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Abstract 
 

Certificate-based cryptography is a new public-key cryptographic paradigm that has very 
appealing features, namely it simplifies the certificate management problem in traditional 
public key cryptography while eliminating the key escrow problem in identity-based 
cryptography. So far, three authenticated key agreement (AKA) protocols in the setting of 
certificate-based cryptography have been proposed in the literature. Unfortunately, none of 
them are secure under the public key replacement (PKR) attack. In this paper, we first present 
a security model for certificate-based AKA protocols that covers the PKR attacks. We then 
explore the existing three certificate-based AKA protocols and show the concrete attacks 
against them respectively. To overcome the weaknesses in these protocols, we propose a new 
certificate-based AKA protocol and prove its security strictly in the random oracle model. 
Performance comparison shows that the proposed protocol outperforms all the previous 
certificate-based AKA protocols. 
 
 
Keywords: authenticated key agreement, certificated-based cryptography, public key 
repalcement attack, random oracle model, provable security 
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1. Introduction 

Key agreement is an important cryptographic primitive for building secure communication 
channels over an insecure public network. A key agreement protocol allows two or more 
parties to  securely establish a shared secret key for their communications in the present of an 
adversary.  

Key agreement protocols are usually designed under public key cryptography (PKC). The 
first practical solution to the key agreement problem is the Diffle-Hellman key exchage 
protocol [1]. However, the Diffle-Hellman protocol does not provide authentication to the 
participants and hence subjects to the man-in-the-middle (MITM) attack. Hence, the research 
in this area has been focusing on the design of AKA protocols, as they offer the assurance that 
only the participating parties of a protocol can compute the agreed key. Over the years, a 
number of AKA protocols under traditional PKC have been proposed [2-4]. However, the 
need for PKI-supported public-key certificates is considered the main difficulty in the 
deployment of traditional PKC. 

In 1984, Shamir [5] proposed the notion of identity-based cryptography (IBC) where the 
identity information of a user serves as his public key and a trust third party called private key 
generator (PKG) is employed for generating users’ private keys. The main merit of IBC lies in 
that it eliminates the requirement of public-key certificates. There are numerous identity-based 
AKA protocols in the literature [6-9] so far. In such proposals, the PKG is unconditionally 
trusted and thus the protocols suffer from the key escrow problem. This may be undesirable in 
some scenarios where it is difficult to find such a party fully trusted by the distributed users. 

In Asiacrypt 2003, Al-Riyami and Paterson [10] proposed certificateless public key 
cryptography (CL-PKC). Their main purpose is to solve the key escrow problem in IBC, while 
keeping the implicit authentication property of IBC. In CL-PKC, every user independently 
generates his private key by combining the partial private key from a partially trusted authority 
named key generation center (KGC) with the secret value chosen by the user himself. In this 
way, KGC does not know any user’s private key. Therefore, there is no key escrow problem in 
CL-PKC. Recently, several certificateless AKA protocols have been presented [11-14]. 
However, as KGC needs to send partial private keys to users over secure channels, 
certificateless AKA protocols inevitably suffer from the key distribution problem.  

In Eurocrypt 2003, Gentry [15] introduced the concept of certificate-based cryptography 
(CBC). CBC combines traditional PKC with IBC while preserving the advantages of each. 
Similar to traditional PKC, each user in CBC generates his public key and private key 
independently, and then requests a certificate from a CA.  The difference is that the certificate 
will be pushed only to its owner and also acts as a partial decryption key or a partial signing 
key. This additional functionality provides an efficient implicit certificate mechanism so that a 
user needs both his private key and certificate to perform cryptographic operations (such as 
decryption and signing), while the other parties need not obtain the fresh information on the 
user’s certificate status. Therefore, CBC eliminates third-party queries for the certificate status 
and simplifies the public key revocation problem in traditional PKC. Furthermore, there are no 
key escrow problem (since CA does not know users’ private keys) and key distribution 
problem (since the certificates can be sent to their owners publicly) in CBC.  

In the recent years, CBC has attracted much attention in the research community and a 
number of schemes have been proposed, including many encryption schemes (e.g. [16-20]) 
and signature schemes (e.g. [21-26]). However, only a little attention has been paid to 
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certificate-based AKA protocols. To the best of our knowledge, only three certificate-based 
AKA protocols have been proposed in the literature [27-29]. The first certificate-based AKA 
protocol was proposed by Wang and Cao [27]. Their protocol combines Gentry’s 
certificate-based encryption scheme with Smart’s AKA protocol [9]. However, Lim et al. [28] 
pointed out that Wang-Cao’s protocol does not have resistance to leakage of ephemeral secret 
keys. To improve security, they proposed an improved protocol with some slight 
modifications on Wang-Cao’s protocol. They claimed that their protocol has resistance to all 
non-trivial secret exposures. However, no formal security proof is given in [28]. In 2008, Luo 
et al. [29] proposed the first security model for certificate-based AKA protocols. They also 
proposed a provably secure certificate-based AKA protocol in their security model. 

Our Motivations and Contributions. The main aim of this paper is to present a provably 
secure certificate-based AKA protocol that resists PKR attacks. PKR attack was first 
introduced into CL-PKC by Al-Riyami and Paterson in [10]. In this attack, an adversary who 
can replace any user’s public key at its will dupes any other third parties to perform 
cryptographic operations (such as decryption and signature verification) using a false public 
key. It seems that this attack does not exist in CBC since a CA is employed for issuing a 
certificate for each user. Unfortunately, it does. In CBC, the CA does issue the certificates. But, 
as introduced above, only the owner of a certificate needs to check the validity of his 
certificate and others need not be concerned about the status of this user’s certificate. Thus, an 
adversary is able to launch the PKR attack against an ill-designed certificate-based 
cryptographic scheme. We have observed that all the existing three certificate-based AKA 
protocols [27-29] are not secure under such attack. So, it is fair to say that devising a secure 
certificate-based AKA protocol remains an unsolved problem until now. 

In this paper, we first propose an improved security model for certificate-based AKA 
protocols that captures PKR attacks by extending Luo et al.’s model [29]. We show that all the 
existing three certificate-based AKA protocols are insecure in our improved security model. 
Then we proposed a new certificate-based AKA protocol. In the random oracle model, we 
formally prove its security under hardness of discrete logarithm problem, computational 
Diffie-Hellman problem and bilinear Diffie-Hellman problem. Compared with the existing 
certificate-based AKA protocols, our new protocol enjoys better performance and stronger 
security guarantee. 

2. Bilinear Pairing and Complexity Problems 

Let q be a prime number, 1G an additive cyclic group of prime order q and 2G a multiplicative 
cyclic group of the same order. A mapping 1 1 2:e G G G× → is called a bilinear pairing if it 
satisfies the following properties: 

 (1) Bilinearity: ( ) ( ), , abe aU bV e U V= for all 1,U V G∈ and *, qa b Z∈ . 

