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Abstract. Vortex is a hash function presented at ISC’2008 and sub-
mitted to the NIST SHA-3 competition, after some modifications that
aim to strengthen it. This paper describes several attacks (collision, sec-
ond preimage, preimage, distinguishers) on both versions of Vortex. Our
attacks exploit both properties of the operations “inside the box” (low
number of rounds, non-surjectivity, etc.) and of the high-level structures.

1 Introduction

Vortex is the name of an AES-based hash function proposed by Gueron and
Kounavis [4] at ISC’2008, and is also the name of the modified version [7] sub-
mitted to the NIST Hash Competition5. We call these two functions Vortex-0 and
Vortex-1, respectively, and present attacks on both versions, making the latter
unoptimal as the SHA-3. Table 1 summarizes our attacks.

The paper is structured as follows: §2 briefly introduces the hash functions
Vortex-0 and Vortex-1; §3 shows that many digests cannot be produced by Vortex

(both versions); §4 and §5 present collision attacks for Vortex-0 and Vortex-1,
respectively; second preimage attacks on Vortex-1 are given in §6, and preimage
attacks in §7. Eventually, §8 concludes.

2 Vortex-0 and Vortex-1

2.1 Vortex-0

Vortex-0 is a Merkle-Damg̊ard iterated hash function with 256-bit chaining value
and 256-bit digest. Given a 2×128-bit chaining value A‖B and a 4×128-bit
message block W0‖W1‖W2‖W3, the compression function of Vortex-0 sequentially
computes

A‖B ← (A‖B)⊕ subblock(A, B, W0, W1)

A‖B ← (A‖B)⊕ subblock(A, B, W2, W3)

5See http://www.nist.gov/hash-competition.



Table 1. Summary of our results on Vortex-0 and Vortex-1 (256-bit digest).

Target Type Time Memory

Vortex impossible images n.a. n.a.
Vortex distinguisher 2112 negl.
Vortex-0 collision 260 negl.
Vortex-1 pseudo-collision 264 negl.
Vortex-1 free-start collision 264 negl.
Vortex-1 collision 2124.5 2124.5

Vortex-1 second-preimage⋆ 2129 negl.
Vortex-1 second-preimage 2192 264

Vortex-1 preimage 2195 2195

⋆: for a class of weak messages

and returns the new A‖B as the new chaining value (or as the digest, if the
message block is the last one). The function subblock(A, B, Wi, Wj) returns the
256-bit value

V
(

CWi
(A), CWj

(B)
)

.

The block cipher C is a reduced version of AES with three rounds, where a
round (unlike in AES) is the sequence AddRoundKey, SubBytes, ShiftRows, and
MixColumns, and with a simplified key schedule.

The merging function V : {0, 1}256 7→ {0, 1}256 takes two 128-bit inputs A
and B, which are parsed as four 64-bit words as A1‖A0 ← A and B1‖B0 ← B.
The function V updates these words as follows (“⊗” denotes carryless multipli-
cation, and addition is modulo 264):

• L1‖L0 ← A1 ⊗B0

• O1‖O0 ← A0 ⊗B1

• A0 ← A0 ⊕ L0

• A1 ← A1 ⊕O1

• B0 ← B0 + O0

• B1 ← B1 + L1

2.2 Vortex-1

Vortex-1 is similar to Vortex-0 but with a different compression function, which
computes

A‖B ← subblock(A, B, W0, W1)

A‖B ← subblock(A, B, W2, W3)

Note that, compared to Vortex-0, this new version omits the feedforward of the
chaining value A‖B. Furthermore, subblock(A, B, Wi, Wj) now computes

A‖B ← V (CA(Wi)⊕Wi, CB(Wi)⊕Wi)

A‖B ← V (CA(Wj)⊕Wj , CB(Wj)⊕Wj) ,



where A, B, Wi, and Wj are 128-bit words (see also Fig. 1). The AES-like cipher
C still makes three rounds, and the V function is the same as in Vortex-0. Note
that the compression function of Vortex-1 is similar to MDC-2 [9], except that
the final transform V is not a permutation (see §3).
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Fig. 1. Schematical view of Vortex-1’s computation of a message digest (a hatch marks
the key input).

