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Abstract. In this paper, we present the first distinguishing attack on
HMAC and NMAC based on MD5 without related keys, which distin-
guishes the HMAC/NMAC-MD5 from HMAC/NMAC with a random
function. The attack needs 297 queries, with a success probability 0.87,
while the previous distinguishing attack on HMAC-MD5 reduced to 33
rounds takes 2126.1 messages with a success rate of 0.92. Furthermore, we
give distinguishing and partial key recovery attacks on MDx-MAC based
on MD5. The MDx-MAC was proposed by Preneel and van Oorschot in
Crypto’95 which uses three subkeys derived from the initial key. We are
able to recover one 128-bit subkey with 297 queries.

Key words: HMAC, NMAC, MDx-MAC, MD5, Distinguishing attack,
Key recovery

1 Introduction

Many cryptographic schemes and protocols use hash functions as primitives. In
recent work [3,4,16,17,18,19], devastating collision attacks on hash functions from
the MD4 family were discovered. Such attacks have undermined the confidence
in the most popular hash functions such as MD5 or SHA-1, and raise the interest
in reevaluating the actual security of the Message Authentication Code (MAC)
algorithms based on them [7,6,9].

HMAC and NMAC are hash-based message authentication codes proposed
by Bellare, Canetti and Krawczyk [1]. NMAC is the theoretical foundation of
HMAC, and HMAC has been implemented in widely used protocols including
SSL/TLS, SSH and IPsec. The security of NMAC and HMAC has been carefully
analyzed in [1,2]. It was proved that NMAC is a pseudo-random function family
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(PRF) under the assumption that the compression function of the keyed hash
function is a PRF. This proof can be extended to HMAC by an additional
assumption: the key derivation function in HMAC is a PRF. However, if the
underlying hash function is weak (such as MD5), the above proofs may not
work.

There are three types of the attacks on HMAC/NMAC, namely, distinguish-
ing attack, existential forgery attack and universal forgery attack. Distinguish-
ing attack can be divided into distinguishing-R and distinguishing-H attacks [9],
where distinguishing-R attack means distinguishing HMAC/NMAC from a ran-
dom function, and distinguishing-H attack detects instantiated HMAC/NMAC
(by existing hash functions) from HMAC/NMAC with a random function. A
general distinguishing-R attack on HMAC using the birthday paradox was intro-
duced by Preneel and van Oorschot [10]. This attack requires about 2

l
2 messages

and works with probability 0.63, where l is the length of the initial value.

In this paper, we focus on the distinguishing-H attack on HMAC/NMAC-
MD5 that checks which cryptographic hash function is embedded in HMAC/-
NMAC. For simplicity, we call it distinguishing attack. In [9], Kim et al. intro-
duced two kinds of distinguishers of the HMAC structure, the differential distin-
guisher and the rectangle distinguisher, and used them to analyze the security
of HMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1. For MD5 reduced
to 33 rounds, they described a distinguishing attack taking 2126.1 messages with
a success probability 0.92. Using the pseudo-collisions found by den Boer and
Bosselaers [5], Contini and Yin [6] proposed a related-key distinguishing attack
on NMAC-MD5 with 247 queries and a success probability of 0.25. They ap-
plied it to construct forgery and partial key-recovery attacks on NMAC-MD5.
Fouque et al. [7] presented the first full-key recovery attack on HMAC/NMAC-
MD4, and extended Contini and Yin’s attack to the full key-recovery attack
on NMAC-MD5. The latter was independently found by Rechberger and Rij-
men [11,12] with better results than [7] by ignoring the conditions in the last 5
steps. They also proposed a full key-recovery attack in the related-key setting on
NMAC with SHA-1 reduced to 34 steps, and improved the attack on HMAC in-
stantiated with reduced SHA-1 variants of more steps in [12]. Recently, Wang et
al. [15] suggested more efficient full key-recovery attacks on HMAC/NMAC-MD4
and NMAC-MD5 using near-collisions. However, all the attacks on NMAC-MD5
are in the related-key setting, hence these attacks can not be applied to the
corresponding HMAC.

