
Cryptanalysis of White Box DES
Implementations�

Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater

Versailles St-Quentin-en-Yvelines University
45 avenue des Etats-Unis
F-78035 Versailles Cedex

{Louis.Goubin,Jean-Michel.Masereel,Michael.Quisquater}@uvsq.fr

Abstract. Obfuscation is a method consisting in hiding information of
some parts of a computer program. According to the Kerckhoffs princi-
ple, a cryptographical algorithm should be kept public while the whole
security should rely on the secrecy of the key. In some contexts, source
codes are publicly available, while the key should be kept secret; this is
the challenge of code obfuscation. This paper deals with the cryptanal-
ysis of such methods of obfuscation applied to the DES. Such methods,
called the “naked-DES” and “nonstandard-DES”, were proposed by Chow
et al. [5] in 2002. Some methods for the cryptanalysis of the “naked-DES”
were proposed by Chow et al. [5], Jacob et al. [6], and Link and Neu-
man [7]. In their paper, Link and Neuman [7] proposed another method
for the obfuscation of the DES.

In this paper, we propose a general method that applies to all schemes.
Moreover, we provide a theoretical analysis. We implemented our method
with a C code and applied it successfully to thousands of obfuscated
implementations of DES (both “naked” and “non-standard” DES). In
each case, we recovered enough information to be able to invert the
function.

Keywords: Obfuscation, cryptanalysis, DES, symmetric cryptography,
block cipher.

1 Introduction

In recent years, the possibility of obfuscating programs has been investigated.
From a theoretical point of view, Barak et al. [1] have proven impossibility
results for the task of obfuscating computer programs. In particular, it turns
out that there exists a family of programs such that: on the one hand each
program is non learnable (i.e. its execution does not give any information about
its original source code), but on the other hand every obfuscator (i.e. the program
producing an obfuscation) fails completely when given any program of this family
as input. However it has not been proved that specific instances, particularly
cryptographic primitives, are impossible to obfuscate.
� This work has been supported in part by the French ANR (Agence Nationale de la

Recherche), through the CrySCoE project, and by the région Île-de-France.

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 278–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cryptanalysis of White Box DES Implementations 279

In 2002, Chow et al. [4,5] suggested two different obfuscations, one for the
AES, the other for the DES. The AES obfuscation was cryptanalysed by Billet
et al. [2,3] in 2004. Chow et al. [5] also mounted an attack on their first DES
obfuscation version (called “naked-DES”). Jacob et al. [6] and Link and Neuman
[7], proposed two other attacks on the “naked-DES”. Here, breaking the “naked-
DES” means recovering the secret key.

A second version of DES obfuscation, called “nonstandard-DES”, was given
by Chow et al. [5]. This “nonstandard-DES” is obtained by obfuscating the usual
DES composed with initial and final secret permutations. In this context, break-
ing such a “nonstandard-DES” implementation means recovering the secret key
and the secret initial and final permutations.

Moreover, many industrial actors have developed obfuscated implementations
of cryptographic algorithms, in particular for DRM, Pay-TV, and intellectual
property protection. (e.g. cloakware [12], retroguard [13], Yguard [14]).

This paper is structured as follows : In Section 2, we give an overview of the
obfuscation methods given by Chow et al. and by Link and Neumann. Section 3
is devoted to our attack on the “naked-DES”. In Section 4, we adapt our attack
to the “non standard” DES. Section 5 is devoted to our implementation of this
attack. In Section 6, we compare our attack to the one of Wyseur et al. [11].
Finally, we conclude in Section 7. All proofs are available in the appendices.

2 DES Obfuscation Methods

Chow et al. [5] proposed two types of DES obfuscation. The first one, called
“naked-DES”, produces an usual DES. The second one, called the “nonstandard-
DES”, is a slight modification of the standard DES algorithm. This last version
is the one they recommend.

Let us describe the “naked-DES” (see Figure 7). The standard DES is imple-
mented by means of many functions. The first one is an affine function M1, which
is the composition of the initial permutation, the expansion (slightly modified in
order to duplicate all the 32 right bits), and a bit-permutation φ0 : IF96

2 → IF96
2 .

The role of φ0 is to send 48 bits to the corresponding S-box entries, the 48 re-
maining bits being sent randomly to the T-box entries (see Figure 8). Eight of
these T-boxes are derived from the eight S-boxes of the DES (see Figure 1), and
the four remaining T-boxes are identities (or more generally bit permutations,
see Figure 8 (T12)). An affine function M2,1 follows the T-boxes. This affine func-
tion is the composition of the P and Xor operation of the standard DES, and a
bit-permutation φ1 (see Figure 7). Each of the 16 rounds is the composition of
the T-boxes and an affine function M2,i. The last round is followed by an affine
function M3 which is the composition of a selection function, and the final per-
mutation. This function takes for arguments the outputs of the affine function
M2,16 of the last round and returns the ciphertext (see Figure 7).

