

Open access • Journal Article • DOI:10.1093/SYSBIO/SYAA053

Cryptic Patterns of Speciation in Cryptic Primates: Microendemic Mouse Lemurs and the Multispecies Coalescent — Source link

Jelmer W. Poelstra, Jordi Salmona, George P. Tiley, Dominik Schüßler ...+26 more authors

Institutions: Duke University, Paul Sabatier University, University of Hildesheim, University of Antananarivo ...+9 more institutions

Published on: 10 Feb 2021 - Systematic Biology (Oxford Academic)

Topics: Lemur, Species complex, Mouse lemur, Coalescent theory and Lineage (evolution)

Related papers:

- · Inference of human population history from individual whole-genome sequences
- · Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar's forests past.
- On the importance of being structured: instantaneous coalescence rates and human evolution--lessons for ancestral population size inference?
- The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice.
- Prevalence of cryptic species in morphologically uniform taxa Fast speciation and evolutionary radiation in Asian frogs.

Share this paper: 🚯 🄰 🛅 🖂

1	Cryptic Patterns of Speciation in Cryptic Primates:
2	Microendemic Mouse Lemurs and the Multispecies Coalescent
3	Running title: Cryptic speciation in mouse lemurs
4	
5	Jelmer Poelstra ^{1#} , Jordi Salmona ^{2#} , George P. Tiley ^{1#} , Dominik Schüßler ³ , Marina B. Blanco ^{1,4} ,
6	Jean B. Andriambeloson ⁵ , Sophie Manzi ² , C. Ryan Campbell ^{1†} , Olivier Bouchez ⁶ , Paul D. Etter ⁷ ,
7	Amaia Iribar ² , Paul A. Hohenlohe ⁸ , Kelsie E. Hunnicutt ^{1@} , Eric A. Johnson ⁷ , Peter M. Kappeler ⁹ ,
8	Peter A. Larsen ^{1&} , José M. Ralison ⁵ , Blanchard Randrianambinina ^{10,11} , Rodin M. Rasoloarison ⁹ ,
9	David W. Rasolofoson ¹⁰ , Amanda R. Stahlke ⁸ , David Weisrock ¹² , Rachel C. Williams ^{1,4} , Lounès
10	Chikhi ^{2,13} , Edward E Louis Jr. ¹⁴ , Ute Radespiel ¹⁵ *, Anne D. Yoder ¹ *
11	
12	¹ : Department of Biology, Duke University, Durham, NC 27708, USA
13	² : CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité 11
14	Biologique), 118 route de Narbonne, 31062 Toulouse, France
15	³ : Research Group Ecology and Environmental Education, Institute of Biology and Chemistry,
16	University of Hildesheim, Universitaetsplatz 1, 31141 Hildesheim, Germany
17	⁴ : Duke Lemur Center, Duke University, Durham, NC 27705, USA
18	⁵ : Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
19	⁶ : INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France

CRYPTIC SPECIATION IN MOUSE LEMURS

- ⁷: Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
- 21⁸: Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences,
- 22 University of Idaho, Moscow, ID 83844, USA
- 23 ⁹: Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077
- 24 *Göttingen, Germany*
- ¹⁰: Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP); BP 779,
- 26 Antananarivo 101, Madagascar
- 27 ¹¹: Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
- 28 ¹²: Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- 29 ¹³: Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
- 30 ¹⁴: Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium,
- 31 Omaha, NE
- 32 ¹⁵: Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559
- 33 Hannover, Germany
- 34
- 35 #: joint first authors
- 36 *: joint senior authors (corresponding authors)
- 37 @: current address: Department of Biological Sciences, University of Denver, Denver, CO

39	&: current address: Department of Veterinary and Biomedical Sciences, University of Minnesota,
40	Saint Paul, MN 55108
41	†: current address: Department of Evolutionary Anthropology, Duke University, Durham, NC
42	27708, USA
43	
44	Corresponding authors:
45	Ute Radespiel, Institute of Zoology, University of Veterinary Medicine Hannover, Germany,
46	email: <u>ute.radespiel@tiho-hannover.de</u>
47	Anne D. Yoder, Department of Biology, Duke University, Durham, NC, USA, email:
48	anne.yoder@duke.edu
49	
50	Author contributions:
51	- Conception and design of study:
52	JP, GPT, DS, JS, LC, UR, ADY
53	- Data collection:
54	DS, MBB, JBA, EELJ, DWR, RMR, PK, JMR, BR collected samples in the field.
55	- Data analysis and interpretation:
56	DS, JS, LC, OB, PE, CRC, PAL, ARS, DW, AIP, PH, KEH, EJ, SM, RCW, EELJ, UR, ADY
57	generated sequencing data.

- 58 JP, GPT, DS, JS, LC, UR, ADY conducted population genetic and phylogenetic analyses.
- 59 Drafting and revising manuscript:
- 60 JP, GPT, DS, JS, LC, UR, ADY drafted the manuscript.
- 61
- 62 All co-authors revised and agreed on the last version of the manuscript.

