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Abstract

Recently, Augot and Finiasz presented a coding theoretic public key cryptosystem that
suggests a new approach for designing such systems based on the Polynomial Reconstruc-
tion Problem. Their cryptosystem is an instantiation of this approach under a specific
choice of parameters which, given the state of the art of coding theory, we show in this
work to be sub-optimal. Coron showed how to attack the Augot and Finiasz cryptosystem.
A question left open is whether the general approach suggested by the cryptosystem works
or not. In this work, we show that the general approach (rather than only the instantiation)
is broken as well. Our attack employs the recent powerful list-decoding mechanisms.

1 Introduction.

Recently, in Eurocrypt 2003 [AF03], Augot and Finiasz presented a public-key cryptosystem
that was based on the Polynomial Reconstruction problem (PR). This scheme suggests a
general approach for designing such cryptosystems; their cryptosystem is an instantiation of
this approach based on a specific choice of parameters.

Let us first review PR, which is a curve-fitting problem that has been studied extensively
especially in the coding theoretic setting, where it corresponds to the Decoding Problem of
Reed-Solomon Codes.

Definition 1 Polynomial Reconstruction (PR) Given a set of points over a finite field
{〈zi, yi〉}

n
i=1, and parameters [n, k, w], recover all polynomials p of degree less than k such that

p(zi) 6= yi for at most w distinct indexes i ∈ {1, . . . , n}.

Regarding the solvability of PR, we remark that unique solution can only be guaran-
teed when w ≤ n−k

2 (the error-correction bound of Reed-Solomon Codes). For such param-
eter choices, the Berlekamp-Welch Algorithm [BW86] can be used to recover the solution in
polynomial-time. When the number of errors w exceeds this bound, unique solution is not
necessarily guaranteed. In this range, a decoding algorithm may output a list of polynomials
that satisfy the constraints. This is called list-decoding and recently some breakthrough re-
sults have been achieved in this field. The most powerful list-decoding algorithm is the one
by Guruswami and Sudan, [GS98]. The algorithm will work for any number of errors such
that w < n −

√

(k − 1)n. For choice of parameters beyond the Guruswami-Sudan solvability
bound, no known efficient algorithm exists that solves PR (and [GS98] gives some indication
why such an algorithm is not likely to be found).
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Figure 1: The Augot and Finiasz general approach for designing a pk-cryptosystem using the
hardness of RS decoding.

Augot and Finiasz’s general approach (see figure 1) is to use a PR instance which is hard
to solve (i.e., a highly noisy instance) as a public key, and to encrypt a message by scaling
the given public key (i.e., multiplying the polynomial values by a scalar) and adding to the
scaled instance the message which is represented as a slightly lower degree second PR instance
which is solvable, yielding a PR instance representing the ciphertext. The receiver who knows
the noise locations in the public key can recover the message. The approach allows key sizes
that are much smaller than the traditional coding theoretic based public-key systems (i.e., the
McEliece cryptosystem [McE78]). Further, direct use of the above mentioned decoding and
list-decoding methods do not apply to breaking the cryptosystem (directly). To implement the
approach of figure 1 one needs to specify: (i) the structure of the public-key, (ii) the structure
of the error-vector, and in accordance (iii) the decoding method employed in decryption.

What we noticed is that while the public-key structure was chosen to be an unsolvable PR
instance, the choice of the error-vector and the associated decoding method was sub-optimal
considering the state-of-the-art of Coding Theory. The scheme was in fact, based on unique
decoding (and not list decoding techniques) and did not consider probabilistic analysis to
maximize the allowed entropy of the error-vector.

The scheme of [AF03] was recently broken by Coron [Cor03a, Cor03c] (without affecting the
solvability of PR). The elegant attack presented in [Cor03c] is in fact a ciphertext-only attack
that is built on the Berlekamp-Welch method and recovers the message, given knowledge only
of the public-key and a ciphertext. A further modification of the scheme, using extension fields
but essentially the same system, was suggested recently [AFL03] and was shown by Coron
[Cor03b] to be vulnerable to essentially the same attack.
Coding Theoretic Motivation. The Augot-Finiasz cryptosystem employed unique decoding
techniques rather than list-decoding techniques (assuming that unique decoding is what is
needed for a correct cryptosystem — an assumption we refute herein). Moreover, they consider
only worst-case analysis in the selection of the code parameters. Thus, their cryptosystem is
sub-optimal in the above respects given the general approach outlined above.

This leaves open the question of whether this general approach works in principle, i.e., when
one uses the optimal coding theoretic techniques and probabilistic analysis for the parameter
selection.
Our Results: In this work we investigate the above question. In particular, we maximize the
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rate of the error vector used during encryption and choose state-of-the-art list-decoding tech-
niques to implement the Reed-Solomon decoding step for decryption. Regarding the optimiza-
tion (maximization) of the error-rate we make two key observations (1) the system of [AF03]
employs a worst-case approach in selecting this parameter; a probabilistic approach (that we
perform in this work) allows higher values. (2) the system of [AF03] employs Berlekamp-
Welch RS-decoding for the decryption operation. We emphasize that more powerful decoding
techniques can be employed that allow larger values for the error-rate parameter. Our method-
ology is to use an extended set of tools both for design and analysis in order to get the best
possible instantiations of the general approach. The tools include “list decoding” rather than
unique decoding techniques (which we show to be still good for decryption, since decoding to
a unique value is assured with extremely high probability over a large enough field, even when
ambiguous decoding is allowed, cf. Lemma 5).

We develop our presentation as a ping-pong game between a cryptosystems designer and
a cryptanalyst. To avoid any misunderstanding our goal is not to design a new cryptosystem,
but rather using the design and cryptanalysis steps as a methodology for exploring the general
approach.
First Step. Regarding our key-observation (1) we employ the tails of the hypergeometric
distribution to show that the original scheme allowed too few errors in the error-vector to be
used by the message encryption process. Thus the error-rate can be increased high enough
to aid the designer to achieve instances of the cryptosystem where Coron’s analysis does not
work. But, nevertheless we provide an alternative probabilistic analysis showing that the
original attack of Coron would work almost always even in this modified (more noisy) version,
thus aiding the cryptanalyst.
Second Step. Combining our key-observations (1) and (2) above, we discover the optimal
setting for the sender error-parameter (“optimal” under the assumption that the Guruswami-
Sudan list-decoding algorithm [GS98] represents the best possible decoding algorithm against
Polynomial Reconstruction). We show that the optimal parameter setting, helps the designer
and in this case Coron’s attack fails. To answer our question about the limit of the approach,
we then present a new attack that is based on the Sudan and Guruswami-Sudan algorithms
[Sud97, GS98]. Our attack, with overwhelming probability, breaks even the optimal parameter
setting. This means that the general approach, outlined in figure 1, taken by Augot and Finiasz
(rather than merely their non-optimal instantiation) breaks.

