 2003, as a natural
generalization of bilinear maps such as pairings on elliptic curves [BS03]. How-
ever it was not until 2013 that the first concrete instantiation over ideal lattices
was realized by Garg, Gentry and Halevi [GGH13a], quickly inspiring another
construction over the integers by Coron, Lepoint and Tibouchi [CLT13]. Along-
side these first instantiations, a breakthrough result by Garg, Gentry, Halevi,
Raykova, Sahai and Waters achieved (indistinguishability) obfuscation for all
circuits from multilinear maps [GGH+13b]. From that point multilinear maps
have garnered considerable interest in the cryptographic community, and a host
of other applications have followed.
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 509–536, 2016.
DOI: 10.1007/978-3-662-49890-3 20



510 J.H. Cheon et al.

However this wealth of applications rests on the relatively fragile basis of only
three constructions of multilinear maps to date: namely the original construc-
tion over ideal lattices [GGH13a], the construction over the integers [CLT13],
and another recent construction over lattices [GGH15]. Moreover none of these
constructions relies on standard hardness assumptions. In fact all three con-
structions have since been broken for their more “direct” applications such
as one-round multipartite Diffie-Hellman [HJ15,CHL+15,Cor15]. Thus build-
ing candidate multilinear maps and assessing their security may be regarded as
a challenging work in progress, and research in this area has been very active in
recent years.

Following the attack by Cheon, Han, Lee, Ryu and Stehlé (CHLRS attack)
on the [CLT13] multilinear map over the integers, several attempts to repair
the scheme were published on ePrint, which hinged on hiding encodings of zero
in some way; however these attempts were quickly proven insecure [CGH+15].
At Crypto 2015, Coron, Lepoint and Tibouchi set out to repair their scheme
by following a different route [CLT15]: they essentially retained the structure
of encodings from [CLT13], but added a new type of noise designed to thwart
the CHLRS approach. Their construction was thus able to retain the attractive
features of the original, namely conceptual simplicity, relative efficiency, and
wide range of presumed hard problems on which applications could be built.

1.1 Our Contribution

In this paper we propose two polynomial attacks on the new multilinear map
over the integers presented by Coron, Lepoint and Tibouchi at Crypto 2015
[CLT15]. These two attacks were originally published independently on ePrint by
Cheon, Lee and Ryu [CLR15], and by Minaud and Fouque [MF15]. The present
paper is a merge of the two results for publication at Eurocrypt 2016.

The impact of both attacks is the same, and they both use the same starting
point (“integer extraction”). The second half of the attacks is where they differ.
In a nutshell, the attack by Cheon, Lee and Ryu looks into the exact expression
of the value a in the term av0 appearing in integer extractions. This makes it
possible to uncover a matrix product similar to the CHLRS attack on CLT13,
albeit a more complex one. As in the CHLRS attack, the secret parameters are
then recovered as the eigenvalues of a certain matrix. For this reason we shall
call this attack the eigenvalue attack.

By contrast the attack by Minaud and Fouque treats the value a in av0 as
a noise, which is removed by first recovering v0 and taking equations modulo
v0. The secret parameter v0 is recovered as (a divisor of) the determinant of
a CHLRS-type matrix product. For this reason we shall call this attack the
determinant attack. Once v0 is recovered, CLT15 essentially collapses to CLT13
and can be broken by the CHLRS attack.

Both of the proposed attacks are polynomial in the security parameter. In
addition, in the optimized version of the scheme where an exact multiple of
x0 is provided in the public parameters, the second attack is instant (as no
determinant computation is actually required).
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Moreover both attacks apply to virtually all possible applications of the
CLT15 multilinear map. Indeed, while they do require low-level encodings of
zero, these encodings are provided by the ladders given in the public parame-
ters. In this respect CLT15 is weaker than CLT13. A closer look at the impact
of our attacks is provided in Sect. 1.3.

We refer the reader to [MF15] for a third, probabilistic attack with similar
properties.

1.2 Overview of the Attacks

We begin by briefly recalling the CLT15 multilinear map (more precisely, graded
encoding scheme). The message space is Zg1 × · · · × Zgn

for some small primes
g1, . . . , gn, and (m1, . . . ,mn) is encoded at some level k ≤ κ as:

CRT(pi)

(rigi + mi

zk

)
+ ax0

where:

(pi) is a sequence of n large primes.
x0 =

∏
pi.

CRT(pi)(xi) is the unique integer in [0, x0) congruent to xi modulo pi.

z is a fixed secret integer modulo x0.

ri is a small noise.
a is another noise.

Encodings at the same level can be added together, and the resulting encoding
encodes the sum of the messages. Similarly encodings at levels i and j can be
multiplied to yield an encoding at level i + j of the coordinate-wise product of
the encoded messages. This behavior holds as long as the values rigi +mi do not
go over pi, i.e. reduction modulo pi does not interfere. In order to prevent the
size of encodings from increasing as a result of additions and multiplications, a
ladder of encodings of zero of increasing size is published at each level. Encodings
can then be reduced by subtracting elements of the ladder at the same level.

The power of the multilinear map comes from the zero-testing procedure,
which allows users to test whether an encoding at the maximal level κ encodes
zero. This is achieved by publishing a so-called zero-testing parameter denoted
pzt ∈ Z, together with a large prime N � x0. An encoding at the maximal level
κ may be written as:

e =
∑

(ri + mig
−1
i mod pi)ui + ax0

where ui
�=

(
giz

−κ(p∗
i )

−1 mod pi

)
p∗

i with p∗
i =

∏
j �=i

pj .

That is, some constants independent of the encoding have been folded with the
CRT coefficients into ui. Now pzt is chosen such that vi

�= uipzt mod N and
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v0
�= x0pzt mod N satisfy |vi| � N and |v0| � N . In this way, for any encoding

e of zero at level κ, since mi = 0, we have:

|epzt mod N | =
∣∣ ∑

rivi + av0
∣∣ � N

provided the noises ri and a are small enough. Thus, users can test whether e is
an encoding of zero at level κ by checking whether |epzt mod N | � N .

1.2.1 Integer Extraction (φ-value). Our attacks proceed in two steps. The
first step is shared by both attacks and proceeds as follows. We define the integer
extraction procedure φ : Z → Z. In short, φ computes

∑
i rivi + av0 over the

integers for any level-κ encoding e (of size up to the largest ladder element). Note
that this value is viewed over the integers and not modulo N . If e is “small”,
then φ(e) = epzt mod N , i.e. φ matches the computation from the zero-testing
procedure.

If e is “large” on the other hand, then e would need to be reduced by the
ladder before zero-testing can be applied. However the crucial observation is that
φ is Z-linear as long as the values rigi + mi associated with each encoding do
not go over pi. Thus e can be ladder-reduced into e′, then φ(e′) = e′pzt mod N
is known, and φ(e) can be recovered from φ(e′) by compensating the ladder
reduction using Z-linearity.

1.2.2 Eigenvalue Attack. The point of a CHLRS attack can be divided
into two parts. The first is that, for a level-κ encoding of zero e =∑n

i=1[
rigi

zκ (x0
pi

)−1]pi

x0
pi

+ ax0,

[pzt · e]x0 =
n∑

i=1

riv̂i,

where v̂i is common to all the encodings in CLT13, holds over the integers. The
second point is that the zero-testing value of a product of two encodings is a
quadratic form of some values related to each encoding. More precisely, for two
encodings e1 =

∑n
i=1[

ri1gi

zt (x0
pi

)−1]pi

x0
pi

+a1x0 and e2 =
∑n

i=1[
ri2

zκ−t (x0
pi

)−1]pi

x0
pi

+
a2x0, the product is e1e2 ≡ ∑n

i=1[
ri1ri2gi

zκ (x0
pi

)−1]pi

x0
pi

mod x0. Therefore, the
zero-testing value of e1e2 is

[pzt · e1e2]x0 =
n∑

i=1

ri1ri2v̂i.