In this paper, we are able to get rid of related keys, and propose the first dis-
tinguishing attacks on HMAC/NMAC-MD5. Based on the dBB pseudo-collision
[5], we search for a new kind of collision which is called a dBB collision. With the
specific structure and high probability of a dBB collision, we can successfully dis-
tinguish a dBB collision from other random collisions found by the birthday at-
tack. Once a dBB collision is detected, the distinguisher outputs HMAC/NMAC-
MD5; otherwise, it outputs HMAC/NMAC with a random function. The attack
needs 297 queries in total, and the success rate is 0.87.
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Another contribution of this paper is to introduce distinguishing and partial
key recovery attacks on the MDx-MAC based on MD5 called the MD5-MAC.
The MDx-MAC was proposed by Preneel and van Oorschot in Crypto’95 [10]
which transforms any MD4-family hash function into a MAC algorithm. It uses
three subkeys K0, K1 and K2 which are derived from an original key K. The role
of K0 and K2 is similar to the two secret keys in the envelope MAC construction,
and four 32-bit words of K1 are added to all the step operations of four rounds
respectively. The dBB collision can be used not only to distinguish MD5-MAC
directly, but also to capture the full subkey K1 which is involved in the collision
path. The number of queries in the attack is about 297.

This paper is organized as follows. Background and definitions are recalled
in Section 2. In Section 3, we first introduce a distinguishing attack on the keyed
IV MAC, which is an adaptive chosen message attack, and then extend it to
distinguish HMAC/NMAC-MD5 from HMAC/NMAC with a random function.
In Section 4, we present distinguishing and key recovery attacks on MD5-MAC.
Finally, Section 5 concludes the paper.

2 Background and Definitions

2.1 Notations
H : a hash function
H : a hash function without padding
h : a compression function

x‖y : concatenation of the two bitstrings x and y
+ : addition modular 232

⊕ : bitwise exclusive OR
∨ : bitwise OR
∧ : bitwise AND

≪ s : left-rotation by s-bit

2.2 Brief Description of MD5

MD5 [13] is a hash function proposed by Rivest as a strengthened version of MD4.
It takes an arbitrary length message and produces a 128-bit hash value. First, the
input message M is padded to be M , a multiple of 512 bits. Suppose the length of
M in bits is l. Append the bit “1” to the end of the message followed by k “0” bits,
where k is the smallest non-negative integer such that l +1+k = 448 mod 512.
Then append the 64-bit block that is equal to the number l expressed using
a binary representation. The padded message M is then divided into 512-bit
message blocks, i.e., M = (M0, . . . ,Mn−1), and processed by Merkle-Damg̊ard
iterative structure. Each iteration invokes a compression function which takes
a 128-bit chaining value and 512-bit message block as inputs, and outputs a
128-bit value as the hash value of this iteration.

The compression function has four rounds. Every round has 16 steps and
employs a round function. For the padded message M with n blocks, the hash
function is performed n iterations in total. The k-th iteration is the following:
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– Input: 512-bit message Mk−1 = (m0,m1, · · · ,m15) and a 128-bit chaining
value (A0, B0, C0, D0) = CVk−1, where CVk−1 is the output of (k − 1)-th
iteration.

– Step update: For 0 ≤ i ≤ 15,

Ai+1 = Bi + (Ai + f(Bi, Ci, Di) + w4i + c4i) ≪ s4i,

Di+1 = Ai+1 + (Di + f(Ai+1, Bi, Ci) + w4i+1 + c4i+1) ≪ s4i+1,

Ci+1 = Di+1 + (Ci + f(Di+1, Ai+1, Bi) + w4i+2 + c4i+2) ≪ s4i+2,

Bi+1 = Ci+1 + (Bi + f(Ci+1, Di+1, Ai+1) + w4i+3 + c4i+3) ≪ s4i+3,

where for 0 ≤ j ≤ 63, wj is one of the 16 message words, cj and sj are step-
dependent constants, f is a round-dependent Boolean function as follows:

f(x, y, x) = (x ∧ y) ∨ (¬x ∧ z) if 0 ≤ i ≤ 3,
f(x, y, x) = (x ∧ z) ∨ (y ∧ ¬z) if 4 ≤ i ≤ 7,
f(x, y, x) = x⊕ y ⊕ z if 8 ≤ i ≤ 11,
f(x, y, x) = y ⊕ (x ∨ ¬z) if 12 ≤ i ≤ 15.

– Output: CVk = (A0 + A16, B0 + B16, C0 + C16, D0 + D16).

CVn = H(M) is the hash value, and CV0 is the initial value.