We believe that our results demonstrate how design and analysis of Coding theory based
cryptography, must employ probabilistic methods and state of the art decoding techniques.
Furthermore, our results and the attack of Coron demonstrate that PR-based cryptosystems
that lack formal proofs of security by concrete reduction arguments, even when they seem to
be related to PR, are potentially susceptible to coding theoretic attacks that do not imply
any weakness in the PR problem itself. Note that, the private-key cryptosystem based on PR
suggested by the authors in [KY02] was shown to be semantically secure under an intractability
decisional assumption that bears upon the average-case PR (for choices of the parameters
beyond the Guruswami-Sudan solvability bound). This cryptosystem (as well as the other
cryptographic primitives in [KY02]) are not affected by the techniques of the present paper
and of Coron’s [Cor03a, Cor03b, Cor03c] and breaking these designs seems to require significant
advances in RS decodability.
Organization. In section 2 we present the background for the present work, i.e., the [AF03]
public-key cryptosystem as well as the attacks that were proposed by Coron [Cor03c]; we
also present the general approach suggested by the cryptosystem of [AF03] as well as the
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cryptanalytic framework that we will employ. In section 3 we show how using probabilistic
analysis we can improve the error-parameter of the encryption function and in section 4, using
again probabilistic analysis, we show that this will not help securing the cryptosystem. In
section 5 we proceed to show how to employ list-decoding techniques in order to optimize the
parameter selection and we demonstrate how the optimal version can thwart Coron’s attack.
In turn, in section 6 we show how the optimal variant also succumbs in a ciphertext-only
attack. Finally the work is summarized in section 7.

2 Background: the Recent Polynomial-Based Public-Key Cryp-

tosystem

We review the recent developments, while setting up the necessary notations and interesting
points regarding our investigation.

2.1 The Cryptosystem of [AF03]

The cryptosystem of [AF03] can be described in high level as follows:

1. The public-key is a PR-instance of parameters [n, k + 1, W ] for which (i) the hidden
polynomial p is monic; (ii) solving the instance is considered hard. The public-key is a
sequence of values in (IF× IF)n (while the locations of the error points is the secret key).

2. Encryption operates by first transposing (i.e., scaling the polynomial of) the public-
key using a random value α ∈ IF (the encryption coefficient), and then adding to the
transposed public-key the message (evaluated as a second polynomial represented as pairs
of points using the same first coordinates as the points of the public key PR instance, with
no errors), and finally adding some additional w errors. (In other words, the message
is embedded in a second PR instance with w errors and added to the transposed public
key). It follows that a ciphertext is a sequence of values in (IF × IF)n.

3. Decryption removes the points that correspond to public-key errors, i.e., W points of the
ciphertext. Decryption relies on the following two facts: (i) the remaining n−W points
can be decoded into a polynomial p∗; (ii) due to the fact that the message polynomial
is selected to be of degree less than the degree of the monic polynomial p hidden in
the public-key, it follows that the recovery of p∗ implies the recovery of the encryption
coefficient α. The message polynomial can be recovered as pmsg(x) = p∗(x) − αp(x).

We note that the points over which the polynomials are evaluated in a PR instance can be
publicly known (thus the public-key and the ciphertext can be considered to be of size only
|IF|n).

In more detail, let z1, . . . , zn ∈ IF be arbitrary distinct elements of the underlying field,
where n ∈ IN is a security parameter. The public-key of the system is a PR-instance that is
generated as follows: first a random tuple 〈E1, . . . , En〉 is selected that has exactly W non-zero
randomly selected elements from IF. Second, a random polynomial p of degree less than k is
selected. The public-key is set to pk := {〈zi, yi〉}

n
i=1 where yi = p(zi)+Ei + zk

i for i = 1, . . . , n.
Remark. Observe that {〈zi, yi − zk

i 〉}
n
i=1 is a random PR-instance with parameters n, k, W .

The encryption operation is defined with domain IFk and general range the set (IF × IF)n.
The message msg is encoded as a polynomial of degree less than k, denoted by pmsg(x); a
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random tuple 〈e1, . . . , en〉 is selected so that it has exactly w non-zero randomly selected field
elements; a random element α ∈ IF is selected as well. The ciphertext that corresponds to msg
is the sequence of pairs {〈zi, y

′
i〉}

n
i=1 defined as follows y′i = αyi +pmsg(zi)+ ei, for i = 1, . . . , n.

So far, the above represents a general approach. The exact choice of parameters (as a
function of n, say) gives the specific system of [AF03].

The decryption operates as follows: let I ⊆ {1, . . . , n} be such that |I| = n−W and for all
i ∈ I it holds that Ei = 0 (from the selection of the public-key). Observe now that the sequence
of pairs C = {〈zi, y

′
i〉}i∈I can be seen as a PR-instance with parameters [n−W, k +1, w]. Now

suppose that,

Condition #1 : w ≤
n − W − k − 1

2
⇒ n ≥ 2w + W + k + 1

This condition implies that the PR-instance has a unique solution that can be recovered
by the unique decoding technique of Berlekamp-Welch algorithm. Given such solution p∗(x)
it follows that the leading coefficient of p∗ will be equal to α (by construction, we have that
the polynomial hidden into the public-key is monic and of degree k while the degree of the
message polynomial is at most k − 1). Then, the transmitted message can be recovered as
follows pmsg(x) = p∗(x) − α(xk + p(x)).

A second condition is that W should be large, beyond the known bounds of list-decoding,
to assure that a third party cannot simply get the error locations of the public key (and thus
decrypt all ciphertexts). This condition is the base of the presumed security of the scheme.