(2) Non-degeneracy: There exists 1,U V G∈ such that ( , ) 1e U V ≠ . 
(3) Computability: ( , )e U V can be efficiently computed for all 1,U V G∈ . 
The security of our proposed protocol is based on the following three complexity problems:  
Discrete Logarithm (DL) Problem: Given a generator P of 1G and an element 1Q G∈ , find 

an integer *
qa Z∈ such that aP Q= . 

Computational Diffie-Hellman (CDH) Problem: Given a generator P of 1G and a tuple 

1( , )aP bP G∈ for unknown *, qa b Z∈ , compute abP . 
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Bilinear Diffie-Hellman (BDH) Problem: Given a generator P of 1G and a tuple ( aP , bP , 
cP ) 1G∈ for unknown *, , qa b c Z∈ , compute ( , )abce P P . 

3. Modeling Certificate-based AKA Protocols 

3.1 Outline of a certificate-based AKA protocol 
Formally, a certificate-based AKA protocol is specified by the following algorithms:  

(1) Setup: This probabilistic polynomial-time algorithm takes a security parameter k as 
input and generates the CA’s master key msk and a list of public parameters params.  

(2) UserKeyGen: This probabilistic polynomial-time algorithm takes params as input and 
returns a pair of public key and private key ,( )U UPK SK for a userU with identity UID . 

(3) CertGen: This probabilistic polynomial-time algorithm takes params, msk, an 
identity UID and a public key UPK as input and returns a certificate UCert .  

(4) KeyAgreement: This probabilistic polynomial-time interactive algorithm, which 
involves two participants - an initiator A and a responder B, takes params, an initiator A’s 
identity AID , public key APK , private key ASK and certificate ACert and a responder B’s 
identity BID , public key BPK , private key BSK and certificate BCert as input. If the protocol 
does not fail, the participants A and B will generate a same secret shared key AB BAK = K = K  
after the algorithm is executed.  

3.2 Desirable security properties for certificate-based AKA protocols 
Some desired security properties are commonly required for AKA protocols in gereral [6, 
29-31]. As a kind of AKA protocol, a certificate-based AKA protocol should satisfy the 
following security properties. 

(1) Known-key security: If the protocol does not fail, each run of the protocol between two 
participants should generate a unique and independent session key. The other session keys 
should be secure even though an adversary has learned some of the session keys. 

(2) Unknown key-share resilience: An adversary should be unable to force others to share a 
key with other participants when it is actually sharing with a different participant. 

(3) Basic impersonation attacks resilience: An adversary should be unable to impersonate a 
participant if it does not know this participant’s private key. 

(4) Forward secrecy: If the private keys of one or more participants are compromised, an 
adversary must have negligible advantage on compromising previously established session 
keys. This security property can be extended to the following three types: (a) Perfect forward 
secrecy: even if an adversary armed with all participants’ private keys, forward secrecy must 
be preserved; (b) Partial forward secrecy: even if an adversary armed with some but not all 
participants’ private keys, forward secrecy must be preserved; (c) CA forward secrecy: even if 
an adversary armed with the CA’s master key, forward secrecy must be preserved. 

(5) Key compromise impersonation resilience: If the private key of a participant A is 
compromised, an adversary can be able to impersonate the participant A to any other 
participant but can not impersonate others to the participant A. 

(6) Leakage of ephemeral secrets resilience: If an adversary has access to the ephemeral 
secrets of a given protocol run, it should be unable to determine the corresponding session key. 

 (7) Key control: The participants should not be able to force the session key to be a 
pre-selected value. 
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3.3 Security model for certificate-based AKA protocols 
Based on the security model of Luo et al. [29] and the modified Bellare-Rogaway (mBR)   
model [32], we present an improved security model for certificate-based AKA protocols. 

A certificate-based AKA protocol should be secure against two types of adversaries [15, 
29]: Type I (denoted by A1) and Type II (denoted by A2). The adversary  A1 models an 
uncertified participant who can replace any participant’s public key, but is not allowed to 
access the CA’s master key. The adversary A2 models a malicious CA who knows the master 
key, but is not allowed to replace public keys. Obviously, if a certificate-based AKA protocol 
is secure against a Type II adversary, it will satisfy CA forward secrecy. 

In our security model, we use the oracle ,
n
i j∏ to represent the n-th protocol session between 

the participants i and j . We define a conversation for a given session to be the ordered 
concatenation of all messages (both incoming and outgoing). Let PID = ( iID , jID ) be a 

partner identity of the oracle ,
n
i j∏ and SID = ( iID , jID , ,

n
i jM , ,

n
j iM ) be the session identity of the 

oracle ,
n
i j∏ at participant i which is the transcript of the messages exchanged with participant j  

during the session, where the symbols ,
n
j iM and ,

n
i jM denote the incoming message and 

outgoing message respectively. If two oracles ,
n
i j∏ and ,

m
j i∏ have the same PID and SID , they 

are said to have a matching conversation with each other. 
The security of certificate-based AKA protocols can be defined through the following game 

that is played between a challenger and an adversary A ∈ {A1, A2}.  
Setup. On input a security parameter k, the challenger simulates the algorithm Setup(k) to 

generate msk and params, and then sends params to the adversary A. If A is a Type II 
adversary, the challenger also sends msk to it. 

Phase 1. In this phase, A can adaptively query the following oracles: 
(1) Create( iID ): This oracle allows A to create a new participant with identity iID . On input 

an identity iID , the challenger generates a private/public key pair (SKi, PKi) for iID and then 
outputs PKi. For simplicity, we assume that the following oracles only respond to an identity 
which has been created. 

 (2) ReplacePublicKey( iID , iPK ′ ): On input an identity iID and a value iPK ′ , the challenger 
replaces the current public key of the identity iID with iPK ′ . This oracle is only queried by the 
Type-I adversary. It models the ability of a Type-I adversary to convince a legitimate 
participant to use a false public key and thus captures the public key replacement attacks. 

(3) Certificate( iID ): On input an identity iID , the challenger outputs a certificate iCert by 
running the algorithm CertGen(params, msk, iID , iPK ). If A has replaced the participant i’s 
public key, it can not request i’s certificate. This restriction is imposed due to the fact that A 
can not obtain an illegal certificate of a replaced public key. The Type II adversary need not 
make such query, since it can generate a certificate for any participant by itself. 

(4) Corrupt( iID ): On input an identity iID , the challenger responds with the private 
key iSK associated with iID . Here, A is not allowed to query this oracle on any identity for 
which the public key has been replaced. This restriction is owing to the fact that it is 
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unreasonable to expect the challenger to return a private key of a participant for which it does 
not know the private key. 

(5) Send( ,
n
i j∏ , M): A can send a message M of its choice to an oracle, say ,

n
i j∏ , in which 

case participant i assumes that the message has been sent by participant j. A may also make a 
special Send query with M = λ to an oracle ,

n
i j∏ , which instructs i to initiate a protocol run with 

j. An oracle is an initiator if the first message it has received is λ. If an oracle does not receive 
a message λ as its first message, then it is a responder oracle. Here, we require i j≠ , i.e. a 
participant can not run a session with itself. 