CRYPTIC SPECIATION IN MOUSE LEMURS

63 **ABSTRACT**

64 Mouse lemurs (*Microcebus*) are a radiation of morphologically cryptic primates 65 distributed throughout Madagascar for which the number of recognized species has exploded in 66 the past two decades. This taxonomic explosion has prompted understandable concern that there 67 has been substantial oversplitting in the mouse lemur clade. Here, we take an integrative 68 approach to investigate species diversity in two pairs of sister lineages that occur in a region in 69 northeastern Madagascar with high levels of microendemism and predicted habitat loss. We 70 analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for 71 three named species and an undescribed lineage previously identified to have divergent mtDNA. 72 Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-73 distance, and species delimitation results were found among them. Whereas all tests support the 74 recognition of the presently undescribed lineage as a separate species, the species-level 75 distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not 76 supported – a result that is particularly striking when using the genealogical discordance index 77 (gdi). Non-sister lineages occur sympatrically in two of the localities sampled for this study, 78 despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of 79 reproductive isolation in the focal lineages, and in the mouse lemur clade generally. The 80 divergence time estimates reported here are based on the MSC and calibrated with pedigree-81 based mutation rates and are considerably more recent than previously published fossil-

CRYPTIC SPECIATION IN MOUSE LEMURS

82	calibrated concatenated likelihood estimates, however. We discuss the possible explanations for
83	this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates
84	in this case.
85	
86	Keywords: effective population size, cryptic species, multispecies coalescent, species

87 delimitation, speciation, microendemism

CRYPTIC SPECIATION IN MOUSE LEMURS

88 **INTRODUCTION**

89	Mouse lemurs (Microcebus spp.) are small, nocturnal primates that are widespread in the
90	forests of Madagascar (Mittermeier et al. 2010), one of the world's most biodiverse environments
91	(Myers et al. 2000; Goodman and Benstead 2005; Estrada et al. 2017). Mouse lemur diversity
92	was long overlooked (Zimmermann and Radespiel 2014) until the introduction of genetic
93	analyses made it feasible to identify diverging lineages despite similar phenotypes and ecological
94	niches. This genetic perspective has led to the description of many new species, with 24 species
95	recognized at present. In one such study, Radespiel et al. (2008) surveyed the forests of the
96	Makira region (Fig. 1) in northeastern Madagascar and found evidence for three divergent
97	mitochondrial lineages occurring in sympatry. One of these was identified as M. mittermeieri
98	(Louis et al. 2006), while the second was newly described as <i>M. macarthurii</i> . A third lineage,
99	provisionally called M. sp. #3, was hypothesized to represent a new species closely related to M.
100	macarthurii but was not formally named because the data was limited to mtDNA sequence data
101	from one individual. Furthermore, two other species occur in the region, M. lehilahytsara (Roos
102	and Kappeler in Kappeler et al. 2005) at higher elevations, and M. simmonsi (Louis et al. 2006)
103	in lowland forests in the south (Fig. 1).

CRYPTIC SPECIATION IN MOUSE LEMURS

Figure 1: Sampling sites in northeastern Madagascar.

Size of the circles scales with the number of individuals sequenced for a given site. Green background indicates forest cover as per Du Put & Moat (1998), with darker green indicating "low altitude" and paler green indicating "mid altitude" evergreen humid forest. At Anjiahely and Ambavala, two species were detected; in both c8ses, the leftmost site marker was slightly

CRYPTIC SPECIATION IN MOUSE LEMURS

105	Given that many previous taxonomic descriptions of mouse lemurs have relied strongly, if
106	not entirely, on mtDNA sequence divergence, there has been criticism that mouse lemurs (and
107	lemurs more generally) may have been oversplit (Tattersall 2007; Markolf et al. 2011). Species
108	delimitation using only mtDNA is now widely regarded as problematic, given that the
109	mitochondrial genome represents a single non-recombining locus whose gene tree may not
110	represent the underlying species tree (e.g., Pamilo and Nei 1988; Maddison 1997). Mitochondria
111	are also maternally inherited and therefore susceptible to effects of male-biased dispersal (e.g.,
112	Dávalos and Russell 2014), which is prevalent in mouse lemurs (reviewed in Radespiel 2016).
113	Moreover, previous attempts to resolve mouse lemur relationships using nuclear sequences have
114	been complicated by high gene tree discordance, consistent with strong incomplete lineage
115	sorting (e.g., Heckman et al. 2007; Weisrock et al. 2010). These issues can be overcome with
116	genomic approaches, which provide power for simultaneously resolving phylogenetic
117	relationships and estimating demographic parameters such as divergence times, effective
118	population sizes, and rates of gene flow — even among closely related species (e.g., Palkopoulou
119	et al. 2018; Pedersen et al. 2018).
120	Given that cryptic species are by definition difficult to identify based on phenotypic

121 characters (Bickford et al. 2007), recently developed methods for genomic species delimitation