2.2 A Cryptanalytic Framework

The Cryptanalytic problem that is the basic building block for mounting a ciphertext-only
attack on the Public-Key Cryptosystem of [AF03] as described above is defined as follows:

Definition 2 Ciphertext-only Attack Problem (CAP) Given two sequences of tuples
X1 := {〈zi, yi〉}

n
i=1 and X2 := {〈zi, y

′
i〉}

n
i=1 and parameters n, k, w, W that satisfy the following

conditions

i. w ≤ n−W−k−1
2 and W ≥ n −

√

n(k − 1).

ii. {〈zi, yi − zk
i 〉}

n
i=1 is a random PR-instance with parameters [n, k, W ].

iii. ∃α ∈ IF such that {〈zi, y
′
i − αyi〉}

n
i=1 is a random PR-instance with parameters [n, k, w].

Goal. Find a list of values of polynomial-length that contains the value α.

Any algorithm that solves CAP in polynomial-time can be turned into a ciphertext-only
attack against the cryptosystem of [AF03], as the following proposition reveals.

Proposition 3 Let A be an algorithm that solves CAP in polynomial-time. Then any message
encrypted in the cryptosystem of [AF03] can be decrypted without knowledge of the secret-key
in polynomial-time in the security parameter.
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Proof.: Observe that due to the definition of the cryptosystem the condition i of definition 2
is satisfied. Also if we set the public-key to be X1 and the ciphertext to be X2 it follows that
conditions ii, iii of definition 2 are also satisfied. Thus, we can apply (simulate) A on X1, X2

to obtain α. Now observe that due to conditions iii and i we can decode {〈zi, y
′
i − αyi〉}

n
i=1

(using the Berlekamp-Welch algorithm) to obtain the transmitted message pmsg(x) (unique
solution). A guarantees polynomially many candidates for α, thus the above reduction will be
successful in returning the plaintext with probability at most 1/poly. ⊓⊔

2.3 Coron’s Attack

In [Cor03c], Coron presented an elegant ciphertext-only attack against the cryptosystem of
[AF03]. We explain the attack briefly below and we show that in fact it can be seen as an
algorithm to solve CAP (in fact our formulation of CAP above is motivated by the original
attack and by further extensions of this idea in the sequel).

Let X1, X2 be an instance of CAP, with X1 = {〈zi, yi〉}
n
i=1 X2 = {〈zi, y

′
i〉}

n
i=1 and parame-

ters k, w, W, n. Due to condition iii of definition 2 it follows that there exist p ∈ IF[x] of degree
less than k and α ∈ IF, so that p(zi) 6= y′i − αyi for at most w indexes i.

The attack modifies the Berlekamp-Welch algorithm: Let E(x) be a monic polynomial
of degree w such that E(zi) = 0 for exactly those indexes i for which p(zi) 6= y′i − αyi.
The existence of this polynomial is guaranteed due to the condition iii of definition 2. Let
N(x) = p(x)E(x) be a polynomial of degree less than k + w.

Now consider the following system of equations

[

E(zi)(y
′
i − λyi) = N(zi)

]n

i=1
(system 1)

that has as unknowns the 2w + k coefficients of the polynomials E, N . Observe that the
above system (with λ as a parameter) is not homogeneous (due to the fact that E is monic).
Recall that all steps up to this point follow exactly the Berlekamp-Welch algorithm (modulo
the unknown λ value).

Now consider the slightly extended system below:

[

E′(zi)(y
′
i − λyi) = N(zi)

]n

i=1
(system2)

where E′(x) is a non-monic polynomial that has the same properties as E (i.e. E ′ and E
have the same roots). It follows that system 2 defined above is homogeneous with 2w + k + 1
unknowns. Let A2[λ] be the n × (2w + k + 1)-matrix of system 2.

Due to condition i of definition 2 the number of equations n satisfies

n ≥ 2w + k + 1

and thus system 2 has at least as many equations as unknowns.

Case 1 of the Attack. rank(A2[0]) = 2w +k +1 (i.e., A2[0] is of full rank). It follows that there
are 2w+k +1 linearly independent equations in system 2 for λ = 0 (and their locations can be
recovered e.g. by Gaussian elimination). Without loss of generality let us assume that these
are the equations on locations 1, . . . , 2w + k + 1. We eliminate the remaining n− (2w + k + 1)
equations from system 2, to make it a square homogeneous system, and we call the remaining
equations system 3.
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It follows that if we substitute the value α for λ in the matrix of the system 3, the matrix
is singular since it accepts a solution (the polynomials E ′, N) that is non-trivial. As a result
the matrix of system 3, denoted by A3[λ], has the following property:

∃α ∈ IF : det(A3[α]) = 0

Now observe that the determinant of system 3 is a polynomial f(λ) := det(A3[λ]) that is
of degree at most w + 1 (because λ is only involved in the part of the matrix of system 3 that
corresponds to the polynomial E ′).

Further observe that f(0) = det(A3[0]) 6= 0 because of our selection of A3[λ] to have the
property that A3[0] is the full rank minor of the matrix A2[0]. Thus, the value α is among
the w + 1 roots of f and the output will be the list of roots of f . It follows that the above
algorithm gives an efficient solution for the CAP problem.

Case 2 of the Attack. rank(A2[0]) < 2w +k +1. In this case one can find a non-trivial solution
of the system A2[0] which defines two non-zero polynomials E ′, N such that

[E′(zi)y
′
i = N(zi)]

n
i=1

Since y′i = α(p(zi) + zk
i + Ei) + pmsg(zi) + ei it follows that

[E′(zi)(α(p(zi) + zk
i + Ei) + pmsg(zi) + ei) = N(zi)]

n
i=1

Let I be the subset of {1, . . . , n} for which it holds that i ∈ I ⇐⇒ (ei = 0) ∧ (Ei = 0). It
follows that

[E′(zi)p
∗(zi) = N(zi)]i∈I

where p∗(x) = α(p(x) + xk) + pmsg(x). Recall that the degree of the polynomial N is less
than k + w and E ′ is a polynomial of degree w; it follows that E ′(x)p∗(x) is a polynomial of
degree w + k.

Observe that |I| is a random variable (denoted by η) ranging from n − w − W to n −
max{w, W}. Next consider this relation:

η > w + k (Sufficient Condition for Case 2)

Under the above relation, it follows that |I| ≥ w + k + 1 and as a result the polynomials
E′(x)p∗(x) and N(x) are equal. It follows immediately that p∗ = N

E′ ; naturally given p∗ we
recover α immediately and non-ambiguously (in fact, in this case we will even be able to recover
the value of the secret-key).