We will denote by Ai, one of these components (Ti, M1, M2,i or M3). The
obfuscator program computes numbers of random nonlinear permutations on

280 L. Goubin, J.-M. Masereel, and M. Quisquater

Fig. 1. T-Box

IFs
2, bk,l (s = 4 or 8). These permutations are referred by Chow et al. [5] as

io-block encoding bijections. Twenty-four or twelve of these io-block encoding
bijections are concatenated in order to obtain nonlinear permutations on IF96

2 ,
Pi,j . Each component Ai is obfuscated between permutations Pi,1 and Pi,2. The
resulting functions Pi,1 ◦ Ai ◦ Pi,2 are stored in arrays in order to be used by
the obfuscated program. When considering consecutive components, the final
permutation of the first component, and the initial permutation of the second
component, cancelled out (see Figure 7) i.e. :

(Pi,1 ◦ Ai ◦ Pi,2) ◦ (Pj,1 ◦ Aj ◦ Pj,2) = Pi,1 ◦ (Ai ◦ Aj) ◦ Pj,2 .

This “naked-DES” was cryptanalysed by the authors themselves [5].

In order to repair the scheme, they proposed the “nonstandard-DES”. It consists
in adding two affine bijections M0 and M4 before and after the “naked-DES”,
respectively (see Figure 7). It is not specified by Chow et al. [5] whether M0

and M4 are block encoded (i.e. respectively preceded and followed by nonlinear
random permutations). In this paper, we consider that M0 and M4 are not block
encoded.

Further improvement on the attack of the “naked-DES” were given by Link
and Neumann [7]. They suggested another solution which consists in merging the
T-boxes and the affine function M2,i of each round. This way, we do not have
access to the T-boxes outputs. Moreover, the M2,i functions of the different
rounds are block encoded in another way.

In this paper, we describe an attack that defeats both “nonstandard-DES”
and the Link and Neumann’s schemes.

3 Attack on the “Naked-DES”

As mentioned before, the “naked-DES” proposed by Chow et al. [5] was already
cryptanalysed in the papers [5,6,7]. In this section, we show how to cryptanalyse
the improved version of the “naked-DES” proposed by Link and Neumann [7].
Note that our method also works for the “naked-DES” proposed by Chow et al.
[5]. In what follows, we will denote by “regular DES”, the one described in the
standard [10] (without PC1), and we will use the same notations.

Our attack is divided into two phases and is based on a truncated differential
attack. Roughly speaking, the first phase consists in generating pairs of messages

Cryptanalysis of White Box DES Implementations 281

Fig. 2. One round of DES, and attack principle

(X ,X ′) such that the right part of the images, through IP and the first round of
a regular DES, are equal (for a given key K) (see Figure 2.b). The second phase
consists in evaluating those pairs of messages (X, X ′) on the “naked-DES” and
in checking a condition that we specify below. The pairs that satisfy the test
provide a key candidate.

Let us go into the details. Remember that f(., K) denotes the function of the
regular DES, we will also denote it by fK(.) (see Figure 2.a). Let X be an initial
message, (L0, R0) denotes its image through IP , and (L1, R1) is the image of
(L0, R0) through the first round, i.e. (L1, R1) = (R0, L0 ⊕ f(R0, K)). Consider
a function f , vectors X and Δ, the derivative f(X)⊕ f(X ⊕Δ) will be denoted
by DΔf(X). Let us first motivate our algorithm. Let K be a fixed unknown key.
Assume we want to find the first round 6-bit subkey corresponding to Si (for the
sake of clarity, we will restrain ourselves to i = 1). We generate candidate keys
such that only the 6 key bits of S1 of the first round are modified. For each of
these keys, we compute pairs of messages (X ,X ′) such that,

1. Δ = R0 ⊕ R′
0 is zero, except for the second and third bits.

2. L′
0 = L0 ⊕ DΔfK(R0)

Observe that the second and third bits of R0 only affect the output of S1 (see
Figure 2.a) . Therefore, f(R0, K) and f(R′

0, K) are identical except for the four
bits corresponding to the output of S1.

Under these conditions, in the next round we have R1 = R′
1 and L′

1(= R′
0)

is identical to L1(= R0) except for at most two bits. Consider now these two
messages X and X ′ applied to the “naked-DES” with the correct key candidate.
We observe that these bits (non-zero bits of L′

1 ⊕ L1) influence at most two
io-block encoding bijections bi,3 and bj,3 (see Figure 8). If the key candidate is
wrong, we will have R1 �= R′

1. Therefore many bits will change at the output
of M2,1, and we will be able to distinguish this situation from the correct key
guess.

Here is an overview of the attack:

– Randomly choose a message X .
– Compute (L0, R0) = IP (X) with IP public.

282 L. Goubin, J.-M. Masereel, and M. Quisquater

– Choose Δ such that only the second and third bits are different from 0.
– For any possible candidate value of 6-bit subkey:

• Compute L′
0 = L0 ⊕ DΔfK(R0).

• Compute X ′ = IP−1(L′
0, R0 ⊕ Δ).