122 have advanced our ability to recognize and quantify their species diversity. In the past decade,

both theory and methods for species delimitation have seen substantial progress, especially those

CRYPTIC SPECIATION IN MOUSE LEMURS

124	which leverage the multispecies coalescent (MSC) model (Pamilo and Nei 1988; Rannala and
125	Yang 2003). MSC-based species delimitation methods have been increasingly applied to
126	genomic data (e.g. Carstens and Dewey 2010; Yang and Rannala 2010; Grummer et al. 2014;
127	Dincă et al. 2019; Hundsdoerfer et al. 2019), though they have also been considered
128	controversial (Edwards and Knowles 2014; Sukumaran and Knowles 2017; Barley et al. 2018).
129	The controversy largely relates to the idea that strong population structure can be mistaken for
130	species boundaries, which may lead to oversplitting (Jackson et al. 2017; Sukumaran and
131	Knowles 2017; Luo et al. 2018; Leaché et al. 2019; Chambers and Hillis 2020). To overcome this
132	potential weakness, Jackson et al. (2017) proposed a heuristic criterion, the genealogical
133	divergence index (gdi), with Leaché et al. (2019) further suggesting that gdi helps to differentiate
134	between population structure and species-level divergence. In parallel, sophisticated statistical
135	approaches have been developed that can detect the presence and magnitude of gene flow during
136	or after speciation (Gronau et al. 2011; Payseur and Rieseberg 2016; Dalquen et al. 2017; Wen et
137	al. 2018). Taken together, these analytical developments are crucial to our ability to recognize the
138	patterns that characterize the speciation process, despite the challenge of identifying species
139	without universally agreed upon criteria (de Queiroz 2007).

In this study, we use a structured framework starting with phylogenetic placement of
lineages and culminating with the MSC to delimit species, estimate divergence times, identify
post-divergence gene flow, and to estimate both current and ancestral effective population sizes

CRYPTIC SPECIATION IN MOUSE LEMURS

143	(Fig. S1). We take advantage of increased geographic, population-level, and genomic sampling
144	to comparatively examine speciation dynamics for two pairs of closely related lineages in the
145	region (described below as Clades I and II) and perform MSC species delimitation methods with
146	Restriction-site Associated DNA sequencing (RADseq) data to infer divergence times, effective
147	population sizes, and rates of gene flow between these lineages. We also provide a novel whole-
148	genome assembly for the previously undescribed lineage and compare inferences of effective
149	population size (N_e) through time from whole-genome versus RADseq data. We find notably
150	different species delimitation results for the lineages in the two mouse lemur clades and believe
151	that the integrative analytic framework here used can be applied more generally to allow
152	investigators to test hypotheses of population- versus species-level differentiation.

153 MATERIALS AND METHODS

154 Summary of Analyses

We generated RADseq data for 63 individuals from 6 lineages, of which 48 were from the two focal clades and passed quality control. First, we used maximum likelihood approaches to infer relationships among lineages and to provide a framework for subsequent species delimitation analyses (Fig. 2A and C). To delimit species, we performed clustering (Fig. 2B) and PCA analyses (Fig. 3A-C), as well as formal MSC species delimitation analyses using SNAPP and BPP. We also used the recently developed genealogical divergence index *gdi* based on BPP

161	parameter estimates (Fig. 3D) and performed an isolation-by-distance analysis (Fig. 4). To
162	determine to what extent ongoing and ancestral gene flow may have contributed to current
163	patterns of divergence, we used G-PhoCS and D-statistics (Fig. 5). Finally, we generated whole-
164	genome sequencing data for a single individual designated as M . sp. #3 comparing it to one for
165	M. mittermeieri from a previous study (Hunnicutt et al., 2020). The genomes were used to infer
166	N_e though time with Multiple Sequentially Markovian Coalescent (MSMC) analysis and
167	compared those estimated from G-PhoCS (Fig. 6). Below, we describe the methods in some
168	detail, while further details can be found in the Supplementary Material.
169	Study Sites and Sampling
170	<i>Microcebus</i> samples were obtained by taking $\sim 2 \text{ mm}^2$ ear biopsies of captured (and
171	thereafter released) individuals between 2008 and 2017 at seven humid evergreen forest sites
172	(50-979 m a.s.l.) in the Analanjirofo and Sava regions of northeastern Madagascar (Fig. 1;
173	Table S1). Additional samples were used from Riamalandy, Zahamena National Park (NP),
174	Betampona Strict Nature Reserve (SNR) and Tampolo (Louis et al. 2006; Weisrock et al. 2010;
175	Louis and Lei 2016) (Fig. 1). With this sampling strategy, we expected to include all mouse
176	lemur species thought to occur in the region (from north to south): M. mittermeieri, M.
177	macarthurii, M. sp. #3, M. lehilahytsara, and M. simmonsi (Fig. 1). Microcebus murinus,
178	which occurs in western and southeastern Madagascar, was used as an outgroup.