2.3 Pseudo-collisions of MD5

Our attacks are based on the dBB pseudo-collisions found by den Boer and
Bosselaers [5], which satisfy the following relations:

h(IV,M) = h(IV ′,M), (1)
IV ⊕ IV ′ = (231, 231, 231, 231) = ∆MSB, (2)
MSB(B0) = MSB(C0) = MSB(D0), (3)

where M is a one-block message, and MSB means the most significant bit. The
probability of the dBB pseudo-collision is 2−46. The specific differential path for
the dBB pseudo-collision is shown in Table 1. We call the relations (2) and (3)
as dBB conditions. Now we define an important type of collision as the dBB
collision:

dBB collision: A collision of two-block messages (x‖y, x′‖y) is called a dBB
collision if

1. Let CV = h(IV, x) and CV ′ = h(IV, x′). The pair (CV, CV ′) satisfies the
dBB conditions.

2. (CV, y) and (CV ′, y) compose a dBB pseudo-collision, i.e., h(CV, y) = h(CV ′, y).

2.4 Secret Prefix MAC, HMAC and NMAC

A MAC algorithm is a hash function with a secret key K as the secondary input.
HMAC and NMAC are two popular MAC algorithms which are all derived from
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efficient hash functions. Another three earlier hash based MACs are constructed
by the Secret Prefix Method, Secret Suffix Method and Envelope Method.

The secret prefix method was proposed in the 1980s, and was suggested for
MD4 independently in [14] and [8]. The secret prefix MAC is constructed as:

Secret-Prefix-MACK(M) = H(K‖M).

If the key K (maybe padded) is a full block, secret prefix MAC is equivalent
to a hash function with a secret IV , which is called the keyed IV MAC. We
denote this kind of MAC construction based on MD5 as KIMAC-MD5 which is
the basic design unit for HMAC/NMAC-MD5.

The NMAC function, on input message M and a pair of 128-bit independent
keys (K1,K2), is defined as:

NMAC(K1,K2)(M) = HK1(HK2(M)).

In fact, the outer function acts on the output of the iterated hash function,
and thus involves one iteration of the compression function. That is to say,
the outer function is basically the compression function hK1 acting on HK2(M)
which has been padded to a full block size.

Since the NMAC replaces the fixed IV in H with a secret key, this requires
a modification of existing implementation of the underlying hash function. The
construction of HMAC is motivated to avoid this problem, and still uses the usual
fixed IV . On input message M and a single secret key K, HMAC is computed
as:

HMACK(M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)),

where K is the completion by adding ”0”s of K to a full block of the iterated
hash function, and opad and ipad are two one-block length constants.

Basically, HMACK is the same as NMAC(h(K⊕opad),h(K⊕ipad)). For simplicity,
we denote the HMACK(M) by Hout(Hin(M)).

2.5 Description of MD5-MAC

The MDx-MAC was proposed by Preneel and van Oorschot in Crypto’95 [10],
which converts MDx-family hash functions into MAC algorithms with a key K
up to 128 bits. The underlying hash function can be any of MD5, RIPEMD,
SHA, or other similar algorithms except MD4. For convenience, we denote the
MDx-MAC based on MD5 as MD5-MAC.

Let MD5 denote MD5 algorithm without padding. The 128-bit secret key K
is expanded to three 128-bit subkeys K0, K1 and K2 by the following procedure.

For i = 0 to 2, Ki = MD5(K||Ui||K), where U0, U1 and U2 are three different
96-byte constants (See [10] for details). The MD5-MAC is then obtained from
MD5 with the following modifications:

1. The initial value IV of MD5 is replaced by K0.
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2. The key K1 is split into four 32-bit words denoted by K1[i] (0 ≤ i ≤ 3)
which are added to the constants used in round i of each MD5 iteration
respectively.

3. Following the block containing the padding and appended length as defined
by MD5, an additional 512-bit block of the following form

K2 = K2||K2 ⊕ T0||K2 ⊕ T1||K2 ⊕ T2

is appended, where Ti (0 ≤ i ≤ 2) are three 128-bit constants.
4. The MAC value is the leftmost m bits of the hash value.

In [10], the authors recommended m = n/2 for most applications. For our
attack, we assume m = n.

3 Distinguishing Attacks on HMAC/NMAC-MD5

To describe the distinguishing attack on HMAC/NMAC-MD5, we start with
a distinguishing attack on KIMAC-MD5 which is an adaptive chosen message
attack.