• Apply X and X ′ to the obfuscated DES and save the values Y and Y ′

at the end of the first round.
• Compare Y and Y ′ and compute in how many io-block encoding bijec-

tions they differ.
• Reject the candidate if this number is strictly greater than 2. Otherwise,

the candidate is probably correct.

This way, we can recover the 48 key bits of the first round of the DES. The 8
remaining bits are found by exhaustive search.

Remark 1. This algorithm can produce more than one candidate for the 6-bit
subkey. It will provide wrong 6-bit subkeys in two situations.

1. Due to the balance property of the S-boxes and the fact they map six bits
to four bits, four different inputs produce the same output. Therefore for
each S-box, three wrong 6-bit subkeys will produce the same output as the
correct key. To avoid this problem, we can launch this algorithm with another
random initial message, or simply another Δ. In fact, we only have to change
the values of the bits of R0 and Δ corresponding to the input of S1 (the bits
32,1,. . . ,5). Actually, we can choose different pairs (X, X ′) such that the
intersection of the key candidates associated to each of them is the correct
key.

2. The second one is due to a propagation phenomena. Suppose we have a
wrong 6-bit subkey producing a wrong S1 output. It means that there are
more than three bits of difference between (L1, R1) and (L′

1, R
′
1). These

differences could be mapped to the same io-block encoding bijection, leading
to the flipping of only two io-block encoding bijections at the output of M2,1.
In this case, we launch this algorithm with several values for R0. It leads to
several lists of key candidates and the correct key belongs to the intersection.
This way, wrong keys will be discarded.

4 Attack on the “Nonstandard-DES”

This section is dedicated to an attack on the “nonstandard-DES”. Remind that
the “nonstandard-DES” is a “naked-DES” where the affine functions M1 and M0

are replaced by M1◦M0 and M4◦M3 respectively (where M0 and M4 are mixing
bijections, see Chow et al. [5]). As mentioned before, we assume that the inputs
of M1 ◦M0 (respectively the outputs of M4 ◦M3) are not io-block encoded. Note
that all the other functions are io-block encoded using bijections on IF4

2 (the
same principle applies for the obfuscation proposed by Link and Neuman [7]
where the bijections are defined on IF8

2). Moreover, we assume that the T-Boxes
follow the same ordering in the different rounds. In what follows, we will not
consider IP (inside M1) w.l.o.g, for the sake of clarity.

Cryptanalysis of White Box DES Implementations 283

In what follows, the term preimage will implicitly refer to the preimage with
respect to the linear bijection M0. Moreover, we say that a bit of a vector is
touching an io-block encoding bijection if this bijection depends on this bit.
Similarly, we will say that a vector touches an S-Box if non-zero bits touch it.

Our attack on the “nonstandard-DES” is based on the one on the “naked-DES”.
Our approach is based on a truncated differential attack. It consists in computing
the images of a random vector X0 at different levels in the obfuscated DES. We
compare these values (called initial-entries) to the corresponding images of X0⊕
Δ, where Δ satisfies some conditions depending on the context. This approach
allows providing information about the key and the matrix M−1

0 , gradually. The
full key and the matrix M−1

0 will be known at the end of the process. The way
we store information about M−1

0 consists in considering lists of candidates for
preimages of unspecified canonical vectors. Lists of candidates containing only
one vector are called distinguished lists. This vector is then a column of M−1

0 .
Note that these lists are actually vector spaces and can be shared by several
canonical vectors. In practice, a list E will be shared by dimE canonical vectors
(that are not necessary specified). Our algorithm works sequentially and consists
in specifying these canonical vectors and shortening the lists. Our method can
therefore be understood as a “filtering process”. The different filters are described
below.

Section 4.1 describes a preliminary step almost independent of the structure of
the block cipher. It consists in finding vector spaces associated to a particular io-
block encoding bijection at the input of the first round. This step allows getting
global information about M−1

0 .
Section 4.2 describes a set of filters intending to refine information about

M−1
0 . These steps are highly related to the studied block cipher. The first filter,

described in Section 4.2, allows distinguishing lists that are associated to canon-
ical vectors belonging either to right bits or left bits of the input of the first
round (L0 or R0). The second filter, described in Section 4.2, extracts all the
lists (marked as “right” in the previous filter) touching a single S-box (we will see
that these lists play an important role). The third filter, described in Section 4.2,
gathers the lists (marked as “left” in the previous filter) in sets associated to the
output of S-boxes. Section 4.2 links T-Boxes (obfuscation of the keyed S-boxes)
to S-Boxes. This information allows the last filter, presented in Section 4.2, to
precisely specify the 1-to-1 link between the lists (marked as “left”) and the (left)
canonical vectors.

Section 4.3 explains how to extract the key and how to recover the full invert-
ible matrices M−1

0 and M4.