CRYPTIC SPECIATION IN MOUSE LEMURS

179 Sequencing Data, Genotyping and Genome Assembly

180	We generated RADseq libraries using the SbfI restriction enzyme, following three
181	protocols (Supplementary Methods, Table S1). Sequences were aligned to the M. sp. #3
182	nuclear genome generated by this study, and to the published M. murinus mitochondrial genome
183	(LeCompte et al. 2016). We used two genotyping approaches to ensure robustness of our results.
184	First, we estimated genotype likelihoods (GL) with ANGSD v0.92 (Nielsen et al. 2012;
185	Korneliussen et al. 2014), which retains information about uncertainty in base calls, thereby
186	alleviating some issues commonly associated with RADseq data such as unevenness in
187	sequencing depth and allele dropout (Lozier 2014; Pedersen et al. 2018; Warmuth and Ellegren
188	2019). Second, we called genotypes with GATK v4.0.7.0 (DePristo et al. 2011), and filtered GATK
189	genotypes following the "FS6" filter of O'Leary et al. (2018; their Table 2). We furthermore used
190	three mtDNA fragments [Cytochrome Oxidase II (COII), Cytochrome B (cytB), and d-loop] that
191	were amplified and Sanger sequenced for additional phylogenetic analyses.
192	The genome of the M sn #3 individual sampled in Mananara-Nord NP (Table S3) was
192	sequenced with a single 500bp insert library on a single lane of an Illumina HiSea 3000 with
104	· 1 11501 1 W 104-5 DCA 222 (77 · 12012) 6 · 11
194	paired-end 1500p reads. We used MaSURCA v3.2.2 (Zimin et al. 2013) for contig assembly and
195	SSPACE (Boetzer et al. 2011) for scaffolding. Scaffolds potentially containing mitochondrial or
196	X-chromosome sequence data were removed for downstream analyses.

CRYPTIC SPECIATION IN MOUSE LEMURS

197 *Phylogenetic Analyses*

198	We used three phylogenetic approaches to infer relationships among lineages: (1)
199	maximum likelihood using RAxML v8.2.11 (Stamatakis 2014), (2) SVDquartets, an MSC method
200	that uses phylogenetic invariants, implemented in PAUP v4a163 (Chifman and Kubatko 2014),
201	and (3) SNAPP, a full-likelihood MSC method for biallelic data that does not require joint gene
202	tree estimation (v1.3.0; Bryant et al. 2012). Analyses with RAxML and SVDquartets used all
203	available individuals, whereas SNAPP analyses were performed with subsets of 12 and 22
204	individuals for computational feasibility (see Supplementary Methods).
205	Species Delimitation
206	Clustering approaches and summary statistics. — Clustering analyses were performed
207	using corresponding methods based on ANGSD genotype likelihoods [clustering in NgsAdmix v32
208	(Skotte et al. 2013) and PCA in ngsTools va4d338d (Fumagalli et al. 2014)] and on GATK-called
209	genotypes [clustering in ADMIXTURE v1.3.0 (Alexander et al. 2009) and PCA using the glPca()
210	function in adegenet v2.1.1 (Jombart and Ahmed 2011)]. These analyses were run for Clade I
211	and II together and separately.
212	<i>MSC-based approaches.</i> — We used SNAPP to test if the two lineages each in Clade I and
213	II could be delimited using Bayes factors (Leaché et al. 2014), interpreting 2ln Bayes factors
214	greater than six as strong evidence for a given model (Kass and Raftery 1995). We also applied

215	guided species delimitation analyses with BPP (Yang and Rannala 2010; Rannala and Yang 2013)
216	using full-length fasta files for a subset of individuals based on the species tree estimated by
217	SVDquartets and SNAPP.
218	gdi. — Coalescent node heights (τ) and ancestral effective population sizes (θ) estimated
219	by BPP were used to compute the genealogical divergence index (gdi; Jackson et al. 2017;
220	Leaché et al. 2019) for the lineages in Clade I and II. We calculated gdi as in Leaché et al.
221	(2019), using their equation 7 ($gdi = 1 - e^{-2\tau/\theta}$), where $2\tau/\theta$ represents the population divergence
222	time between two taxa in coalescent units. θ is taken from one of the two taxa and therefore <i>gdi</i>
223	was calculated twice for each species pair, alternating the focal taxon. We computed gdi using τ
224	and θ parameter estimates for each posterior BPP sample to incorporate uncertainty in the
225	estimates. Jackson et al. (2017) suggested the following interpretation of gdi values: the taxon
226	pair (a) is unambiguously a single species for $gdi < 0.2$, (b) is unambiguously two separate
227	species for $gdi > 0.7$, and (c) falls in an ambiguous zone for $0.7 > gdi < 0.2$.
228	Isolation-by-distance. — We tested for isolation-by-distance using the VCF file produced
229	by GATK with the gl.ibd() function in the R package dartR 1.1.11 (Gruber et al. 2018).
230	Inference of gene flow and divergence times
231	G-PhoCS v1.3 (Gronau et al. 2011), a Bayesian MSC approach that allows for the