(6) Reveal( ,
n
i j∏ ): On input an oracle ,

n
i j∏ , the challenger outputs the session key held by 

,
n
i j∏ to A.  

Test. At some point, A  asks a single Test query on a fresh oracle ,
T
I J∏ (see Definition 1). To 

respond, the challenger flips a random coin {0,1}b∈ , and returns the session key ,
T
I JSK held 

by ,
T
I J∏ if 0b = or a random sample from the distribution of the session key if 1b = . 

Phase 2. In this phase, A continues to issue a sequence of queries as in Phase 1.  
Guess. Finally, A outputs a guess {0,1}b′∈ . We say that A wins the game if b b′ = and the 

following conditions are simultaneously satisfied: (1) A can not make a Reveal query to the 
test oracle ,

T
I J∏ or ,

T
J I∏ who has a matching conversation with ,

T
I J∏ (if any); (2) A cannot make 

a Certificate query on the identity JID if it is a Type I adversary; (3) A cannot make a Corrupt 
query on the identity JID if it is a Type II adversary. A’s advantage to win the above game is 
denoted to be Adv (A) = |Pr [ b b′ = ]-1/2|. 

Definition 1. An oracle ,
n
i j∏ is said to be fresh if (1) ,

n
i j∏ has accepted the request to establish 

a session key; (2) ,
n
i j∏ has not been revealed; (3) there is no matching conversation of 

session ,
n
i j∏ has been revealed; (4) A has never requested the certificate of the participant j if it 

is a Type I adversary; (5) A has never requested the private key of the participant j if it is a 
Type II adversary.   

Definition 2. A certificate-based AKA protocol is said to be secure if (1) In the presence of 
the adversary on ,

n
i j∏ and ,

m
j i∏ , both oracles always agree on the same session key, and the key 

is distributed uniformly at random; (2) For any adversary A, Adv (A) is negligible. 
Remark 1.The above definition allows the Type I adversary to request both the private key 

and certificate of the participant I and the Type II adversary to request the private key of the 
participant I , thus it covers the security properties of Key-compromise impersonation 
resilience , Partial forward secrecy and CA forward secrecy. Furthermore, similarly to [6], if a 
certificate-based AKA protocol is secure under Definitioin 2, it achieves the security 
properties of Known-key security, Unknown key-share resilience, Partial forward secrecy and 
Key control. 

4. Attacks on the Existing Certificate-Based AKA Protocols 
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For ease of representation, we first establish the common notations used in the existing 
certificate-based AKA protocols. In all these protocols, the CA has master key *

qs Z∈ and 
master public key pubP sP= . The tuple 1 2, ,{ , , }G G e q P is defined as in Section 2, l N∈ denotes 
the bit-length of the shared session key. We will need the following hash functions and key 
derivation function: H1: *

1 1{0,1}G G× → , 1H ′ : {0,1}* × G1 → G1, kdf :{0,1} {0,1}* l→ .  
In Table 1, we give a summary of user parameters for each of the protocols, where *

U qx Z∈  
and Udata denotes a string which includes the user U’s public key UPK and identity UID . 

 
Table1. Parameters for user U 

Protocol UPK  USK UCert  

Wang-Cao’s [27] Ux P  Ux  1 ,( )pub UsH P data  

Lim et al.’s [28] Ux P  Ux  1 ,( )pub UsH P data  

Luo et al.’s [29] U pubx P  Ux  ( )1 ,U Us IDH PK′  
 

4.1 Wang-Cao’s certificate-based AKA protocol 
In Wang-Cao’s protocol [27], Alice (A) and Bob (B) agree on a session key as follows. 

(1) Alice chooses a random value *
qa Z∈ and sends AT aP= to Bob. 

(2) Bob chooses a random value *
qb Z∈ and sends BT bP= to Alice. 

(3) Alice computes 1( , )B pub BQ H P data= , and then two shared secrets
1AK and

2AK as 

1
( , )pub B BA e P PKK aQ= + ,

2
( , )A B Ae T SK = , 

where ( )A A A A A AS Cert SK Q  s SK Q= + = + . 
(4) Bob computes 1( ),A pub AQ H P data= , and then two shared secrets

1BK and
2BK as 

1
( , )pub A AB e P PKK bQ= + ,

2
( , )B A Be T SK =  , 

where ( )B B B B B BS Cert SK Q  s SK Q= + = + . 
(5) Alice and Bob respectively compute the shared session keys as 

1 2
|( B | || || )|| BA AA KK kdf KA aT=  ,

2 1
||( || | )| || B BB AKK kdf A B bTK= . 

Attack. We show that if one of Alice and Bob’s public keys has been replaced by an 
adversary Eve, then Wang-Cao’s protocol is vulnerable to a basic impersonation attack.  

Assume that Eve has replaced Bob’s public key PKB with *
BPK = pubP Pβ− + , where *

qZβ ∈ . 

She impersonates Bob to Alice by choosing a random value *
qb Z∈ and sends  BT bP= to Alice. 

Alice computes
1AK = e ( pubP + *

BPK , *
BaQ ) *,( )BAe T Qβ= ,

2
( , )A B Ae T SK =  = e ( pubP + APK , AbQ ), 

where *
1

* ( ),puB BbQ dataH P= . It then derives the session key 
1

||( || ||=A AK kdf A B K  
2

|| )A BK aT . 
As Eve chooses both β and b, she can compute

1AK ,
2 1
=A BK K and BaT = AbT , and thus the 

session key AK . Therefore, it succeeds in impersonating Bob to establish a session with Alice. 
Wang-Cao’s protocol is also vulnerable to a MITM attack. As the above attack, Eve 

succeeds in impersonating Bob to establish a session with Alice. In the same way, Eve also can 
impersonate Alice to establish a session with Bob. Obviously, neither Alice nor Bob knows 
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that any attack has been carried out, and both of them believe that they have established a 
session with each other. In fact, each of them has established a session with Eve.  

4.2 Lim et al.’s certificate-based AKA protocol 
To have the property of resistance to leakage of ephemeral secret keys, Lim et al. [28] 
modified Wang-Cao’s protocol by incorporating A BSK SK P into the session key. In their 
modified protocol, Alice and Bob respectively compute the session key as follows: 

1 2
|| || || ||( || )A B AA BAK kdf A B aT SKK PKK= ,

2 1
( |||| | )| ||| |B AB B ABK kdf A B bT SKK PKK= . 

Lim et al. claimed that their protocol has resistance to all non-trivial secret exposures. 
However, it is vulnerable to a key compromise impersonation attack. The concrete attack is 
almost as same as our presented attack against Wang-Cao’s protocol. The only difference is 
that Eve now is equipped with Alice’s private key ASK . Assume that Eve has replaced Bob’s 
public key BPK with *

BPK  pubP Pβ= − + , where *
qZβ ∈ . Then Alice will compute the session 

key
1 2

*|| || || || || )( A A BBAA K KK kdf A B aT SK PK= . As Eve knows ASK , she can compute 
*
BASK PK  and then the session key AK . Therefore, Eve is able to impersonate Bob to establish 

a session with Alice. 

