
Cryptanalysis of Twister

Florian Mendel, Christian Rechberger, and Martin Schläffer
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Abstract. In this paper, we present a semi-free-start collision attack
on the compression function for all Twister variants with negligible com-
plexity. We show how this compression function attack can be extended
to construct collisions for Twister-512 slightly faster than brute force
search. Furthermore, we present a second-preimage and preimage attack
for Twister-512 with complexity of about 2384 and 2456 compression func-
tion evaluations, respectively.
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1 Introduction

In the NIST SHA-3 competition, many new hash function designs have been
submitted. NIST published a list of 51 first round candidates, and Twister [4,5]
is one of them. The next step is to reduce the list of 51 candidates to a small set
of finalists within the next few years. As an input to this selection process, we
describe several cryptanalytic results on Twister in this paper. Similar results
on the Whirlpool [1], Grøstl [15] and GOST [14] hash functions, or the Merkle-
Damg̊ard [3,11] constrution have been published in [10], [8,9] and [6]. Our results
on Twister are summarized in Table 1.

Table 1. Summary of cryptanalytic results on Twister

type of attack target hash size complexity memory

semi-free-start collision compression function all 28 -

collision hash function 512 2252 29

second preimage hash function 512 2384+s 210 + 264−s

preimage hash function 512 2456 210

In the remainder of the paper, we first give a description of Twister in Sec-
tion 2, outline a practical collision attack on its compression function in Sec-
tion 3, and give theoretical collision-, second preimage-, and preimage attacks in
Sections 4, 5, and 6, respectively. We summarize and conclude in Section 7.
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2 Description of Twister

The hash function Twister is an iterated hash function based on the Merkle-
Damg̊ard design principle. It processes message blocks of 512 bits and produces
a hash value of 224, 256, 384, or 512 bits. If the message length is not a multiple
of 512, an unambiguous padding method is applied. For the description of the
padding method we refer to [4] and [5]. Let m = m1‖m2‖ · · · ‖mt be a t-block
message (after padding). The hash value h = H(m) is computed as follows:

H0 = IV

Hi = f(Hi−1, mi) for 0 < i ≤ t

Ht+1 = f(Ht, C)
h = Ω(Ht+1) ,

where IV is a predefined initial value, C is the value of the checksum and Ω is
an output transformation. The checksum C is computed from the intermediate
values of the internal state after each Mini-Round. Note that while for Twister-
224/256 the checksum is optional it is mandatory for Twister-384/512.

The compression function f of Twister basically consists of 3 Maxi-Rounds.
Each Maxi-Rounds consist of 3 or 4 Mini-Rounds (depending on the output size
of Twister) and is followed by a feed-forward XOR-operation.

The Mini-Round of Twister is very similar to one round of the Advanced
Encryption Standard (AES) [13]. It updates an 8 × 8 state S of 64 bytes as
follows:

MessageInjection. A 8-byte message block M is inserted (via XOR) into the last
row of the 8 × 8 state S.

AddTwistCounter. A 8-byte block counter is xored to the second column of the
state S.

Fig. 1. The compression function of Twister-224/256

Fig. 2. The compression function of Twister-384/512
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Fig. 3. The output transformation of Twister

SubBytes. is identical to the SubBytes operation of AES. It applies an S-Box to
each byte of the state independently

ShiftRows. is a cyclic left shift similar to the ShiftRows operation of AES. It
rotates row j by (j − 1) (mod 8) bytes to the left.

MixColumns. is similar to the MixColumns operation of AES. It applies a 8 × 8-
MDS matrix A to each column of the state S. The matrix A and its inverse
B are given in Appendix A.

After the last message block and/or the checksum has been processed, the
final hash value is generated from the last chaining value Ht+1 by an output
transformation Ω (see Figure 3).

In the output transformation, two Mini-Rounds are applied to subsequently
output 64 bits of the hash value. The output stream consists of the XOR of the
first column of the state prior and after the two Mini-Rounds. This 64-bit output
stream continues until the full hash size has been received. For a more detailed
description of Twister we refer to [4] and [5].

3 Semi-Free-Start Collision for the Compression Function

In this section, we present a semi-free-start collision attack on the compression
function of Twister for all output sizes. The complexity to find a differential
characteristic is about 28 compression function evaluations. However, for each
differential characteristic, we can construct up to 264 message pairs and the
complexity to find one of these conforming message pairs is one.