Performing a worst-case analysis of the above, we know that η ≥ n−w−W and as a result
the attack would go through as long as n − w − W > w + k ⇐⇒ n > 2w + W + k something
that matches condition #1 of the [AF03]-cryptosystem (cf. section 2.1) and thus the case 2
of the attack can be carried for the parameters of the cryptosystem (without even taking into
account that η would be somewhat larger than its lower bound n − w − W ).

On the other hand, it would be of interest to us to find a necessary condition for case 2 of the
attack (the reason for this will become clear in section 3). This can be found by setting η to its
highest possible value and requiring this to be greater than w+k: η := n−max{w, W} > w+k;
this is equivalent to:

n > w + max{w, W} + k (Necessary condition for Case 2)
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3 The Increased Error Case

The cryptosystem of [AF03] mandates that the number of errors introduced by the sender in
the formation of the ciphertext is less or equal to n−W−k−1

2 (condition #1 of section 2.1), to
ensure unique decoding in the reduced PR-instance that is obtained after removing the W
locations that contain the errors of the Public-Key.

We observe that the bound on w is unreasonably low, for the following reason: many of
the errors introduced by the sender will fall into the error-area of the public-key, and thus they
will not affect the decryption operation (i.e., introducing a new error in an already erroneous
location is a case where 1 + 1 = 1).

To see this better, we can think of the sender in the cryptosystem to be playing the
following game: he selects w points out of n and randomizes them. Since W of these points
will be discarded by the receiver it follows that the number of the good points (out of the
total n − W of good points) that will be randomized by the sender follow a hypergeometric
distribution with mean value n−W

n
. It follows that the expected number of good points that

will be randomized by the sender are w n−W
n

.

In order to ensure decoding for the decryption operation it suffices to force ẽ ≤ n−W−k−1
2

where ẽ is a random variable that follows the hypergeometric distribution with mean n−W
n

.

Let w = 1
n−W

n
+ǫ

n−W−k−1
2 , for some ǫ > 0. Using the Chvátal bound for the hypergeometric

distribution, [Chv79], we have that

Prob[ẽ > (
n − W

n
+ ǫ)w] ≤ e−2ǫ2w =⇒ Prob[ẽ >

n − W − k − 1

2
] ≤ e−2ǫ2w

From the above, as long as ǫ < W/n, if we set w = 1
n−W

n
+ǫ

n−W−k−1
2 it follows that the

probability Prob[ẽ > n−W−k−1
2 ] ≤ e−2ǫ2w, and thus condition # 1 of section 2.1 will be

satisfied in the probabilistic sense and decryption will succeed with probability 1 − e−2ǫ2w.
We will concentrate on parameters s.t. W > w and w is selected as above. Consider for

example the assignment n = 2000, k = 100, W ≥ 1556 (to avoid an attack with [GS98] on
the public-key), e.g. we set W = 1600, and ǫ = 1/6; now observe that W/n = 0.8 > 1/6.
The equation for w mentioned above yields w = 407. It follows that the probability of correct
decryption is 1 − e−2 407

36 = 1 − e−22 ≈ 1 − 2−31. Observe now that case 2 of Coron’s attack
would be foiled since the necessary condition fails:

n > w + max{w, W} + k ⇐⇒ 2000 > 1600 + 407 + 100 ⇐⇒ false

Thus, by merely increasing the number of errors that the sender of the cryptosystem intro-
duces during encryption (relying on randomization to allow decryption with very high proba-
bility), we are capable of thwarting the analysis of Coron’s attack (in particular the analysis
of case 2 of the attack). Observe that this is possible without any other modification of the
cryptosystem whatsoever.

Nevertheless, this is only a temporary comfort as we will prove in the next section.

4 With High Probability Modified Coron’s Attack Succeeds

against Increased Errors

Next, we use another probabilistic analytical tool to show that, in fact, in spite of the increased
errors, the attack actually works with high probability.
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First, observe the error-increase we introduced in section 3 does not apply to case 1 of
Coron’s attack. Indeed, one can show for any ǫ > 0 that

w =
1

n−W
n

+ ǫ

n − W − k − 1

2
≤

n − k − 1

2

and the condition w ≤ (n− k− 1)/2 is sufficient for case 1 to go through (that is, if we can
apply it). Recall that case 1 of the attack only applies to the case det(A3[0]) 6= 0.

We will show that this in fact happens most of the times (a fact observed in practice in
[Cor03c] but not proved). This means that the attack works even in the increased error setting
of the previous section. Let us recall the matrix of system 2, as defined in section 2.3.

A2[λ] =
(

B2 C2[λ]
)

=

=













1 z1 . . . zw+k−1
1 y′1 − λy1 (y′1 − λy1)z1 . . . (y′1 − λy1)z

w
1

1 z2 . . . zw+k−1
2 y′2 − λy2 (y′2 − λy2)z2 . . . (y′2 − λy2)z

w
2

...
... . . .

...
...

... . . .
...

1 zn . . . zw+k−1
n y′n − λyn (y′n − λyn)zn . . . (y′n − λyn)zw

n













where B2 is a Vandermonde matrix of dimension w + k over the elements z1, . . . , zn; B2

corresponds to the coefficients of N(x); C2[λ] is a Vandermonde matrix of dimension w + 1
over the elements z1, . . . , zn where its i-th row is multiplied by y′i − λyi, for i = 1, . . . , n; C2

corresponds to the coefficients of E ′(x). Recall that A2[λ] is a n × (2w + k + 1) matrix. We
would like to prove that rank(A2[0]) = 2w + k + 1 with overwhelming probability.

If rank(A2[0]) < 2w + k +1 then it follows that any (2w + k +1)-minor of A2[0] is singular.
Below we show that this event can only happen with very small probability (assuming that
the underlying finite field IF is large — something that is assumed in [AF03]) thus we deduce
that the first case of the attack would work almost always.

Theorem 4 Let P = Prob[rank(A2[0]) < 2w + k + 1] be the probability that the rank of A2[0]
is less than 2w+k+1 where the probability is taken over all possible choices for the given CAP
instance out of which we construct A2[λ]. It holds that P ≤ 2w/|IF| and the proof works even
if the first inequality of condition i of definition 2 is relaxed to only w ≤ (n − k − 1)/2.