3.1 Adaptive Chosen Message Attack on KIMAC-MD5

The core of the attack is to find a pair (x, x′) whose output difference satisfies
the dBB conditions, and to detect whether x and x′ can lead to a dBB collision
by appending 247 y separately with a reasonable probability.

The adversary performs the following steps:

1. Generate a structure of 266 random messages, and query the MACs of these
messages. We assume that the MAC algorithm is either a KIMAC-MD5 or
KIMAC with a random function (KIMAC-RF).

2. Use the birthday attack [20] to find two messages (x, x′) where (HK(x),
HK(x′)) satisfies the dBB conditions.

3. Let pad(pad′) be the padding for x(x′). Append 247 different messages y to
the messages x‖pad and x′‖pad′ respectively, and query the MACs with the
two sets of 247 messages.

4. If a collision (x‖pad‖y, x′‖pad′‖y) is found, output the MAC as KIMAC-
MD5. Otherwise, the MAC is KIMAC-RF.

The data complexity of the attack is 266 + 2 · 247 ≈ 266 chosen messages.
Since we can use the birthday attack to search pairs satisfying dBB-conditions,
the time complexity is dominated by the size of the structure in Step 1 (the data
collection phase), which is about 266 queries, i.e., 266 MAC computations.

Now let us analyze the success probability of this attack. From the above
process, we observe that, when a specific message pair (x, x′) is found in step 2,
our attack succeeds in the following cases. If the KIMAC is based on MD5, a
message y such that HK(x‖pad‖y) = HK(x′‖pad′‖y) is searched. Otherwise, if
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the KIMAC is KIMAC-RF, no collision is found. The detailed computation of
the probability is as follows.

For two random messages x and x′, the output difference HK(x) ⊕ HK(x′)
satisfies the dBB conditions with probability:

1
2128

× 1
4

=
1

2130
.

According to the birthday paradox and Taylor series expansion, no matter
what kind of oracle MAC is, among the 266 messages, we can find a message
pair (x, x′) satisfying the dBB conditions with probability

q ≈ 1− (1− 1
2130

)C2
266 ≈ 1− e−2 ≈ 0.86.

For KIMAC-MD5, the collision in step 4 happens with higher probability
2−46 instead of the average probability 2−128. So, when the KIMAC is based
on MD5, we can find a collision among 247 adaptive chosen messages in Step 4
with probability p1 = 1 − (1 − 1

246 )2
47 ≈ 0.86. Otherwise, a collision occurs for

KIMAC-RF with a low probability p2 = 1− (1− 1
2128 )2

47 ≈ 0. Hence, the success
rate of this attack is

q × [
p1

2
+ (

1− p2

2
)]

≈ 0.86× (0.86× 1
2

+
1
2
)

≈ 0.80.

The success rate can be improved by repeating the attack several times.

3.2 Adaptive Chosen Message Attack on HMAC-MD5

The above attack cannot be applied to HMAC-MD5 directly due to the fact that
the dBB collision of Hin is concealed by the outer level hashing Hout. However,
we can discard all other collisions by some concrete detective techniques, and
save the dBB collisions.

Suppose that we get a collision of HMAC which has the form (x‖y, x′‖y).
Denote Hin(x) as CV , and Hin(x′) as CV ′, for simplicity. Let ∆CV = CV ⊕
CV ′. The key of our attack is to distinguish the dBB collisions according to the
relation of Hin(x) and Hin(x′):

1. Internal collision: If ∆CV = 0, (x‖y, x′‖y) is called an internal collision.
2. External collision: If ∆CV 6= 0, (x‖y, x′‖y) is an external collision. Further-

more, when ∆CV satisfies the dBB conditions, and (CV, y) and (CV ′, y)
compose a dBB pseudo-collision, (x‖y, x′‖y) is a dBB collision. Otherwise,
the collision is a non-dBB external collision.

The adversary performs as follows:
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1. Generate 289 one-block messages x randomly, and append a fixed 447-bit
message y (taking padding into consideration) to each x. Query all the mes-
sages x‖y to get their MACs.

2. Find all the collided messages (x‖y, x′‖y) satisfying HMACK(x‖y) = HMACK

(x′‖y). Note that on average, there are 249 internal collisions, 2 dBB colli-
sions and 250 non-dBB external collisions.

3. For all the collisions (x‖y, x′‖y) collected in step 2 , we append y′ 6= y to x
and x′, query (x‖y′, x′‖y′), and check if they collide. This way, the internal
collisions can be detected. In the next step, we only need to distinguish the
dBB collisions from the non-dBB external collisions.