Vortex-1’s iteration mode differs from the classical Merkle-Damg̊ard: the last
message block is 256-bit, instead of 512-bit for the previous blocks, and is pro-
cessed differently—as in the “Enveloped MD” mode [3] (EMD). A detailed de-
scription of this mode is not necessary to the understanding of (most of) our
attacks.

A 512-bit version of Vortex-1 is described in [7]; instead of 128-bit Rijndael
rounds, 512-bit Vortex-1 uses 256-bit Rijndael rounds. The merging function V
is similar but with words which are twice as large, and the message blocks are
twice as large as well. The attacks in this paper are mainly described on the
256-bit version, but apply to the 512-bit version as well.

3 On impossible images

We show that both versions of Vortex have impossible images. That is, the range
of Vortex-0 and Vortex-1 does not span the whole space of {0, 1}256. This obser-



vation allows slightly faster preimage and collision search, and can be used to
mount distinguishers on PRF’s based on Vortex (e.g. HMAC [2]).

Both Vortex-0 and Vortex-1 use the V function after each evaluation of C. In
particular, their final output is an output of V . But V is a non-surjective function,
hence there exist impossible images by the Vortex hash functions. Experiments
on reduced versions suggest that V behaves more like a random function than
like a random permutation: for example, with 12-bit A and B, about 66% of
the outputs are reachable (against 1 − 1/e ≈ 63% for a random function6). It
appears that the longer A and B, the closer V is to a random permutation.

In the remainder we denoteRV the range of V , and thus haveRV ( {0, 1}256.

3.1 Multicollisions for V

Recall that a multicollision for a hash function is a set of distinct messages that
map to the same digest; when there are r messages, we talk of an r-collision (a
collision is thus a 2-collision).

We present a simple method to find multicollisions over V : set A1 = B1 = 1,
and choose a A0 and a B0 that have not bit “1” at a same position (for example,
A0 = FF00 . . .00 and B0 = 00FF . . .). The V function then sets:

• L1‖L0 ← 0‖B0

• O1‖O0 ← 0‖A0

• A0 ← A0 ⊕ L0 = A0 ⊕B0

• A1 ← A1 ⊕O1 = 1

• B0 ← B0 + O0 = B0 + A0 = B0 ⊕ A0

• B1 ← B1 + L1 = 1

Now one can modify the initial A0 and B0 such that A0⊕B0 remains unchanged
(and still have no bit “1” at a same position), which does not affect the output.
Note that this even allows multicollisions, since for a given pair (A0, B0) there
exists many colliding modified pairs.

One can easily derive an upper bound on |RV | from the above technique:
consider the case of a weight-32 A0; there are

(

64
32

)

≈ 260.5 possible choices;
then, given a A0, there are at least 232 suitable choices of B0. Each of the 292.5

pairs (A0, B0) gives a 232-collision, since all 1 bits of A0 can be flipped without
changing the output. This gives about 260.5 × 232 × 232 collisions, which means
that more than about 2124.5 elements of {0, 1}256 are impossible images, that is,
|RV | < 2256−2124.5. It follows that search for preimages and collisions is slightly
faster than expected.

6Note that a random function {0, 1}n 7→ {0, 1}n has in average about 63% of its
outputs reachable, but a random function {0, 1}m 7→ {0, 1}n, m ≫ n, has the space
{0, 1}n as range with high probability.



3.2 Inverting V

Given a random element y of {0, 1}256, the best generic algorithm to decide
whether y lies in RV is to try all the 2256 inputs. Below we describe an algorithm
that solves this problem much faster, and finds a preimage of y when y ∈ RV .
We use the notations of §2, and writing “LOH” for “low-order half” and “HOH”
for “high-order half”:

• let y = C‖D = C1‖C0‖D1‖D0 be the given 256-bit value

• for each choice of O0 and of the LOH of A1:

• from O0 and D0 compute B0.