4.1 Block Level Analysis of M1 ◦ M0

Recovering of the Bk’s. Denote by Kk the space ({0}4k−4 × IF4
2 ×{0}96−4k),

and by Kk, the space (IF4k−4
2 × {0}4 × IF96−4k

2). In what follows, the vector
space spanned by a set of vectors S will be denoted 〈S〉. Also, ei denotes the
ith canonical vector (the position of the “one” is computed from the left and

284 L. Goubin, J.-M. Masereel, and M. Quisquater

start from one) of the vector space IF64
2 . The sets {ei ∈ IF64

2 | i = 1 . . . 32} and
{ei ∈ IF64

2 | i = 33 . . . 64} will be denoted by SL and SR, respectively.
Ideally, we are looking for 24 vector spaces such that their vectors influence

only one io-block encoding bijection at the output of M1 ◦ M0. This would
allow modifying only the input of one particular io-block encoding bijection.
Unfortunately, due to the duplication of the bits in M1 (because of the expansion
E) this goal is impossible to reach. We will therefore try to approximate this
situation and deal with the drawbacks afterwards. First we will have to give
some notations, definitions and properties.

Denote by F : IF64
2 → IF96

2 the obfuscation of M1 ◦ M0 (see Figure 7).
Let X be a vector in IF96

2 . Denote by πk the projection πk : (IF4
2)24 → IF4

2 :
X = (x1, . . . , x24) 	→ xk. Let bk be the kth io-block encoding bijection at the
output of M1 ◦ M0. The function F is written as

F (X) = (b1 ◦π1 ◦M1 ◦M0(X), b2 ◦π2 ◦M1 ◦M0(X), . . . , b24 ◦π24 ◦M1 ◦M0(X)) .

Definition 1. Let k be an integer, k ∈ [1, 24]. We denote by Bk the vector space
{X ∈ IF64

2 | πk ◦ M1(X) = 0}. In other words, it is the subspace of vector X
such that for any non-zero component ei of X, M1(ei) does not touch bk, i.e.
Bk = 〈ej | πk ◦ M1(ej) = 0〉.
Definition 2. Let k be an integer, k ∈ [1, 24]. We denote by Ek the subspace of
vector X such that for any non-zero component ei of X, M1(ei) touches bk, i.e.
Ek = 〈ej | πk ◦ M1(ej) �= 0〉.

Fig. 3. Example

Remark 2. Note that IF64
2 is the direct sum of Bk and Ek for any k, i.e. IF64

2 =
Bk

⊕ Ek.

We will denote by Bk the subspace M−1
0 (Bk), and by Ek the subspace M−1

0 (Ek).

Proposition 1. For any k integer, k ∈ [1, 24], Bk = {Δ ∈ IF64
2 | DΔF (IF64

2) ⊂
Kk}, the probability that Δ belongs to Bk, when Δ is randomly chosen, is greater
or equal to 1

24 = 1
16 , and 60 ≤ dim(Bk) < 64.

Combining Definition 2 and Property 1, the vector space Ek can be described as
the set of vectors Δ such that for any vector X0 ∈ IF64

2 , M0(X0)⊕ M0(X0 ⊕Δ)
has in total at most four non-zero components ei, all of them touching the kth

Cryptanalysis of White Box DES Implementations 285

io-block encoding bijection through M1. Due to Property 1, it is easier to recover
a basis for Bk’s, than for Ek’s. That is why we will first recover all the Bk’s.
Using Property 1, we only have to compute DΔF (X0) for random Δ ∈ IF64

2 and
determine to which space Kk it belongs. Using Bk’s, we will recover Ek’s, or at
least, 24 vector spaces Êk containing Ek with minimal dimension.

Recovering of the Êk’s. Let us now explain how to recover Êk. First, let us
remark that for any X ∈ IF64

2 and for any Δ ∈ IF64
2 , we have DΔF (X) ∈ Kk if

and only if DΔπk ◦ M1 ◦ M0(X) ∈ Kk. Let us introduce the following lemma.

Lemma 1. Let k be an integer belonging to [1, 24]. If Ej ∩ Ek = {0} for any
integer j distinct from k belonging to [1, 24], then

Ek =
⋂

j �=k

Bj .

Since M0 is a bijection, this lemma means that if Ej ∩ Ek = {0} for any integer
j ∈ [1, 24] different from k, then Ek =

⋂

j �=k

Bj . Nevertheless, due to the bit-

duplication, there exist indices k and j such that Ej ∩ Ek �= {0} (and then
Ej ∩ Ek �= {0}). Denote by Jk the set {j | Ej ∩ Ek = {0}}, by Êk the subspace
⋂

j∈Jk

Bj , and by Êk the subspace
⋂

j∈Jk

Bj where k is an integer belonging to [1, 24].

Proposition 2. For any integer k ∈ [1, 24], Ek ⊆ Êk.

Let us introduce a property that will allow us to give another characterization
of Jk.

Proposition 3. For any integer i ∈ [1, 24] and for any integer j ∈ [1, 24]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩ Bj) − dim(Bj) − dim(Bi) .