Let us look at CLT15 in these aspects. For a level-κ encoding of zero e =∑n
i=1 riuiκ + ax0, the zero-testing value of x is written as

[pzt · e]N =
n∑

i=1

rivi + av0,
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for common vi’s, similar to CLT13. Let e1 be a level-t encoding of zero, e2
be a level-(κ − t) encoding, and e be a product of e1 and e2. Then, these can
be written as e1 =

∑n
i=1 ri1uit + a1x0, e2 =

∑n
i=1 ri2uiκ−t + a2x0, and e =∑n

i=1 ri1ri2uiκ + ax0, for some integers a, a1, a2, ri1, ri2, 1 ≤ i ≤ n, where a is
a quadratic form of a1, a2, ri1, ri2, 1 ≤ i ≤ n. Since the size of e is larger than
that of x0, we need to reduce the size of e to perform zero-testing. Let e′ be
a ladder-reduced encoding of e; then, it is of the form e′ = e − ∑M

j=0 bjXj =∑n
i=1(ri1ri2 −∑M

j=0 bjsij)uiκ +(a−∑M
j=0 bjqj)x0, for some b0, · · · , bM ∈ {0, 1}.

In this case, the zero-testing value gives

[pzt · e′]N =
[
pzt · (

e −
M∑

j=0

bjXj

)]
N

=
n∑

i=1

(
ri1ri2 −

M∑
j=0

bjsij

)
vi +

(
a −

M∑
j=0

bjqj

)
v0

=
n∑

i=1

(
ri1ri2

)
vi + av0 −

M∑
j=0

bj

( n∑
i=1

sijvi + qjv0
)
.

Therefore, if one has
∑n

i=1 sijvi+qjv0 for all j, one can compute
∑n

i=1(ri1ri2)vi+
av0 and follow a CHLRS attack strategy. For this purpose the integer extraction
function φ provides exactly what we need.

By using (n+1) level-t encodings of zero and (n+1) level-(κ− t) encodings,
we constitute matrix equations that consist only of a product of matrices. As
in [CHL+15], we have a matrix, the eigenvalues of which consist of the CRT
components of an encoding. From these, we can recover all the secret parameters
of the CLT15 scheme. Our attack needs only ladders and two level-0 encodings
(which can be provided by ladder elements), and runs in polynomial time.

1.2.3 Determinant Attack. The determinant attack proceeds by first recov-
ering x0. Once x0 is known, the original CHLRS attack can be applied by taking
all values modulo v0. We now explain how to recover x0.

In the optimized variant of the scheme implemented in [CLT15], a small
multiple qx0 of x0 is given in the public parameters. In that case qx0 may be
regarded as an encoding of zero at level κ, and φ(qx0) = qv0. Since this holds
over the integers, we can compute q = gcd(qx0, qv0) and then x0 = qx0/q.

In the general case where no exact multiple of x0 is given in the public
parameters, pick n + 1 encodings ai at some level t, and n + 1 encodings of zero
bi at level κ − t. Note that ladder elements provide encodings of zero even if the
scheme itself does not. Then compute:

ωi,j
�= φ(aibj).
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If we write ai mod v0 = CRT(pj)(ai,j/zt) and bi mod v0 = CRT(pj)(ri,jgj/zκ−t),
then we get:

ωi,j mod v0 =
∑

k

ai,krj,kvk mod v0.

Similar to the CHLRS attack on the CLT13 multilinear map, this equality can
be viewed as a matrix product. Indeed, let Ω denote the (n+1)× (n+1) integer
matrix with entries ωi,j , let A denote the (n+1)×n integer matrix with entries
ai,j , let R denote the (n + 1) × n integer matrix with entries ri,j , and finally
let V denote the n × n diagonal matrix with diagonal entries vi. If we embed
everything into Z/v0Z, then we have:

Ω = A · V · RT in Z/v0Z.

Since A and R are (n + 1) × n matrices, this implies that Ω is not full-rank
when embedded into Z/v0Z. As a consequence v0 divides det(Ω). We can repeat
this process with different choices of the families (ai), (bi) to build another matrix
Ω′ with the same property. Finally we recover v0 as v0 = gcd(det(Ω),det(Ω′)),
and x0 = v0/pzt mod N .

1.3 Impact of the Attacks

Two variants of the CLT15 multilinear map should be considered. Either a small
multiple of x0 is provided in the public parameters. In that case x0 can be recov-
ered instantly with the determinant attack, and the scheme becomes equivalent
to CLT13 in terms of security (cf. Sect. 4.3.1). In particular it falls victim to the
CHLRS attack when low-level encodings of zero are present, but it may still be
secure for applications that do not require such encodings, such as obfuscation.
However the scheme is strictly less efficient than CLT13 by construction, so there
is no point in using CLT15 for those applications.

Otherwise, if no small multiple of x0 is given out in the public parameters,
then ladders of encodings of zero must be provided at levels below the maximal
level. Thus we have access to numerous encodings of zero below the maximal
level, even if the particular application of multilinear maps under consideration
does not require them. As a result both the eigenvalue and the determinant
attacks are applicable (cf. Sect. 4.3.3), and the secret parameters are still recov-
ered in polynomial time, albeit less efficiently than the previous case.

In summary, the optimized version of CLT15 providing a small multiple of x0

is no more secure than CLT13, and less efficient. On the other hand in the general
non-optimized case, the scheme is broken for virtually all possible applications
due to encodings of zero provided by the ladder. Thus overall the CLT15 scheme
can be considered fully broken.

1.4 Organization of the Paper

For the sake of being self-contained, a presentation of multilinear maps and
graded encoding schemes is provided in AppendixA. The CLT15 construction
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itself is described in Sect. 3. In Sect. 3.2 we recall the CHLRS attack on CLT13,
as it shares similar ideas with our attacks. Readers already familiar with the
CLT15 multilinear map can skip straight to Sect. 4 where we describe our main
attacks.

2 Notation

The symbol �= denotes an equality by definition.
For n an integer, size(n) is the size of n in bits.
For a finite set S, we use s ← S to denote the operation of uniformly choosing

an element s from S.

Modular Arithmetic. The group Z/nZ of integers modulo n is denoted by Zn.
For a, b, p ∈ Z, a ≡ b mod p or a ≡p b means that a is congruent to b modulo p.
The notation “mod p” should be understood as having the lowest priority. For
instance, the expression a · b mod p is equivalent to (a · b)mod p.

We always view amod p (or [a]p) as an integer inZ. The representative closest to
zero is always chosen, positive in case of tie. In other words −p/2 < amod p ≤ p/2.

Chinese Remainder Theorem. Given n prime numbers (pi), we define p∗
i as

in [Hal15a]:
p∗

i =
∏
j �=i

pj .

For (x1, . . . , xn) ∈ Z
n, let CRT(pi)(xi) denote the unique integer in Z ∩ [0,

∏
pi)

such that CRT(pi)(xi)mod pi = xi mod pi, as per the Chinese Remainder Theo-
rem.

It is useful to observe that for any (x1, . . . , xn) ∈ Z
n:

CRT(pi)(xip
∗
i ) =

∑
i

xip
∗
i mod

∏
i

pi. (1)

Matrix. For an n × n square matrix H , we use (hij) to represent a matrix H ,
the (i, j) component of which is hij . Similarly, for a vector v ∈ R

n, we define
(v)j as the j-th component of v . Let H T be the transpose of H and ‖H ‖∞
be the maxi

∑n
j=1 |hij |. We denote by diag(d1, · · · , dn) the diagonal matrix with

diagonal coefficients equal to d1, · · · , dn.

3 The CLT15 Multilinear Map and Its Cryptanalysis

In order to make our article self-contained, a short introduction to multilinear
maps and graded encoding schemes is provided in AppendixA.
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3.1 The CLT15 Multilinear Map over the Integers

Shortly after the multilinear map over ideal lattices by Garg, Gentry and Halevi
[GGH13a], another construction over the integers was proposed by Coron, Lep-
oint and Tibouchi [CLT13]. However a devastating attack was published by
Cheon, Han, Lee, Ryu and Stehlé at Eurocrypt 2015 (on ePrint in late 2014).
In the wake of this attack, a revised version of their multilinear map over the inte-
gers was presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15].
In the remainder of this article, we will refer to the original construction over
the integers as CLT13, and to the new version from Crypto 2015 as CLT15.

In this section we recall the CLT15 construction. We omit aspects of the
construction that are not relevant to our attack, and refer the reader to [CLT15]
for more details. The message space is R = Zg1 × · · · ×Zgn

, for some (relatively
small) primes gi ∈ N. An encoding of a message (m1, . . . ,mn) ∈ Zg1 × · · · ×Zgn

at level k ≤ κ has the following form:

e = CRT(pi)

(rigi + mi

zk
mod pi

)
+ ax0 (2)

where:

– The pi’s are n large secret primes.
– The ri’s are random noise such that |rigi + mi| � pi.
– x0 =

∏
i≤n pi.