• from B0 and the LOH of A1, compute the LOH of L0

• from C0 and the LOH of L0, compute the LOH of A0

• from O0 and the LOH of A0, compute the LOH of B1 (by solving
a linear system of 32 equations)

• from D1 and the LOH of B1, compute the LOH of L1

• from B0, the LOH of A1, and the LOH of L1, compute the HOH
of A1 (solve a linear system of 32 equations)

• from A1 and C1, compute O1

• from A1 and B0, compute the HOH of L0

• from C0 and the HOH of L0, compute the HOH of A0

• from O0 and the HOH of A0, compute the HOH of B1 (by solving
a linear system of 32 equations)

• if no solution for A and B is found, return “y /∈ RV ”, else return “y ∈
RV ” and the preimage found

The running time of the algorithm is dominated by the solving of two sets of
32 GF(2) equations for each guess, i.e., in total finding 297 solutions (we guess
96 bits) to a set of 32 equations in 32 unknowns over GF(2). A rough estimate
yields complexity 323× 297 = 2112. This algorithm can enjoy parallelism ( given
n CPUs the running time is divided by n).

We can now distinguish the output of Vortex from a random string by solving
297 equations (because if the algorithm fails to find a preimage of the output,
then the string was not produced by Vortex). Hence, given about ten outputs
of Vortex, we can almost surely identify that the string was indeed produced by
Vortex.

Note that similar claims may be made about a Merkle-Damg̊ard hash func-
tion, when the last block is a full padding block. In such a case, the output space
is indeed only 63% of the possible values. However, unlike the case of Vortex,
this space changes when the padding changes (i.e., a different number of bits is
hashed). Moreover, in the case of a Merkle-Damg̊ard construction with a random
function as the compression function, the adversary has to try all possible input
chaining values before deducing that the output is indeed not in the range of the
specific case of the function, which is clearly not the case for Vortex.



4 Collision attacks on Vortex-0

We present a collision attack on Vortex-0 that exploits structural properties of
the subblock function, assuming that the main component (the block cipher) is
perfect, i.e., we work in the ideal cipher model. We then prove that the actual
C cipher in Vortex-0 is close enough (sic) to an ideal cipher to be vulnerable to
our attack.

The attack goes as follows: given the IV A‖B, choose arbitrary W1, W2, W3,
and compute CW0

(A) for 264 distinct values of W0; in the ideal cipher model, one
thus gets 264 random values, each uniformly distributed over {0, 1}128, hence a
collision

CW0
(A) = CW ′

0
(A)

occurs with probability 1−1/e2 ≈ 0.39 (by the birthday paradox), which directly
gives a collision for the compression function. The cost of this attack is 264

evaluations of C (which is equivalent to 262 of the compression function of Vortex-

0), whereas 2128 compressions was conjectured in [4] to be a minimum.
The attack would not work if the map key-to-ciphertext induced by C were

significantly more injective than a random function. In Appendix A, we prove
that, under reasonable assumptions, we have, for any x ∈ {0, 1}128

Pr
K,K′

[CK(x) = CK′(x)] ≈
1

2128
.

More precisely, we show that for C with two rounds (denoted C2), instead of
three, we have

Pr
K,K′

[C2
K(x) = C2

K′(x)] =
2128 − 2

(2128 − 1)2
≈

1

2128
,

which means that our collision attack works with the actual C.

5 Collision attacks on Vortex-1

5.1 Pseudo-collisions

We show how to find a pair of colliding messages for Vortex-1 with two distinct
IV’s, of the form A‖B and A′‖B, respectively, for any fixed B and random A,
A′.

Observe that for an IV A‖B, the 128-bit A is used only once in the com-
pression function, to compute CA(W0). One can thus find a collision on the
compression function by finding a collision for CA(W0) ⊕W0: fix W0 and cycle
through 264 distinct A’s to find a collision with high probability. One can thus
find collisions for two IV’s A‖B and A′‖B in 264 evaluations of C (instead of
2128 compressions ideally).



5.2 Free-start collisions

We show how to find a pair of colliding messages for Vortex-1 with any IV of the
form A‖B = A‖A; which we call a symmetric IV.

To find a collision for Vortex-1 with a symmetric IV, it suffices to find W0, W
′
0

such that
CA(W0)⊕W0 = CA(W ′

0)⊕W ′
0

to get two colliding messages with a same random IV. When the IV is fixed
(and not symmetric) one can precompute a message block that leads to an
IV A‖A within 2128 trials, and then find collisions in 264; for example, finding
10 000 000 collisions costs about 2128 trials with our attack, against 2151 with
Joux’s attack [5].