4.3 Luo et al.’s certificate-based AKA protocol 
In Luo et al.’s  protocol [29], Alice and Bob agree on a session key as follows. 

(1) Alice chooses a random value *
qa Z∈ and sends AT aP= to Bob. 

(2) Bob chooses a random value *
qb Z∈ and sends BT bP= to Alice. 

(3) Alice computes three shared secrets
1AK ,

2AK and
3AK as 

1AK ,( )B Ae T S= ,
2AK ( , )a

B Be PK Q= ,
3AK | ||| || B A BA B aT SK PK= , 

where A A AS SK Cert= = A ASK sQ and 1( , )B B BQ IDH PK′= .  
(4) Bob computes three shared secrets

1BK ,
2BK and

3BK as 

1
( , )B A Be T SK = ,

2
( , )B

b
A Ae PK QK = ,

3
|| || ||A B AB A B bT SKK PK= , 

where B B BS SK Cert= = B BSK sQ and 1 ,( )A A AQ IDH PK′= . 
(5) Alice and Bob compute respectively the shared session keys as 

1 2 3
( || || || | )|AA A A ABK kdf T T K K K= ,

2 1 3
( || || || | )|BB A B BBK kdf T T K K K= . 

Attack. We first show that Luo et al.’s protocol is vulnerable to a key compromise 
impersonation attack if considering PKR attack.  

Assume that Eve has replaced Bob’s public key BPK with *
BPK Pβ= and also has access to 

Alice’s private key ASK , where *
qZβ ∈ . She impersonates Bob to Alice by choosing a random 

value *
qb Z∈ and sends BT bP= to Alice. Alice computes

1
,( )=A B AT SK e  = e(TB, A ASK Cert ), 

2

* * *,( ),) (a
B BAA Be eP Q TK K Qβ= = ,

3

*|| || ||A B A BA B aT SKK PK= *||| ||| A BAA B bT SK PK= , where 
* *

1( ),B B BIDQ H PK′= . It then derives the session key
1 2 3

( || || || | )|AA A A ABK kdf T T K K K= . As 
Eve chooses both β and b and knows ASK , she can compute

1AK ,
2AK and

3AK , and thus the 

session key AK . Therefore, Eve can impersonate Bob to establish a session with Alice. 
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We further show that Luo et al.’s protocol does not have resistance to leakage of ephemeral 
secret keys. Actually, if armed with a and b, it is easy for Eve to mount an outsider MITM 
attack against Luo et al.’s protocol. Suppose Eve respectively replaces Alice’s public keys 
with *

A pubPK Pα= and *
B pubPK Pβ= , where *, qZα β ∈ . Then we have 

1
,(  )A B Ae T SK = ,( )A Ae PK bQ= ,

2

* *,( )A B
a

BK PK Qe= ,
3

|| || ||BA AA B aTK PKβ= , 

1

* *,( )B A
b

AK PK Qe= ,
2

( , ) ( , )A B BB Be T S e PKK aQ= = ,
3

|| || ||AB BA B bTK PKα= . 
Obviously, Eve will have no problem calculating all the above shared secrets if she knows 

the values a and b . Thus, Eve will respectively establish the session key with Alice and Bob. 

5. Our Proposed Certificate-Based AKA Protocol 

5.1 Description of the protocol 
To overcome the weaknesses in the existing certificate-based AKA protocols, we propose a 
novel certificate-based AKA protocol which consists of the following four algorithms: 

(1) Setup: Input a security parameter k and the tuple 1 2{ , , , , }q e G G P  as defined in Section 2, 
the CA randomly chooses *

qs Z∈ as its master key msk and computes pubP sP= . It then chooses 

three hash functions H1: *{0,1} × 1G → 1G , H2: *{0,1} × *{0,1} × 1G × *
qZ → *

qZ , H3: {0,1}* × {0,1}*  

× 6
1G × 2G × 3

1G → {0,1}k and publishes the public parameters params = {k, q , e , 1G , 2G , P , 

pubP , 1H , 2 3, }H H . 
(2) UserKeyGen: Given the public parameters params, a userU with identity UID randomly 

chooses *
U qx Z∈ as his private key USK and computes his public key U UPK x P= . 

(3) CertGen: Given the public parameters params, the master key msk s= and a user U’s 
identity UID and public key UPK , the CA computes 1( , )U U UQ H ID PK= and then the user U’s 
certificate U UCert sQ= .  

(4) KeyAgreement: Assume that a participant A with identity AID has private key ASK  , 
public key APK and certificate ACert while a participant B with identity BID has private key 

BSK , public key BPK and certificate BCert . A and B run the protocol in the following steps: 
 A randomly chooses *

qa Z∈ , computes AR aP= and 2 ( , , , )A A B A AW H ID ID Cert SK P= ; then 
A sends ( , , )A A AID R W to B.  

After receiving ( , , )A A AID R W , B randomly chooses *
qb Z∈ , computes BR bP= and BW = 2H  

( AID , BID , BCert , BSK ) P ; then B sends ( , , )B B BID R W  to A. 
Then both A and B could compute their shared secrets as follows: 
A computes 

1
( , )A B B pub AK e R Q aP Cert= + + ,

2 2 ( , , , )A A B A B A A BK SK PK H ID ID Cert SK W= + , 

3A B A BK aPK SK R= + ,
4A BK aR= . 

B computes 
1

( , )B A A pub BK e R Q bP Cert= + + ,
2 2 ( , , , )B B A A B B B AK SK PK H ID ID Cert SK W= + , 

3B A B AK bPK SK R= + ,
4B AK bR= . 
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Thus A and B could respectively compute their shared session key as 
1 2 3 43 ( , , , , , , , , , , , )AB A B A B A B A B A A A AK H ID ID PK PK R R W W K K K K= , 

1 2 3 43 ( , , , , , , , , , , , )BA A B A B A B A B B B B BK H ID ID PK PK R R W W K K K K= . 
It is easy to deduce that  

1AK = ( , )B B Ae sR sQ aP Q+ + = ( , )pub B A Ae bP Cert R Q+ + =
1BK , 

2AK = 2 2( , , , ) ( , , , )A B A B A A A B B BSK SK P+H ID ID Cert SK H ID ID Cert SK P =
2BK , 

3 3A B A B A A BK aSK P SK bP SK R bPK K= + = + = , 

4A BK aR= = abP =
4BK . 

Thus, AB BAK = K K= . 