– z is a fixed secret integer modulo x0.
– a is random noise.

The scheme relies on the following parameters:

λ : the security parameter.
κ : the multilinearity level.
n : the number of primes pi.
η : the bit length of secret primes pi.

γ = nη : the bit length of x0.
α : the bit length of the gi’s.
ρ : the bit length of initial ri’s.
β : the bit size of matrix H used to zero-testing procedure.

Addition, negation and multiplication of encodings is exactly addition, negation
and multiplication over the integers. Indeed, mi is recovered from e · zk as mi =
(e · zk mod pi)mod gi, and as long as rigi + mi does not go over pi, addition and
multiplication will go through both moduli. Thus we have defined encodings and
how to operate on them.

Regarding the sampling procedure from AppendixA.2, for our purpose, it
suffices to know that it is realized by publishing a large number of level-0 encod-
ings of random elements. Users can then sample a new random element as a
subset sum of published elements. Likewise, the rerandomization procedure is
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achieved by publishing a large number of encodings of zero at each level, and an
element is re-randomized by adding a random subset sum of encodings of zero at
the same level. The encoding procedure is realized by publishing a single level-1
encoding y of 1 (by which we mean (1, . . . , 1) ∈ Zg1 × · · · × Zgn

): any encoding
can then be promoted to an encoding of the same element at a higher level by
multiplying by y.

Zero-testing in CLT13. We now move on to the crucial zero-testing procedure.
This is where CLT13 and CLT15 differ. We begin by briefly recalling the CLT13
approach.

In CLT13, the product x0 of the pi’s is public. In particular, every encoding
can be reduced modulo x0, and every value below should be regarded as being
modulo x0. Let p∗

i =
∏

j �=i pj . Using (1), define:

pzt
�=

∑
i≤n

(hiz
κ

gi
mod pi

)
p∗

i = CRT(pi)

(hiz
κ

gi
p∗

i mod pi

)
mod x0.

where the hi’s are some relatively small numbers with |hi| � pi. Now take a
level-κ encoding of zero:

e = CRT(pi)

(rigi

zκ
mod pi

)
mod x0.

Since multiplication acts coordinate-wise on the CRT components, using (1)
again, we have:

ω
�= epzt = CRT(pi)(hirip

∗
i ) =

∑
i

hirip
∗
i mod x0.

Since p∗
i = x0/pi, as long as we set our parameters so that |hiri| � pi, we have

|ω| � x0.
Thus the zero-testing procedure is as follows: for a level-κ encoding e, com-

pute ω = epzt mod x0. Output 1, meaning we expect e to encode zero, iff the ν
most significant bits of ω are zero, for an appropriately chosen ν. In [CLT13],
multiple pzt’s can be defined in order to avoid false positives; we restrict our
attention to a single pzt.

Zero-testing in CLT15. In CLT13, an encoding at some fixed level is entirely
defined by its vector of associated values ci = rigi + mi. Moreover, addition and
multiplication of encodings act coordinate-wise on these values, and the value
of the encoding itself is Zx0 -linear as a function of these values. Likewise, ω is
Zx0-linear as a function of the ri’s. This nice structure is an essential part of
what makes the devastating attack, so called CHLRS attack [CHL+15] possible.
In CLT15, the authors set out to break this structure by introducing a new noise
component a.

For this purpose, the public parameters include a new prime number N � x0,
with size(N) = γ + 2η + 1. Meanwhile x0 is kept secret, and no longer part of
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the public parameters. Encodings are thus no longer reduced modulo x0, and
take the general form given in (2), including a new noise value a. Equivalently,
we can write an encoding e of (mi) at level k as:

e =
∑

i

(
ri + mi(g−1

i mod pi)
)
ui + ax0 (3)

with ui
�=

(
giz

−k(p∗
i )

−1 mod pi

)
p∗

i .

That is, we fold the giz
−k multiplier of ri with the CRT coefficient into ui.

The zero-testing parameter pzt is now defined modulo N in such a way that:

v0
�= x0pzt mod N ∀i, vi

�= uipzt mod N (4)
satisfy: |v0| � N |vi| � N

To give an idea of the sizes involved, size(v0) ≈ γ and size(vi) ≈ γ + η for i > 0.
We refer the reader to [CLT15] for how to build such a pzt. The point is that if
e is an encoding of zero at level κ, then we have:

ω = epzt mod N =
∑

rivi + av0 mod N.

In order for this quantity to be smaller than N , the size of a must be somehow
controlled. Conversely as long as a is small enough and the noise satisfies |ri| � pi

then |ω| � N . We state the useful lemma for an exact zero-testing, the so-called
the zero-testing lemma, more precisely.

Lemma 1 (Zero-testing Lemma). Let e be a level-κ encoding of zero with
e =

∑n
i=1 riui + ax0, (r1, · · · , rn, a ∈ Z). Then,

[epzt]N =
n∑

i=1

rivi + av0,

holds over the integers, if |a| < 22η−β−log2 n−1 and |ri| < 2η−β−log2 n−6 for
1 ≤ i ≤ n.

Proof. By the construction of the zero-testing element, we have epzt ≡
n∑

i=1

rivi+

av0 mod N . It is sufficient to show that the right hand side is smaller than N/2.
For 1 ≤ i ≤ n,

vi ≡
n∑

j=1

hjαjp
−1
j ui ≡ hiβi +

∑
j �=i

hjαj

[
gi

zκ

(x0

pi

)−1
]

pi

x0

pipj
mod N,

and therefore, |vi| < 2γ+η+β+4 for 1 ≤ i ≤ n. Moreover, v0 =
∑n

j=1 hjαj
x0
pj

and
|v0| < n2γ+β−1. �
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Thus the size of a must be controlled. The term ax0 will be dominant in (3) in
terms of size, so decreasing a is the same as decreasing the size of the encoding as
a whole. The scheme requires a way to achieve this without altering the encoded
value (and without publishing x0).

For this purpose, inspired by [VDGHV10], a ladder (X(k)
i )0≤i≤γ′ of encodings

of zero of increasing size is published for each level k ≤ κ, where γ′ = γ +
�log2 �. The size of an encoding e at level k can then be reduced without altering
the encoded value by recursively subtracting from e the largest ladder element
smaller than e, until e is smaller than X

(κ)
0 . More precisely we can choose X

(κ)
0

small enough that the previous zero-testing procedure goes through, and then
choose X

(κ)
γ′ twice the size of X

(κ)
0 , so that the product of any two encodings

smaller than X
(κ)
0 can be reduced to an encoding smaller than X

(κ)
0 . After each

addition and multiplication, the size of the resulting encoding is reduced via the
ladder.

In the end, the zero-testing procedure is very similar to CLT13: given a
(ladder-reduced) level-κ encoding e, compute ω = epzt mod N . Then output 1,
meaning we expect e to encode zero, iff the ν high-order bits of ω are zero.

Extraction. The extraction procedure simply outputs the ν high-order bits of
ω, computed as above. For both CLT13 and CLT15, it can be checked that they
only depend on the mi’s (as opposed to the noises a and the ri’s).

3.2 CHLRS Attack on CLT13

In this section we provide a short description of CHLRS attack on CLT13
[CHL+15], as elements of this attack appear in our own. We actually present (a
close variant of) the slightly simpler version in [CGH+15].

Assume we have access to a level-0 encoding a of some random value, n level-1
encodings (bi) of zero, and a level-1 encoding y of 1. This is the case for one-round
multi-party Diffie-Hellman (see previous section). Let ai = amod pi, i.e. ai is the
i-th value “rigi + mi” associated with a. For i ≤ n, define ri,j = biz/gj mod pj ,
i.e. ri,j is the j-th value “rj” associated with bi (recall that bi is an encoding of
zero, so mj = 0). Finally let yk = yz mod pk.

Now compute:

ei,j = a · bi · bj · yκ−2 mod x0 ωi,j = ei,jpzt mod x0

e′
i,j = bi · bj · yκ−2 mod x0 ω′

i,j = e′
i,jpzt mod x0

Note that:

ωi,j =
∑

k

(
ak

ri,kgk

z

rj,kgk

z

yκ−2
k

zκ−2

hkzκ

gk
mod pk

)
p∗

k

=
∑

k

akri,krj,kck with ck = gkyκ−2
k hkp∗

k. (5)
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Crucially, in the second line, the modulo pk disappears and the equation holds
over the integers, because ei,j is a valid encoding of zero, so the correctness of
the scheme requires |ei,jz

κ/gk mod pk| � pk.
Equation (5) may be seen as a matrix multiplication. Indeed, define Ω, resp.