5.3 Full collisions

As mentioned, Vortex-1’s construction is very similar to MDC-2 [9]; a recently
discovered collision attack on MDC-2 [6] applies to Vortex-1 as well. In the fol-
lowing, n denotes the size of C’s block (128 and 256 for the 256- and 512-bit
versions of Vortex-1, respectively).

We introduce the notation g(h‖h̃, Wi) to denote, in subblock, the result of
the operations

1. a← Ch(Wi)⊕Wi

2. ã← Ch̃(Wi)⊕Wi

3. h‖h̃← V (a‖ã).

We write γ(x, y) = Cx(y)⊕ y. The function g can then be written:

g(h‖h̃, m) = V
(

γ(h, m)‖γ(h̃, m)
)

.

Let A‖Ã = g(h‖h̃, m), where |A| = |Ã| = n. The idea of the collision attack
is to first find (by brute force) an r-collision in the variable A, resulting in r
different values Ã1, . . . , Ãr of Ã. The n-bit message sub-blocks producing the
r-collision are denoted by W i

0, i = 1, . . . , r. Then, one finds a message sub-block
W1 such that γ(Ãi, W1) = γ(Ãj , W1) for some i 6= j. Since Ai = Aj , we know
that γ(Ai, W1) = γ(Aj , W1), and hence we have found a two-block collision.

More precisely, given an arbitrary chaining value h‖h̃, do as follows (see also
Fig. 2).

1. Find r different message blocks W i
0, i = 1, . . . , r, such that

Ai‖Ãi = V (γ(h, W i
0)‖γ(h̃, W i

0)),

for 1 ≤ i ≤ r, and Ai = Aj for all i, j.

2. Choose an arbitrary message block W1, and compute B̃i = γ(Ãi, W1) for all
i, 1 ≤ i ≤ r. If B̃i = B̃j for some i, j, i 6= j, then the two messages W i

0‖W1

and W j
0 ‖W1, collide, since γ(Ai, W1) = γ(Aj , W1). If no such pair exists,

repeat this step with a different choice of W1.
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Fig. 2. The collision attack on Vortex-1. Thick lines mean that there are r different
values of this variable. Thin lines mean that there is only one.

Finding the r-collision in step 1 requires the equivalent of about

(r!× 2(r−1)n)1/r

evaluations of g [11]. In the second step, γ is evaluated r times. Assuming that V
takes negligible time, the r evaluations of γ correspond to about r/2 applications
of g. If evaluating V is less efficient than assumed here, then the complexity of
step 2 in terms of evaluations of g is lower. For each choice of W1 in step 2, the
probability that a collision is found is about

(

r
2

)

×2−n = r(r−1)/2×2−n. Hence,
the expected time spent in step 2 is about 2n/(r − 1).

For the optimal r (14), our attack on 256-bit Vortex-1 runs in 2124.5, and
requires as much memory. For the 512-bit version, the optimal r is 24, and the
attack runs in 2251.7.

6 Second-preimage attacks on Vortex-1

6.1 Second preimages for weak messages

We now show how to find second preimages of messages that produce a symmet-
ric chaining value (that is, of the form A‖A) during the digest computation. A
key observation is that if A = B and is of the form (x‖0) or (0‖y), then V (A, B)
maintains the equality of A and B.

The attack works as follows: Given a message that produces the chain value
Ã‖Ã, find a message that leads to a symmetric chaining value A‖B = A‖A.
Then find message blocks that preserve the symmetry and that eventually give



A = Ã (after as many blocks as in the original message). One then fills the new
message with the blocks of the original message to get a second preimage of it.

Reaching the first symmetric chaining value costs about 2128, preserving the
property for each step costs 264, and the connection costs 2128. The total com-
plexity is thus about 2129. Note that the computation of a message that leads to
a symmetric chaining value is message-independent, hence can be precomputed.

This attack, however, applies with low probability to a random message
of reasonable size: for a random m-bit message, there are about ⌊m/128⌋ − 1
“chaining values” (note that we can connect inside the compression function
as well), thus the probability that a random message is weak is approximately
2−128 × ⌊m/128− 1⌋.