CRYPTIC SPECIATION IN MOUSE LEMURS

232	estimation of periods of gene flow (<i>i.e.</i> "migration bands"), was used to jointly infer divergence
233	times, population sizes, and rates of gene flow between specific lineages. Based on the results of
234	exploratory models each containing a single "migration band" between two lineages, we ran a
235	final model with a migration band allowing gene flow from <i>mittermeieri</i> to <i>lehilahytsara</i> , and a
236	migration band allowing gene flow from macarthurii to M. sp. #3. Given the observed
237	mitonuclear discordance between M. sp. #3 and M. macarthurii (see Results), we investigated
238	gene flow between them in more detail by running G-PhoCS using a dataset with only M . sp. #3,
239	M. macarthurii, and M. lehilahytsara individuals, wherein M. sp. #3 was divided into two
240	populations detected using clustering approaches.
241	The D-statistic and related formal statistics for admixture use phylogenetic invariants to
242	infer post-divergence gene flow between non-sister populations or taxa. We used the qpDstat tool
243	of admixtools v4.1 (Patterson et al. 2012) to compute four-taxon D-statistics for all possible
244	configurations in which gene flow between non-sister lineages among the five ingroup lineages
245	could be tested. We additionally tested for gene flow between <i>M. macarthurii</i> and <i>M.</i> sp. #3 by
246	separately treating (1) the two distinct M . sp. #3 populations detected by clustering approaches,
247	and (2) <i>M. macarthurii</i> individuals with and without " <i>M.</i> sp. #3-type" mtDNA (see Results). In
248	all tests, M. murinus was used as P4 (outgroup).

249 *Effective Population Size Through Time*

CRYPTIC SPECIATION IN MOUSE LEMURS

250	Studies have shown that population structure can generate spurious signals of population
251	size change (Beaumont 2004; Chikhi et al. 2010; Heller et al. 2013). For example, sequentially
252	Markovian coalescent approaches such as MSMC (Schiffels and Durbin 2014) actually estimate
253	the inverse instantaneous coalescence rate, which is only equivalent to an effective size in
254	panmictic models (Mazet et al. 2016; Rodríguez et al. 2018). We therefore inferred and
255	compared population size histories using two methods. We estimated N_e over time with MSMC
256	for two species, using the whole-genome data of <i>M</i> . sp. #3 and <i>M</i> . <i>mittermeieri</i> (Hunnicutt et al.
257	2020) mapped to the chromosome-level genome assembly of <i>M. murinus</i> (Larsen et al. 2017).
258	These estimates were compared to inferred changes in N_e over time based on θ estimates from G-
259	PhoCS for each predefined extant or ancestral population. Although the MSC was not expressly
260	developed to estimate change in N_e over time, this allowed us to examine broad demographic
261	trends for relatively small population-level sampling with RADseq data, and to explicitly
262	incorporate divergence events.

263 *Mutation Rate and Generation Time*

We used empirical estimates of mutation rate and generation time to convert coalescent units from BPP, G-PhoCS and MSMC analyses into absolute times and population sizes. We incorporated uncertainty by drawing from mutation rate and generation time distributions for each sampled generation of the MCMC chains in BPP and G-PhoCS (MSMC parameter estimates

CRYPTIC SPECIATION IN MOUSE LEMURS

268	were converted using the point estimates). For the mutation rate, we used a gamma distribution
269	based on the mean (1.236 x 10^{-8}) and variance (0.107 x 10^{-8}) of seven pedigree-based mutation
270	rate estimates for primates (see Campbell et al. 2019, Table S1). For the generation time, we
271	used a lognormal distribution with a mean of $ln(3.5)$ and standard deviation of $ln(1.16)$ based on
272	estimates of 4.5 years calculated from survival data (Zohdy et al. 2014; Yoder et al. 2016) from
273	M. rufus, and 2.5 years from average parent age based on capture-mark-recapture and parentage
274	data in the wild (Radespiel et al. 2019) for M. murinus.

275 **Results**

276 *RADseq Data and Whole-Genome Assembly*

We used three library generation protocols, two sequencing lengths, and a combination of single and paired-end sequencing, yielding data for all 63 individuals in the study and demonstrating the utility of cross-laboratory RAD sequencing, as previously shown in other taxa (e.g., Gonen et al. 2015). From more than 447 million raw reads (Table S1), over 394 million passed quality filters, with approximately 182 million successfully aligning to the *M*. sp. #3 reference genome. We obtained an average of 120,000 loci per individual with coverage ranging from ~1 to ~22x (Table S1).