A straightforward application of this property to the definition of Jk leads to
Jk = {j ∈ [1, 24] | 64 = dim(Bj) + dim(Bk) − dim(Bk ∩ Bj)}. This characteri-
zation will be useful in order to compute Êk. If dim(Êk) + dim(Bk) > 64 then
Ek � Êk, and we have found a vector space containing strictly the one we search.
Note that when dim(Êk) + dim(Bk) = 64, Ek = Êk. This case is particularly
interesting because it reduces the complexity of the full cryptanalysis.

4.2 Bit Level Analysis of M−1
0

In the previous section, we were looking for differences Δ associated to a specific
io-block encoding bijection. It allowed us to get some information about M−1

0 . In
this section, we refine our search and this will allow us to get enough information
about M−1

0 in order to apply our method on the “naked-DES” to “nonstandard-
DES”. Our algorithm works sequentially and consists in a “filtering process”. The
different filters are described below.

286 L. Goubin, J.-M. Masereel, and M. Quisquater

Search for Candidates for Preimages of Elements Belonging to the
Sets SL and SR. Consider Δ be an element of IF64

2 such that M0(Δ) = ei

and ei ∈ SL. The only non-zero bit of M1 ◦ M0(Δ) touches only one io-block
encoding bijection (recall that we do not consider IP). Therefore, Δ belongs to
a single Êk. Assume now that Δ ∈ IF64

2 such that M0(Δ) = ei and ei ∈ SR

then M1 ◦ M0(Δ) has exactly two non-zero bits that may touch the same or
two distinct io-block encoding bijections or equivalently Δ belongs to one or two
spaces Êk. In what follows, we will call double an element Δ ∈ IF64

2 such that
M0(Δ) ∈ SR and the two non-zero bits of M1 ◦ M0(Δ) touch the same io-block
encoding bijection. For example, on Figure 8, the bit R2 could be a double, since
its two instances are in the input of T1. By considering intersections between the
spaces Êk, taken pairwise, we can distinguish preimages of elements of SR from
doubles or preimages of elements of SL.

Note that the intersections between spaces Êk taken pairwise provide more
information. Indeed, Êi ∩ Êj contains preimages of unknown canonical vectors.
In particular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj = 〈M−1

0 (ek)〉 for some k. In
this case, we already know the preimage of an unknown canonical vector. When
dim(Êi ∩ Êj) > 1 we can still take advantage of this fact even if it requires some
extra searches.

Recovering Middle Bits. In order to apply our attack presented in Section 3,
we need to exactly know the preimage of canonical vectors touching only a single
S-Box of the first round (e.g. Right bits 2,3,6,7,10, . . .). In what follows, we will
refer to such a canonical vector as a middle bit. If a middle bit is not a double, then
its two copies touch two different io-block encoding bijections. The first copy is in
input of an S-box, leading to at least two bits of difference at the end of the first
round of a regular DES, and 4 bits in our case, due to the expansion. The second
copy is a by-passed bit (see Figure 1), leading to only one bit of difference at the
end of the first round. Consider the bold path in Figure 8 starting from R3 bit, in
order to have a global view. Let us explain how we use this property.

Recall that X0 is the initial-vector defined in Section 4. For each difference Δ
belonging to the lists marked as input of the studied T-box, we apply X0 ⊕ Δ
to the obfuscated DES by making an injection fault. This means that we set the
input of this T-box to the initial-entry while we keep the input of the other T-
Boxes (see Figure 4). We evaluate the number of io-block encoding bijections at

Fig. 4. Injection fault

Cryptanalysis of White Box DES Implementations 287

the output of the first round that differs from the corresponding initial-entries.
If only one io-block encoding bijection (at the output of the first round) differs
from the corresponding initial-entry, we deduce that Δ could be the preimage of
a middle bit. Therefore, a list containing preimages of several canonical vectors
can be divided into two shorter lists; one list containing preimages of middle bits
while the other contains preimages of non-middle bits.

Remark 3. If a T-box is touched by more than three middle bits or left bits, we
deduce that this T-box does not contain any S-box. Note also that doubles can
only be preimages of middle bits. Finally, a T-box touched by a double contains
necessarily an S-box.

Recovering Left Bits. In order to apply our attack presented in Section
3, we need to know which group of four canonical vectors are xored with the
output of each S-box of the first round. First, we determine the io-block en-
coding bijections that are touched by the outputs of the studied S-box and
we denote by BS this set of bijections. In Figure 8, we can see that BS =
{b1,3, b3,3, b8,3, b12,3, b15,3, b20,3, b24,3} for the S-box S1. The elements bi,3 of BS
are characterised by DΔmbi,3◦πi◦M2,1◦T ◦M1◦M0(X0) �= 0, for all Δm belonging
to a list marked as a middle bit of the studied S-box. Then, we store in an extra
list L each Δ marked as left bits touching exactly two bijections of BS. This list
contains all the preimages associated to canonical vectors that are potentially
xored with the output of the S-box. Finally, we find Δl ∈ 〈L〉 such that for any
bijection bi,3 ∈ BS we have DΔm⊕Δl

bi,3 ◦πi ◦M2,1 ◦T ◦M1 ◦M0(X0) = 0, where
Δm belongs to a list marked as a middle bit of the studied S-box. This process
is repeated with different Δm or X0, until we find four linearly independent
Δl or equivalently the vector space spanned by the preimages of the searched
canonical vectors. We then compute the intersection between this space and all
the lists. It allows us to split some of them in shorter lists (the intersection and
the complementary space of the intersection). It may lead to lists containing a
single vector (distinguished list).