Time-memory tradeoff variant. We show that a variant of the above attack
with precomputation 2135 and as much memory runs in only 233 trials, using the
tree-construction technique in [1].

Consider a set of special chaining values

S =
{

(x||0)‖(x||0), x ∈ {0, 1}64
}

∪
{

(0||y)‖(0||y), y ∈ {0, 1}64
}

.

As noted earlier, these chaining values are maintained under the V (·) transfor-
mation. The preprocessing phase is composed of three phases:

1. finding a message block W such that A‖A← V (CIV0
(W )⊕W, CIV1

(W )⊕W )
where the IV is treated as IV = IV0‖IV1

2. for each B, finding a special chaining value s and a message word W ′ such
that

Cs(W
′)⊕W ′ = B ,

and store it in a table for each possible B
3. for each s ∈ S, find two message blocks W1 and W2 such that

Cs(W1)⊕W1, Cs(W2)⊕W2 ∈ S

It is easy to see that the first precomputation phase takes 2128 calls to V (C(·)||C(·)),
and outputs one message word of 128 bits to memorize. The second phase can be
done by picking s ∈ S and message words W at random, until all outputs B are
covered. Assuming that the process is random (i.e., by picking s and W randomly
and independently from previous calls) we can model the problem as the coupon
collector (see e.g. [10, p.57]), which means that about ln(2128) · 2128 < 2135 com-
putations are performed, and about 2128 memory cells are needed. Finally, the
third phase can be done in means of exhaustive search for each special chaining
value s, and we expect about 264 computations for each of the 265 − 1 special
values. The memory needed for the output of the last precomputation is about
266 memory cells. With respect to the precomputation we note that it is entirely
parallelizable, and can enjoy a speed up of a factor x given x processors.

The online phase of the attack is as follows. Given the weak message that
has a chaining value Ã‖Ã, we find in the first table the special chaining value



s ∈ S and the message block W that lead to Ã‖Ã. We then start from the IV ,
and using the precomputed message blocks, reach a state s′ ∈ S. Now we have
to find a path of message blocks from s′ to s. This is done by randomly picking
message blocks from s′ which maintain the chaining value in the special set, until
the distance between the reached state s′′ and s is 65 message blocks.

To connect s′′ and s we use the tree-construction technique described in [1]:
from s′′ one constructs a tree with all the 233 possible special chaining values
reachable after 33 blocks; similarly, one constructs a tree with the (expected)
232 possible chaining values that may arrive to s after 32 blocks. As the size of
the space is about 265, we expect a collision, and a path from s′′ to s.

The preprocessing of this phase costs 2128 trials, storage is 264, and the on-
line complexity is composed of performing a birthday on space of about 265

values—which we expect to take about 233 operations. So given about 2128 pre-
computation, 2128 storage that needs to be accessed once (store it on DVDs and
put them in the closet), 264 storage that is going to be accessed randomly, the
online complexity of the attack is only 233.

6.2 Second preimage attack

This attack is based on a partial meet-in-the-middle attack, and finds a second
preimage for any message. The attack applies to messages of three partial blocks
or more (i.e., 384 bits or more), and replaces the first three blocks. We denote
the consecutive chaining values of these partial blocks by IV = A0‖B0, A1‖B1,
A2‖B2, A3‖B3, etc., and write

W ⊕ CW (A2)||W ⊕ CW (B2) = X2‖Y2,

so that A3‖B3 = V (X2, Y2).
The attack goes as follows:

1. For every A2 = 0||x (where x is 64-bit), the attacker tries all W ’s, until he
finds Wx such that Wx⊕CWx

(0||x) = X2. On average, there is one such Wx

for each x. The attacker stores pairs (x, Wx) in a table.
2. The attacker takes 2192 two partial block messages, and computes for them

A2||B2. If A2 is not of the form 0||x, the attacker discards the message;
otherwise (i.e., A2 = 0‖y), the attacker retrieves Wy from the table, and
checks whether Y2 equals CWy

(B2)⊕Wy . If yes, the two partial blocks along
with Wy , can replace the first three message blocks of the original message.

