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Abstract. Recently, the U.S National Security Agency has published the specifications of
two families of lightweight block ciphers, SIMON and SPECK, on ePrint [2]. The ciphers are
developed with optimization towards both hardware and software in mind. While the spec-
ification paper discusses design requirements and performance of the presented lightweight
ciphers thoroughly, no security assessment is given. This paper is a move towards filling
that cryptanalysis gap for the SIMON family of ciphers. We present a series of observations
on the presented construction that, in some cases, yield attacks, while in other cases may
provide basis of further analysis by the cryptographic community. Specifically, we obtain
attacks using classical- as well as truncated differentials. In the former case, we show how
the smallest version of SIMON, Simon32/64, exhibits a strong differential effect.
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1 Introduction

Lightweight cryptography is a rapidly evolving and active area of research. It is driven by the need
to provide security or cryptographic measures to different applications in pervasive, ubiquitous
computing environments, which are widely used on resource-constrained devices. Examples of such,
include mobile phones, smart cards, RFID tags and sensor networks.

These lightweight cryptographic primitives are designed to be efficient, yet secure, when limited
hardware resources are available. Consequently, the main motive for current efforts of constructing
lightweight cryptographic primitives is to maintain a reasonable trade-off between security, efficient
hardware performance and low overall cost, measured by a number of metrics. These metrics
include, but are not limited to: area (in terms of gate equivalences), throughput, power/energy
consumption and production cost. A number of lightweight hash functions, block ciphers and
stream ciphers were developed by the research community for the purpose of obtaining a better
trade-off without totally losing security. For example, lightweight block ciphers designs include, but
are not limited to, HIGHT [15], ICEBERG [23], KATAN [7], KLEIN [13], LED [14], mCrypton [20],
Piccolo [22], PRESENT [5], PRINCE [6], TWINE [24] and EPCBC [25].

In July 2013, the NSA publicly joined these efforts by introducing the specifications of their
own highly optimized lightweight block cipher families SIMON and SPECK. In comparison to
other ciphers which are currently available in the field, these families are meant to have a better
performance for both hardware and software platforms with respect to area needed for a given
throughput, code size and memory usage.

⋆⋆ The presented work is a result of a PhD summer school titled “Theoretical and Practical Topics in
Resource-Efficient Cryptography” held in June 2013 at the Technical University of Denmark



The specification document of the cipher highlights several points. First, despite the fact that
the SIMON family is optimized for hardware platforms and SPECK is optimized for software
platforms, both families can perform well in hardware and software. This means that both families
can be used across the full spectrum of lightweight applications. Second, both families are meant
to fill the need for secure, flexible and analyzable lightweight block ciphers.

For the first point, the specification document [2] provides a lengthy description of the different
performance results in hardware, for ASIC implementations, and in software, for 8-bit micro-
controllers, for both SIMON and SPECK. Then, a comparison is made with lightweight imple-
mentations of KATAN [7], KLEIN [13], mCrypton [20], Piccolo [22], PRESENT [5], TWINE [24],
EPCBC [25] and AES [10]. Another technical report by the NSA, prior to the specification release,
presents numbers on performance [1].

For the second point, however, there are no specific cryptanalytic results nor analysis provided
in the specification document, to support design rationale for either cipher family. This is with the
exception of the mentioning that i) no related-key attacks are possible, and that ii) eliminating
sliding properties in the key scheduling of SIMON has been considered.

Contribution This paper is a move toward providing an initial cryptanalytic research and results
for the SIMON family of ciphers. A series of observations on the presented SIMON construction are
made, some utilized into classical differential and truncated impossible differential attacks, while
others may provide grounds for more analysis by the cryptographic community. The attacks that
are presented follow simple chosen plaintext settings i.e. do not require chosen-ciphertext oracles
or any known- chosen- or related-keys.

The main contributions of this paper can be summarized in three points as follows and described
in Table 1:

– Differential attacks for reduced-round versions of all SIMON variants,
– Impossible differential attacks for reduced-round versions of most SIMON variants, and
– Observations regarding rotational cryptanalysis and weak key classes.

Organization This paper is organized into five main sections. Section 2 gives a compact de-
scription of the SIMON family of block ciphers, including key scheduling and cipher parameters.
Section 3 discusses attacks using differential cryptanalysis, especially for Simon32/64. In Section 4
we present attacks on most variants of SIMON using impossible differentials arising from trun-
cated differential analysis. In Section 5 we present further observations that have not led directly
to attacks, but pose open and interesting research problems for further investigation. Finally, we
conclude and propose additional further ideas for analysis of SIMON in Section 6.

2 General Description of SIMON

SIMON is a family of lightweight block ciphers designed by the NSA with the aim of providing a
cipher of an optimal hardware performance [2]. The design of SIMON is a classical Feistel scheme,
operating on two n-bit halves in each round, thus the general round block size is 2n bits. In the
remainder of this paper, we use n to refer to half the block size of the cipher, i.e. the size of the left
and right branches, respectively. Each round of SIMON applies a non-linear, non-bijective hence
non-invertible function F : Fn

2 → F
n
2 to the left half of the state. The output of F is added using

XOR to the right half along with a round key, and the two halves are swapped. The function F is
defined as

F (x) = ((x ≪ 8)⊙ (x ≪ 1))⊕ (x ≪ 2)



Cryptanalysis Cipher Rounds Data Memory Time
Total Attacked

Differential Simon32/64 32 16 229.481 216 226.481

Simon48/72 36 18 246.423 224 243.253

Simon48/96 36 18 246.423 224 243.253

Simon64/96 42 24 262.012 232 258.427

Simon64/128 44 24 262.012 232 258.427

Simon96/92 52 29 287.532 248 283.674

Simon96/144 54 29 287.532 248 283.674

Simon128/128 68 40 2124.796 264 2120.474

Simon128/192 69 40 2124.796 264 2120.474

Simon128/256 72 40 2124.796 264 2120.474

Impossible Simon32/64 32 14 233.291 229.203 244.183

Differential Simon48/72 36 15 250.262 245.618 269.079

Simon48/96 36 15 250.262 245.618 269.079

Simon64/96 42 16 265.248 260.203 291.986

Simon64/128 44 16 265.248 260.203 291.986

Simon96/92 52 19 297.233 291.618 2139.738†

Simon96/144 54 19 297.233 291.618 2139.738

Simon128/128 68 22 2129.226 2123.203 2187.527†

Simon128/192 69 22 2129.226 2123.203 2187.527

Simon128/256 72 22 2129.226 2123.203 2187.527

Table 1: Summery of our cryptanalytic results on SIMON. Note, that entries with a † in the
complexity column indicate results which are worse than brute-force search. The parameters for
impossible differentials are such, that the expected fraction of remaining keys after the attack is
1%.

where x ≪ j denotes left rotation of x by j positions and ⊙ is binary AND. A single round of
SIMON is depicted in Figure 1.
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Fig. 1: The SIMON round function

Variants of SIMON exist for different parameters of key size, block size and number of rounds.
The name of each SIMON variant with its parameters are presented in Table 2.