284	We assembled approximately 2.5 Gb of nuclear genome sequence data for M . sp. #3 with a
285	contig N50 around 36 Kb (Table S3). While the final assembly was fragmented, as expected
286	for a single Illumina library genome, only 6.4% of mammalian BUSCOs were found to be
287	missing. The genome sequence and associated gene annotations can be accessed through NCBI
288	(Bioproject PRJNA512515).
200	Dhula a quatia Dalati auchina
289	Phylogenetic Relationships
290	RAXML and SVDquartets recovered well-supported nDNA clades for <i>M. simmonsi</i> , <i>M.</i>
291	<i>macarthurii</i> , and <i>M</i> . sp. #3, the latter two as sister taxa with 100% bootstrap support (Fig. 2;
292	Fig. S2). SNAPP also supported M. sp. #3 as sister taxon to M. macarthurii (referred to as
293	Clade I) and placed <i>M. lehilahytsara</i> as sister taxon to <i>M. mittermeieri</i> (referred to as Clade II)
294	(Fig. S2). However, <i>M. lehilahytsara</i> was not monophyletic in RAxML analyses of nDNA
295	(Fig. 2C) or mtDNA (Fig. 2A), and a SVDquartets analysis of nDNA placed one <i>M</i> .
296	lehilahytsara individual from Ambavala as sister to all other M. lehilahytsara and M.
297	mittermeieri, and only weakly supported a monophyletic M. mittermeieri (Fig. S2A).

CRYPTIC SPECIATION IN MOUSE LEMURS

Figure 2: Phylogenetic relationships and ancestry proportions

a) Maximum-likelihood RAxML tree of 57 samples represented by 4,060 bp of mtDNA recovered from RADseq and Sanger sequencing (Table S1). The gray shaded box highlights individuals of *M. macarthurii* with *M.* sp. #3 mtDNA haplotypes. b) Clustering results for all species except the outgroup *M. murinus*, using NgsAdmix at K = 5. c) Maximum-likelihood RAXML tree obtained using RADseq nuclear data (nDNA). For all trees, *M. murinus* is used as the outgroup. In a) and c), bootstrap support values >90% are indicated above each node as a red asterisk. Clades

299	Although mtDNA analyses placed several individuals from Anjiahely in a well-supported
300	clade with <i>M</i> . sp. #3, individuals from Ambavala (see Fig. 1), Mananara-Nord NP, and
301	Antanambe (Fig. 2A; see lower gray box), nuclear RADseq data placed them unambiguously
302	within the <i>M. macarthurii</i> clade (Fig. 2B, C). This suggests that individuals from Anjiahely are
303	in fact <i>M. macarthurii</i> , but carry two divergent mtDNA lineages, and that true <i>M.</i> sp. #3 are only
304	found between Ambavala and Antanambe (Fig. 1). The cause of this mitonuclear discordance
305	for macarthurii in Anjiahely was investigated further (see the section "Interspecific Gene
306	Flow").
307	Species Delimitation
308	Genetic structure. — A PCA with both pairs of sister lineages (Clade I: M. macarthurii and
309	M. sp. #3; Clade II: M. mittermeieri and M. lehilahytsara) distinguished the two clades along
310	PC1, and distinguished <i>M. macarthurii</i> and <i>M.</i> sp. #3 along PC2 (Fig. 3B). When restricting
311	clustering analyses to Clade I, $K = 2$ was the best-supported number of clusters with both
312	approaches, distinguishing <i>M. macarthurii</i> and <i>M.</i> sp. #3 (Fig. S5; Fig. S7B). At K = 3, <i>M</i> .
313	sp. #3 was divided into two clusters with individuals from Mananara-Nord NP and Antanambe
314	separated from Ambavala individuals (Fig. S7B, Fig. S10). A separate PCA analysis for
315	Clade I also distinguished these two groups along PC2 (Fig. 3C), which we hereafter refer to
316	as "southern <i>M</i> . sp. #3" (Mananara-Nord NP and Antanambe are south of the Mananara river)
317	and "northern M. sp. #3" (Ambavala is north of the river, and 24.0 km from Mananara-Nord NP

CRYPTIC SPECIATION IN MOUSE LEMURS

Figure 3: Population genetic structure and the gdi.

a) Genealogical divergence index (gdi) for *M. macarthurii* – *M.* sp. #3 and *M. lehilahytsara* – *M. mittermeieri. gdi* values > 0.7 suggest separate species, *gdi* values < 0.2 are below the lower threshold for species delimitation, and 0.2 < gdi < 0.7 is an "ambiguous" range (Jackson et al. 2017). b-d) PCA analyses for b) all four species in Clades I and II, c) Clade I only: *M.* sp. #3 and *M. macarthurii*, with the former showing a split into two population groups: "northern" (Ambavala) and "southern" *M.* sp. #3 (Antanambe and Mananara-Nord NP), d) Clade II only: *M. lehilahytsara* and *M. mittermeieri*.