As we start with 2192 messages, we expect about 2128 messages which generate
the required pattern for A2. For each of these messages, the probability that
indeed Y2 = CWy

(B2) ⊕Wy, is 2−128, and thus we expect one second preimage
to be found.

We note that if multiple computing devices are available, they can be used
efficiently. By picking the special structure of A2, it is possible to “discard”
many wrong trials, and access the memory very rarely. It is also possible to
route the queries in the second phase between the various devices if each device



is allocated a different segment of the special A2’s. Once one of the devices finds
a message block which leads to a special A2, it can send the message block to
the computing device.

7 Preimage attacks on Vortex-1

A preimage attack on MDC-2 having complexity below the brute force complex-
ity of 22n (where, again, n is the size of the underlying block cipher) has been
known for many years [8]. The attack has time complexity about 23n/2. The
attack applies to Vortex-1 as well, but is slightly more complicated due to the
EMD extension, and due to V not being efficiently invertible.

Consider first a second preimage attack, where the chaining value after pro-
cessing the first t− 1 message blocks of the first preimage is known. That is, we
can ignore the EMD extension for now. Let this chaining value be hT‖h̃T. We
may find a second preimage by the following meet-in-the-middle method, similar
to the attack described in [8] (γ is defined as in the collision attack described
above).

1. Compute Z‖Z̃ = V −1(hT‖h̃T) by inverting V as described above.
2. Choose W3 arbitrarily and compute γ(a, W3) for many different values of a,

until γ(a, W3) = Z.
3. Likewise, compute γ(ã, W3) for many different values of ã, until γ(ã, W3) =

Z̃.
4. Repeat 2n/2 times the above two steps with different choices of W3. This

yields 2n/2 values of a‖ã and W3 such that g(a‖ã, W3) = hT‖h̃T.
5. Compute g(g(g(h0‖h̃0, W0), W1), W2) for about 23n/2 different choices of

W0, W1, W2, until a triple is found such that g(g(g(h0‖h̃0, W0), W1), W2) =
a‖ã for some a‖ã computed in the previous step.

Here we produce a preimage W0‖W1‖W2‖W3 of hT‖h̃T, ignoring padding and
the EMD extension. Step 1 takes expected time 2n−1, and Steps 2 and 3 can
be done combined in time about 2n each, which means that when repeated 2n/2

times, the time complexity is about 23n/2. Step 5 takes expected time about
23n/2 in terms of evaluations of g. Hence, the total time complexity is roughly
23n/2+1. Taking length padding into account is not a problem in Step 5. One
may simply partially hash a message of the appropriate length, and carry out
Step 5 starting from the resulting intermediate hash value.

In a preimage attack we do not know the chaining value before the EMD
extension. However, we can invert the hash function through the EMD extension
as follows. Let the target image be hT‖h̃T. First, we note that the EMD extension
can be seen as a short Merkle-Damg̊ard iteration by itself, using a single 512-bit
message block (in the 256-bit case), or equivalently, four 128-bit message blocks
W0, W1, W2, W3. The initial value of this Merkle-Damg̊ard iteration is T ‖T̃ ; the
first two sub-blocks, W0 and W1, form the chaining value from the processing of
the first t− 1 message blocks, and the last two sub-blocks, W2 and W3, contain
at least 65 bits of padding. W2 and W3 are treated specially, since the subblock

function is applied to them five times.



1. Choose a final message length, and construct 2n/2 different versions of W2‖W3,
e.g., varying bits in W2 only (at least 65 bits in W3 are fixed by the choice
of message length and one bit of padding).

2. For each version of W2‖W3, invert five times the function subblock using the
same technique as in steps 1–3 above. Now we have 2n/2 values of a‖ã and
W2‖W3 such that subblock5(a‖ã, W2, W3) = hT‖h̃T.

3. Compute g(g(T ‖T̃ , W0), W1) for about 23n/2 different choices of W0, W1,
or until a pair is found such that g(g(T ‖T̃ , W0), W1) = a‖ã for some a‖ã
computed in the previous step.