Ω′, as the n × n matrix with entries ωi,j , resp. ω′
i,j , and likewise R with entries

ri,j . Moreover let A, resp. C, be the diagonal matrix with diagonal entries ai,
resp. ci. Then (5) may be rewritten:

Ω = R · A · C · RT

Ω′ = R · C · RT

Ω · (Ω′)−1 = R · A · R−1.

Here matrices are viewed over Q for inversion (they are invertible whp).
Once Ω · (Ω′)−1 has been computed, the (diagonal) entries of A can be

recovered as its eigenvalues. In practice this can be achieved by computing the
characteristic polynomial, and all computations can be performed modulo some
prime p larger than the ai’s (which are size 2ρ).

Thus we recover the ai’s, and by definition ai = amod pi, so pi can be
recovered as pi = gcd(a − ai, x0). From there it is trivial to recover all other
secret parameters of the scheme.

4 Main Attack

4.1 Integer Extraction (φ-Value)

Integer extraction essentially removes the extra noise induced by ladder reduc-
tions when performing computations on encodings. In addition, as we shall see
in Sect. 4.3.2, this step is enough to recover x0 when an exact multiple is known,
as is the case in the optimized variant proposed and implemented in [CLT15].

In the remainder we say that an encoding at level k is small iff it is less than
X

(k)
0 in absolute value. In particular, any ladder-reduced encoding is small.

Now, we describe our idea of attack. For a level-κ encoding of zero e =∑n
i=1 riui+ax0 of arbitrary size, if one can compute the integer value

∑n
i=1 rivi+

av0, which is not reduced modulus N , then a CHLRS attack can be applied
similarly. Hence, we define the function φ such that it represents such a value
and examine how to obtain the function values for a level-κ encoding of zero of
arbitrary size.

When the size of e is small, by the zero-testing lemma, [pzt · e]N gives the
integer value

∑n
i=1 rivi + av0. However, if the size of e is large, the zero-testing

lemma does not hold and one cannot compute the integer value directly. To
reach the goal, we use the ladder X

(κ)
j =

∑n
i=1 r

(κ)
ij ui + a

(κ)
j . Let e be a level-κ

encoding of zero. Then, we can compute the size-reduced encoding e′ using the
ladder and obtain the quantity (for short, we define γ′ as γ + �log2 �.)
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[pzt · e′]N =
[
pzt ·

(
e −

γ′∑
j=0

bjX
(κ)
j

)]
N

=
n∑

i=1

(
ri −

γ′∑
j=0

bjr
(κ)
ij

)
vi +

(
a −

γ′∑
j=0

bja
(κ)
j

)
v0

=
n∑

i=1

rivi + av0 −
γ′∑

j=0

bj

( n∑
i=1

r
(κ)
ij vi + a

(κ)
j v0

)
.

Therefore, if one can compute
∑n

i=1 r
(κ)
ij vi + a

(κ)
j v0 from X

(κ)
j , one can easily

obtain
∑n

i=1 rivi + av0.
To compute

∑n
i=1 r

(κ)
ij vi + a

(κ)
j v0 for all j ∈ {0, · · · , γ + �log2 �}, we use an

induction on j. When j = 0, [pzt ·X(κ)
0 ]N gives

∑n
i=1 r

(κ)
i0 vi +a

(κ)
0 v0, by the zero-

testing lemma. Suppose we have
∑n

i=1 r
(κ)
ij vi +a

(κ)
j v0 for j ∈ {0, · · · , t−1}; then,

[pzt ·Xt]N =
∑n

i=1 r
(κ)
it vi+a

(κ)
t v0−∑t−1

j=0 bj(
∑n

i=1 r
(κ)
ij vi+a

(κ)
j v0) for computable

bi ∈ {0, 1}, where Xt is a size-reduced encoding of X
(κ)
t using {X

(κ)
0 , · · · ,X

(κ)
t−1}.

Since we know the latter terms, we can also compute
∑n

i=1 r
(κ)
it vi + a

(κ)
t v0. This

idea can be extended to any level ladder.
Now, we give a precise description of function φ.

φ : Z → Z

e �→ ∑n
i=1

[
e · zκ

gi

]
pi

vi +
x−∑n

i=1[e· zκ

gi
]pi

ui

x0
v0,

where vi = [pzt · ui]N (1 ≤ i ≤ n) and v0 = [pzt · x0]N . Note that φ is defined
over the integers, and not modulo N . Indeed the vi’s are seen as integers:
recall from Sect. 2 that throughout this paper xmod N denotes an integer in
Z ∩ (−N/2, N/2].

Proposition 1. Let e be an integer such that e ≡ ri·gi

zκ mod pi for 1 ≤ i ≤ n. If
|ri| < pi/2 for each i, then x can be uniquely expressed as

∑n
i=1 riui + ax0 for

some integer a, and φ(e) =
∑n

i=1 rivi + av0.

Proof. We can see that e ≡ ∑n
i=1 riui mod pj for each j and thus there exists

an integer a such that e =
∑n

i=1 riui + ax0. For uniqueness, suppose e can
be written as e =

∑n
i=1 r′

iui + a′x0 for integers r′
1, · · · , r′

n, a′ with |r′
i| < pi/2.

Then, e ≡ r′
i[

gi

zκ

(
x0
pi

)−1]pi
≡ r′

igi

zκ mod pi, which implies ri ≡ r′
i mod pi. Since

|ri − r′
i| < pi, we have r′

i = ri for each i and therefore a′ = a, which proves the
uniqueness. �
The point is that if e is a small encoding of zero at level κ, then φ(e) = epzt

mod N . In that case φ(e) matches the extraction in the sense of the ext procedure
of Appendix A.2 (more precisely ext returns the high-order bits of φ(e)).

However we want to compute φ(e) even when e is larger. For this purpose,
the crucial point is that φ is actually Z-linear as long as for all encodings involved,
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the associated ri’s do not go over pi/2, i.e. reduction modulo pi does not interfere.
More formally:

Proposition 2. Let e1, · · · , em be level-κ encodings of zero such that ej ≡
rijgi

zκ
mod pi and |rij | < pi/2 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then, the equality

φ(
m∑

j=1

ej) =
m∑

j=1

φ(ej),

holds if
∣∣∣

m∑
j=1

rij

∣∣∣ <
pi

2
, for all 1 ≤ i ≤ n.

Proof. From Proposition 1, each ej can be uniquely written as ej =
n∑

i=1

rijui +

ajx0 for some integer aj , and φ(ej) =
n∑

i=1

rijvi + ajv0. Then,

m∑
j=1

φ(ej) =
n∑

i=1

( m∑
j=1

rij

)
· vi +

( m∑
j=1

aj

)
· v0

= φ
(( m∑

j=1

rij

)
· ui +

( m∑
j=1

aj

)
· x0

)
= φ

( m∑
j=1

ej

)
,

where the source of the second equality is Proposition 1, since
∣
∣
∑m

j=1 rij

∣
∣ < pi/2. �

An important remark is that the conditions on the rij ’s above are also required
for the correctness of the scheme to hold. In other words, as long as we perform
valid computations from the point of view of the multilinear map (i.e. there is
no reduction of the rij ’s modulo pi, and correctness holds), then the Z-linearity
of φ also holds.

4.2 Eigenvalue Attack

Our strategy to attack CLT15 is similar to that in [CHL+15]. The goal is to
construct a matrix equation over Q by computing the φ values of several products
of level-0, 1, and (κ − 1) encodings, fixed on level-0 encoding. We proceed using
the following three steps.

(Step 1) Compute the φ-value of level-κ ladder
(Step 2) Compute the φ-value of level-κ encodings of large size
(Step 3) Construct matrix equations over Q.

Using the matrix equations in Step 3, we have a matrix, the eigenvalues of
which are residue modulo pi of level-0 encoding. From this, we deduce a secret
modulus pi.
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4.2.1 Computing the φ-value of X
(κ)
j . To apply the zero-testing lemma

to a level-κ encoding of zero e =
∑n

i=1 riui + ax0, the size of ri and a has to
be bounded by some fixed values. By the parameter setting, η is larger than
the maximum bit size of the noise ri of a level-κ encoding obtained from the
multiplication of lower level encodings. Hence, we need to reduce the size of e so
that a satisfies the zero-testing lemma.