4. For the remaining collisions, append 247 different y′ 6= y to x and x′, respec-
tively, query the MACs for x‖y′ and x′‖y′, and check whether a collision
occurs. Once a collision (x‖y′, x′‖y′) is found, we conclude that the original
collision (x‖y, x′‖y) is a dBB collision, and output the MAC is HMAC-MD5.
Otherwise, the MAC is a HMAC-RF.

Complexity evaluation:
There are at most 2177 pairs produced by 289 messages, so the expected

number of internal collisions is 2177−128 = 249. Similarly, the expectation of non-
dBB external collisions is 249 + 249 = 250 where 249 collisions occur after Hin

and other 249 collisions occur after Hout. For two messages x and x′, the output
difference hK(x) ⊕ hK(x′) satisfies the dBB conditions with probability 2−130.
Consequently, there are 2177−130 = 247 pairs satisfying the dBB conditions, and
about 247−46 = 2 of them are dBB collisions.

In step 1, the data complexity is 289. We keep a table of 289 entries in step
2, finding 249 + 250 + 2 collisions needs about 289 table lookups. In step 3, the
time complexity is about 249 + 250 + 2 ≈ 250.58 MAC computations. In step 4 ,
both the data and time complexity are about (250 + 2)× 247 ≈ 297.

Therefore, the total time complexity of attack is about 297 MAC computa-
tions and 289 table lookups, and data complexity is about 297 chosen messages.

Success rate:
As analyzed in section 3.1, we divide the success rate into two parts:

– If the MAC is HMAC-MD5, the attack succeeds when a dBB collision is
found among 250.58 collisions.
The probability that there exists a dBB collision among 250.58 collisions is

1− (1− 1
2130+46

)2
177

≈ 1− e−2 ≈ 0.86.

The probability that the dBB collision can be detected in step 4 is about

1− (1− 1
246

)2
47
≈ 1− e−2 ≈ 0.86.

Thus, if the MAC is HMAC-MD5, the attack can find a dBB collision with
probability 0.86× 0.86 = 0.74.
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– If the MAC is HMAC-RF, the attack succeeds when no dBB collision is
detected. The success probability is about

((1− 1
2128

)2
47

)2
50
≈ 1.

Therefore, the success rate of the whole attack is about

1
2
× 0.74 +

1
2
× 1 = 0.87.

3.3 Chosen Message Attack on HMAC-MD5

In this subsection, we relax the adaptive chosen message attack to a chosen
message attack. The data complexity will increase up to 2113, but the table size
is reduced from original 289 to 266 entries.

The chosen message distinguishing attack on HMAC-MD5 is described as
follows:

1. Select a set of 266 one-block messages x at random. Append a chosen 447-bit
message y to all the x, and form a structure of 266 messages x‖y. Choose
247 different messages y to produce 247 structures. Make 2113 MAC queries
for all of the structures.

2. For each structure, fulfill the birthday attack [20] to find all the collisions
(x‖y, x′‖y) satisfying HMACK(x‖y) = HMACK(x′‖y).

3. For each collision (x‖y, x′‖y) found in step 2, we determine the type of the
collision.

– Check whether all the pairs (x‖y′, x′‖y′) in other structures are collisions.
If all other pairs (x‖y′, x′‖y′) collide, then (x‖y, x′‖y) is an internal col-
lision.

– Check whether there exists at least one y′ such that (x‖y′, x′‖y′) is a
collision in another structure. If so, we conclude that (x‖y, x′‖y) is a
dBB collision, and the MAC is HMAC-MD5. If there is no dBB collision,
the MAC is HMAC-RF.

It is clear that the attack needs about 2113 chosen messages. For each struc-
ture, the expectation is 8 internal collisions and 16 external collisions. So the
total number of collisions in all 247 structures is about 24× 247 < 252. For each
collision, 247 table lookups are needed. Therefore the time complexity is less
than 252 × 247 = 299 table lookups, and the table size is 266 entries.

The computation of success rate is the same as in subsection 3.2.
Application to NMAC: NMAC is a generalized version of HMAC as intro-

duced in subsection 2.3. Since the above attack on HMAC-MD5 has no relation
with the secret key, hence it can be applied to NMAC-MD5 directly.
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4 Partial Key Recovery Attack on the MD5-MAC

Obviously, the distinguishing attack on HMAC/NMAC-MD5 described in Sec-
tion 3 is also applicable to distinguish the MD5-MAC from the MDx-MAC based
on a random functions.