2.1 Key Schedule

The key schedule of SIMON is described as a function that will operate on two, three or four n-bit
word registers, depending on the size of the master key. It performs two rotations to the right
by x ≫ 3 and x ≫ 1 and XOR the results together with a fixed constant c and five constant



Cipher Block size Key words Key size Rounds Index to z

2n m mn T j

Simon32/64 32 4 64 32 0
Simon48/72 48 3 72 36 0
Simon48/96 48 4 96 36 1
Simon64/96 64 3 96 42 2
Simon64/128 64 4 128 44 3
Simon96/92 96 2 92 52 2
Simon96/144 96 3 144 54 3
Simon128/128 128 2 128 68 2
Simon128/192 128 3 192 69 3
Simon128/256 128 4 256 72 4

Table 2: Members of the SIMON family with their parameters

sequences zij which are version-dependent. These constant sequences are obtained by using three
5 × 5 matrices over F2, and a linear feedback shift register where the first two are of period 31
and the last three are of period 62. The specification rationalizes the use of these constants as a
mean of eliminating sliding properties and circular shift symmetries between the different rounds
keys. Furthermore, they are used to provide cryptographic separation between different variants of
SIMON that have the same block size, but with different key sizes.

Figure 2 describes the general function of SIMON key scheduling. The m master key words,
each of n bits where m ∈ {2, 3, 4}, are used at the first iterations of key scheduling, and hence the
first mn round key bits equal the master key.

Depending on m, the key schedule varies slightly, c.f. Figure 2. The value c is a constant equal
to (2n−1)⊕3, i.e. a string of n−2 ones and two zeroes on the least significant two bits. The value
zij is the ith bit (from most significant to least significant, where i is computed modulo n) of zj ,
where zj is from Table 3 and j is a parameter of the cipher, c.f. Table 2.
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(a) m = 2 key words
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≫ 3

≫ 1c

⊕
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(c) m = 4 key words

Fig. 2: The SIMON key schedule for cases m ∈ {2, 3, 4}. The computation on round key ki depends
on ki−1 and ki−m, and also ki−m+1 in the case of m = 4.

3 Differential Attack

Differential cryptanalysis is mainly a chosen plaintext attack that is considered one of the most
utilized tools in achieving favourable attack results on different cryptographic primitives. It has
been initially identified by the designers of Data Encryption Standard (DES) in [8] and was later



j zj

0 11111010001001010110000111001101111101000100101011000011100110

1 10001110111110010011000010110101000111011111001001100001011010

2 10101111011100000011010010011000101000010001111110010110110011

3 11011011101011000110010111100000010010001010011100110100001111

4 11010001111001101011011000100000010111000011001010010011101111

Table 3: The zj vectors used in the SIMON key schedule

invented and published by Biham and Shamir in [4]. The key goal is to trace the input/output
difference propagation through the cipher structure, for a specific number of rounds, and detect
the non-random behaviour exhibited in the final output, with a certain success probability. The
differential property can be utilized to recover the (parts of) a sub-key, typically the first or the last,
in a reduced r-round version of the cipher. Several chosen plaintext pairs are used, in a combination
with trying all candidates for the sub-key under attack, and the expected net result is that the
correct sub-key is suggested more frequently than the wrong ones, allowing the attacker to tell
which is correct.

First, we discuss iterated differentials, i.e. differentials using the same input/output difference.
For the SIMON family of block ciphers, we are interested in one of two properties of F for con-
structing the iterated differentials. Firstly, we consider pairs of n-bit differences (a, b), for which
the combined probability Pr (a → b) ·Pr (b → a) is maximized. Here, Pr (a → b) denotes the prob-
ability that a difference a goes to a difference b over the function F , taken over all inputs. We refer
to this as a type-1 iterated characteristic. Secondly, we may consider looking for a characteristic
using a single difference a, for which Pr (a → a) is maximized. We refer to this as a type-2 iterated
characteristic.

For type-1 characteristics, we can construct a 6-round iterative characteristic, while for type-2
we get a similar 3-round characteristic. Both are shown in Figure 3.

Difference Distribution Table For block ciphers using a Substitution Permutation Network
(SPN) design structure, a common method for obtaining a non-linearity is to use parallel appli-
cations of small b-bit S-Boxes. In this case, the output difference on b consecutive bits depends
solely on the input difference on the corresponding b bits. As such, a difference distribution table
for the whole non-linear component can be derived directly from the corresponding table for the
S-Box. For the function F used in SIMON there is no S-Box, and in general a single bit of the
output difference ∆y depends on 2 bits of the input x and 3 bits of the input difference ∆x, by
the relation

∆yi = xi−1 ·∆xi−8 ⊕∆xi−1 · xi−8 ⊕∆xi−1 ·∆xi−8 ⊕∆xi−2,

where all indices are computed modulo n. As such, constructing the difference distribution table
requires O(22n) memory and has the same complexity. Thus, for n = 16, this requires 8 GB of
memory using an unsigned 16-bit data type for the entries.

For n = 16, we construct the table exhaustively and determine the best pairs (a, b) as above
for the type-1 characteristic. The best pairs (a, b) yield a probability

Pr (a → b) · Pr (b → a) =
256

216
·
2048

216

= 2−13.
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Fig. 3: Type-1 and type-2 iterated differential characteristics for SIMON

If we square this probability, we find that 2−26 is the probability of the 6-round type-1 characteristic
shown in Figure 3, using those (a, b) pairs. The pairs are listed in Table 4.

As the type-1 characteristic uses only the difference a in the input/output, we may instead
think of it as a 6-round differential, where the difference b can take on any possible value. As such,
we can search for the best difference a, s.t.

∑

b∈Fn
2

Pr (a → b) · Pr (b → a)

is maximized. Doing so, we find that for n = 16 there are four best such differences, a ∈
{1111, 2222, 4444, 8888}.

These represent 3-round differentials of probability 2−11.19, where we do not care about the
intermediate differences, i.e. the type-2 characteristics considered as differentials. When putting two
such differentials together, we get a 6-round differential of probability at least 2−2·11.19 = 2−22.38,
which is similar to the type-1 characteristic considered as a differential, except that after 3 rounds
we know the difference is (a ‖ 0).