In the attack we use the differential characteristic of Figure 4 for the first
Maxi-Round (3 Mini-Rounds) of Twister. The 3 Mini-Rounds are denoted by
r1, r2 and r3 and the state after the Mini-Round ri is denoted by Si and the
state after the corresponding feed-forward SF

i . The initial state or chaining value
is denoted by S0. In the attack we add a difference in message word M1 (8 active
bytes) to the state S0, which results in a full active state S1 after the first Mini-
Round r1. After the MixColumns transformation of the second Mini-Round r2,
the differences result in 8 active bytes of the last row of state S2, which can be
canceled by the message word M3 in the third Mini-Round r3.

The message differences and values for the state are found using a rebound
approach as proposed in [10]. Figure 5 shows the characteristic in detail. We start
with message word differences in M1 and M3 at states S′

1 and S2 (we do not use
differences in M2 to simplify the description of the attack). The differences can
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Fig. 4. Characteristic to construct a semi-free-start collision in the first Maxi-Round

Fig. 5. We start with differences in states S′
1 and S2 injected by message words M1

and M3, and propagate backward and forward (Step 1) to find a match for the S-box
of round r2 (Step 2)

be propagated backward and forward through the MixColumns transformation
with a probability of one (Step 1). Then, we simply need to find a match for the
resulting input and output differences of the SubBytes layer of round r2 (Step 2)
and propagate outwards.

Step 1. We start the attack with 8 active bytes in state S′′′
1 and S2 (injected

by message words M1 and M3) and compute backward and forward to two full
active states S′′

2 and S′′′
2 . This happens with a probability of one due to the

properties of the ShiftRows and MixColumns transformations. Note that we can
significantly reduce the complexity of the attack, if we first compute the full
active state S′′′

2 and then compute S′′
2 column by column to find a match for 8

S-boxes at once (Step 2).

Step 2. Next, we show how to find a match for the input/output differences of
the 64 active S-boxes of round r2. Note that for a single S-box, the probability
that a input/output differential exists is about one half, and for each valid in-
put/output differential we can assign at least two possible values to the S-box
(for more details we refer to [10]). Note that we can search for valid S-box dif-
ferentials for each column independently. Hence, we start by choosing a random
difference for the first active byte of S′′′

1 and compute the corresponding row of
S′′

2 . We find a valid differential match for these 8 S-boxes with a probability of
(1/2)8 = 2−8. If we find a match, we continue with the remaining active bytes.
Alltogether, this step has a complexity of less than 28 compression function
evaluations.

Once we have found a differential match for the SubBytes layer, we can choose
from at least 264 possible states for S′′

2 . Each of these states can be com-
puted forward and backward and results in a semi-free-start collision for one
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Maxi-Round. Further, this determines the state S0 as well as the values and
differences of M1 and M3 (we can freely choose the values of M2). Note that the
first Maxi-Round is the same for Twister-224/256 and Twister-384/512. Hence,
by constructing a semi-free-start collision for the first Maxi-Round we already
get a semi-free-start collision for the compression function of Twister-224/256
and Twister-384/512. Since we can find 28 semi-free-start collisions with a com-
plexity of 28 compression function evaluations, the average complexity to find
one semi-free-start collisions is one with negligible memory requirements. An
example for a semi-free start collision is given in 2.

Table 2. A colliding message pair (M, M∗) for the semi-free-start collision of the
first Maxi-Round (S3, S

∗
3 ) of Twister. The corresponding semi-free-start collision for

Twister-256 (with output transformation) is given by H(256) and H∗(256).