It should be noted that our distinguishing attack on HMAC/NMAC-MD5
can not be extended to recover the inner keys. Even though the partial bits of
intermediate states of the second block y can be recovered using the method
in [6], we can not derive the inner keys of HMAC/NMAC by the backward
computation because of the existence of the first block x. For the MDx-MAC, the
situation is different since its secret keys are not only involved in the beginning
(IV) and the end, but also in every iteration. We are able to recover the second
secret key K1 involved in every iteration.

This process can be divided into three phases. The first phase is to find a
dBB collision. Note that by the techniques described in section 3, it’s easy to
find a dBB collision (x‖y, x′‖y) with the complexity of 297 MAC computations.
The second phase is to recover some bits of the intermediate states by the given
dBB collision (x‖y, x′‖y). The third phase is to recover the secret key K1.

4.1 Recovering Some Bits of the Intermediate States

We can use the bit carry method of [6] to recover 255 bits of the intermediate
chaining variables of the second block y. Let y = y[0]y[1]...y[15] where each y[i]
is a 32-bit words. Table 1 lists the dBB differential path. The 6-th column of
the table contains sufficient conditions that guarantee the dBB differential holds,
and the last column lists the recovered 255 bits of the first round. The complexity
of this part is less than 246 × 255 ≈ 254 MAC computations.

4.2 Recovering the 128-bit Subkey K1

We implement the divided and conquer attack to recover the 32-bit subkeys
K1[0], K1[1], K1[2] and K1[3] separately.

1. Recovering the 32-bit subkey K1[0]
From Table 1, 95 bits in the first five variables A1, D1, C1, B1 and A2 can
be recovered. We guess the other 65 unknown bits, and for each guess, we
compute K1[0], D2, C2, B2, A3 and D3 successively.

K1[0] = (A2 −B1) ≫ s0 −A1 − f1(B1, C1, D1)− y′[0]− C0

D2 = A2 + (D1 + f(A2, B1, C1) + y[1] + c1 + K1[0]) ≪ s1

C2 = D2 + (C1 + f(D2, A2, B1) + y[2] + c2 + K1[0]) ≪ s2

B2 = C2 + (B1 + f(C2, D2, A2) + y[3] + c3 + K1[0]) ≪ s3

A3 = B2 + (A2 + f(B2, C2, D2) + y[4] + c4 + K1[0]) ≪ s4

D3 = A3 + (D2 + f(A3, B2, C2) + y[5] + c5 + K1[0]) ≪ s5
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If the 90 bits of D2, C2, B2, A3 and D3 are consistent with the corresponding
recovered bits in Table 1, we get the right secret key K1[0] and A1, D1, C1,
B1 and A2. In this way, we can compute all the chaining variable values Ai,
Bi, Ci and Di (1 ≤ i ≤ 4) in the first round.

2. Recovering the 32-bit subkey K1[1]
Guess the 32-bit key K1[1] . For each candidate K1[1], we compute Ai, Bi,
Ci and Di (5 ≤ i ≤ 8) using the known values (A4, D4, C4, B4) and message
y. If K1[1] is the right key, then Ai, Bi, Ci, and Di (5 ≤ i ≤ 8) will satisfy
all the 15 conditions in steps 17-33 of Table 1 with probability 1. Otherwise,
Ai, Bi, Ci, and Di (5 ≤ i ≤ 8) will satisfy the 15 conditions with probability
2−15. In this way, there are about 232 · 2−15 = 217 candidates K1[1] left. It
only needs two other dBB collisions (x‖y′, x′‖y′) to discard the wrong K1[1],
and capture the right one from the 217 candidates. To find two other dBB
collisions takes about 247 MAC computations.

3. Recover the 32-bit subkeys K1[2] and K1[3]
From Table 1, we know that there is only one condition in the third round.
This means that at most 33 dBB collisions (colliding pairs have the common
first block (x, x′)) are needed to filter the wrong keys from a 232 key space
and obtain the right key K1[2]. Similarly, as there are 15 conditions in the
4-th round, 3 dBB collisions are required to determine the right K1[3].

Overall, the complexity of the key recovery is dominated by 297 queries, which
is the complexity of finding a dBB collision.