For n > 16, the memory and complexity required renders constructing the difference distribu-
tion table infeasible. However, a method by Dinur et al. which was presented at the Eurocrypt 2013
rump session [12] computes the diagonal of the difference distribution table using O(2n) memory
and complexity. Thus, we can use this method to obtain results for n = 24 as well. The diagonal
entries of the difference distribution table represent the iterative characteristics a → a.



a b log
2
(Pr (a → b)) log

2
(Pr (b → a))

0045 051e −5 −8
008a 0a3c −5 −8
0114 1478 −5 −8
0228 28f0 −5 −8
028f 8022 −8 −5
0450 51e0 −5 −8
08a0 a3c0 −5 −8
1140 4781 −5 −8
1401 7814 −5 −8
1e05 4500 −8 −5
2280 8f02 −5 −8
2802 f028 −5 −8
3c0a 8a00 −8 −5
4011 8147 −5 −8
5004 e051 −5 −8
a008 c0a3 −5 −8

Table 4: Best possible (a, b) pairs for type-1 differential characteristics obtained for Simon32/64

The algorithm uses a hash table M which maps values x⊕ F (x) to a list holding the x values
giving this difference. M is constructed by iterating over all x ∈ F

n
2 . After this, any pair of distinct

x, x′ in the list associated with the same key in M , are values s.t. x ⊕ F (x) = x′ ⊕ F (x′), or
in other words, ∆ = x ⊕ x′ is the diagonal entry under consideration. However, to compute the
actual differential probability, we must again iterate over all x ∈ F

n
2 and check how many times

F (x)⊕ F (x⊕∆) = ∆.

For n = 16 and n = 24, we obtain a list of best diagonal differential probabilities, presented in
Table 5.

n p Differences

16 2−8
5555, aaaa, ac0e, 1d58, ab03, 581d, 3ab0, 6075,

5607, 0eac, b03a, 7560, c0ea, 03ab, eac0, 81d5,

0756, d581

24 2−12
555555, aaaaaa, 0e22ac, 1c4558, 388ab0, 711560,

c45581, e22ac0, 88ab03, 115607, 22ac0e, 45581c,

ab0388, b0388a, 560711, 8ab038...

Table 5: Best diagonal entries of the difference distribution table for n ∈ {16, 24}

It is evident from Table 5 that already for n = 16, Pr (∆ → ∆), for some difference ∆, is
very low, and will not lead to any good differential characteristic using this method. The table
suggests that the best probability for a diagonal entry is 2−n/2. Thus, the probability paid for such
characteristic would be too low, even for two iterations of the type-2 characteristic, as the number
of plaintext pairs needed for the attack would exceed the possible number of plaintext pairs, 22n.



3.1 Input/Output Differences over F

For SIMON, consider an n-bit input difference α = x ⊕ x′ to F of Hamming weight one. As the
⊕ operation is invariant with respect to rotation, say w.l.o.g. that α = (0 · · · 01). Recall that F (x)
left rotates x by eight and one positions respectively, applies binary AND to those two, and to
the result of that XORs the left rotation of x by two positions. Due to the rotation by two and
the XOR, the output difference F (x) ⊕ F (x′) will, for this particular α, have a ’1’ on position 2.
Also, on positions 1 and 8. There may be a ’1’ in the output difference (in fact each case occurs,
on both bits independently, with probability 1

2 ). As the ⊙ operation is non-linear with respect to
differences, this depends on the actual inputs x and x′. We may describe the output difference in
truncated form as (0 · · · 0 ∗ 000001 ∗ 0). Here, an asterisk denotes an unknown bit.

This approach of determining a truncated mask captures all possible output differences can be
generalized to arbitrary input differences, and each time we put an asterisk on a position we lose
certainty about that particular bit of the output difference. Note, that this also provides a means
of determining all possible output difference, given some input difference, which in general is very
useful for differential analysis. We will use this observation in the following section, and when we
consider impossible differentials in Section 4.

3.2 Branch-and-Bound Approach to Differentials

Given a way of determining the possible output differences, along with their probabilities, when
using a fixed input difference α, one can think of a tree where each difference at reach round spawns
several possible output differences.

Besides fixing an input difference α, we fix a number of rounds to r for which we search for
differentials. Starting with α, we progress in a depth-first manner, searching through characteristics
until we reach round r. At that point, we add the characteristic probability to the output difference
β in a lookup table. At the same time, we keep running score of the best seen output difference,
for the fixed α, in terms of differential probability.

Using this approach gives us the best results on differential probabilities. Naturally, one can
not hope to exhaustively try all input differences and still look through much of the tree. To that
end, we maintain an array containing the best characteristic probability seen, for each level of tree,
corresponding to each number of rounds 1, . . . , r. We bound the search at round i by allowing it
only to go to round i + 1 if the computed characteristic probability for level i + 1 is within some
fraction away from the best observed probability, which is stored in the array. Otherwise, we cut
off that part of the tree and backtrack to the previous round. The constant fraction used in the
bounding, giving the best results, is determined experimentally for each variant of SIMON. Note,
that this method of cutting off sub-trees helps keep the Hamming weight of the differences low.
Furthermore, we considered only input differences of low Hamming weight, as these intuitively
have less possible output differences in the beginning, which are also of low Hamming weight.

As such, we can not claim to have found the best differentials for any of the variants, but our
results certainly do provide lower bounds. A summary of the attack parameters and complexities
can be found in Table 1.

3.3 Differential Effect

Using the branch-and-bound method described in Section 3.2, we are able, due to the small block
size of Simon32/64, for a given number of rounds of the cipher to determine lower bounds on the
Expected Differential Probability (EDP), which is defined in the following way, c.f. [11, 9]

EDP(α, β) = 2−n
∑

k∈Fn
2

DPk(α, β), (1)



where DPk(α, β) is the differential probability for input difference α and output difference β using
key k.

The 12-round differential leading to our 16-round differential attack on Simon32/64, as de-
scribed in Table 1, is

α → β = (0001 ‖ 0000) → (0100 ‖ 0000),

for which we found that EDP(α, β) > 2−29.481. The reason that the bound is not tight is twofold:

1. Firstly, due to the pruning of branches during the search, we never consider a large portion of
characteristics belonging to some differential

2. Secondly, the search was, in some cases, stopped before considering all characteristics, even
when using the pruning as just described, due to time limits.

An interesting question we are able to answer using the presented search method, for this small
version of SIMON, is how strong the differential effect is. That is, we can determine if the EDP is
due to the contribution of a few (or even a single) characteristics of high probability, or rather is
the result of clustering of many characteristics of lower probability.
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Fig. 4: Account of the number of characteristics of a certain probability p (left) and their accumu-
lated probability (right). The first axis is determined as ⌊log2 p⌋.