Chaining. In this section, we will try to determine precisely the correspondence
between T-boxes and S-boxes. Due to the remark in Section 4.2, we know which
are the T-boxes containing an S-box. The probability that a selected T-box,
denoted by T1, contains S1 is 1/8. We determine the two T-Boxes that are
touched by a canonical vector associated to a list marked as “right bit”, “non-
middle bit” and associated to T1. Selecting one of these T-Boxes randomly, the

Fig. 5. Chaining

288 L. Goubin, J.-M. Masereel, and M. Quisquater

probability that it contains S2 is 1/2. Out of the set of unselected T-Boxes, we
select the one that is touched by a canonical vector associated to a list marked as
“right bit”, “non-middle bit” and associated to the previous selected T-Box. We
continue the process until all T-Boxes have been selected (see Figure 5). Note
that the probability to determine the right correspondence is 1/8× 1/2 = 1/16.

Bit Positions. At this stage, we have recovered between others, 32 preimages
corresponding to unspecified left canonical vectors. In order to determine the
correspondence, we use the following observation on the DES:

Out of the four left bits that are xored with the output of a specified S-Box,
exactly two become (in the second round) middle bits.

Now, we just have to apply each of the preimages to the obfuscated DES and
check whether the image of this vector in front of the second round is a middle
bit (cf. 4.2). Assuming that the T-Boxes follow the same ordering in the different
rounds, preimages corresponding to a middle bit (resp. non-middle bit) can be
distinguished by observing the indices of the touched T-Boxes.
For example, for the first S-box, among the preimages of the four identified left
canonical vectors,

– one of such vectors is the preimage of e23 (resp. e31) if it is the preimage of
a middle bit of S6 (resp. S8) in the second round.

– one of such vectors is the preimage of e9 (resp. e17) if it is not the preimage
of a middle bit and it is in the input of S2 and S3 (resp. S4 and S5) of the
second round.

4.3 The Attack

In Section 4.2, we have shown how to recover all the preimages of the left canon-
ical vectors. In other words, we have recovered half of M−1

0 (columns and their
positions). Also, some of the lists marked as middle bits contain only one vector
but their corresponding canonical vector is however unknown. Therefore, some
columns of M−1

0 are known up to their positions. Finally, the remaining lists
marked as middle bits contain preimages of some canonical vectors ei1 , . . . , ein

(their number is the dimension of the vector space spanned by the list). In this
case, we select linearly independent vectors in the list and we associate each
of them to one of the canonical vector eij . Therefore, we are in the context of
the attack of the “naked-DES” up to some adaptations. In particular, we have to
choose X0 belonging to the vector space spanned by the known columns of M−1

0 .
The evaluation of the first round on X0⊕Δ may lead to some difficulties. Indeed,
we have to choose Δ belonging to the preimage of middle bits space which is
not necessarily included in the vector space spanned by the known columns of
M−1

0 . It turns out that we have to try all the candidates for this part of the
matrix M−1

0 . For each of these candidates, we mount an attack like we did on

Cryptanalysis of White Box DES Implementations 289

the “naked-DES”, which provides 48-bit key candidates. Note that wrong keys
may be recovered. More importantly, here may be no key for this candidate for
this part of the matrix M−1

0 . In other words, it means that we have to discard
this candidate.

In order to determine the remaining part of M−1
0 (columns associated to non-

middle bits), we apply a similar principle that we used for the “naked-DES”.
Indeed, we know the key and we know that for the “naked-DES” for any initial-
message X0 there always exists a difference Δ with non-zero right component
such that the right part of the differential (evaluated in X0) of the first round is
zero. It means that in the context of the “nonstandard-DES”, wrong candidates
for M−1

0 can be discarded. Denote by K the space spanned by the known columns
of the candidate for M−1

0 and by U the unknown columns of the candidate for
M−1

0 . We have K ⊕ U = IF64
2 . The candidate for M−1

0 can be discarded if there
exists X0 ∈ K such that there does not exist Δ with a non zero-component in
U such that the right part of the differential (evaluated in X0) is zero.

At this stage, we have a 48-bit key candidate and a candidate for M−1
0 . We

make an exhaustive search in order to determine the 8 remaining bits of the key.
For each of them we try to solve a linear system in order to find the matrix M4.
If there is no solution for M4 we deduce that the 8-bit key candidate is wrong.
If all the 8-bit key candidates are wrong, we discard this particular M−1

0 . Note
that this method also works if M4 has io-block encoding bijections at its output.

Attack on Link and Neumann obfuscation: Our methods only use the outputs
of the first and second round. In particular, we never use the outputs of the T-
boxes. Therefore, our two attacks (“naked-DES”, and “nonstandard-DES”) can be
applied on the Link and Neumann [7] obfuscation method. The only difference
is that we will deal with larger lists.