H0
A63215B04567E389 16D40B5ACFABED9D C0C4104853084862 C38990B8BEBF7BED

E936F9AF6406E35B F5BE6C8455626226 C6C9FA7B806B3BD1 E22C576CDE8ABDB5

H∗
0

A63215B04567E389 16D40B5ACFABED9D C0C4104853084862 C38990B8BEBF7BED

E936F9AF6406E35B F5BE6C8455626226 C6C9FA7B806B3BD1 E22C576CDE8ABDB5

ΔH0
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

M 0000000000000000 0000000000000000 0000000000000000

M∗ 309F4C5E31CAD0EE 0000000000000000 CF7CA0BD904331CB

ΔM 309F4C5E31CAD0EE 0000000000000000 CF7CA0BD904331CB

S3
8B040660A8F0C7BF 09EE0D5A362F769E B62FDC8118D186F2 96E6A8E0049B4BA7

5494AA985B53A83F B91DE273FA61A073 8082BCD3BB503820 56225FFB45DBA4F8

S∗
3
8B040660A8F0C7BF 09EE0D5A362F769E B62FDC8118D186F2 96E6A8E0049B4BA7

5494AA985B53A83F B91DE273FA61A073 8082BCD3BB503820 56225FFB45DBA4F8

ΔS3
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

H(256) DE6D957A627CEBBF 88326DBED4135BB0 2039C5411191AD47 A15703E5EA2E66A2

H∗(256) DE6D957A627CEBBF 88326DBED4135BB0 2039C5411191AD47 A15703E5EA2E66A2

ΔH(256) 0000000000000000 0000000000000000 0000000000000000 0000000000000000

4 A Collision Attack on Twister-512

In this section, we show how the semi-free-start collision attack on Twister-512
can be extended to the hash function. We first show how to construct collisions in
the compression function of Twister-512 with a complexity of 2223 compression
function evaluations. This collision attack on the compression function is then
extended to a collision attack on the hash function. The extension is possible by
combining a multicollision attack and a birthday attack on the checksum. The
attack has a complexity of about 2252 evaluations of the compression function
of Twister-512.

4.1 Collision Attack on the Compression Function

For the collision attack on the compression function of Twister-512 we can use
the characteristic of the previous section in the last Maxi-Round (see Figure 6).
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Fig. 6. The characteristic for the last Maxi-Round of Twister-512

Remember that in Twister-512 the 3 message words M6, M7 and M8 are injected
in the last Maxi-Round. Hence, we can use the first 5 message words M1 − M5

for a birthday match on 56 state bytes with a complexity of 28·56/2 = 2224. Since
the 8 bytes of the last row can always be adapted by using the freedom in the
(absolute) values of the message word M6, we only need to match 56 out of 64
bytes. It can be summarized as follows:

1. Compute 2224 semi-free-start collisions for the last Maxi-Round of Twister-
512 and save them in a list L. This has a complexity of about 3 · 2224 Mini-
Round computations. Note that we can choose from 23·64 = 2192 differences
in M6, M7 and M8 in the attack. Furthermore, by varying the values of M7,
we get additional 264 degrees of freedom. Hence, we can construct up to 2256

semi-free-start collisions for the last Maxi-Round.
2. Compute the input of the last Maxi-Round by going forward and check for

a match in the list L. After testing about 2224 candidates for the input of
the last Maxi-Round we expect to find a match in the list L and hence, a
collision for the compression function of Twister-512. Finishing this step of
the attack has a complexity of about 2224 Mini-Round computations.

Hence, we can find a collision for the compression function of Twister-512 for
the predefined initial value with a complexity of about 2223 compression func-
tion evaluations (10 · 2223 Mini-Round computations) and memory requirements
of 2224. Note that memory requirements of this attack can significantly be re-
duced by applying a memory-less variant of the meet-in-the-middle attack in-
troduced by Quisquater and Delescaille [16], and applied by Morita, Ohata and
Miyaguchi [12].

4.2 Collision Attack on the Hash Function

In this section, we show how the collision attack on the compression function
can be extended to the hash function. The attack has a complexity of about
2252 evaluations of the compression function of Twister-512. Note that the hash
function defines, in addition to the common iterative structure, a checksum com-
puted over the outputs of each Mini-Round which is then part of the final hash
computation. Therefore, to construct a collision in the hash function we have to
construct a collision in the iterative structure (i.e. chaining variables) as well as
in the checksum. To do this we use multicollisions.

A multicollision is a set of messages of equal length that all lead to the same
hash value. As shown in [7], constructing a 2t collision, i.e. 2t messages consisting
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of t message blocks which all lead to the same hash value, can be done with
a complexity of about t · 2x for any iterated hash function, where 2x is the
cost of constructing a collision in the compression function. As shown in the
previous section, collisions for the compression function of Twister-512 can be
constructed with a complexity of 2223. Hence, we can construct a 2256 collision
with a complexity of about 256 · 2223 ≈ 2231 evaluations of the compression
function of Twister-512 and memory requirements of 29 (needed to store the
2256 collision). With this method we get 2256 values for the checksum C that all
lead to the same chaining value H256.