For the differential α → β of Equation (1), we keep track of the number of characteristics of
probability ]p; 2p] in this differential by mapping ⌊log2 p⌋ to a counter. We note that the search,
and hence the characteristic counting, is stopped at the same point as for differential search, i.e.
when obtain the bound EDP(α, β) > 2−29.481.

The resulting distribution of the number of characteristics and their probabilities are shown in
Figure 4a. Figure 4b shows a division of the characteristics of probability ]p; 2p] on the first axis,
and their total contribution to the EDP as the plotted value.

Figure 4a shows a low frequency of characteristics of probability 2−43 to 2−36. In fact, we find
just one characteristic of ⌊log2 p⌋ = −36 and four characteristics of ⌊log2 p⌋ = −37. While these
few characteristics do provide an accumulated probability of ≈ 2−36 + 4 · 2−37 ≈ 2−34.42, the
majority of the EDP(α, β) > 2−29.481, is due to the vast number of characteristics of probability
p s.t. ⌊log2 p⌋ ∈ [−47;−39]. Note that there is only one characteristic of probability 2−36, which
is a factor of ≈ 26.5 from the bound on EDP(α, β). This might give us an indication, that the



theoretical bound on the EDP, chosen initially by the designers, is based on a provable bound on
the characteristic probability, which is close to the 2−36 for 12 rounds, as seen above.
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Fig. 5: Total contribution to the EDP by characteristics of probability in ]p; 2p], for every 12-round
Simon32/64 differential found with EDP(α, β) > 2−33. Each plot represents a single differential.
Note that the plots for some differentials overlap, due to identical counts for the characteristic
occurences.

In Figure 5, the same experiment is performed. However, characteristic probability frequencies
for all differentials of EDP(α, β) > 2−33 that we observe during our search, are collected. A total
of 53 differentials were found, and in Figure 5, we clearly see the same large differential effect for
all 53 cases.

Based on this observation, we conclude that, at least for Simon32/64, there is a prominent
clustering of characteristics of lower probability, i.e. a strong differential effect. This might lead
to a better understanding of the constraints imposed by the designers of SIMON, especially for
smaller block sizes, when considering security bounds against certain attacks such as a differential
attack.

3.4 Generic Extension by Two Rounds on Top

Consider an (r − 2)-round differential property, where the desired input difference is of the form
(α ‖ 0), i.e. an arbitrary non-zero difference on the left half of the input, and a zero difference on
the right half.

As the difference is zero on the right half of the input, the corresponding input difference to
F in the previous round is zero, and consequently the output difference of F is too. As such, we
can extend the (r − 2)-round property to an (r − 1)-round property by using the input difference
(0 ‖ α) instead.

Moreover, if we choose a plaintext (x ‖ y), and set x′ = x⊕ α, then we will suffer an overhead
of two applications of F . As a result, we determine the second plaintext (x′ ‖ y′) = (x ⊕ α ‖ y ⊕
F (x)⊕F (x⊕α)), such that the difference after one round becomes (0 ‖ α). Thus, after two rounds
the difference is (α ‖ 0). This extends the (r − 2)-round property to an r-round property without
reducing the differential probability, but with the overhead of just two applications of F .



3.5 Key Recovery

When using a differential for key recovery, one would normally attack a reduced r-round version
of the cipher using an (r − 1)-round differential. However, as the round key addition is performed
after the application of F in each round for SIMON, we will in fact do key recovery on an r-round
version of SIMON by using an (r − 2)-round differential. We refer to Figure 6 in our explanation
of the key recovery.
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uR, u′
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Fig. 6: Differential Key Recovery Attack on SIMON

The key recovery works as follows. We assume that the output difference of the (r − 2)-round
differential is (α ‖ 0). Furthermore, let an output ciphertext pair be (cL ‖ cR) and (c′L ‖ c′R), for
which the corresponding input plaintext pair have a chosen difference dictated by the differential.
We initialize a counter for each possible key guess v to zeroes.

As we can compute F , we may determine

uR ⊕ u′R = F (cR)⊕ F (c′R)⊕ cL ⊕ c′L,

and check if this difference matches the difference α dictated by the differential. If this is the case,
then the plaintext/ciphertext pair is assumed to follow the (r − 2)-round differential. By trying
all possible values v for the last round key, we may partially decrypt to obtain the actual pairs
(uL ‖ uR), (u

′
L ‖ u′R). Again, as we can evaluate F , we can check if

F (uR)⊕ F (u′R)⊕ uL ⊕ u′L

equals zero. If this is the case, then the current guess for v was considered a candidate, and a
counter for the key guess v is incremented.

The process above is repeated with about c
p chosen plaintext pairs, for some small constant c,

where p is the probability of the (r− 2)-round differential. In the end, a ranking of key candidates
by their counter values provides the attacker with the most probable key guesses for the attacked
last round key.

3.6 Complexity

The general complexity of the differential key recovery attacks can be expressed in terms of the
following:

– Data complexity which can be defined as the number of chosen plaintexts used in the attack



– Time complexity is determined as the work effort, spent in partially decrypting the last
round(s), in terms of encryption queries, i.e. the equivalence of r rounds of encryption

– Memory used on average for given time complexity

The data complexity of the classical differential attack can be expressed as c
P , where P is the

differential probability for r− 1 rounds, and c is a small constant. For the presented attack, it will
be 229.481 chosen pairs for 16 rounds of Simon32/64, as shown in Table 1. As for time complexity,
it is defined by the number of total number of encryption queries achieved for all filtered pairs,
using all possible key values:

c

P
× γ × 2k ×

2

r
,

where r is the number of rounds, k is the number of key bits to be guessed, which are equal to n

for SIMON, and γ is the probability that a pair survives the filtering which is 2−n. This will yield
a time complexity of 2c

rP r encryption query equivalents for SIMON variants. As for the memory
needed for the key recovery attack in the presented cases, it will be the number of key guesses
which is 2n words of memory.

4 Impossible Differential Attack

Impossible differential cryptanalysis was first mentioned in 1998 by Knudsen in his analysis of
DEAL [18], and further extended to an attack on IDEA by Biham et al. at FSE 1999 [3]. The
approach combines two certain properties (two differentials with probability 1), one in the forward
direction and one in the backward direction, and uses a resulting conflict when both directions
are joined. This miss-in-the-middle approach is used to obtain an impossibility result. This can
be utilized in a chosen-plaintext attack by requesting encryptions of plaintext pairs with a fixed
difference, guessing key material and checking for the impossibility property to discard wrong
guesses. In our case, the forward and backward differentials are truncated.