Proof.: First observe that due to the conditions i of definition 2 it holds that W > w (even
under the relaxation w ≤ (n − k − 1)/2). Suppose that the selection of the error-locations for
a CAP instance is denoted by ~r. Let J~r be a subset of {1, . . . , n} such that |J~r| = 2w + k + 1
and J overlaps with all elements i ∈ {1, . . . , n} that have the property ei 6= 0, as well as at
least one element i0 ∈ {1, . . . , n} with the property ei0 = 0 but Ei0 6= 0 (the existence of i0 is
assured by the fact W > w). Let us now define a minor M~r of A2[0]

M~r =
(

1 zi . . . zw+k−1
i y′i y′izi . . . y′iz

w
i

)

i∈J~r

We will show that for any ~r, M~r is of full rank with very high probability over the remaining
coin-tosses that sample a CAP instance (even in the relaxed setting w ≤ (n−k−1)/2). Recall
that we have that y′i = αyi + pmsg(zi) + ei where pmsg(x) ∈ IF[x] is a polynomial of degree less
than k and 〈e1, . . . , en〉 is a tuple of Hamming weight w. Also that, yi = p(zi)+Ei + zk

i , where
〈E1, . . . , En〉 is a random tuple of Hamming weight W . It follows that every column among
the w + 1 rightmost columns of M~r can be written as
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colj := 〈αzj
i ((p(zj) + Ei + zk

i ) + pmsg(zi) + ei)〉i∈J~r
j = 0, . . . , w

Now observe that we can view det(M~r) as a multivariate polynomial on the variables

α, e1, . . . , en, E1, . . . , En, a0, . . . , ak−1, b0, . . . , bk−1

where a0, . . . , ak−1 are the coefficients of p(x) and b0, . . . , bk−1 are the coefficients of pmsg(x).
These variables are either free, or bound to be 0 (e.g. if randomness ~r dictates that i′ is not
among the error-locations of the public-key it holds that Ei′ is bound to be 0).

Without loss of generality we may assume that ~r and J~r are selected so that e1, . . . , ew, Ew+1

are free variables (i.e. correspond to random error-locations); note that any other possibility
would work in the same way. Now let us consider the following assignment to the multi-variate
polynomial det(M~r):

(α = 1, e1 = zw+k
1 , . . . , ew = zw+k

w , E1 = 0, . . . , Ew = 0, Ew+1 = zw+k
w+1 , Ew+2 = 0,

. . . , EW = 0, a0 = 0, . . . , ak−1 = 0, b0 = 0, . . . , bk−1 = 0) =

It follows that det(M~r) takes the following value:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 z1 . . . zw+k−1
1 zw+k

1 zw+k+1
1 . . . z2w+k

1

1 z2 . . . zw+k−1
2 zw+k

2 zw+k+1
2 . . . z2w+k

2
...

... . . .
...

...
... . . .

...

1 zw+1 . . . zw+k−1
w+1 zw+k

w+1 zw+k+1
w+1 . . . z2w+k

w+1

1 zw+2 . . . zw+k−1
w+2 0 0 . . . 0

...
... . . .

...
...

... . . .
...

1 z2w+k+1 . . . zw+k−1
2w+k+1 0 0 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The above determinant is non-zero (it can be seen easily as an application of well-known
properties of Vandermonde matrices), and as a result the multivariate polynomial det(M~r) is
not the zero-polynomial. It follows from Schwartz’s Lemma, [Sch80], that the ratio of the roots
of the non-zero multivariate polynomial det(M~r) is bounded from above by τ/IF where τ ≤ 2w
is the total degree of det(M~r). ⊓⊔

5 The Most General AF System Avoids Coron’s Attack

5.1 An “optimal variant” of the [AF03] cryptosystem

In this section we show that the number of errors w introduced by the sender can, in fact, be
increased further beyond the improved bound that we describe in section 3, by employing the
proper decoding method for decryption (cf. figure 1). In particular, we make the following cru-
cial observation: [AF03] requires that w is below the error-correction bound of Reed-Solomon
Codes, so that the decryption (decoding) is unique. Nevertheless the introduction of random
errors in a large enough finite field (such fields are utilized in [AF03]) suggests that uniqueness
of decoding can be ensured far beyond the error-correction bound.

In the lemma below we show that randomly selected PR instances that can accept two
different decodings are unlikely. This probabilistic analysis allow us to resort to modern list-
decoding techniques in the sequel.
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Lemma 5 Let {〈zi, yi〉}
n
i=1 be a RS-Code codeword of a random message p ∈ IF[x] with

degree(p) < k that has e errors uniformly random distributed over IF, s.t. e < n − k. Then,
the probability that it accepts another decoding p′ ∈ IF[x] with p 6= p′ is at most

(n
t

)2
/(|IF|n−e−k)

(the probability is taken over all possible messages and noise corruptions).

Proof.: In the proof below we consider the values z1, . . . , zn fixed (as is customary). For some
n, k and t := n− e we denote by A1 the number of tuples from IFn that are partially corrupted
RS-codewords with at most e errors. Furthermore we denote by A2 the number of strings from
IFn that are partially corrupted RS-codewords with at most e errors and accept more than one
decoding.

First observe that A1 ≥ |IF|n−t+k. This is easy to see since these are the number of degrees
of freedom for selecting the n − t error points and the k coefficients of a polynomial solution.

In order to approximate A2 observe the following: let p, p′ ∈ IF[x] be the different ways
to decode a partially corrupted RS-codeword with e errors. Suppose that they overlap in m
points; clearly m ∈ {0, . . . , k − 1}. It follows that the total number of ways to select p, p′ is
|IF|2k−m. For the remaining points the total number of ways to select them is |IF|n−2t+m. It
follows easily that A2 ≤

(n
t

)2
|IF|n−2t+m+2k−m =

(n
t

)2
|IF|n−2t+2k.

It is clear from the statement of the Lemma that the probability that we would like to
approximate equals A2/A1. Now observe that,

A2

A1
≤

(n
t

)2
|IF|n−2t+2k

|IF|n−t+k
=

(n
t

)2

|IF|t−k

this completes the proof. ⊓⊔

Now observe that if the “message rate” is κ := k/n and the “error-rate” is ǫ := e/n,
with κ, ǫ ∈ Q+ then it follows that the probability in lemma 5 is less than 4n

|IF|(1−ǫ−κ)n . As a

result, provided that IF satisfies |IF|1−ǫ−κ > 4 it follows that the probability of proposition 5
is “negligible.”