5.2. Security analysis  
We prove the security of our proposed certificate-based AKA protocol as follows. 

Lemma 1. In the presence of an adversary on ,
n
i j∏ and ,

m
j i∏ , both oracles always agree on the 

same session key, and the key is uniformly distributed at random. 
Proof. From the correction analysis of out protocol in Section 5.1, we know if two oracles 

are matching, then both of them have the same session key. Since *, qa b Z∈ are randomly 
selected during the protocol excution, the session key can be considered as the output of the 
hash function H3 on a random input. Based on the properties of cryptographic hash functions, 
the session key is uniformly distributed. 

Lemma 2. Assuming that H1 ~ H3 are random oracles and A1 is a Type I adversary against 
our proposed protocol with advantageε . Then there exists an algorithm C to solve the BDH 

problem in G1 with advantage
3

2
c s Hq q q
εε ′ ≥ , where cq ,

3Hq and sq respectively denote the 

maximal number of A1’s queries to the oracle Create, A1’s queries to the random oracle H3 
and sessions that each participant may be involved in. 

Proof. Suppose that the algorithm C is given a random instance ( , , , )P aP bP cP of the BDH 
problem. In order to use the adversary A1 to compute ( , )abce P P , the algorithm C needs to 
simulate a challenger and all oracles for A1.  

In the setup phase, C sets pubP aP= and sends the public parameters params = {k, q, e, G1, G2, 

P, Ppub, H1, H2, H3} to A1, where H1 ~ H3 are random oracles controlled by C. Furthermore, 
C randomly chooses distinct I, J ∈[1, cq ] and T ∈[1, sq ].  

During the query-answer phase, the algorithm C responds A1’s various queries as follows: 
H1( iID , iPK ): C maintains an initially empty list L1 consisting of tuples ( , , )i i iID u Q . On 

receiving a query H1( iID , iPK ), C answers iQ if ( , , )i i iID u Q is on the list L1. Else if i JID ID= , 
C sets iQ = bP , puts a new tuple ( , , )i iID Q⊥ in the list L1 and returns iQ . Otherwise, C randomly 
chooses *

i qu Z∈ , computes i iQ u P= , puts a new tuple ( , , )i i iID u Q in the list L1 and returns iQ .  
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H2( iID , jID , iCert , iSK ): C maintains an initially empty list 2L consisting of tuples ( iID , 

jID , iCert , iSK , ,
n
i jw , ,

n
i jW ). On receiving such a query, C answers ,

n
i jw if ( iID , jID , iCert , iSK , 

,
n
i jw , ,

n
i jW ) is on the list 2L . Otherwise, C randomly chooses ,

n
i jw *

qZ∈ , computes , ,
n n

i j i jW w P= , 

puts a new tuple ( iID , jID , iCert , iSK , ,
n
i jw , ,

n
i jW ) in the list 2L and returns ,

n
i jw . 

H3( A
iID , B

iID , A
iPK , B

iPK , A
iR , B

iR , A
iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ): C maintains an initially 

empty list 3L consisting of tuples ( A
iID , B

iID , A
iPK , B

iPK , A
iR , B

iR , A
iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , 

ih ). On receiving such a query, if ( A
iID , B

iID , A
iPK , B

iPK , A
iR , B

iR , A
iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K ,  

ih ) is on the list 3L , C returns ih as the answer. Otherwise, C does as follows: 
(1) If there exists a tuple ( ,

n
i j∏ ,IDi, IDj,PKi,PKj, ,

n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ) on the 

list sL (maintained by the oracle Send below) such that ,
n
i jK ≠⊥, i JID ID= and  

− ,
n
i j∏ is an initiator and A

i iID ID= , B
i jID ID= , A

iPK = iPK , B
iPK = jPK , A

iR = ,
n
i jR , B

iR = ,
n
j iR , 

,
A n

i i jW W= , B
iW = ,

n
j iW ,

1i
K = , ,( , )n n

j i j i j pub ie R Q r P Cert+ + ,
2i

K = i jSK PK + 2H ( iID , jID , iCert , 

iSK ) ,
n
j iW ,

3i
K = ,

n
i j jr PK + ,

n
i j iSK R ,

4i
K = , ,

n n
i j j ir R , or 

− ,
n
i j∏ is a responder and A

i jID ID= , B
i iID ID= , A

iPK = jPK , B
iPK = iPK , A

iR = ,
n
j iR , B

iR = ,
n
i jR , 

A
iW ,

n
j iW= , B

iW = ,
n

i jW ,
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + ,

2i
K = i jSK PK + 2H ( iID , jID , iCert , 

iSK ) ,
n

i jW ,
3i

K = ,
n

i j jr PK + ,
n

i j iSK R ,
4i

K = , ,
n n

i j j ir R , 

then C checks whether
4, ,, ( ,( ))n n

i j j i ie R R e K P= holds. If it holds, C sets ,
n

i i jh K= , puts a new 

tuple ( A
iID , B

iID , A
iPK , B

iPK , A
iR , B

iR , A
iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih ) in the list 3L and returns 

ih as the answer. Else, it randomly chooses {0,1}k
ih ∈ , puts a new tuple( A

iID , B
iID , A

iPK , 
B
iPK , A

iR , B
iR , A

iW , B
iW ,

1i
K ,

2i
K ,

3i
K ,

4i
K , ih ) in the list 3L and returns ih as the answer. 

 (2) Else if there exists a tuple ( ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ) on 

the list sL such that ,
n
i jK ≠⊥, i JID ID≠ and  

− ,
n
i j∏ is an initiator and A

i iID ID= , B
i jID ID= , A

iPK = iPK , B
iPK = jPK , A

iR = ,
n
i jR , B

iR = ,
n
j iR , 

,
A n

i i jW W= , B
iW = ,

n
j iW ,

1i
K = , ,( , )n n

j i j i j pub ie R Q r P Cert+ + ,
2i

K = i jSK PK + 2H ( iID , jID , iCert , 

iSK ) ,
n
j iW ,

3i
K = ,

n
i j jr PK + ,

n
i j iSK R ,

4i
K = , ,

n n
i j j ir R , or 

− ,
n
i j∏ is a responder and A

i jID ID= , B
i iID ID= , A

iPK = jPK , B
iPK = iPK , A

iR = ,
n
j iR , B

iR = ,
n
i jR , 

A
iW ,

n
j iW= , B

iW = ,
n

i jW ,
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + ,

2i
K = i jSK PK + 2H ( iID , jID , iCert , 

iSK ) ,
n

i jW ,
3i

K = ,
n

i j jr PK + ,
n

i j iSK R ,
4i

K = , ,
n n

i j j ir R , 

then C sets ih = ,
n
i jK , puts a new tuple ( A

iID , B
iID , A

iPK , B
iPK , A

iR , B
iR , A

iW , B
iW ,

1i
K ,

2i
K , 

3i
K ,

4i
K , ih ) in the list 3L and returns ih as the answer. 