Some impossible differentials rely on the round function F being a permutation, a prominent
example being the general 5-round property on Feistel schemes presented in [18]. However, the F

function of SIMON is not a bijection, and indeed the impossible differentials we present in the
following do not rely on it being so.

In Section 3.1, we saw how one can determine the possible output differences of the F function
of SIMON, using a fixed input difference, in the sense that we can determine the truncated output
difference. We also saw, that all possible output differences are equiprobable. We are interested
in investigating for how many rounds a particular input difference can go before we are uncertain
about all output difference bits, i.e. before we have asterisks on all positions. Intuitively, using
an input difference of Hamming weight one will be the best approach, as each active bit in the
input difference gives rise to 1, 2 or 3 active bits in the output difference, ignoring the possibility
of cancellations, which is less predictable. For n ∈ {16, 24, 32}, we exhaustively tried all possible
input differences and saw that this was indeed the case. For n = 16 and n = 32, there was another
pattern of Hamming weight two, namely (0 · · · 00101) and any rotation of it, that covered equally
many rounds in one direction. However, as there was no occurrence of both 0’es and 1’s in the last
truncated difference, the resulting impossible differential would cover less rounds than when using
a Hamming weight one input difference.

Table 6 shows how the truncated differences progress over the rounds of SIMON for some
block sizes. We refer to Appendix A for the rest of the cases. All progressions use the same input
difference (0 · · · 01 ‖ 0 · · · 0). Other Hamming weight one input differences would yield a progression
of truncated differences that are rotated correspondingly.



32-bit block
Rounds Left Right

0 0000000000000001 0000000000000000

1 0000000*000001*0 0000000000000001

2 00000**00001**0* 0000000*000001*0

3 000***0*01*****0 00000**00001**0*

4 0******1******0* 000***0*01*****0

5 **************** 0******1******0*

(a) For n = 16

48-bit block
Rounds Left Right

0 000000000000000000000001 000000000000000000000000

1 000000000000000*000001*0 000000000000000000000001

2 0000000*00000**00001**01 000000000000000*000001*0

3 00000**0000***0*01***0** 0000000*00000**00001**01

4 000***0*0**************1 00000**0000***0*01***0**

5 0*********************** 000***0*0**************1

6 ************************ 0***********************

(b) For n = 24

64-bit block
Rounds Left Right

0 00000000000000000000000000000001 00000000000000000000000000000000

1 00000000000000000000000*000001*0 00000000000000000000000000000001

2 000000000000000*00000**00001**01 00000000000000000000000*000001*0

3 0000000*00000**0000***0*01***0*0 000000000000000*00000**00001**01

4 00000**0000***0*0******1******0* 0000000*00000**0000***0*01***0*0

5 000***0*0**********************0 00000**0000***0*0******1******0*

6 0*****************************0* 000***0*0**********************0

7 ******************************** 0*****************************0*

(c) For n = 32

Table 6: Truncated differential pattern propagation for SIMON using word sizes n ∈ {16, 24, 32},
with an input difference (0 · · · 01 ‖ 0 · · · 0)

Taking the n = 16 case as an example, we see that after 5 rounds of SIMON, we have with
probability 1 the truncated output difference

(∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ‖ 0 ∗ ∗ ∗ ∗ ∗ ∗1 ∗ ∗ ∗ ∗ ∗ ∗0∗).

By left rotating this right truncated difference by 7 or 9 positions, one of the 0’s will be shifted to
the position of the 1. Due to the symmetry of decryption and encryption of the Feistel scheme, we
find that this provides us with two impossibility properties:

Pr ((0001 ‖ 0000) → (0001 ≪ 7 ‖ 0000)) = 0 and

Pr ((0001 ‖ 0000) → (0001 ≪ 9 ‖ 0000)) = 0,

where the impossible differential is over 10 rounds of SIMON. With this, we find two impossibility
properties for each input difference of Hamming weight one, i.e. 2n in total. This property for the
rotation by q = 7 is depicted in Figure 11 of Appendix A. In the further description of the attack,
we denote by Q the set of indices for such rotations of the output difference, relative to the input
difference, and hence |Q| is the number of impossible differentials using one input difference. For
example, for Simon32/64, Q = {7, 9}.

Note that the attack described so far uses an input difference of the form (α ‖ 0). Thus, the
impossible differentials described in this section can trivially be extended by two rounds on top of
probability 1, as described in Section 3.4, yielding an extra 2 rounds attacked.

Referring to Table 6, we see that for other values of n, we do not have both a 0 and 1 in
the last truncated difference. Thus, we can not use this for obtaining an impossibility property,
because we need to make a 0 overlap with a 1. We can, however, trace back to the last round where
the truncated output difference on the right half contains a 1, and match this up with the last
truncated output difference containing a 0. This sacrifice means the impossible differential covers
less rounds.
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Fig. 7: Key recovery attack with impossible differentials on SIMON

4.1 Key Recovery

As it was described for key recovery using the standard differentials, we again encrypt for two rounds
more than the property covers. Consider a pair of output ciphertexts (cL ‖ cR) and (c′L ‖ c′R). The
first filter in the recovery we can apply, is to test if

Γ := F (cR)⊕ F (c′R)⊕ cL ⊕ c′L (2)

equals the right half of one of the |Q| impossible differentials, i.e. if it equals some α ≪ q, q ∈ Q.

If it does, we try all values v of the last round key and partially decrypt for one round to obtain
the 1-round decrypted pair (uL ‖ uR) and (u′L ‖ u′R). We may now test if

F (uR)⊕ F (u′R)⊕ uL ⊕ u′L (3)

equals 0. If it does, then v can be discarded forever as a possible last round key. The attack
procedure is presented as Algorithm 1 and we refer to Figure 7 for an illustration of the attack.



Algorithm 1: Impossible differential key recovery pseudo-code for SIMON
Data: Q : set of rotation indices relative to input difference α giving

impossible differentials
Result: K : set of remaining key candidates for last round key

1 K ← F
n
2

2 Construct a “basis” of plaintextsM of size 2ℓ

3 foreach α = (0 · · · 01) ≪ j, j = 0, . . . , n− 1 do

4 foreach m ∈ M do

5 m′ = (m′
L ‖ m′

R)← (mL ⊕ α ‖ mR ⊕ F (mL)⊕ F (mL ⊕ α))

6 Look up c = (cL ‖ cR) and query c′ = (c′L ‖ c′R) = EK(m′)

7 Γ ← F (cR)⊕ F (c′R)⊕ cL ⊕ c′L
8 if Γ ∈ {α ≪ q | q ∈ Q} then

9 foreach v ∈ K do

10 A (uL ‖ uR)← (cR ‖ F (cR)⊕ cL ⊕ v)

11 (u′
L ‖ u′

R)← (c′R ‖ F (c′R)⊕ c′L ⊕ v)

12 if F (uR)⊕ F (u′
R)⊕ uL ⊕ u′

L = 0 then

13 K ← K\{v}
14 end

15 end

16 end

17 end

18 end

19 return K

4.2 Complexity

In the following, we give our analysis of the key recovery complexity for the impossible differential
attack, in terms of data (which we define as the number of encryption oracle queries), memory
and computational (time) complexity, given in terms of equivalent number of r-round encryption
queries. During our analysis, we refer to the line numbers of Algorithm 1, as well as Equations (2)
and (3).