Optimal Parameter Setting & Modifications for the Cryptosystem of [AF03]. Tak-
ing advantage of the above Lemma in conjunction with the observation of section 3, we can
increase the error-parameter w further. We refer to our choice as optimal with respect to figure
1 under the basic assumption that the list-decoding algorithm of [GS98] represents the state
of the art in RS-decodability.

Below we assume that the sender employs the algorithm of [GS98] for decryption. For this
algorithm to work it should hold that ẽ < (n−W )−

√

(n − W )k where ẽ is the number of errors
introduced in the area of good points of the public-key due to the encryption operation. As
argued in section 3, ẽ is a random variable following a hypergeometric distribution with mean
wn−W

n
. In our analysis below we will simply substitute ẽ for the expected number of errors.

Note that this does not guarantee that the receiver will be capable of recovering the transmitted
message “most of the times.” To guarantee this we would have to show that the probability
Prob[ẽ < (n − W ) −

√

(n − W )k] is overwhelming (as we did in section 3), something that
cannot simply be inferred from the fact that the mean of ẽ is less than (n−W )−

√

(n − W )k;
in order for the receiver to be able to decrypt most of the times we would instead require that
the mean of ẽ is sufficiently lower than the bound (n−W )−

√

(n − W )k and then employ the
Chvátal bound on the tails of the hypergeometric distribution to bound the error probability
by a negligible fraction, [Chv79] (as in section 3).
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Nevertheless, since we intend to cryptanalyze the resulting cryptosystem, we will opt for
simply substituting ẽ for its mean, as this would only make our attack stronger. On the other
hand observe that a public-key cryptosystem that works, say, half the times is still quite useful.
Thus, substituting ẽ for w n−W

n
we obtain

w
n − W

n
< (n − W ) −

√

(n − W )k =⇒ w < n − n

√

k

n − W

We conclude that the optimal selection would allow the parameter w to be selected as high
as:

w < n(1 −

√

k

n − W
)

The new bound above increases the number of errors that we can allow the sender to
introduce, as long as W is selected appropriately:

Proposition 6 There are choices for W such that W ≥ n −
√

n(k − 1) and n(1 −
√

k
n−W

) >
n−k−1

2 , as long as k ≥ 5 and k/n ≤ 1/16.

Proof.: The first inequality W ≥ n −
√

n(k − 1) can be written as W
n

≥ 1 −
√

k−1
n

and it

provides a lower bound for W/n. We will see that the second inequality yields an upper

bound for W/n: indeed, n(1 −
√

k
n−W

) > n−k−1
2 can be rewritten as n+k+1

2 > n
√

k
n−W

; to

satisfy this latter inequality it suffices to provide a W that satisfies n + k > 2n
√

k
n−W

, or

(n − W )(n2 + 2nk + k2) > 4n2k. The latter inequality is equivalent to n(n2 − 2nk + k2) >

W (n + k)2 or W
n

< (n−k)2

(n+k)2
.

(n − k)2

(n + k)2
=

n2 + k2 + 2nk − 4nk

n2 + k2 + 2nk
= 1 −

4nk

(n + k)2
= 1 − 4

k/n

(1 + k/n)2

It follows that we must show,

1 − 4
k/n

(1 + k/n)2
> 1 −

√

k − 1

n
⇐⇒

√

k − 1

n
> 4

k/n

(1 + k/n)2
⇐⇒ (1 + k/n)4

k − 1

n
> 16(k/n)2

⇐⇒ (n + k)4(k − 1) > 16n3k2 ⇐⇒
(n + k)4

n3
> 16

k2

k − 1

Given that k ≥ 5 we deduce that 20k ≥ 16 k2

k−1 , thus it suffices to show that (n+k)4 > 20n3k,

which is equivalent to n4−16n3k+6n2k2+4nk3+k4 > 0 which is true provided that k/n ≥ 1/16.

On the other hand, observe that if k is very large it holds that k2

k−1 ≈ k; thus we derive

that if κ := k/n it holds that κ should satisfy κ4 +4κ3 +6κ2 − 12κ+1 > 0; as an equation the
left-hand-side has two real roots, κ = 1 and κ ≈ 0.0873; it follows that an upper bound for κ
is 1/11. ⊓⊔

Now recall that the necessary condition for Coron’s attack (both cases) is w ≤ n−k−1
2 . It

follows from the proposition above that our analysis puts the parameter w beyond the range
of Coron’s attack, provided that W is properly selected. To illustrate this concretely, suppose
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that n = 2500 and k = 101. Then, W should be selected in the range [2000, . . . , 2126]; if we
make the choice W = 2063 then we can set w to be as high as 1298, whereas Coron’s attack
would correct any value of w only up to 1199. Note that the gap of 99 elements between
the bound of Coron’s attack and the assignment w = 1298 ensures that the application of
the attack by removing 99 points at random would only succeed with probability less than
(0.52)99 ≈ 2−96 (since the ratio of the sender-introduced error points is ≈ 0.52).

Corollary 7 Coron’s attack cannot be applied against the [AF03]-cryptosystem in the optimal
parameter setting.

To draw a parallel to our exposition in section 2.2, we introduce the problem CAP+ to
stand for the ciphertext-only attack problem of the optimal variant of Augot and Finiasz
Cryptosystem, (the only difference from CAP being in the choice of w):

Definition 8 Ciphertext-only Attack Problem in the optimal parameter setting
(CAP+) Given two sequences of tuples X1 := {〈zi, yi〉}

n
i=1 and X2 := {〈zi, y

′
i〉}

n
i=1 and param-

eters k, w, W that satisfy the following conditions

i. w < n(1 −
√

k
n−W

), and W ≥ n −
√

n(k − 1).

ii. {〈zi, yi − zk
i 〉}

n
i=1 is a random PR-instance with parameters [n, k, W ].

iii. ∃α ∈ IF such that {〈zi, y
′
i − αyi〉}

n
i=1 is a random PR-instance with parameters [n, k, w].

Goal. Find a list of values of polynomial-length that contains the value α.

As before we show that any algorithm that solves CAP+ can be used to mount a ciphertext-
only attack on the cryptosystem of [AF03] (but now in the optimal parameter setting):

Proposition 9 Let A be an algorithm that solves CAP+ in polynomial-time. Then any mes-
sage encrypted in the cryptosystem of [AF03] in the optimal parameter setting can be decrypted
without knowledge of the secret-key in polynomial-time in the security parameter.