(3) Otherwise, it randomly chooses {0,1}k
ih ∈ , puts a new tuple ( A

iID , B
iID , A

iPK , B
iPK , A

iR , 
B
iR , A

iW , B
iW ,

1i
K ,

2i
K ,

3i
K ,

4i
K , ih ) in the list 3L and returns ih as the answer. 
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Create( iID ): C maintains an initially empty list userL consisting of tuples of the form 
( , , )i i iID SK PK . We suppose that all the Create queries are distinct. On receiving such a query, 
C returns iPK as the answer if ( , , )i i iID SK PK is on the list userL . Otherwise, C randomly 
chooses *

i qx Z∈ as the private key iSK for the identity iID , computes the corresponding public 
key i iPK x P= , puts a new tuple ( , , )i i iID SK PK in the list userL and then returns iPK . 

Certificate( iID ): On receiving such a query iID , C aborts if i JID ID= . Otherwise, 
C simulates a query H1( iID , iPK ) to obtain a tuple ( , , )i i iID u Q , computes i i pubCert u P=  and 
then returns iCert as the answer. 

Corrupt( iID ): On receiving such a query iID , C searches for the corresponding 
tuple ( , , )i i iID SK PK in the list userL and returns iSK as the answer. 

ReplacePublicKey( iID , iPK ′ ): On receiving such a query, C searches for the corresponding 
tuple ( , , )i i iID SK PK in the list userL and replaces the tuple with ( , , )i iID PK ′⊥ . 

Send( ,
n
i j∏ , M): C maintains an initially empty list sL consisting tuples ( ,

n
i j∏ , IDi, IDj, PKi, 

PKj, ,
n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ). On receiving query Send( ,

n
i j∏ , M) (if M = (M1, M2) ≠ λ, 

C sets ,
n
j iR = M1, ,

n
j iW = M2), C returns , ,( , )n n

i j i jR W as the answer if the corresponding tuple ( ,
n
i j∏ , 

IDi, IDj, PKi, PKj, ,
n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ) is alreadly on the list sL . Otherwise, 

C does as follows:     
(1) If , ,

n T
i j I J∏ =∏ , C  first obtains a tuple ( iID , jID , iCert , iSK , ,

n
i jw , ,

n
i jW ) in the list 2L (after 

querying H2( iID , jID , iCert , iSK ) if necessary), and sets , ,
n n
i j i jK r= =⊥ , ,

n
i jR cP= , ,

n
j iR = M1 

and ,
n
j iW = M2. It then puts a new tuple ( ,

n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , 

,
n
i jK ) in the list sL and returns , ,( , )n n

i j i jR W as the answer. 

(2) Otherwise, C first obtains a tuple ( iID , jID , iCert , iSK , ,
n
i jw , ,

n
i jW )in the list 2L (after 

querying H2( iID , jID , iCert , iSK ) if necessary), randomly chooses , {0,1}n k
i jK ∈ , *

,
n

i j qr Z∈ , and 

sets , ,
n n
i j i jR r P= , ,

n
j iR = M1 and ,

n
j iW = M2. It then puts a new tuple ( ,

n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jw , 

,
n

i jr , ,
n

i jW , ,
n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ) in the list sL and returns , ,( , )n n

i j i jR W  as the answer. 

Reveal( ,
n
i j∏ ): On receiving such a query, C first searches for a tuple ( ,

n
i j∏ , IDi, IDj, PKi, 

PKj, ,
n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ) in the list sL . If ,

n
i jK ≠⊥, C  returns ,

n
i jK as the answer. 

Otherwise, C searches for a tuple ( , , )i i iID SK PK in userL and does as follows:  
(1) If , ,

n T
i j I J∏ =∏ , or ,

n
i j∏ is the oracle who is a matching conversation with ,

T
I J∏ , C aborts.  

(2) Else if i JID ID= , 
− ,

n
i j∏ is an initiator and there is a tuple( A

iID , B
iID , A

iPK , B
iPK , A

iR , B
iR , A

iW , B
iW ,

1i
K ,

2i
K , 

3i
K ,

4i
K , ih ) in 3L such that iID = A

iID , jID = B
iID , iPK = A

iPK , jPK = B
iPK , ,

n
i jR = A

iR , 
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,
n
j iR = B

iR , ,
n A

i j iW W= , ,
n
j iW = B

iW ,
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + ,

2i
K = i jSK PK  + 2H ( iID , 

IDj, iCert , iSK ) ,
n
j iW ,

3i
K = ,

n
i j jr PK + ,

n
i j iSK R ,

4i
K = , ,

n n
i j j ir R , or  

− ,
n
i j∏ is a responder and there is a tuple ( A

iID , B
iID , A

iPK , B
iPK , A

iR , B
iR , A

iW , B
iW ,

1i
K ,

2i
K , 

3i
K ,

4i
K , ih ) in 3L such that jID = A

iID , iID = B
iID , jPK = A

iPK , iPK = B
iPK , ,

n
j iR = A

iR , 

,
n
i jR = B

iR , ,
n A
j i iW W= , ,

n
i jW = B

iW ,
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + ,

2i
K = i jSK PK + 2H ( iID ,

jID , iCert , iSK ) ,
n
j iW ,

3i
K = ,

n
i j jr PK + ,

n
i j iSK R ,

4i
K = , ,

n n
i j j ir R ,  

Then C checks whether
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + holds. If it holds, C sets ,

n
i jK ih=  

and returns the session key ,
n
i jK as the answer. Otherwise, C randomly chooses ,

n
i jK ∈ 

{0,1}k and returns ,
n
i jK as the answer. 

− Otherwise, C randomly chooses , {0,1}n k
i jK ∈ and returns ,

n
i jK as the answer. 

(3) Else if i JID ID≠ , 
− if ,

n
i j∏ is an initiator  and there is a tuple( A

iID , B
iID , A

iPK , B
iPK , A

iR , B
iR , A

iW , B
iW ,

1i
K ,

2i
K , 

3i
K ,

4i
K , ih ) in 3L such that iID = A

iID , jID = B
iID , iPK = A

iPK , jPK = B
iPK , ,

n
i jR = 

A
iR , ,

n
j iR = B

iR , ,
n A

i j iW W= , ,
n
j iW = B

iW ,
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + ,

2i
K = i jSK PK + 2H (

iID , jID , iCert , iSK ) ,
n
j iW ,

3i
K = ,

n
i j jr PK + ,

n
i j iSK R ,

4i
K = , ,

n n
i j j ir R , C sets ,

n
i jK = ih and 

returns ,
n
i jK as the answer. 

− if ,
n
i j∏ is a responder and there is a tuple( A

iID , B
iID , A

iPK , B
iPK , A

iR , B
iR , A

iW , B
iW ,  

1i
K ,

2i
K , 

3i
K ,

4i
K , ih ) in 3L such that jID = A

iID , jID = B
iID , jPK = A

iPK , iPK = B
iPK , ,

n
j iR = 

A
iR , ,

n
i jR = B

iR , ,
n A
j i iW W= , ,

n
i jW = B

iW ,
1i

K = , ,( , )n n
j i j i j pub ie R Q r P Cert+ + ,

2i
K = i jSK PK + 2H (

iID , jID , iCert , iSK ) ,
n
j iW ,

3i
K = ,

n
i j jr PK + ,

n
i j iSK R ,

4i
K = , ,

n n
i j j ir R , C sets ,

n
i jK = ih and 

returns ,
n
i jK as the answer. 