As the plaintexts of the basis M of size 2ℓ are queried once and stored in memory, the data and
memory complexity for line 2 is 2ℓ data and 2ℓ memory. By choosing M in a way that we avoid
using a particular pair twice in the form of (m,m′) and (m′,m), the total number of plaintext
pairs used for the attack is

n · 2ℓ,

where the factor n comes from the possible rotations of the input difference α = (0 · · · 01) ≪ j, j =
0, . . . , n− 1.

As the number of input differences we iterate over in line 3 is n, and |M| = 2ℓ, the number of
m′ constructed and queried in lines 5 and 6 is n · 2ℓ. These m′ are used once and not stored in
memory, hence the total memory complexity of the attack is 2ℓ for storing M, and the total data
complexity is 2ℓ + n · 2ℓ = (n+ 1)2ℓ.

Expected Size of K When using a particular plaintext pair (m,m′) with corresponding ciphertext
pair (c, c′) in lines 5 through 16, we first check if the difference Γ matches one of the right halves
of the |Q| impossible differences. Assuming that Γ is uniformly distributed with probability mass
function 2−n, the probability of entering the if statement of line 8 is

|Q|

2n
,

and as such, the expected number of pairs passing the filtering of Equation (2) is

n2ℓ ·
|Q|

2n
.



Consider now a wrong guess v for the key under attack. We know already that for the correct
key, the probability of the if statement of line 12 being true is zero, due to the miss-in-the-middle
property of the impossible differential attack. However, under the assumption that for a wrong
key guess v, the difference of Equation (3) is uniformly distributed, the probability of discarding a
wrong key, using a single pair, is 2−n, and thus the probability of not discarding it is

(1− 2−n).

Assuming independency of the probabilities of discarding a wrong key, for each of the n2ℓ pairs,
the expected number of remaining keys |K| after using all pairs is

E[|K|] = 2n
(
1− 2−n

)n2ℓ|Q|2−n

.

Time Complexity For every pair used in lines 9 through 15, i.e. those pairs satisfying Γ ∈ {α ≪

q | q ∈ Q}, we must try as many keys as there are currently in K. The fraction of the set K which
is not discarded by using a single such pair equals the probability that some pair does not discard
some wrong key. This probability is computed as

1− Pr (wrong key v discarded by some pair)

= 1− Pr (pair discards v | Γ ∈ {α ≪ q | q ∈ Q}) · Pr (Γ ∈ {α ≪ q | q ∈ Q})

= 1− 2−n ·
|Q|

2n

= 1−
|Q|

22n
.

As such, the expected number of 1-round partial decryptions we will do during the course of the
attack, using n2ℓ pairs, is determined as

2n + 2n ·

(

1−
|Q|

22n

)

+ 2n ·

(

1−
|Q|

22n

)2

+ · · ·+ 2n ·

(

1−
|Q|

22n

)n2ℓ−1

= 2n
n2ℓ−1∑

i=0

(

1−
|Q|

22n

)i

= 2n ·
1−

(

1− |Q|
22n

)n2ℓ

1−
(

1− |Q|
22n

)

= 23n ·
1−

(

1− |Q|
22n

)n2ℓ

|Q|
(4)

Evaluating this expression numerically is very computationally intensive for larger values of ℓ and
n. For the numerator of Equation (4), we can use the fact that limx→±∞

(
1− k

x

)x
= e−k. We write

2ℓ as 2ℓ = c22n for some constant c. Then

lim
x→±∞

23n ·
1−

(

1− |Q|
22n

)n2ℓ

|Q|
= 23n ·

1− e−|Q|nc

|Q|

= 23n ·
1− e−|Q|n2

ℓ−2n

|Q|
. (5)



We use the approximation of Equation (5), when computing Equation (4) is too intensive.
For the attack, the time complexity is determined as the total effort spent in the 1-round partial
decryption phase, converted to the equivalents of r-round encryption queries. This is done, since
2n r-round encryption queries would be the effort required to brute-force the key. As such, the
total complexity in terms of r-round encryptions equals the expression from either Equation (4)
or (5), multiplied by 2

r . In Table 7 we present our results on key recovery attacks using impossible
differentials, for all variants of SIMON, such that the expected number of remaining subkeys is
1% of the whole key space. We note that the complexities for some of the variants of SIMON are
higher than brute-force effort, and hence is not considered an attack. However, as the complexities
are independent of the master key size, we do have attacks on most variants.

Cipher Rounds |Q| Pairs Data Memory Time

Total Attacked n2ℓ 2ℓ + n2ℓ 2ℓ

Simon32/64 32 14 2 233.203 233.291 229.203 244.183

Simon48/72 36 15 1 250.203 250.262 245.618 269.079†

Simon48/96 36 15 1 250.203 250.262 245.618 269.079†

Simon64/96 42 16 2 265.203 265.248 260.203 291.986†

Simon64/128 44 16 2 265.203 265.248 260.203 291.986†

Simon96/92 52 19 2 297.203 297.233 291.618 2139.738†

Simon96/144 54 19 2 297.203 297.233 291.618 2139.738†

Simon128/128 68 22 2 2129.203 2129.226 2123.203 2187.527†

Simon128/192 69 22 2 2129.203 2129.226 2123.203 2187.527†

Simon128/256 72 22 2 2129.203 2129.226 2123.203 2187.527†

Table 7: Results on key recovery attack on SIMON using |Q|·n impossible differentials. The number
of pairs used, n2ℓ is determined such that the expected size of K, i.e. the remaining key candidates,
is 1% of the total subkey space 2n. The complexities indicated with a † are computed using the
approximation of Equation (5).

4.3 Practical Tests

For the case n = 16, the block size is small enough that we may actually implement and verify
the attack. Thus, we provide in [19] among other cryptanalytic functionalities, our C++ imple-
mentation of the key-recovery attack on 14 rounds of Simon32/64, using the 12-round impossible
differential.

In Table 8, we present the results of 10 experimental runs, the time for each run and the size of
the output |K|, with its corresponding percentage of the full round key space. Figure 8 shows how
the size of |K| progressed over the course of the attack, when using difference rotation amounts on
the input difference.