5 Conclusions

In this paper, we utilize the dBB pseudo-collisions to construct dBB collisions
which have the dBB specific structure and differential path with high probabil-
ity. The specific structure can be used to construct a distinguishing attack on
HMAC/NMAC-MD5, with 297 queries and 297 MAC computations under adap-
tive chosen message attack. Under chosen message attacks, the complexities is
up to 2113 queries and 299 table lookups. For MD5-MAC, the specific differential
path can be used to recover the subkey involved in the differential path with
complexity of 297 queries.
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Table 1. The dBB differential path and its corresponding sufficient conditions

step mi CV shift si Output Sufficient Recovered bits
difference conditions

-4 A0 32
-3 D0 32
-2 C0 32 C0,32 = D0,32
-1 B0 32 B0,32 = C0,32
1 m0 A1 7 32 A1,32 = B0,32 32, 31, 30, ..., 8
2 m1 D1 12 32 D1,32 = A1,32 32, 31, 30, ..., 13
3 m2 C1 17 32 C1,32 = D1,32 32, 31, 30, ..., 18
4 m3 B1 22 32 B1,32 = C1,32 32, 31, 30, ..., 23
5 m4 A2 7 32 A2,32 = B1,32 32, 31, 30, ..., 8
6 m5 D2 12 32 D2,32 = A2,32 32, 31, 30, ..., 13
7 m6 C2 17 32 C2,32 = D2,32 32, 31, 30, ..., 18
8 m7 B2 22 32 B2,32 = C2,32 32, 31, 30, ..., 23
9 m8 A3 7 32 A3,32 = B2,32 32, 31, 30, ..., 8
10 m9 D3 12 32 D3,32 = A3,32 32, 31, 30, ..., 13
11 m10 C3 17 32 C3,32 = D3,32 32, 31, 30, ..., 18
12 m11 B3 22 32 B3,32 = C3,32 32, 31, 30, ..., 23
13 m12 A4 7 32 A4,32 = B3,32 32, 31, 30, ..., 8
14 m13 D4 12 32 D4,32 = A4,32 32, 31, 30, ..., 13
15 m14 C4 17 32
16 m15 B4 22 32 B4,32 = C4,32
17 m1 A5 5 32 A5,32 = B4,32
18 m6 D5 9 32 D5,32 = A5,32
19 m11 C5 14 32 C5,32 = D5,32
20 m0 B5 20 32 B5,32 = C5,32
21 m5 A6 5 32 A6,32 = B5,32
22 m10 D6 9 32 D6,32 = A6,32
23 m15 C6 14 32 C6,32 = D6,32
24 m4 B6 20 32 B6,32 = C6,32
25 m9 A7 5 32 A7,32 = B6,32
26 m14 D7 9 32 D7,32 = A7,32
27 m3 C7 14 32 C7,32 = D7,32
28 m8 B7 20 32 B7,32 = C7,32
29 m13 A8 5 32 A8,32 = B7,32
30 m2 D8 9 32 D8,32 = A8,32
31 m7 C8 14 32 C8,32 = D8,32
32 m12 B8 20 32
33 m5 A9 4 32
34 m8 D9 11 32
35 m11 C9 16 32
36 m14 B9 23 32
37 m1 A10 4 32
38 m4 D10 11 32
39 m7 C10 16 32
40 m10 B10 23 32
41 m13 A11 4 32
42 m0 D11 11 32
43 m3 C11 16 32
44 m6 B11 23 32
45 m9 A12 4 32
46 m12 D12 11 32
47 m15 C12 16 32
48 m2 B12 23 32 B12,32 = D12,32
49 m0 A13 6 32 A13,32 = C12,32
50 m7 D13 10 32 D13,32 = B12,32
51 m14 C13 15 32 C13,32 = A13,32
52 m5 B13 21 32 B13,32 = D13,32
53 m12 A14 6 32 A14,32 = C13,32
54 m3 D14 10 32 D14,32 = B13,32
55 m10 C14 15 32 C14,32 = A14,32
56 m1 B14 21 32 B14,32 = D14,32
57 m8 A15 6 32 A15,32 = C14,32
58 m15 D15 10 32 D15,32 = B14,32
59 m6 C15 15 32 C15,32 = A15,32
60 m13 B15 21 32 B15,32 = D15,32
61 m4 A16 6 32 A16,32 = C15,32
62 m11 D16 10 32 D16,32 = B15,32
63 m2 C16 15 32 C16,32 = A16,32
64 m9 B16 21 32
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