Let us consider a ladder of level-κ encodings of zero {X
(κ)
j }. This is provided

to reduce the size of encodings to that of 2x0. More precisely, given a level-
κ encoding of zero e of size smaller than 22γ+�log2 �	, one can compute e′ =
e−∑γ′

j=0 bjX
(κ)
j for γ′ = γ+�log2 �, which is an encoding of the same plaintext;

its size is smaller than X
(κ)
0 . As noted in [CLT15], the sizes of X

(κ)
j are increasing

and differ by only one bit, and therefore, bj ∈ {0, 1}, which implies the noise
grows additively. We can reduce a to an integer much smaller than 22η−β−1/n so
that the zero-testing lemma can be applied. We denote such e′ as [e]X (κ) . More
generally, we use the notation

[e]X (t) := [· · · [[e]
X

(t)
γ′

]
X

(t)
γ′−1

· · · ]
X

(t)
0

for X (t) = (X
(t)
0 , X

(t)
1 , . . . , X

(t)

γ′ ), 1 ≤ t ≤ κ.

Note that, if e satisfies the condition in Lemma 1, i.e., it is an encoding of
zero of small size, then φ(e) is exactly the same as [pzt · e]N . However, if the size
of e is large, it is congruent only to [pzt · e]N modulo N . Now, we show how to
compute the integer value φ(e) for an encoding e of zero, although e does not
satisfy the condition in Lemma 1.

First, we adapt the size reduction process to a level-κ ladder itself. We can
compute binary bij for each i, j, satisfying

[X(κ)
0 ]X (κ) = X

(κ)
0

[X(κ)
1 ]X (κ) = X

(κ)
1 − b10 · X

(κ)
0

[X(κ)
2 ]X (κ) = X

(κ)
2 −

1∑
k=0

b2k · X
(κ)
k

...

[X(κ)
j ]X (κ) = X

(κ)
j −

j−1∑
k=0

bjk · X
(κ)
k .

Each [X(κ)
j ]X (κ) is an encoding of zero at level κ and therefore can be written

as [X(κ)
j ]X (κ) =

∑n
i=1 r′

ijui + a′
jx0 for some integers r′

ij and a′
j . Moreover, its

bit size is at most γ and therefore a′
j is small enough to satisfy the condition in

Lemma 1. Therefore,

φ([X(κ)
j ]X (κ)) = [pzt · [X(κ)

j ]X (κ) ]N =
n∑

i=1

r′
ijvi + a′

jv0.
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If we write X
(κ)
j =

∑n
i=1 rijui + ajx0 for some integer r1j , . . . , rnj , aj , we

have r′
ij = rij − ∑j−1

k=0 bjkrik for each i and a′
j = aj − ∑j−1

k=0 bjkak, since all the
coefficients of ui are sufficiently smaller than pi for each i. Therefore,

n∑
i=1

r′
ijvi + a′

jv0 =
n∑

i=1

rijvi + ajv0 −
j−1∑
k=0

bjk

( n∑
i=1

rikvi + akv0

)

holds over the integers. Hence, we have the following inductive equations for
0 ≤ j ≤ γ′.

φ(X(κ)
j ) =

[
pzt · [X(κ)

j ]X (κ)

]
N

+
j−1∑
k=0

bjk · φ
(
X

(κ)
k

)
,

which gives all φ(X(κ)
0 ), φ(X(κ)

1 ), . . . , φ(X(κ)
γ′ ), inductively. The computation con-

sists of (γ′ + 1) zero-testing and O(γ2)-times comparisons and subtractions of
(γ +γ′)-bit integers, and therefore, the total computation cost is Õ(γ2) by using
fast Fourier transform. Hence, we obtain the following lemma.

Lemma 2. Given the public parameters of the CLT15 scheme, one can compute

φ(X(κ)
j ) =

[
pzt · [X(κ)

j ]X(κ)

]
N

+
j−1∑
k=0

bjk · φ
(
X

(κ)
k

)

in Õ(γ2) bit computations.

4.2.2 Computing the φ-value of Level-κ Encodings of Large Size.
Using the φ values of the κ-level ladder, we can compute the φ value of any
κ-level encoding of zero, the bit size of which is between γ and γ + γ′.

Lemma 3. Let e be a level-κ encoding of zero, e = CRT(pi)

(rigi

zκ

)
+ qx0 =∑n

i=1 riui + ax0 for some integer r1, . . . , rn, a satisfying |ri| < 2η−β−log2 n−7 for
each i and |a| < 2γ′

. Given the public parameters of the CLT15 scheme, one can
compute the value φ(e) =

∑n
i=1 rivi + av0 in Õ(γ2) bit computations.

Proof. Let e be a level-κ encoding of zero satisfying the above conditions. As in
Sect. 4.2.1, we can find binary bj ’s satisfying [e]X (κ) = e − ∑γ′

j=0 bj · X(κ)
j . Then,

we have

φ(e) = φ([e]X (κ)) +
γ′∑

j=0

bj · φ(X(κ)
j ).

Since [e]X (κ) is a κ-level encoding of zero of at most γ-bit and the size of noise is
bounded by (η −β − log2 n− 6)-bit, we can compute the value φ([e]X (κ)) via the
zero-testing procedure. Finally, the φ values of the κ-level ladder and φ([e]X (κ))
give the value φ(e). The source of the complexity is Lemma 2. �
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We apply Lemma 3 to obtain the φ value of a κ-level encoding of zero that is a
product of two encodings of (γ + γ′)-bit size.

Lemma 4. Let X be a level-1 encoding and Y a level-(κ−1) encoding of zero of
bit size at most γ+γ′. Then, one can compute φ(XY ) in Õ(γ3) bit computations.

Proof. We apply Lemma 3 to a product of two γ-bit encodings. From [X(1)
1 ]X (1) =

X
(1)
1 − b · X

(1)
0 for some b ∈ {0, 1}, we find φ(X(1)

1 · X
(κ−1)
0 ) = φ([X(1)

1 ]X (1) ·
X

(κ−1)
0 ) + b · φ(X(1)

0 · X
(κ−1)
0 ), since [X(1)

1 ]X (1) is γ-bit. Thus, we can obtain
inductively all φ(X(1)

j · X
(κ−1)
k ) for each j, k from φ(X(1)

lj
· X

(κ−1)
lk

), 0 ≤ lj ≤
j, 0 ≤ lk ≤ k, (lj , lk) �= (j, k).

Let [X]X (1) = X − ∑γ′

j=0 bj · X
(1)
j and [Y ]X (κ−1) = Y − ∑γ′

j=0 b′
j · X

(κ−1)
j .

Then,

[X]X (1) · [Y ]X (κ−1) = XY − ∑
j bj · X

(1)
j · Y

−∑
j b′

j · X
(κ−1)
j · X +

∑
j,k bjb

′
k · X

(1)
j · X

(κ−1)
k .

Note that the noise of [[X]X (1) ·[Y ]X (κ−1) ]X (κ) is bounded by 2ρ+α+2 log2(γ′)+2
and η > κ(2α+2ρ+λ+2 log2 n+3), and therefore, we can adapt Proposition 2.
Therefore, if we know the φ-value of each term, we can compute the φ-value
of XY . Finally, Lemma 3 enables one to compute φ([X]X (1) · [Y ]X (κ−1)). The
second and third terms of the right hand side can be computed using [X(1)

j ]X (1) ,

[X(κ−1)
j ]X (κ−1) , and we know the φ-value of the last one. Since we perform zero-

testings for O(γ2) encodings of zero, the complexity becomes Õ(γ3). �
Note that the above Lemma can be applied to a level-t encoding X and a level-
(κ− t) encoding of zero Y . The proof is exactly the same, except for the indexes.

4.2.3 Constructing Matrix Equations over Q. We reach the final stage.
The following theorem is the result.

Theorem 1. Given the public instances in [CLT15] and pzt, one can find all
the secret parameters given in [CLT15] in Õ(κω+4λ2ω+6) bit computations with
ω ≤ 2.38.