− Otherwise, C randomly chooses , {0,1}n k
i jK ∈ and returns ,

n
i jK as the answer. 

At the test phase, A1 may ask a single Test query on some oracle. If A1 does not query on the 
oracle ,

T
I J∏ , then C aborts. Otherwise, C simply returns a random bit {0,1}kx∈ . 

Once A1 finishes its queries and returns its guess bit which is ignored by C. It is clear that if 
A1 can win the game with non-negligible advantageε , then there must exist a tuple ( ,

T
I J∏ , 

IID , JID , IPK , JPK , ,
T
I Jw ,⊥, ,

T
I JW , ,

T
J IW , cP , ,

T
J IR ,⊥) in the list sL . According to the above 

simulation, if ,
T
I J∏ is an initiator oracle, then there exist a tupe ( A

iID , B
iID , A

iPK , B
iPK , A

iR , 
B
iR , A

iW , B
iW ,

1i
K ,

2i
K ,

3i
K ,

4i
K , ih ) in the list 3L such that A T

i I,JR R cP= = , B
iR = ,

T
J IR = M1( if M 

is the received message, then it holds that M1 = ,
T
J IR ); else if ,

T
I J∏ is a responder, then there exist 

a tuple ( A
iID , B

iID , A
iPK , B

iPK , A
iR , B

iR , A
iW , B

iW ,
1i

K ,
2i

K ,
3i

K ,
4i

K , ih ) in the list 3L such 

that B T
i I,JR R cP= = , A

iR = ,
T
J IR = M1 ( if M is the received message, then it holds that M1 = ,

T
J IR ). 

For both cases, we have that
1i

K = 1( , )J pub Ie Q PM c Cert+ + . 
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It is easy to deduce that 
1i

K = 1( , )J pub Ie Q PM c Cert+ +  
= 1( , )Ie bP acPM u aP+ +  
= 1( , ) ( , ) ( , )abc

Ie P P e bP u MaP e acP 1( , )Ie u aPM   
=

4
( , ) ( , ) ( , )abc

I ie P P e bP u aP e K aP 1( , )Ie u aPM , 
where Iu can be retrieved from the tuple ( , , )I I IID u Q in the list L1. 
As C can compute Z =

4 1( , ) ( , ) ( , )I i Ie bP u aP e K aP e u aPM , it can return
1

/iK Z  as the solution 
to the given BDH problem.  

We now derive C’s advantage in solving the BDH problem. From the above simulation, C 
fails if any of the following events occurs: (1) E1: A1 does not ,

T
I J∏ as the test oracle; (2) E2: A1 

makes a query Certificate ( JID ); (3) E3: A1 makes a query Reveal ( ,
T
I J∏ ). We clearly have 

that Pr [¬E1] ≥ 21/( )c sq q as I, J ∈[1, cq ] and T ∈[1, sq ]. In addition, as ¬E1 implies ¬E2 ∧ ¬E3, 

we have that Pr [¬E1 ∧ ¬E2 ∧ ¬E3]≥
3

2

1

c s Hq q q
. 

Since C selects the correct tuple from 3L with probability
3

1/ Hq , we have that the advantage 

of C in solving the BDH problem is
3

2
c s Hq q q
εε ′ ≥ . 

Lemma 3. Assuming that H1 ~ H3 are random oracles and A2 is a Type II adversary  against 
our proposed protocol with advantageε . Then there exists an algorithm C to solve the CDH 

problem in G1 with advantage
3

2
c s Hq q q
εε ′ ≥ , where cq ,

3Hq and sq respectively denote the 

maximal number of A2’s queries to the oracle Create, A2’s queries to the random oracle H3 
and sessions that each participant may be involved in. 

Proof. Suppose that the algorithm C is given a random instance ( , , )P aP bP of the CDH 
problem. In order to use the adversary A2 to compute abP , the algorithm C needs to simulate a 
challenger and all oracles for A2.  

In the setup phase, the algorithm C chooses master key *
qs Z∈ and computes pubP sP= , and 

sends the public parameters params = {k, q, e, G1, G2, P, Ppub, H1, H2, H3} and s to A2, where 
H1 ~ H3 are random oracles controlled by C. Furthermore, C randomly chooses distinct I, J 
∈[1, cq ] and T ∈[1, sq ].  

During the query-answer phase, the algorithm C responds A2’s various queries as follows: 
H1( iID , iPK ): C maintains an initially empty list L1 consisting of tuples ( , , )i i iID u Q . On 

receiving a query H1( iID , iPK ), C answers iQ if ( , , )i i iID u Q is on the list L1. Otherwise, 
C randomly chooses *

i qu Z∈ , computes i iQ u P= , puts a new tuple ( , , )i i iID u u P in the list L1 and 

returns iQ .  



                            

 15

Create( iID ): C answers A2’s Send( ,
n
i j∏ , M) query like it does in Lemma 2, the only 

difference is that if i JID ID= it sets the private key iSK =⊥ , iPK aP= , puts ( , , )i iID PK⊥ in the 
list userL and returns iPK as the answer. In the other cases, C does the same as in Lemma 2. 

Corrupt( iID ):On receiving such a query IDi, if i JID ID= , C aborts; If i JID ID≠ , C searches 
for the corresponding tuple ( , , )i i iID SK PK in the list userL and returns iSK as the answer. 

Send( ,
n
i j∏ , M): C answers A2’s Send( ,

n
i j∏ , M) query like it does in Lemma 2, the only 

difference is that if , ,
n T
i j I J∏ =∏ it sets , ,

n n
i j i jK r= =⊥  , ,

n
i jR bP= , ,

n
j iR = M1 and ,

n
j iW = M2, puts a 

new tuple ( ,
n
i j∏ , IDi, IDj, PKi, PKj, ,

n
i jw , ,

n
i jr , ,

n
i jW , ,

n
j iW , ,

n
i jR , ,

n
j iR , ,

n
i jK ) in the list sL and 

returns , ,( , )n n
i j i jR W as the answer. In the other cases, C does the same as in Lemma 2. 

C answers A2’s queries to the oralces H2, H3 and Reveal as it does in Lemma 2 and we do 
not elaborate on them here. 

At the test phase, A2 may ask a single Test query on some oracle. IfA2 does not query on the 
oracle ,

T
I J∏ , then C aborts. Otherwise, C simply returns a random bit {0,1}kx∈ . 