318 and 35.2 km from Antanambe; Fig. 1). When restricting clustering analyses to Clade II, 22

CRYPTIC SPECIATION IN MOUSE LEMURS

319	ADMIXTURE and ngsAdmix suggested optimal values of 1 and 2, respectively; at $K=2, M$.
320	mittermeieri and M. lehilahytsara were largely but not entirely separated by both approaches
321	(Fig. S5, Fig. S7C, Fig. S11). A PCA distinguished M. mittermeieri and M. lehilahytsara
322	along PC1 but with little separation (Fig. 3D).
323	SNAPP and BPP. — SNAPP Bayes factors strongly favored splitting Clade I into two
324	species ($2\ln BF = 17,304$ and $34,326$ for two different datasets, Table S6), as well as splitting
325	Clade II, although with a smaller difference in marginal likelihood scores ($2\ln BF = 1,828$ and
326	993). All putative species assignments were recovered by the guided delimitation analysis with
327	BPP(Fig. S12).
328	Genealogical divergence index (gdi). — For the Clade I sister pair, gdi was 0.727 (95%
329	HPD: 0.718-0.737) from the perspective of <i>M. macarthurii</i> (i.e. above the upper threshold for
330	species delimitation), and 0.500 (0.488-0.511) from the perspective of M . sp. #3 (i.e. in the upper
331	ambiguous zone for species delimitation; Fig. 3A). In contrast, gdi values for the Clade II
332	putative species pair were much lower and even below the lower threshold for species
333	delimitation: 0.080 (0.074-0.086) from the perspective of <i>M. lehilahytsara</i> , and 0.193 (0.187-
334	0.201) from the perspective of <i>M. mittermeieri</i> (Fig. 3A).

CRYPTIC SPECIATION IN MOUSE LEMURS

335	Isolation-by-distance (IBD). — While comparisons within and between lineages appeared
336	to follow a single isolation-by-distance pattern for M. mittermeieri and M. lehilahytsara (Clade
337	II, r=0.693, p=0.002, Fig. 4B), comparisons within versus between lineages differed strongly
338	for <i>M. macarthurii</i> and <i>M.</i> sp. #3 (Clade I, Fig. 4A). Specifically, genetic distances between <i>M</i> .
339	macarthurii and M. sp. #3 were much larger than within lineages and were also much larger than
340	between M. mittermeieri and M. lehilahytsara, despite similar geographic distances.

Figure 4: Patterns of isolation-by-distance in the two clades.

a) Clade I (*M. macarthurii* and *M. sp. #3*). b) Clade II (*M. mittermeieri* and *M. lehilahytsara*).
Population comparisons within lineages are shown as blue points, and comparisons between
lineages are shown as red points. Both panels have the same y-axis scale, while the inset in B has
a lower limit on the y-axis to better show the spread of points, given the smaller genetic distances
between *M. mittermeieri* and *M. lehilahytsara*.

CRYPTIC SPECIATION IN MOUSE LEMURS

342	Interspecific gene flow. — G-PhoCS inferred high levels of gene flow in Clade II, from M.
343	<i>mittermeieri</i> to <i>M. lehilahytsara</i> [population migration rate (2Nm) = 1.59 (95% HPD: 1.50-1.68),
344	migrants per generation: 0.18% (95% HPD: 0.09-0.27%)], and much lower levels of gene flow in
345	Clade I, from <i>M</i> . sp. #3 to <i>macarthurii</i> [2Nm = 0.08 (95% HPD: 0.07-0.09), migrants per
346	generation: 0.10% (0.05-0.15%)] (Fig. 5C). G-PhoCS also inferred low levels of gene flow
347	between the two clades, most likely between ancestral populations, but the timing and direction
348	of gene flow could not be determined (Supplementary Results; Fig. S13), and D-statistics
349	testing for gene flow between the clades were not significant (Fig. S14).
350	We further investigated gene flow between M. sp. #3 and M. macarthurii by taking the
351	strong population structure within M . sp. #3 into account. D-statistics suggested that northern M .
352	sp. #3 and <i>M. macarthurii</i> with " <i>M</i> . sp. #3-type" mtDNA share a slight excess of derived alleles
353	in relation to southern M . sp. #3, significantly deviating from 0, which indicates gene flow
354	(Fig. S15A). Using a G-PhoCS model with separate northern and southern groups for <i>M</i> . sp.
355	#3, we found that (1) gene flow with <i>M. macarthurii</i> took place before and after the onset of
356	divergence between northern and southern M . sp. #3, (2) gene flow between extant lineages
357	occurred or occurs only between northern (and not southern) M. sp. #3 and M. macarthurii, and
358	(3) gene flow is asymmetric, predominantly into <i>M. macarthurii</i> (Fig. S15B).