Proof. We construct a matrix equation by collecting several φ-values of the prod-
uct of level-0, 1 and (κ−1) encodings. Let c,X, and Y be a level-0, 1, and (κ−1)
encoding, respectively, and additionally we assume Y is an encoding of zero. Let
us express them as

c = CRT(pi)(ci),

X = CRT(pi)

(xi

z

)
= xi

[
z−1

]
pi

+ qipi,

Y = CRT(pi)

( yigi

zκ−1

)
=

n∑
i=1

yi

[
gi

zκ−1

(
pi

∗
)−1

]

pi

· pi
∗ + ax0.
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Assume that the size of each is less than 2x0. The product of c and X can be
written as cX = cixi

[
z−1

]
pi

+ q′
ipi for some integer q′

i.
By multiplying cX and Y , we have

cXY

=
n∑

i=1

(

cixiyi

[

z−1]

pi

[
gi

zκ−1

(x0

pi

)−1
]

pi

· x0

pi
+ yi

[
gi

zκ−1

(x0

pi

)−1
]

pi

q′
ix0

)

+ (cX)(ax0)

=

n∑

i=1

cixiyiui +

n∑

i=1

(cixiyisi + yiθiq
′
i)x0 + acXx0,

where θi =
[

gi

zκ−1

(x0

pi

)−1
]

pi

, θi

[
z−1

]
pi

x0

pi
= ui + six0 for some integer si ∈ Z.

Then, we can obtain φ(cXY ) =
∑n

i=1 cixiyivi+
∑n

i=1(cixiyisi+yiθiq
′
i)v0+acXv0

by Lemma 4.
By plugging q′

i = 1
pi

(cX − cixi[z−1]pi
) into the equation, we obtain

φ(cXY ) =
n∑

i=1

yi(vi + siv0 − θiv0
pi

[z−1]pi
)cixi +

n∑
i=1

yi
θiv0
pi

cX + av0cX

=
n∑

i=1

yiwicixi +
n∑

i=1

yiw
′
icX + av0cX,

where wi = vi + siv0 − θi

pi
[z−1]pi

v0 and w′
i = θiv0

pi
. It can be written (over Q) as

φ(cXY ) =
(
y1 y2 · · · yn a

)

⎛
⎜⎜⎜⎜⎜⎜⎝

w1 0 w′
1

w2 w′
2

. . .
...

wn w′
n

0 v0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c1x1

c2x2

...

cnxn

cX

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

Since piwi = pi(vi + siv0) − θi

[
z−1

]
pi

v0 ≡ −θi

[
z−1

]
pi

v0 �≡ 0mod pi, wi is not
equal to zero. Therefore, v0

∏n
i=1 wi �= 0 and thus the matrix in Eq. (6) is non

singular. By applying Eq. (6) to various X,Y , taking for 0 ≤ j, k ≤ n

X = [X(1)
j ]X (1) = CRT(pi)

(xij

z

)
,

Y = [X(κ−1)
k ]X (κ−1) =

n∑
i=1

yikθi
x0

pi
+ akx0,

we finally obtain the matrix equation
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W c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y10 · · · yn0 a0

. . .
...

y1n · · · ynn an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1 0 w′
1

w2 w′
2

. . .
...

wn w′
n

0 v0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 0

c2
. . .

cn

0 c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x10 · · · x1n

. . .
...

xn0 xnn

X0 · · · Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Y W diag(c1, · · · , cn, c) X .

We perform the same computation on c = 1, which is a level-0 encoding of
1 = (1, 1, · · · , 1), and then, it implies

W 1 = Y · W · I · X .

From W c and W 1, we have a matrix that is similar to diag(c1, · · · , cn, c):

W −1
1 · W c = X−1 · diag(c1, · · · , cn, c) · X .

Then, by computing the eigenvalues of W −1
1 · W c, we have c1, · · · , cn, sat-

isfying pi|(c − ci) for each i. Using an additional level-0 encoding c′, we
obtain W −1

1 · W c′ , and therefore, c′
1, · · · , c′

n with pi|(c′ − c′
i) for each i.

Computing gcd(c − ci, c
′ − c′

i) gives the secret prime pi.
Using p1, · · · , pn, we can recover all the remaining parameters. By the def-

inition of y and X
(1)
j , the equation y/[X(1)

j ]x0 ≡ (rigi + 1)/(r(1)ij gi)mod pi is

satisfied. Since rigi + 1 and r
(1)
ij gi are smaller than

√
pi and are co-prime, one

can recover them by rational reconstruction up to the sign. Therefore, we can
obtain gi by computing the gcd of r

(1)
i0 gi, · · · , r

(1)
imgi. Moreover, using r

(1)
ij gi and

[X(1)
j ]x0 , we can compute [z]pi

for each i and therefore z. Any other parameters
are computed using z, gi, and pi.

Our attack consists of the following arithmetics: computing φ(X(κ)
j ), φ(X(1)

j ·
X

(κ−1)
k ), constructing a matrix W c and W 1, matrix inversing and multiplying,

and computing eigenvalues and the greatest common divisor. All of these are
bounded by Õ(γ3 + nωγ) = Õ(κ6λ9) bit computations with ω ≤ 2.38. For
this algorithm to succeed, we need a property that W 1 is non-singular. If we
use the fact that the rank of a matrix A ∈ Z

(n+1)×(n+1) can be computed
in time Õ ((n + 1)ω log ‖A‖∞) (see [Sto09]), we can find that X ,Y · W ∈
Q

(n+1)×(n+1) are non-singular in Õ(2(γ + log )(nω log N)) = Õ(κω+4λ2ω+6)
by considering another (n + 1) subsets of X

(1)
0 , · · · ,X

(1)
γ′ for X and also for Y .

Therefore, the total complexity of our attack is Õ(κω+4λ2ω+6). �

4.3 Determinant Attack

4.3.1 On the Impact of Recovering x0 . If x0 is known, CLT15 essen-
tially collapses to CLT13. In particular, all encodings can be reduced modulo
x0 so ladders are no longer needed. What is more, all ωi,j ’s from the CHLRS
attack can be reduced modulo v0 = x0pzt mod N , which effectively removes the
new noise a. As a direct consequence the CHLRS attack goes through and all
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secret parameters are recovered (cf. [CLT15, Sect. 3.3]). Moreover ladder ele-
ments reduced by x0 provide low-level encodings of zero even if the scheme itself
does not. Also note that the CHLRS attack is quite efficient as it can be per-
formed modulo any prime larger than the values we are trying to recover, i.e.
larger than 22ρ.

4.3.2 Recovering x0 when an Exact Multiple is Known. The authors
of [CLT15] propose an optimized version of their scheme, where a multiple qx0

of x0 is provided in the public parameters. The size of q is chosen such that qx0

is about the same size as N . Ladders at levels below κ are no longer necessary:
every encoding can be reduced modulo qx0 without altering encoded values or
increasing any noise. The ladder at level κ is still needed as a preliminary to zero-
testing, however it does not need to go beyond qx0, which makes it much smaller.
In the end this optimization greatly reduces the size of the public key and speeds
up computations, making the scheme much more practical (cf. Sect. 4.3.4).

In this scenario, note that qx0 may be regarded as an encoding of 0 at
level κ (and indeed every level). Moreover by construction it is small enough
to be reduced by the ladder at level κ with a valid computation (i.e. with low
enough noise for every intermediate encoding involved that the scheme operates
as desired and zero-extraction is correct). As a direct consequence we have:

φ(qx0) = qv0

and so we can recover q as q = gcd(qx0, φ(qx0)), and get x0 = qx0/q. This attack
has been verified on the reference implementation, and recovers x0 instantly.

Remark. qv0 is larger than N by design, so that it cannot be computed simply
as qx0pzt mod N due to modular reductions (cf. [CLT15, Sect. 3.4]). The point
is that our computation of φ is over the integers and not modulo N .

4.3.3 Recovering x0 in the General Case. We now return to the non-
optimized version of the scheme, where no exact multiple of x0 is provided in
the public parameters.

The second step of our attack recovers x0 using a matrix product similar to
the CHLRS attack (cf. Sect. 3.2), except we start with families of n+1 encodings
rather than n. That is, assume that for some t we have n + 1 level-t small
encodings (ai) of any value, and n + 1 level-(κ − t) small encodings (bi) of zero.
This is easily achievable for one-round multi-party Diffie-Hellman (cf. Sect.A.2),
e.g. choose t = 1, then pick (n+1) level-1 encodings (ai) of zero from the public
parameters, and let bi = a′

iy
κ−2 for a′

i another family of (n+1) level-1 encodings
of zero and y any level-1 encoding, where the product is ladder-reduced at each
level. In other applications of the multilinear map, observe that ladder elements
provide plenty of small encodings of zero, as each ladder element can be reduced
by the elements below it to form a small encoding of zero. Thus the necessary
conditions to perform both our attack to recover x0, and the follow-up CHLRS



Cryptanalysis of the New CLT Multilinear Map over the Integers 529

attack to recover other secret parameters once x0 is known, are very lax. In this
respect CLT15 is weaker than CLT13.