5 Results

This attack was implemented with a C code. At each stage of the attack, the
number of candidates decreases both for the key and for M−1

0 . Finally, it will
lead to a unique 48-bit key candidate, a unique M−1

0 candidate, and a unique
M4 candidate. We have tested our attack on thousands of randomly generated

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

%

tim
e

(s
ec

)

Fig. 6. Repartition of the attacks durations

290 L. Goubin, J.-M. Masereel, and M. Quisquater

obfuscated implementations of DES (both “naked” and “nonstandard” DES).
Figure 6 shows the necessary time to complete the attack. We can observe that
95% of the attacks require less than 50 seconds, and 75% less than 17 seconds.
The mean time is about 17 seconds. However, the attacks were executed on a
standard PC. The code was not optimized and the performance can be further
improved.

6 Comparison to Wyseur et al.’s Work

In this section, we try to clarify the differences between our paper and the one
of Wyseur et al. [11]. The main advantage of their method is that they are able
to recover the key for the “nonstandard-DES” even when the transformations
M0 and M4 are nonlinear. They also briefly explain how to recover these trans-
formations when they are linear, provided the key is known. Our method also
allows recovering linear transformations in a short amount of time. The nonlinear
case is still an open problem. Finally, Wyseur et al. [11] consider an obfuscation
where the φi’s have a restricted shape. While our model is unrestricted, they
consider only φi’s where all middle-bits touch only the four trivial T-boxes. It is
not obvious whether their methodology can be adapted to the general case.

7 Conclusion

In this paper, we have given new techniques of cryptanalysis for the current
obfuscation methods of DES. These techniques rely on a theoretical analysis
and have also been implemented as a C program. We have implemented our
method with a C code and have applied it successfully to more than a thousand
obfuscated implementations of DES (both “naked” and “nonstandard” DES). All
the studied instances have lead to a unique candidate for the DES key and for the
M0 and M4 secret linear transformations. The key and the two linear transforms
have been obtained within 17 seconds in average.

Acknowledgements. The authors would like to thank Sylvie Baudine for proof-
reading the text.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Billet, O.: Cryptologie Multivariable Ph.D. thesis University of Versailles (Decem-
ber 2005)

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004)

Cryptanalysis of White Box DES Implementations 291

4. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.: White-box cryptography and
an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

5. Chow, S., Johnson, H., van Oorschot, P., Eisen, P.: A white-box DES implementa-
tion for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696,
pp. 1–15. Springer, Heidelberg (2003)

6. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting faults.
In: Proceedings 2002 ACM Workshop on Digital Rights Management, November
18, 2002, Washington DC, USA (2002)

7. Link, H.E., Neumann, W.D.: Clarifying obfuscation: Improving the security of
white-box encoding (2004), http://eprint.iacr.org/

8. Patarin, J., Goubin, L.: Asymmetric cryptography with S-boxes. In: Proc. 1st In-
ternational Information and Communications Security Conference, pp. 369–380
(1997)

9. Patarin, J., Goubin, L., Courtois, N.: Improved Algorithms for Isomorphisms of
Polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998)

10. http://www.itl.nist.gov/fipspubs/fip46-2.htm
11. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-

Box DES Implementations with Arbitrary External Encodings. Cryptology ePrint
Archive, Report 2007/104 (2007), http://eprint.iacr.org/

12. http://www.cloakware.com
13. http://www.retrologic.com
14. http://www.yworks.com/en/products_yguard_about.htm

Appendix A: Proofs

Proof of Property 1: Let E be the set {Δ ∈ IF64
2 | DΔF (IF64

2) ⊂ Kk}.
– Let Δ be an element belonging to Bk. Let X be an element belonging to

IF64
2 .

DΔF (X) = (DΔ(b1 ◦ π1 ◦ M1 ◦ M0(X)), . . . , DΔ(b24 ◦ π24 ◦ M1 ◦ M0(X)))

According to the definitions, if Δ ∈ Bk then M0(Δ) ∈ Bk or equivalently
πk ◦ M1 ◦ M0(Δ) = 0. Writting DΔ(bk ◦ πk ◦ M1 ◦ M0(X)) as (1), we have :

(1) = bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X ⊕ Δ)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ πk ◦ M1 ◦ M0(Δ))
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ 0)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X) = 0

This means that DΔF (X) belongs to Kk or equivalently Δ belongs to E.
We conclude that Bk ⊂ E.

– Let Δ be any element of E. According to the definition of E, we have in
particular DΔ(0) ∈ Kk. This means that

bk(0) ⊕ bk ◦ πk ◦ M1 ◦ M0(Δ) = 0 ,

or equivalently
bk(0) = bk ◦ πk ◦ M1 ◦ M0(Δ) .

http://eprint.iacr.org/
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://eprint.iacr.org/
http://www.cloakware.com
http://www.retrologic.com
http://www.yworks.com/en/products_yguard_about.htm

292 L. Goubin, J.-M. Masereel, and M. Quisquater

We deduce that πk ◦M1 ◦M0(Δ) = 0 because bk is a bijection. According to
the definitions, it means that M0(Δ) ∈ Bk or equivalently Δ belongs to Bk.
Therefore E ⊂ Bk. We conclude that E = Bk.