Once A2 finishes its queries and returns its guess bit which is ignored by C. It is clear that if 
A2 can win the game with non-negligible advantageε , then there must exist a tuple ( ,

T
I J∏ , 

IID , JID , IPK , JPK , ,
T
I Jw ,⊥, ,

T
I JW , ,

T
J IW , bP , ,

T
J IR ,⊥) in the list sL . According to the above 

simulation, if ,
T
I J∏ is an initiator oracle, then there exist a tupe ( A

iID , B
iID , A

iPK , B
iPK , A

iR , 
B
iR , A

iW , B
iW ,

1i
K ,

2i
K ,

3i
K ,

4i
K , ih ) in the list 3L such that B

iPK = JPK = aP , A
iR = ,

T
I JR = bP ; 

else if ,
T
I J∏ is a responder and there is a tuple ( A

iID , B
iID , A

iPK , B
iPK , A

iR , B
iR , A

iW , B
iW ,

1i
K , 

2i
K ,

3i
K ,

4i
K , ih ) in the 3L such that A

iPK = JPK = aP , B
iR = ,

T
I JR = bP . For both cases, 

C returns
3 ,

T
i I J IK SK R− as the solution to the given CDH problem, where ISK can be retrieved 

from the tuple ( , , )I I IID SK PK in userL . It is easy to see that
3 ,

T
i I J IabP K SK R= − as

3i
K  

, ,
T T
I J J I J Ir PK SK R= + . 

We now derive C’s advantage in solving the CDH problem. From the above simulation, C 
fails if any of the following events occurs: (1) E1: A2 does not choose ,

T
I J∏ as the test oracle; (2) 

E2: A2 makes a query Corrupt ( JID ); (3) E3: A2 makes a query Reveal ( ,
T
I J∏ ). We clearly 

have that Pr [¬E1] ≥ 21/( )c sq q as I, J ∈[1, cq ] and T ∈[1, sq ]. In addition, as ¬E1 implies ¬E2 ∧ 

¬E3, we have that Pr [¬E1 ∧ ¬E2 ∧ ¬E3]≥
3

2

1

c s Hq q q
. 

Since C selects the correct tuple from 3L with probability
3

1/ Hq , we have that the advantage 

of C in solving the CDH problem is
3

2
c s Hq q q
εε ′ ≥ . 

5.3. Further security considerations 
We further argue that our protocol satisfies the following security properties. 
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(1) Perfect forward secrecy: Suppose that A and B established a session key K using our 
protocol, and if their private keys ASK and BSK and cetificates CertA and CertB wre 
compromised. Let a and b be the ephemeral secret keys used by A and B during the 
establishment of their session key, respectively. It is easy to see that to compute the previously 
established session key K , the adversary who owns ASK , BSK , AR aP= and BR bP= for 
unknown a and b must know the value of BaPK  or AbPK . However, it is difficult to compute 

BaPK or AbPK without the knowledge of a and b unless the adversary can sovle the DL 
problem. Thus, our protocol has perfect forward secrecy property. 

(2) Leakage of ephemeral secrets resilience: The leakage of ephemeral secrets does not 
enable an adversary to compute the session key. Specifically, an adversary obtains the 
ephemeral secrets a and b in any session between A and B, but it cannot compute

2AK = SKAPKB 

+ H2 (IDA, IDB, CertA, SKA) WB or
2BK = SKBPKA + H2 (IDA, IDB, CertB, SKB) WA. As

2AK =
2BK = 

2 ( , , , )B A A B B BSK SK P+H ID ID Cert SK H2 (IDA, IDB, CertA, SKA) P, the adversary must know at 
least one private key. Given A APK SK P= or B BPK SK P= , it is difficult to compute ASK or 

BSK unless it can sovle the DL problem. Thus, the adversary cannot compute the session key. 
(3) Key control: Since each participant generates a fresh ephemeral key as one of input used 

to compute the session key, one of the participants is unable to force the session key to be a 
preselected value. 

5.4. Comparison 
We next make a comparison between our new protocol and the previous three certificate-based 
AKA protocols [27-29]. 

We compare the protocols on computation cost, communication overhead and security. In 
the computation cost comparison, we mainly consider four major operations: bilinear pairing, 
exponentiation in the multiplicative group G2, multiplication in the additive group G1 and hash. 
Note that if G1 is a multiplicative group, then multiplication in G1 is then called exponentiation. 
For simplicity, we denote these operations by Bp, Exp, Mul and Ha respectively. In the 
communication cost comparison, communication overhead which is measured in terms of the 
number of group elements in G1 represents the length of the messages exchanged between two 
participants. In addition, “PKR attack” column indicates whether the protocol is secure under 
the PKR attack. Without considering pre-computation, the details of the compared protocols 
are listed in Table 2. 
 

Table 2. Comaprison of the CB-AKA protocols 
Protocols Bp Exp Mul Ha Communication overhead PKR attack 

[27] 2 0 3 1 1 no 
[28] 2 0 4 1 1 no 
[29] 2 1 3 1 1 no 
Ours 1 0 8 2 2 yes 

 
The efficiency of a pairing-based protocol always depends on the chosen curve. In [33], 

Boyen computes the estimated relative timings for all atomic asymmetric operations and the 
representation sizes for group elements when instantiated in super-singular curves with 80 bits 
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security (SS/80) and MNT curves with 80 bits security (MNT/80). In Table 3, we recall some 
relative data from [33].  

To make a much clearer comparison, Table 4 gives the concrete values of the computation 
cost and the communication cost for the compared protocols. Note that the costs of the pairings 
and the exponentiations in G2 are measured by the multiplications in G1. In addition, as the 
general hash operation is much more efficient than the multiplication in G1, the costs of the 
hash operations are ignored. 
 

Table 3. Timings needed to perform atomic operations and representation sizes of group elements 
Relative timings 

(1 unit = 1 multiplication in G1)
Representation sizes 

(bits) Curves 
Mul Exp Bp |G1| 

MNT/80 1 36 150 171 
SS/80 1 4 20 512 

 
Table 4. Performance comparison of the CB-AKA protocols 

Protocols Computation cost 
(1 unit = 1 multiplication in G1)

Communication cost 
(bits) 

[27] 303 171 
[28] 304 171 
[29] 339 171 

MNT/80 

Ours 158 342 
[27] 43 512 
[28] 44 512 
[29] 47 512 

SS/80 

Ours 28 1024 
 

From Table 2 and Table 4, we can see that although the exchanged message is one more 
group element than the previous protocols, our protocol is more efficient in computation 
performance. In addition and most importantly, our protocol can offer stronger security 
gurrantee as it can resist the PKR attack while others can not.  

6. Conclusion 
In this paper, we have shown that all the previous certificate-based AKA protocols are 
insecure under PKR attack. To improve security, we have proposed a new certificate-based 
AKA protocol and proved its security in the random oracle model. Compared with the 
previous protocols, the new protocol enjoys better computation performance while offering 
stronger security gurrantee. However, a limitation of our protocol is that its security can only 
be achieved in the random oracle model [32]. Therefore, it would be interesting to construct a 
secure certificate-based AKA protocol without random oracles. Furthermore, as our protocol 
is also constructed from the costly bilinear pairing, another open problem is to develop a 
certificate-based AKA protocol that does not depend on parings. 
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