Let ai,j = aiz mod pj , i.e. ai,j is the j-th value “rjgj + mj” associated with
ai. Likewise for i ≤ n, let ri,j = biz

κ−1/gj mod pj , i.e. ri,j is the j-th value
“rj” associated with bi (recall that bi is an encoding of zero, so mj = 0). Now
compute:

ωi,j
�= φ(aibj).

If we look at the ωi,j ’s modulo v0 (which is unknown for now), everything behaves
as in CLT13 since the new noise term av0 disappears, and the ladder reduction at
level κ is negated by the integer extraction procedure. Hence, similar to Sect. 3.2,
we have:

ωi,j mod v0 =
∑

k

ai,krj,kvk mod v0. (7)

Again, Eq. (7) may be seen as a matrix product. Indeed, define Ω as the
(n+1)× (n+1) integer matrix with entries ωi,j , let A be the (n+1)×n matrix
with entries ai,j , let R be the (n + 1) × n matrix with entries ri,j , and finally
let V be the n × n diagonal matrix with diagonal entries vi. Then (7) may be
rewritten modulo v0:

Ω = A · V · RT in Zv0 .

Since A and R are (n + 1) × n matrices, this implies that Ω is not full-
rank when embedded into Zv0 . As a consequence v0 divides det(Ω), where the
determinant is computed over the integers. Now we can build a new matrix
Ω′ in the same way using a different choice of bi’s, and recover v0 as v0 =
gcd(det(Ω),det(Ω′)). Finally we get x0 = v0/pzt mod N (note that N � x0 by
construction).

The attack has been verified on the reference implementation with reduced
parameters.

Remark. As pointed out above, Ω cannot be full-rank when embedded into Zv0 .
Our attack also requires that it is full-rank over Q (whp). This holds because
while Ω can be nicely decomposed as a product when viewed modulo v0, the
“remaining” part of Ω, that is Ω − (Ω mod v0) is the matrix of the terms av0
for each ωi,j , and the value a does have the nice structure of ωi,j mod v0. This
is by design, since the noise a was precisely added in CLT15 in order to defeat
the matrix product structure of the CHLRS attack.

4.3.4 Attack Complexity. It is clear that the attack is polynomial, and
asymptotically breaks the scheme. In this section we provide an estimate of its
practical complexity. When an exact multiple of x0 is known, the attack is instant
as mentioned in Sect. 4.3.2, so we focus on the general case from Sect. 4.3.3.
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In the general case, a ladder of encodings of size  ≈ γ is published at every
level1. Using the scheme requires κ ladder reductions, i.e. κ additions of integers
of size γ. Since there are κ users, this means the total computation incurred by
using the scheme is close to κ2γ2. For the smallest 52-bit instance, this is already
≈ 246. Thus using the scheme a hundred times is above the security parameter.
This highlights the importance of the optimization based on publishing qx0,
which makes the scheme much more practical. More importantly for our current
purpose, this makes it hard to propose an attack below the security parameters.

As a result, what we propose in terms of complexity evaluation is the follow-
ing. For computations that compare directly to using the multilinear scheme,
we will tally the complexity as the number of operations equivalent to using
the scheme, in addition to the bit complexity. For unrelated operations, we will
count the number of bit operations as usual.

There are two steps worth considering from a complexity point of view: com-
puting Ω and computing its determinant. In practice both steps happen to have
comparable complexity. Computing the final gcd is negligible in comparison using
a subquadratic algorithm [Mol08], which is practical for our parameter size.

Computing Ω. As a precomputation, in order to compute φ, the integer extrac-
tion of ladder elements at level κ needs to be computed. This requires  integer
extractions, where  ≤ γ. Computing Ω itself requires (n + 1)2 integer extrac-
tions of a single product. Each integer extraction requires 1 multiplication, and
2 additions (as well as  multiplications by small scalars). For comparison, using
the multilinear scheme for one user requires 1 multiplication and  additions on
integers of similar size. Thus overall computing Ω costs about γ + n2 times as
much as simply using the multilinear scheme. For the 52-bit instance proposed
in [CLT15] for instance, this means that if it is practical to use the scheme
about a million times, then it is practical to compute Ω. Here by using the
scheme we mean one (rather than κ2) ladder reduction, so the bit complexity is
O(γ3 + n2γ2).

Computing the Determinant. Let n denote the size of a matrix Ω (it is
(n + 1) in our case but we will disregard this), and β the number of bits of its
largest entry. When computing the determinant of an integer matrix, one has to
carefully control the size of the integers appearing in intermediate computations.
It is generally possible to ensure that these integers do not grow past the size
of the determinant. Using Hadamard’s bound this size can be upper bounded
as log(det(Ω)) ≤ n(β + 1

2 log n), which can be approximated to nβ in our case,
since β is much larger than n.2

1 As the level increases, it is possible to slightly reduce the size of the ladder. Indeed
the acceptable level of noise increases with each level, up to ρf at level κ. As a
consequence it is possible to leave a small gap between ladder elements as the level
increases. For instance if the base level of noise is 2ρ for ladder elements, then at
level κ it is possible to leave a gap of roughly ρf − 2ρ − log � bits between ladder
elements. We disregard this effect, although it slighly improves our complexity.

2 This situation is fairly unusual, and in the literature the opposite is commonly
assumed; algorithms are often optimized for large n rather than large β.
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As a result, computing the determinant using “naive” methods requires
O(n3) operations on integers of size up to nβ, which results in a complexity
Õ(n4β) using fast integer multiplication (but slow matrix multiplication). The
asymptotic complexity is known to be Õ(nωβ) [Sto05]; however we are inter-
ested in the complexity of practical algorithms. Computing the determinant can
be reduced to solving the linear system associated with Ω with a random tar-
get vector: indeed the determinant can then be recovered as the least common
denominator of the (rational) solution vector3. In this context the fastest algo-
rithms use p-adic lifting [Dix82], and an up-to-date analysis using fast arithmetic
in [MS04] gives a complexity O(n3β log2 β log log β) (with log n = o(β))4.

For the concrete instantiations of one-round multipartite Diffie-Hellman
implemented in [CLT15], this yields the following complexities:

Security parameter: 52 62 72 80

Building Ω: 260 266 274 282

Determinant: 257 266 274 281

Thus, beside being polynomial, the attack is actually coming very close to
the security parameter as it increases to 80 bits.5
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[Fur14] Fürer, M.: How fast can we multiply large integers on an actual com-
puter? In: Pardo, A., Viola, A. (eds.) LATIN 2014: Theoretical Informat-
ics. LNCS, pp. 660–670. Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: IEEE 54th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 40–49. IEEE (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS,
vol. 9015, pp. 498–527. Springer, Heidelberg (2015)

[Hal15a] Halevi, S.: Cryptographic graded-encoding schemes: Recent develop-
ments. TCS+ online seminar (2015). https://sites.google.com/site/
plustcs/past-talks/20150318shaihaleviibmtjwatson

[Hal15b] Halevi, S.: Graded encoding, variations on a scheme. Technical report,
Cryptology ePrint Archive, Report 2015/866 (2015). http://eprint.iacr.
org

[HJ15] Hu, Y., Jia, H.: Cryptanalysis of GGH map. Technical report, Cryptology
ePrint Archive, Report 2015/301 (2015)

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled)
multilinear maps and identity-based aggregate signatures. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512.
Springer, Heidelberg (2013)

[Jou00] Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma,
A. (ed.) Algorithmic Number Theory. LNCS, vol. 1838, pp. 385–393.
Springer, Heidelberg (2000)

[MF15] Minaud, B., Fouque, P.-A.: Cryptanalysis of the new multilinear map
over the integers. Cryptology ePrint Archive, Report 2015/941 (2015).
http://eprint.iacr.org

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://sites.google.com/site/plustcs/past-talks/20150318shaihaleviibmtjwatson
https://sites.google.com/site/plustcs/past-talks/20150318shaihaleviibmtjwatson
http://eprint.iacr.org
http://eprint.iacr.org
http://eprint.iacr.org


Cryptanalysis of the New CLT Multilinear Map over the Integers 533
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A Short Introduction to Multilinear Maps

In this section we give a brief introduction to multilinear maps to make our arti-
cle self-contained. In particular we only consider symmetric multilinear maps.
We refer the interested reader to [GGH13a,Hal15b] for a more thorough presen-
tation.