– Note that in fact Bk is the kernel of πk ◦M1 ◦M0. Since rank(πk ◦M1 ◦M0)
is less or equal to 4, and greater or equal to 1, we have simultaneously
60 ≤ dim(Bk) ≤ 63 and the probability that Δ belongs to Bk when Δ is
randomly chosen, is equal to dim(Bk)

264 . The results follows. ��

Proof of Lemma 1: First recall that Bk = 〈ej | πk ◦ M1(ej) = 0〉 and Ek =
〈ej | πk ◦ M1(ej) �= 0〉. Let j and k be two distinct integers, then the following
conditions are equivalent.

– Ej ∩ Ek = {0}.
– πk ◦ M1(ei) = 0 or πj ◦ M1(ei) = 0 for any integer i ∈ [1, 64].
– πk ◦ M1(X) = 0 or πj ◦ M1(X) = 0 for any vector X ∈ IF64

2 .

We conclude that if X ∈ Ej and Ej∩Ek = {0} then πk◦M1(X) = 0 or equivalently
X ∈ Bk.
Consider X �= 0 belonging to

⋂

j �=k

Bj . We have that πj ◦ M1(X) = 0 for any

j �= k. Note that M1 is injective. Therefore M1(X) �= 0 and πk ◦M1(X) �= 0. We
conclude that all the bits of M1(X) that touch bj (j �= k) are zeros. Therefore,
for any non-zero component ei of X , M1(ei) touches bk or equivalently X ∈ Ek,
and

⋂

j �=k

Bj ⊂ Ek.

Let us use an argument by contraposition. Consider ei /∈ ⋂

j �=k

Bj. Then, there

exists j �= k, such that ei /∈ Bj , i.e. πj ◦ M1(ei) �= 0 or equivalently ei ∈ Ej .
Therefore, according to the previous three equivalent conditions, ei /∈ Ek. We
deduce that for any ei ∈ Ek we have ei ∈

⋂

j �=k

Bj. It means that Ek = 〈ei | ei ∈
Ek〉 ⊂

⋂

j �=k

Bj. We conclude Ek =
⋂

j �=k

Bj. �

Proof of Property 2: Let ei be an element of Ek and j be an element of Jk.
We have πk ◦M1(ei) �= 0 and Ej ∩Ek = {0}. It implies that πj ◦M1(ei) = 0, and
ei ∈ Bj. Therefore, ei ∈

⋂

j∈Jk

Bj , and 〈ei | ei ∈ Ek〉 ⊂ Êk. ��

Proof of Property 3: We will first prove that (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = IF64
2 .

Consider a canonical vector ek /∈ Bi∩Bj . This is equivalent to πi ◦M1(ek) �= 0 or
πj ◦M1(ek) �= 0. In other words ek ∈ Ei or ek ∈ Ej, or equivalently ek ∈ 〈Ei∪Ej〉.
This means that for any canonical vectors ek of IF64

2 , we have either ek belongs
to Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.

Assume that there exists a canonical vector ek ∈ (Bi∩Bj)∩〈Ei∪Ej〉. We have
πi ◦M1(ek) = πj ◦M1(ek) = 0, and either πi ◦M1(ek) �= 0 or πj ◦M1(ek) �= 0. It
leads to a contradiction. Hence (Bi∩Bj)∩〈Ei∪Ej〉 contains no canonical vectors.

Cryptanalysis of White Box DES Implementations 293

Assume now that there exists an element Δ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having
a non-zero component ek. The vector Δ belongs to (Bi ∩ Bj), hence ek belongs
to (Bi ∩ Bj). Moreover Δ belongs to 〈Ei ∪ Ej〉, hence ek belongs to 〈Ei ∪ Ej〉.
Therefore ek belongs to (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 which is impossible. We conclude
that (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = IF64

2 .
We deduce that

64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)
= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj)

Moreover Ei ⊕Bi = IF64
2 = Ej ⊕Bj. Hence 64 = 64−dim(Bi)+64−dim(Bj)−

dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows. ��

294 L. Goubin, J.-M. Masereel, and M. Quisquater

Appendix B: Figures

Fig. 7. “Naked-DES” and “Nonstandard-DES”

Cryptanalysis of White Box DES Implementations 295

Fig. 8. General view of the attack

	Cryptanalysis of White Box DES Implementations
	Introduction
	DES Obfuscation Methods
	Attack on the ``Naked-DES''
	Attack on the ``Nonstandard-DES''
	Block Level Analysis of $M_1\circ M_0$
	Bit Level Analysis of M_0^{-1}
	The Attack

	Results
	Comparison to Wyseur $et al.$'s Work
	Conclusion