The attack yields a chaining value W0‖W1 that may be used in place of hT‖h̃T

in the second preimage attack described above. Hence, one may now carry out
this attack, keeping in mind that the message length has been fixed.

The time required to invert through the EMD extension is about 21× 23n/2

(two inversions of each of γ and V are needed per application of the subblock

function). The different phases of the attack can be scaled differently to reduce
the time complexity by a factor about four. Of course, the attack also fixes the
padded version of the t-th message block W2‖W3.

Our attack runs in 2195 on the 256-bit version, and in 2387 on the 512-bit
version, with as much memory required. By a different scaling of the number of
times one needs to invert g and the subblock function, and the number of times
to compute values in the forward direction, less memory may be used at the cost
of a longer running time.

8 Conclusion

We presented several attacks against the hash function Vortex as submitted to
NIST, and against its original version. The new version of Vortex appears to
be stronger than the original, but fails to provide ideal security against colli-
sion attacks and (second) preimage attacks, and suffers from impossible images,
which slightly reduces the entropy of a digest. These results seem to make Vortex

unsuitable as a new hash standard. None of our attacks, however, is practical.
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A Proof that the collision attack on Vortex-0 works

In Vortex-0 a round consists of the AddRoundKey operation (which xors the 128-
bit round key with the 128-bit state), followed by a permutation defined by the
sequence SubBytes, ShiftRows, and MixColumns. The key schedule of C is much
simpler than that of Rijndael; given a 128-bit key K, it computes the 128-bit
rounds keys

RK1 ← π1(K)

RK2 ← π2(RK1)

RK3 ← π3(RK2)

where the πi’s are permutations defined by S-boxes, bit permutations and addi-
tion with constants. We denote RKK

i a round key derived from K.

Denote ΠK
i the permutation corresponding to the i-th round of C; Πi depends

of the RKi derived from K. Observe that for any state x and any distinct keys
K, K ′, we have K ⊕ x 6= K ′ ⊕ x, therefore for any x

ΠK
i (x) 6= ΠK′

i (x).

In other words, a 1-round C mapping a key to a ciphertext, for any fixed plain-
text, is a permutation. In the following we show that for 2 rounds it is not a
permutation.



From the above observation, we have, for any K 6= K ′, and for any x1, x2,

ΠK
1 (x1) 6= ΠK′

1 (x1)

ΠK
2 (x2) 6= ΠK′

2 (x2)
.

We show that, however, the probability over K, K ′, x that

ΠK
2 ◦ΠK

1 (x) = ΠK′

2 ◦ΠK′

1 (x)

is nonzero, and is even close to what one would expect if Π2 ◦Π1 were a random
permutation; in the latter, for clarity, we write Πi = ΠK

i , Π ′
i = ΠK′

i , and
Π = {Π1, Π2}, Π ′ = {Π ′

1, Π
′
2}. Recall that Πi, Π ′

i are permutations such that:
∄x, Πi(x) = Π ′

i(x), for i = 1, 2.

We now compute the probability of a collision after two rounds. First, observe
that

Pr
Π,Π′,x

[Π1 ◦Π2(x) = Π ′
1 ◦Π ′

2(x)] = Pr
y 6=y′,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)] .

The probability holds over random distinct 128-bit y and y′. We have (with
N = 2128):

Pr
y 6=y′,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)] =
1

N

N−1
∑

y=0

Pr
y′ 6=y,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)]

=
1

N

N−1
∑

y=0

1

N − 1

N−1
∑

Π1(y)=0,Π1(y) 6=y

Pr[Π1(y) = Π ′
1(y

′)]

=
1

N

N−1
∑

y=0

1

N − 1

N−1
∑

Π1(y)=0,Π1(y) 6=y

(0 + (N − 2)×
1

N − 1
)

=
1

N

N−1
∑

y=0

N − 2

(N − 1)2

=
N − 2

(N − 1)2
=

2128 − 2

(2128 − 1)2
≈

1

2128
.

The above result shows that the 2-round C seen as a key-to-ciphertext map-
ping, for any fixed plaintext, has a distribution close to that of a random function.
With three rounds, the distribution is much closer to that of a random function.
Therefore, the birthday paradox is applicable, and so our attack works on the
real Vortex-0 algorithm.