To construct a collision in the checksum of Twister-512 we have to find 2
distinct messages consisting of 257 message blocks (256 message blocks for the
multicollision and 1 message block for the padding) which produce the same value
in the checksum. By applying a birthday attack we can find these 2 messages
with a complexity of about 2256 checksum computations and memory require-
ments of 2256. Due to the high memory requirements of the birthday attack,
one could see this part as the bottleneck of the attack. However, the memory
requirements can be significantly reduced by applying a memory-less variant of
the birthday attack [16]. Hence, we can find a collision for Twister-512 with
a complexity of about 2231 compression function evaluations (10 Mini-Rounds)
and about 2256 checksum computations (8 xor operations and 8 modular addi-
tions of 64-bits). In general the cost for one checksum computation is smaller
than one compression function evaluation. Depending on the implementation 1
checksum computation is 1/x compression function evaluation. Assume x = 16,
then we can find a collision for Twister slightly faster than brute force search
with a complexity of about 2252 compression function evaluations and negligible
memory requirements.

4.3 A Remark on the Length Extension Property

Once, we have found a collision, i.e. collision in the iterative part (chaining vari-
ables) and the checksum, we can construct many more collisions by appending an
arbitrary message block. Note that this is not necessarily the case for a straight-
forward birthday attack. By applying a birthday attack we construct a collision
in the final hash value (after the output transformation Ω) and appending a
message block is not possible. Hence, we need a collision in the iterative part
as well as in the checksum for the extension property. Note that by combining
the generic birthday attack and multicollisions, one can construct collisions in
both parts with a complexity of about 256 · 2256 = 2264 while our attack has a
complexity of 2252.

5 A Second-Preimage Attack on Twister-512

In this section, we present a second-preimage for Twister-512 with complexity
of about 2384 compression function evaluations and memory requirements of
264. Assume we want to construct a second preimage for the message m =
m1‖ · · · ‖m513. Then, the attack can be summarized as follows.
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1. Construct a 2512 collision for the first 512 message blocks of Twister-512. This
has a complexity of about 512 ·2256 ≈ 2265 compression function evaluations
(using a birthday attack to construct a collision for each message block) and
needs 210 memory to save the multicollision. Hence, we get 2512 values for
the checksum which all lead to the same chaining value H512.

2. Choose an arbitrary value for the message block m513 with correct padding
and compute H513.

3. In the last iteration of the compression function, H514 = f(H513, C), we
first choose arbitrary values for the five checksum words C1, . . . , C5 with
C = C1‖ · · · ‖C8 and compute the state SF

6 = H513 ⊕ S3 ⊕ S6. This also
determines S10 = H514⊕SF

6 . Note that we know H514 from the first preimage.
4. For all 264 choices of C8 compute backward from S10 to the injection of C7

and save the 264 candidates for state S′
7 = MessageInjection(S7, C7) in the

list L.
5. For all 264 choices of C6 compute forward from S6 to the injection of C7

and check for match of S′
7 in the list L. Since we can still choose C7, we

only need to match 448 (out of 512) bits. In total, we get 2128 pairs and
this step of the attack will succeed with probability 2−448+128 = 2−320. By
repeating steps 3–5 about 2320 times we can find a match and fulfill this
step of the attack with a complexity of about 2320+64 = 2384 compression
function evaluations.

6. Once we have constructed a second-preimage for the iterative part, we still
have to ensure that the value of the checksum C is correct. Therefore, we
now use the fact that the checksum of Twister is invertible and we have
2512 values for the checksum which all lead to the same chaining value H512

and hence H513 and H514. By using a meet-in-the-middle-attack, we can
construct the needed value in the checksum. This has a complexity of about
2257 checksum computations and memory requirements of 2256. Again the
memory requirements can be significantly reduced by using a memory-less
variant of the meet-in-the-middle attack [16].

Hence, we can construct a second-preimage for Twister-512 with complexity
of about 2384 and memory requirements of 210 + 264. The memory requirements
can be significantly reduced at the cost of an higher attack complexity. Several
time/memory tradeoffs are possible between 2384+s compression function eval-
uations and memory requirements of 210 + 264−s. Note that our attack requires
that the first message consists of at least 513 message blocks. Due to the output
transformation of Twister-512, the attack can not be extended to a preimage
attack on Twister-512 in a straight-forward way.