5 Further Observations

In this section we present other observations on SIMON, that currently have not led to immediate
attacks, but are interesting topics for further analysis. Specifically, we consider SIMON from a
rotational cryptanalysis perspective, and consider analysis of repeating patterns in the key schedule.



Size of K Time (sec.) % of 2n

3805 1619 5.81
789 1636 1.20
2455 1655 3.75
607 1615 0.93
1600 1634 2.44
344 1152 0.52
1536 1190 2.34
2937 1172 4.48
3170 1268 4.84
5259 1207 8.02

Table 8: Results from key recovery experiments on Simon32/64, using the parameters of Table 7.
Note, that half the tests were run during the night, where the server was under less load, hence
the difference in the runtimes.
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Fig. 8: Progression of the size of |K| for the key recovery attack on Simon32/64 using the parameters
of Table 7, as a function of the rotation amount on the input difference (input difference used is
α = (0 · · · 01) ≪ x, x = 0, . . . , n−1. The progressions are from the experimental results of Table 8.

5.1 Rotational Cryptanalysis

For block ciphers using round functions built around the components

– Addition modulo 2n − 1,
– Rotation of binary strings and
– Exclusive-or,

rotational cryptanalysis has proven efficient. Examples include cryptanalysis of Keccac by Moraw-
iecki et al. [21] and a rotational rebound attack on Skein by Khovratovich et al. [17]. The basic
idea is focused around constructing rotational pairs of words where one is the rotation of the other,
for a certain rotation amount. The propagation of these pairs is traced throughout the different
rounds of the primitive, knowing that rotational pairs will disclose information about specific key
bits in every- or certain key words. It is worth noting that in [16], the authors state that systems
with XORs and rotations can always be broken.



While the SIMON family of block ciphers does not use modular addition, it does use ⊕ and
rotation. Thus, an interesting question is, for a random input x to the round function F , what is
the probability that

x = F (x) ≪ j, 0 ≤ j < n.

For n ∈ {16, 32}, the answer is given by the Table 9. We see here, that for j = n − 2 we get the
best probabilities which is p16 = 2207

216 ≈ 2−4.89 for n = 16 and p32 = (p16)
2 ≈ 2−9.78 for n = 32.

In Appendix B, we describe an observation in which we combine the rotational properties from

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Count 3 5 7 1 3 5 47 1 3 5 7 1 3 5 2207 1

(a) n = 16

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Count 3 5 7 1 3 5 47 1 3 5 7 1 3 5 8671 1

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Count 3 5 7 1 3 5 47 1 3 5 7 1 3 5 4870847 1

(b) n = 32

Table 9: Rotational approximations to x = F (x) ≪ j for n ∈ {16, 32}, j = 0, . . . , n− 1

Table 9 with differential cryptanalysis.

Another observation regarding rotational cryptanalysis is that the SIMON F function is invari-
ant under rotation, i.e.

∀x ∈ F
n
2 , ∀j = 0, . . . , n− 1 : F (x ≪ j) = F (x) ≪ j. (6)

Consider a plaintext pair m = (mL ‖ mR) and

m′ = (m′L ‖ m′R)

= (mL ≪ j ‖ mR ≪ j),

with corresponding ciphertexts c = (cL ‖ cR) and c′ = (c′L ‖ c′R). Assume that each round key k′i
used to encrypt m′ equals ki left rotated by j, where ki are the round keys for encrypting m, i.e.

k′i = ki ≪ j, i = 0, . . . , T − 1.

In this case, a consequence of Equation (6) is, that

c′L = cL ≪ j, and

c′R = cR ≪ j.

To that end, we define the following problem.



Rotational Related Key Problem Given a master key K for a variant of the SIMON block
cipher on m key words of n bit each, i.e. K ∈ F

n
2 × · · · × Fn

2
︸ ︷︷ ︸

m times

, with associated round keys ki,

i ∈ {0, . . . , T−1}, determine a related key K ′ ∈ F
n
2 × · · · × Fn

2
︸ ︷︷ ︸

m times

, with K ′ 6= K, s.t. for the associated

round keys k′i, it holds for all k
′
i that it is as close as possible (in some measure) to (ki ≪ j), for

some j = 0, . . . , n− 1.
While solving this problem to the point where it provides ground for a cryptographic attack

seems hard, it poses an interesting problem. Fixing j = 2, we tried for different variants of SIMON
to investigate the implications on the expanded round keys, of fixing the master key K ′ to the
rotation of K by j positions. Specifically, we generate a random K and expand the round keys. We
then define K ′ as the rotated K, and expand those round keys. The latter expanded round keys
are rotated back by j positions to the right, and we compute the length of their longest common
subsequence. The result is presented in Figure 9. The figure shows how the length of the LCS
rapidly converges, but whether different approaches work better is an open question.
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Fig. 9: Average longest common subsequence for round keys ki and k′i, where the master key relation
is rotated by j = 2 positions to the left in K ′ compared to K

5.2 Weak Keys

The heavy constant c used in the SIMON key schedule ascertains that the weight of round keys
quickly converge to an average of n

2 . However, referring to the key schedule of Figure 2, and
considering the case m 6= 4, if we can ensure that

(ki−1 ≫ 3)⊕ (ki−1 ≫ 4)

cancels many bits of the constant c, i.e.

c⊕ (ki−1 ≫ 3)⊕ (ki−1 ≫ 4) (7)

has low Hamming weight, then for each of these bits, the round key ki will equal ki−m. When
m = 4, the corresponding requirement becomes striving for a low Hamming weight in

c⊕ (ki−1 ≫ 3)⊕ ki−3 ⊕ (((ki−1 ≫ 3)⊕ ki−3) ≫ 1).



Focusing on the case m ∈ {2, 3}, i.e. (7), we see that the rotational difference in the XOR of ki−1
is a single position. Thus, for any j ∈ {2, . . . , n−1} (j = 0 being the least significant bit), we know
that bit j of ki will equal bit j of ki−m if and only if bit j + 3 and bit j + 4 of ki−1 are different.
For j = 1, we need that bit 4 and 5 of ki−1 are the same, and for j = 0 we need the XOR of bit 3
and 4 of ki−1 to equal zij . Note, that all indices are computed modulo n. Intuitively, for each pair
of consecutive alternating bits of ki−1, we have one bit of ki equal one bit of ki−m.

Fig. 10: Round keys (one per row) using master key (1010 · · · 10 ‖ 1010 · · · 10) for Simon128/128.
A black square represents a 1, a white square 0.