Proof.: Similar to the proof of proposition 3 with the difference that now Guruswami-Sudan’s
algorithm, [GS98], should be employed instead of the Berlekamp-Welch algorithm. ⊓⊔

In the Lemma below we give an upper bound on the value of w (that is independent of W ).

Lemma 10 For any CAP+ instance, it holds that n − w > 4
√

n3(k − 1).

Proof.: First observe that n − W ≤ n
√

k−1
n

=⇒
√

k−1
n−W

≥ 4

√

k−1
n

. Since w < n − n
√

k
n−W

=⇒

n − w > n
√

k
n−W

> n
√

k−1
n−W

≥ n 4

√

k−1
n

= 4
√

n3(k − 1). ⊓⊔

6 The Attack Against the General System Employing List-

Decoding

The results we present in this section (essentially an algorithm for solving CAP+) is based on
Sudan’s list-decoding algorithm, [Sud97] and Guruswami Sudan [GS98] algorithms (for both
there are efficient polynomial-time algorithms, see [McE03]).
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6.1 The attack

Let n, k, w, W ∈ Z and X1 = {〈zi, yi〉}
n
i=1, X2 = {〈zi, y

′
i〉}

n
i=1 be an instance of CAP+. We

denote ŷi := y′i − λyi for i = 1, . . . , n, where λ is an unspecified parameter (free variable); to
set the parameter λ to a specific value α we will write ŷi[α].

According to the definition of a CAP+ instance we know that there exists a value α ∈ IF
(the “encryption coefficient”) and a polynomial p ∈ IF[x] of degree less than k (the “message
polynomial”) that agrees with n − w of the points 〈zi, ŷi[α]〉. Define l := n − w − 1. Next we
consider the following system of equations on a set of unknowns {qj1,j2}j1≥0,j2≥0,j1+(k−1)j2<l

(called system 4):

∀i ∈ {1, . . . , n}
∑

j1≥0,j2≥0,j1+(k−1)j2<l

qj1,j2z
j1
i ŷj2

i = 0 (system 4)

Observe that any solution to system 4 above defines a bivariate polynomial Q(x, y) that
satisfies the property degreeQ,x + (k − 1)degreeQ,y < l.

Lemma 11 The number of unknowns of system 4, is at least l(l−1)
2(k−1) .

Proof.: The number of unknowns can be easily seen to be equal to the following double sum:

⌊ l−1
k−1

⌋
∑

j2=0

l−1−j2(k−1)
∑

j1=0

1 =

⌊ l−1
k−1

⌋
∑

j2=0

(l − j2(k − 1)) =

= l(⌊
l − 1

k − 1
⌋ + 1) − (⌊

l − 1

k − 1
⌋ + 1)⌊

l − 1

k − 1
⌋
k − 1

2
= (⌊

l − 1

k − 1
⌋ + 1)(l − ⌊

l − 1

k − 1
⌋
k − 1

2
) ≥

≥ (
l − 1

k − 1
)(l −

l − 1

k − 1

k − 1

2
) =

l(l − 1)

2(k − 1)

⊓⊔

Recall that from proposition 6 we know that we only consider parameter choices that satisfy
k/n ≤ 1/16. For such range of parameters (and sufficiently large n) we, in fact, show:

Lemma 12 System 4 is not overdefined provided that n ≥ 19 and k/n ≤ 1/9.

Proof.: In order for system 4 to be not overdefined it suffices to show that,

l(l − 1)

2(k − 1)
=

(n − w − 1)(n − w − 2)

2(k − 1)
≥ n

This can be satisfied provided that

(n − w − 1)(n − w − 2) ≥ 2(k − 1)n ⇐⇒ (n − w)2 ≥ 2(k − 1)n − 2 + 3(n − w)

Now observe that, 2
3(n − w)2 ≥ 2(k − 1)n. Indeed (n − w)2 >

√

n3(k − 1) (from lemma
10), and it holds that

√

n3(k − 1) ≥ 3(k − 1)n ⇐⇒
k − 1

n
≤

1

9

which is true for our range of parameters.
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Next consider the inequality 1
3(n−w)2 ≥ 3(n−w); it is equivalent to n−w ≥ 9 which will

be satisfied as long as 4
√

n3(k − 1) ≥ 9 which is true for n ≥ 19.
We conclude that

(n − w)2 =
2

3
(n − w)2 +

1

3
(n − w)2 ≥ 2(k − 1)n + 3(n − w) ≥ 2(k − 1)n − 2 + 3(n − w)

which completes the proof. ⊓⊔

Subsequently we omit the appropriate number of unknowns from system 4, to equalize
the number of unknowns and equations. This results in a square homogeneous system of n
equations and unknowns that we call system 5. We denote the matrix of system 5 by A[λ].

Theorem 13 Let α ∈ IF be the “encryption coefficient” for a CAP+ instance as defined in
item iii of definition 8. The matrix A[α] as constructed above is singular.

Proof.: Let α ∈ IF, p ∈ IF[x] be the solution of the CAP+ instance.
Recall that of the n points {〈zi, ŷi[α]〉}n

i=1, at least n − w of them belong the graph of the
polynomial p, which is of degree less than k.

Let i0 be one of these points and consider the system that results after removing from
system 5 the equation below:

∑

j1≥0,j2≥0,j1+(k−1)j2<l

zj1
i0

ŷj2
i0

= 0

We will call the resulting system that has one equation less, “system 6.” It is immediate
that system 6 is an underspecified homogeneous system. It follows that it accepts a non-trivial
solution.

Now observe that any non-trivial solution to system 6 defines a bivariate polynomial R ∈
IF[x, y] that has the following properties:

1. R is of degrees dx, dy that satisfy dx + (k − 1)dy < l.

2. For any point i 6= i0, such that p(zi) = ŷi[α], it holds that (x − zi) divides R(x, p(x)).

3. It holds that y− p(x) divides R(x, y) (when R(x, y) is viewed as a univariate polynomial
on y with coefficients in IF[x]).

Justification for Item 1. it follows from the definition of system 4: the degrees of any monomial
xj1yj2 of R satisfy j1 + (k − 1)j2 < l.
Justification for item 2. Since p(zi) = ŷi[α] it follows that zi is a root of R(x, p(x)) and as a
result (x − zi) divides R.
Justification for item 3. Observe that the degree of R(x, p(x)) is strictly less than l = n−w−1
(by item 1). We have n − w − 1 points among the {1, . . . , n} − {i0} that agree with p(x).
Using item 2, it follows that (x − zi) divides R(x, p(x)) for n − w − 1 points. As a result the
degree of R(x, p(x)) is at least n−w− 1(= l), a contradiction, unless R(x, p(x)) is exactly the
zero-polynomial, something that implies that y − p(x) is a factor of R(x, y) when the latter is
seen as a univariate polynomial on y over IF[x].