6 A Preimage Attack on Twister-512

In order to construct a preimage, we have to invert the output transformation of
Twister-512. Once we have inverted the output transformation, we can use the
second preimage attack described in the previous section to construct a preimage
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⊕

Fig. 7. The inversion of the first part of the output transformation of Twister

for Twister-512. Suppose we seek a preimage of h = out1‖ · · · ‖out8 consisting
of 513 message block. Then we have to find the chaining value H514 such that
Ω(H514) = h.

In the following, we show how to find a H514 such that out1 is correct with
a complexity of about 28 instead of the expected 264. This reduces the com-
plexity of inverting the whole output transformation Ω to about 2456 instead of
the expected complexity of 2512. The inversion of the first step of the output
transformation can be summarized as follows (see also Figure 7):

1. Choose a random value for the first column of H514. Use out1 and the first
column of H514 (8 bytes each) to compute the first column of S2 (8 bytes).

2. Compute the 8 bytes S′′′
1 [i][1 + (9 − i) mod 8] for (1 ≤ i ≤ 8) of state S′′′

1

using the first column of H514.
3. Compute backward through the Mini-Round r2 for the first column of S2 to

get the diagonal 8 bytes of S1 ⊕ H514.
4. Choose random values for the 8 diagonal bytes of H514. Note that this de-

termines the first column of S′′′
1 . Next, compute the 8 diagonal bytes of S1

from the diagonal bytes of H514 ⊕ S1 and H514 using the feed-forward.
5. Now, we need to connect the states S′′′

1 and S1 through the MixColumns
operation of Mini-Round r1. Note that the first column of S′′′

1 is already
fixed (due to step 4). If the first byte of S1[1][1] does not match, we need to
go back to step 1 again. After repeating steps 1-4 about 28 times we expect
to find a match for S1[1][1]. Once, we have found a match, we have to modify
column 2-8 of S′′′

1 such that the remaining 7 bytes match as well.
(a) For each column i = 2 . . . 8 choose random values for the bytes S′′′

1 [i][k]
with k �= 10− i. Note that the bytes S′′′

1 [i][k] with k = 10− i are already
fixed due to step 2 of the attack.

(b) Next, we compute the MixColumns operation and check if the byte S1[i][i]
matches. If not, we repeat the previous step. This has a complexity of
about 28.

Since each column can be modified independently in the attack, finishing
this step of the attack has a complexity of about 8 · 28 ≈ 211 Mini-Round
computations.
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6. After we have found a match for all columns, we can compute backwards
from S′′′

1 to determine H514. Note that values fixed in step 1 and step 4 do
not change anymore.

Hence, we can find a H514 such that out1 is correct with a total complexity
of about 211 Mini-Round computations, respectively 28 compression function
evaluations. By repeating the attack about 2448 times, we can invert the out-
put transformation of Twister-512 with a complexity of about 2438 · 28 = 2456

compression function evaluations and memory requirement of 210.
Once we have inverted the output transformation, i.e. we have found the

chaining value H514 such that Ω(H514) = h, we can apply the second preimage
attack described in the previous section to construct a preimage for Twister-
512 consisting of 513 message blocks. The attack has a complexity of about
2448 + 2456 ≈ 2456 compression function evaluations and negligible memory re-
quirements.

7 Conclusion

In this paper, we have shown two main results: Although Twister is heavily
based on a Merkle-Damg̊ard style iteration (as many other hash function like
SHA-2), the corresponding reduction proof that reduces the collision resistance
of the hash function to the collision resistance of the compression function is
not applicable anymore. We show practical (in time and memory) attacks and
give an example for a compression function collision. This clearly invalidates the
collision resistance assumption of the compression function.

Secondly, we give a theoretical collision, second preimage and preimage attack
on the hash function Twister-512. Although the practicality of the proposed
attacks might be debatable, it nevertheless exhibits non-random properties that
are not present in SHA-512.
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A MixColumns and Inverse MixColumns

The MDS matrix A of the MixColumns operation of Twister and its inverse B
are given as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B = A−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3E C5 7A E7 1B A9 8A 23
23 3E C5 7A E7 1B A9 8A
8A 23 3E C5 7A E7 1B A9
A9 8A 23 3E C5 7A E7 1B
1B A9 8A 23 3E C5 7A E7
E7 1B A9 8A 23 3E C5 7A
7A E7 1B A9 8A 23 3E C5
C5 7A E7 1B A9 8A 23 3E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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