As such, an obvious experiment is to set ki−1 equal to either (0101 · · · 01) or (1010 · · · 10).
This implies that (7) will have 0’s on the n − 2 most significant bit positions. Consequently, ki
will equal ki−m on those bits. If we thus choose to load all master key words with strings of this
pattern, we expect that the pattern will repeat in some round keys. The resulting round keys for
this experiment with the Simon128/128 cipher is depicted in Figure 10.

While this observation does not suggest any weakness in the cipher itself, it is an open question
whether (parts of) this round key pattern can be combined with a property exploiting it for some
number of rounds, and weak key space. In particular, whether a trade-off can be defined between
the following is still an open and interesting question:

– The size of a weak key space where round keys repeat partially in a particular pattern,
– The extent of the key repetition, and
– The number of rounds where this exploitable property lasts

6 Conclusion

In this work, we have considered the lightweight block cipher family SIMON from a cryptanalytic
perspective. The specification paper provided by the NSA does not include any form of security
assessment, and with our analysis we have taken the first step towards an openly available crypt-
analysis of the cipher family SIMON, using various commonly applied cryptanalytic techniques as



summarized in Table 1. All our cryptanalysis uses the simple assumption of a chosen plaintext set-
ting, i.e. no chosen ciphertext oracle is required, nor is any known- chosen- or related-key settings
used.

We have determined iterative differentials for Simon32/64, and general differentials for all vari-
ants of SIMON, that yield differential attacks on reduced versions with at least half the total rounds
of the cipher in all cases. This analysis provided the grounds for our best results. An interesting
observation in Section 3.3 is that Simon32/64 exhibits a strong differential effect. This suggests
that bounding the expected differential probability (EDP) by the expected maximum characteristic
probability is not well-founded in this case.

Furthermore, we considered using truncated differentials to construct impossible differentials
over a number of rounds, which yielded attacks on reduced versions of most of the cipher variants,
however not stronger than the ordinary differential attacks.

Finally, we provided a number of other observations on the cipher structure with regards to
rotational cryptanalysis and possible weak keys patterns. This may provide starting ground for
future analysis in this direction.

Open Question and Future Work The analysis provided on SIMON variants has shed light
on the differential properties of the cipher family. However, it is worth exploring the possibility
of improving these differential/impossible differential attacks. Also, cryptanalysis with respect to
higher-order differential attacks and meet-in-the-middle attacks would be interesting. In addition
to that, it can be profitable to consider the effect of linear cryptanalysis on SIMON, in particular
zero-correlation attacks. Furthermore, an analysis of the key schedule and whether one can obtain
related-key properties that can be exploited in a combination with rotational cryptanalysis, is an
interesting open question.
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A Addenda to Impossible Differentials Cryptanalysis

96-bit block
Rounds Left Right

0 000000000000000000000000000000000000000000000001 000000000000000000000000000000000000000000000000

1 000000000000000000000000000000000000000*000001*0 000000000000000000000000000000000000000000000001

2 0000000000000000000000000000000*00000**00001**01 000000000000000000000000000000000000000*000001*0

3 00000000000000000000000*00000**0000***0*01***0*0 0000000000000000000000000000000*00000**00001**01

4 000000000000000*00000**0000***0*0******1******01 00000000000000000000000*00000**0000***0*01***0*0

5 0000000*00000**0000***0*0********************1*0 000000000000000*00000**0000***0*0******1******01

6 00000**0000***0*0*****************************0* 0000000*00000**0000***0*0********************1*0

7 000***0*0**************************************0 00000**0000***0*0*****************************0*

8 0*********************************************0* 000***0*0**************************************0

9 ************************************************ 0*********************************************0*

(a) For n = 48

128-bit block
Rounds Left Right

0 0000000000000000000000000000000000000000000000000000000000000001 0000000000000000000000000000000000000000000000000000000000000000

1 0000000000000000000000000000000000000000000000000000000*000001*0 0000000000000000000000000000000000000000000000000000000000000001

2 00000000000000000000000000000000000000000000000*00000**00001**01 0000000000000000000000000000000000000000000000000000000*000001*0

3 000000000000000000000000000000000000000*00000**0000***0*01***0*0 00000000000000000000000000000000000000000000000*00000**00001**01

4 0000000000000000000000000000000*00000**0000***0*0******1******01 000000000000000000000000000000000000000*00000**0000***0*01***0*0

5 00000000000000000000000*00000**0000***0*0********************1*0 0000000000000000000000000000000*00000**0000***0*0******1******01

6 000000000000000*00000**0000***0*0*****************************01 00000000000000000000000*00000**0000***0*0********************1*0

7 0000000*00000**0000***0*0************************************0*0 000000000000000*00000**0000***0*0*****************************01

8 00000**0000***0*0*********************************************0* 0000000*00000**0000***0*0************************************0*0

9 000***0*0******************************************************0 00000**0000***0*0*********************************************0*

10 0*************************************************************0* 000***0*0******************************************************0

11 **************************************************************** 0*************************************************************0*

(b) For n = 64

Table 10: Truncated differential pattern propagation for SIMON using word sizes n ∈ {48, 64},
with an input difference (0 · · · 01) on the left half and a 0-difference on the right half

B Combining Rotational and Differential Cryptanalysis

Referring to Table 9, we saw that Pr (x = F (x) ≪ j) is maximized when j = 2. This probability
equals Pr (F (x) = x ≫ 2). Now consider a plaintext pair (mL ‖ mR) and (m′L ‖ m′R).

If m′L = mR ≪ 2 and m′R = mL ≫ 2, then in the first round, we have that F (mL) = mL ≫ 2
and F (m′L) = F (mR ≪ 2) = mR with a certain probability. If these are both fulfilled, then the
difference on the left block after 1 round ends up being (mL ≫ 2)⊕mR⊕k⊕(mL ≫ 2)⊕mR⊕k =
0, and on the right block it will be mL ⊕ (mR ≪ 2). As the input difference is 0 to F in round 2,
we find that the output difference on the left block is mL ⊕ (mR ≪ 2) and a 0 difference on the
right block, after 2 rounds.
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Fig. 11: A 10-round impossible differential for Simon32/64. Tracing truncated output differences
in respectively forward and backward directions give a contradiction on the right half truncated
mask after 5 rounds, where a 0 overlaps a 1.

Note, that the first observation above can be used in the beginning of the 6-round iterated
differential described in Section 3 or the impossible differentials described in Section 4, as it yields
an output difference of the form (α ‖ 0), which is exactly the starting point needed.



However, compared to the generic extension by two rounds on top, described in Section 3.4,
this approach is impaired in two ways:

1. It has probability p < 1, and
2. For a fixed required difference α, the number of pairs obtainable is only 2n, i.e. square root the

number of pairs otherwise obtainable.