A.1 Multilinear Maps and Graded Encoding Schemes

Cryptographic multilinear maps were introduced by Boneh and Silverberg
[BS03], as a natural generalization of bilinear maps stemming from pairings
on elliptic curves, which had found striking new applications in cryptography
[Jou00,BF01, ...]. A (symmetric) multilinear map is defined as follows.

Definition 1 (Multilinear Map [BS03]). Given two groups G,GT of the same
prime order, a map e : G

κ → GT is a κ-multilinear map iff it satisfies the
following two properties:

1. for all a1, . . . , aκ ∈ Z and x1, . . . , xκ ∈ G,

e(xa1
1 , . . . , xaκ

κ ) = e(x1, . . . , xκ)a1···aκ

2. if g is a generator of G, then e(g, . . . , g) is a generator of GT .

A natural special case are leveled multilinear maps:
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Definition 2 (Leveled Multilinear Map [HSW13]). Given κ + 1 groups
G1, . . . ,Gκ,GT of the same prime order, and for each i ≤ κ, a generator
gi ∈ Gi, a κ-leveled multilinear map is a set of bilinear maps {ei,j : Gi × Gj →
Gi+j |i, j, i + j ≤ κ} such that for all i, j with i + j ≤ κ, and all a, b ∈ Z:

ei,j(ga
i , gb

j) = gab
i,j .

Similar to public-key encryption [DH76] and identity-based cryptosystems
[Sha85], multilinear maps were originally introduced as a compelling target for
cryptographic research, without a concrete instantiation [BS03]. The first mul-
tilinear map was built ten years later in the breakthrough construction of Garg,
Gentry and Halevi [GGH13a]. More accurately, what the authors proposed was
a graded encoding scheme, and to this day all known cryptographic multilinear
maps constructions are actually variants of graded encoding schemes [Hal15b].
For this reason, and because both constructions have similar expressive power,
the term “multilinear map” is used in the literature in place of “graded encoding
scheme”, and we follow suit in this article.

Graded encoding schemes are a relaxed definition of leveled multilinear map,
where elements xa

i for xi ∈ Gi, a ∈ Z are no longer required to lie in a group.
Instead, they are regarded as “encodings” of a ring element a at level i, with no
assumption about the underlying structure. Formally, encodings are thus defined
as general binary strings in {0, 1}∗. In the following definition, S

(α)
i should be

regarded as the set of encodings of a ring element α at level i.

Definition 3 (Graded Encoding System [GGH13a]). A κ-graded encoding
system consists of a ring R and a system of sets S = {S

(α)
i ⊂ {0, 1}∗|α ∈ R, 0 ≤

i ≤ κ}, with the following properties:

1. For each fixed i, the sets S
(α)
i are pairwise disjoint as α spans R.

2. There is an associative binary operation ‘+’ and a self-inverse unary operation
‘−’ on {0, 1}∗ such that for every α1, α2 ∈ R, every i ≤ κ, and every u1 ∈
S
(α1)
i , u2 ∈ S

(α2)
i , it holds that:

u1 + u2 ∈ S
(α1+α2)
i and − u1 ∈ S

(−α1)
i

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ on {0, 1}∗ such that for every

α1, α2 ∈ R, every i1, i2 ∈ N such that i1 + i2 ≤ κ, and every u1 ∈ S
(α1)
i1

, u2 ∈
S
(α2)
i2

, it holds that u1 ×u2 ∈ S
(α1·α2)
i1+i2

. Here α1 ·α2 is the multiplication in R,
and i1 + i2 is the integer addition.

Observe that a leveled multilinear map is a graded encoding system where
R = Z and, with the notation from the definitions, S

(α)
i contains the single ele-

ment gα
i . Also note that the behavior of addition and multiplication of encodings

with respect to the levels i is the same as that of a graded ring, hence the graded
qualifier.



Cryptanalysis of the New CLT Multilinear Map over the Integers 535

All known constructions of graded encoding schemes do not fully realize the
previous definition, insofar as they are “noisy”6. That is, all encodings have a
certain amount of noise; each operation, and especially multiplication, increases
this noise; and the correctness of the scheme breaks down if the noise goes
above a certain threshold. The situation in this regard is similar to somewhat
homomorphic encryption schemes.

A.2 Multilinear Map Procedures

The exact interface offered by a multilinear map, and called upon when it is
used as a primitive in a cryptographic scheme, varies depending on the scheme.
However the core elements are the same. Below we reproduce the procedures
for manipulating encodings defined in [CLT15], which are a slight variation of
[GGH13a].

In a nutshell, the scheme relies on a trusted third party that generates the
instance (and is typically no longer needed afterwards). Users of the instance
(that is, everyone but the generating trusted third party) cannot encode nor
decode arbitrary encodings: they can only combine existing encodings using
addition, negation and multiplication, and subject to the limitation that the
level of an encoding cannot exceed κ. The power of the multilinear map comes
from the zero-testing (resp. extraction) procedure, which allows users to test
whether an encoding at level κ encodes zero (resp. roughly get a λ-bit “hash” of
the value encoded by a level-κ encoding).

Here users are also given access to random level-0 encodings, and have the
ability to re-randomize encodings, as well as promote any encoding to a higher-
level encoding of the same element. These last functionalities are tailored towards
the application of multilinear maps to one-round multi-party Diffie-Hellman. In
general different applications of multilinear map require different subsets of the
procedures below, and sometimes variants of them.

instGen(1λ, 1κ): the randomized instance procedure takes as input the security
parameter λ, the multilinearity level κ, and outputs the public parameters
(pp,pzt), where pp is a description of a κ-graded encoding system as above,
and pzt is a zero-test parameter (see below).

samp(pp): the randomized sampling procedure takes as input the public parame-
ters pp and outputs a level-0 encoding u ∈ S

(α)
0 for a nearly uniform α ∈ R.

enc(pp, i, u): the possibly randomized encoding procedure takes as input the pub-
lic parameters pp, a level i ≤ κ, and a level-0 encoding u ∈ Sα

0 for some α ∈ R,
and outputs a level-i encoding u′ ∈ S

(α)
i .

reRand(pp, i, u): the randomized rerandomization procedure takes as input the
public parameters pp, a level i ≤ κ, and a level-i encoding u ∈ Sα

i for some
α ∈ R, and outputs another level-i encoding u′ ∈ S

(α)
i of the same α, such

6 In fact the question of achieving the functionality of multilinear maps without noise
may be regarded as an important open problem [Zim15].
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that for any u1, u2 ∈ S
(α)
i , the output distributions of reRand(pp, i, u1) and

reRand(pp, i, u2) are nearly the same.
neg(pp, u): the negation procedure is deterministic and that takes as input the

public parameters pp, and a level-i encoding u ∈ S
(α)
i for some α ∈ R, and

outputs a level-i encoding u′ ∈ S
(−α)
i .

add(pp, u1, u2): the addition procedure is deterministic and takes as input the
public parameters pp, two level-i encodings u1 ∈ S

(α1)
i , u2 ∈ S

(α2)
i for some

α1, α2 ∈ R, and outputs a level-i encoding u′ ∈ S
(α1+α2)
i .

mult(pp, u1, u2): the multiplication procedure is deterministic and takes as input
the public parameters pp, two encodings u1 ∈ S

(α1)
i , u2 ∈ S

(α2)
j of some

α1, α2 ∈ R at levels i and j such that i + j ≤ κ, and outputs a level-(i + j)
encoding u′ ∈ S

(α1·α2)
i+j .

isZero(pp, u): the zero-testing procedure is deterministic and takes as input the
public parameters pp, and an encoding u ∈ S

(α)
κ of some α ∈ R at the maxi-

mum level κ, and outputs 1 if α = 0, 0 otherwise, with negligible probability
of error (over the choice of u ∈ S

(α)
κ ).

ext(pp,pzt, u): the extraction procedure is deterministic and takes as input the
public parameters pp, the zero-test parameter pzt, and an encoding u ∈ S

(α)
κ

of some α ∈ R at the maximum level κ, and outputs a λ-bit string s such
that:
1. For α ∈ R and u1, u2 ∈ S

(α)
κ , ext(pp,pzt, u1) = ext(pp,pzt, u2).

2. The distribution {ext(pp,pzt, v)|α ← R, v ∈ S
(α)
κ } is nearly uniform over

{0, 1}λ.
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