To complete the proof now observe the following: because of item 3 above it follows that
R(zi0 , p(zi0)) = 0, and thus the equation that we omitted in order to construct system 6 from
system 5 is also satisfied. This means that the solution R to system 6 is also a solution to
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the extended system 5, and since R 6= 0 it follows that system 5 for λ = α has a non-trivial
solution, thus it holds that A[α] is singular. ⊓⊔

Since A[α] is singular, it follows that if we define the polynomial f(λ) := Det(A[λ]), α will
be among the solutions of f(λ). Thus we can solve CAP+ by computing all the (polynomialy
many, by degree constraint) roots of f(λ).

Theorem 14 The probability P that the polynomial f(λ) = Det(A[λ]) is the zero-polynomial
satisfies P ≤ 2s(n − l)/|IF|, where s = ⌊ l−1

k−1⌋ (the maximum degree of the y-variable in any of
the columns of A[λ]).

Proof.: First observe that due to condition i of definition 8 it holds that W > w.
Let us examine first the matrix of system 4.

A4[λ] =









1 z1 . . . zl−1
1 ŷ1 ŷ1z1 . . . ŷ1z

l−1−(k−1)
1 . . . ŷs

1 ŷs
1z1 . . . ŷs

1z
l−s(k−1)
1

...
... . . .

...
...

... . . .
... . . .

...
... . . .

...

1 zn . . . zl−1
n ŷn ŷnzn . . . ŷnz

l−1−(k−1)
n . . . ŷs

n ŷs
nzn . . . ŷs

nz
l−s(k−1)
n









Observe that the matrix of system 5, A[λ] results from the above matrix by removing
a number of columns so that it becomes square. Since f(λ) = det(A[λ]) it follows that the
probability that f = 0 is bounded from above from the probability that det(A[0]) = 0. Observe
that A[0] is a matrix as above with ŷi substituted for y′i (the ciphertext values) for all i =
1, . . . , n (and of course a number of columns removed so that it becomes square).

Let u be some parameter to be specified later. We set y′
i = zl

i for all i = 1, . . . , u and y′i = 0
otherwise.

Observe that all columns of A[0] are of the form 〈zj1
i (y′i)

j2〉ni=1 with j1 + (k − 1)j2 < l.

Setting y′i = zl
i for i = 1, . . . , u it follows that zj1

i (y′i)
j2 = zj1+j2l

i . Observe now that for all
j1, j2, j

′
1, j

′
2 with j1 + (k − 1)j2 < l and j′1 + (k − 1)j′2 < l it holds that it cannot be the case

that j1 + j2l = j′1 + j′2l, unless 〈j1, j2〉 = 〈j′1, j
′
2〉. Assume j1 + j2l = j′1 + j′2l. Since j1, j

′
1 < l

always it follows that j1 = j′1; as a result lj2 = lj′2, but this implies that j2 = j′2 also.
It follows that the first u rows of A[0] with the substitution y′

i = zl
i constitute an extended

punctured Vandermonde matrix1 of dimensions (u × n). The remaining rows of this matrix
are of the form









1 zu+1 . . . zl−1
u+1 0 0 . . . 0

...
... . . .

...
...

... . . .
...

1 zn . . . zl−1
n 0 0 . . . 0









We make the selection u = n − l. It follows that the above matrix is of full rank. Also the
first u rows of A[0] with the substitution y′

i = zl
i are also of full rank.

The above arguments suggest that there is a way to control the coin tosses of the sender in
the cryptosystem so that the matrix A[0] becomes non-singular. To do this we were required
to control u error-points. Since l = n − w − 1, it holds that u = n − l = w + 1. As a result
it suffices that we control one additional error-location which happens always since W > w
(following similar arguments as in the proof of theorem 4).

With a similar arguments as in the proof of theorem 4 we conclude that using Schwartz
Lemma the probability P that A[0] will be singular satisfies, P ≤ 2s(n− l)/|IF|. This concludes
the proof. ⊓⊔

1we call a matrix M , “extended punctured Vandermonde” if there is a D ⊆ IN and z1, . . . , zv pairwise distinct

elements of IF, so that M ’s columns are of the form 〈zd
1 , . . . , zd

v〉
T for each d ∈ D. Such matrices are of full rank.
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7 Summary

In this section, we summarize our cryptanalytic results.

Given an instance of CAP+ {〈zi, yi〉}
n
i=1, {〈zi, y

′
i〉}

n
i=1 with parameters

n, k, w, W .
0. Set l := n − w − 1.
1. Select D ⊆ IN× IN so that |D| = n and for all 〈j1, j2〉 ∈ D, j1 + (k−
1)j2 < l

2. Let ~D =
〈

〈j1[1], j2[1]〉, . . . , 〈j1[n], j2[n]〉
〉

, a lexicographic ordering of

D.
3. Construct a (n×n)-matrix A so that its (i, i′)-entry equals z

j1[i′]
i (y′i−

λyi)
j2[i′]

.

4. Compute f(λ) := det(A[λ]) symbolically to obtain the polynomial f on λ.
5. Output all roots of f .

Figure 2: The algorithm that solves CAP+

First in figure 2 we overview the CAP+ algorithm that was presented in the previous sec-
tion. Using this, the general cryptosystem based on Augot and Finiasz [AF03], even under the
optimal choice of parameters is broken under ciphertext-only attacks. The breaking algorithm
is summarized in figure 3.

Given the public-key and a ciphertext of the [AF03]-cryptosystem with
parameters n, k, w, W .
1. if w ≤ n−k−1

2 invoke case 1 of Coron’s attack.
2. else invoke the CAP+ algorithm of figure 1, and recover the plaintext
using Guruswami-Sudan algorithm (as described in proposition 9).

Figure 3: The attack against the Generalized Version of [AF03]-Cryptosystem.

Note that the attack outlined above is probabilistic and is guaranteed to work with very
high probability as we have shown in theorem 4 (for case 1 of Coron’s attack), and theorem
14 (for CAP+ algorithm).
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