CRYPTIC SPECIATION IN MOUSE LEMURS

359 Divergence Times

360	We estimated divergence times under the MSC model using BPP and G-PhoCS both with
361	and without interspecific gene flow (Fig. 5; Fig. S17). Results were similar across these
362	approaches, with the exception of divergence times between sister lineages in G-PhoCS models
363	with versus without gene flow (Fig. 5). Specifically, the divergence time between M . sp. #3
364	and <i>M. macarthurii</i> (Clade I) without gene flow was estimated at 115 ka ago (95% HPD range:
365	52-190 ka across G-PhoCS and BPP models) (Fig. 5; Fig. S17), but at 193 ka ago (95%
366	HPD: 89-318 ka) when incorporating gene flow (Fig. 5C-D). In Clade II, this difference in
367	estimated divergence times was considerably larger: under an isolation model it was estimated to
368	be 103 ka ago (95% HPD: 49-171 ka; Fig. 5) and as much as 520 ka ago (95% HPD: 249-871
369	ka) when modeled with gene flow (Fig. 5). Deeper nodes were not as strongly affected:
370	divergence time between Clades I and II was estimated at 687 ka ago (95% HPD: 337-1126 ka)
371	across G-PhoCS and BPP isolation models, and at 796 ka ago (95% HPD: 360-1311 ka) in a G-
372	PhoCS model with gene flow (Fig. 5D).

CRYPTIC SPECIATION IN MOUSE LEMURS

Figure 5: Demographic histories inferred by G-PhoCS and BPP.

a-c) Divergence times (y-axis) and effective population sizes (x-axis) inferred with and without migration. Migration bands representing the estimated magnitude of gene flow are illustrated in **(c)**. **d-e)** Comparison of divergence times and effective population sizes for each node and lineage, respectively. The symbol "A" represents the lineage ancestral to *M. simmonsi*, *M. mittermeieri* and *M. lehilahytsara*, "B" represents the lineage ancestral to *M. sp. #3*, *M. macarthurii*, *M. simmonsi*, *M. mittermeieri* and *M. lehilahytsara*, and "root" represents the lineage ancestral to all six species included.

CRYPTIC SPECIATION IN MOUSE LEMURS

374 *Effective Population Sizes*

375	We found large differences in N_e among lineages, with considerably larger N_e for the
376	lineages in Clade II, M. lehilahytsara (point estimate and 95% HPD range across the BPP and G-
377	PhoCS models with and without interspecific gene flow: 159 k; 58-265 k) and M. mittermeieri
378	(78 k; 36-140 k), than the lineages in Clade I, M. sp. #3 (24 k; 12-38 k) and M. macarthurii (12
379	k; 5-19 k) (Fig. 5A-C). Wide HPD intervals for <i>M. mittermeieri</i> and <i>lehilahytsara</i> are due to
380	differences between models with and without gene flow. Using the G-PhoCS model focused on
381	Clade I, fairly similar effective population sizes were estimated separately for northern (47 k; 17-
382	78 k), southern (23 k; 12-37 k), and ancestral (33 k; 17-53 k) <i>M</i> . sp. #3 lineages (Fig. S13).
383	Using the whole-genome data for one individual of M . sp. #3 (from the southern group)
384	and for <i>M. mittermeieri</i> , a comparison of MSMC analyses and G-PhoCS models with and without
385	gene flow (Fig. 6) showed highly similar and markedly declining estimates of population
386	sizes towards the present for M. sp. #3 (Fig. 6A). Estimates for M. mittermeieri were more
387	variable across analyses and did not show a consistent decline towards the present (Fig. 6B).

CRYPTIC SPECIATION IN MOUSE LEMURS

388 Figure 6: Estimates of effective population size through time for two species.

Effective population sizes through time as inferred by MSMC for whole-genome data from a single individual (green
 lines), and by G-PhoCS for RADseq data without ("RAD: iso", orange lines) and with ("RAD: mig", blue lines) gene

flow. (A) *M*. sp. #3. G-PhoCS analyses are shown for the southern *M*. sp. #3 population group and its ancestral

392 lineages in the 3-species model given that the whole-genome individual was sampled from that population. (B) M.

393 *mittermeieri*. G-PhoCS analyses are shown for *M. mittermeieri* and its ancestral lineages in the 5-species model. The

394 sharp "jag" in the model with gene flow represents a small Ne estimate for the *M. mittermeieri-lehilahytsara*

ancestor, which exists for an extremely short time in this model (see Fig. 6B,C), likely preventing proper estimation

396 of Ne.

CRYPTIC SPECIATION IN MOUSE LEMURS

397 **Discussion**

398	We used a MSC-based framework for genomic species delimitation and identified rapid
399	and recent diversification of mouse lemurs in a relatively small area in northeastern Madagascar.
400	The same region was previously identified to harbor high levels of lemur microendemism that is
401	vulnerable to the effects of climate change (Brown and Yoder 2015) and anthropogenic habitat
402	alteration (Schüßler et al. 2020), marking it as a region of conservation concern. Species-level
403	divergence was strongly supported for M. sp. #3 and its sister species M. macarthurii (Clade I,
404	Fig. 2), but not for the pair of <i>M. mittermeieri</i> and <i>M. lehilahytsara</i> (Clade II, Fig. 2),
405	despite our baseline assumption that the latter were distinct species (Olave et al., 2014). We
406	inferred that the focal species all diverged from their common ancestors within the past million
407	years and documented two cases of sympatric occurrence, each with one representative from
408	Clade I and one from Clade II. The combined findings of recent divergence and sympatric
409	overlap suggest that reproductive isolation can evolve rapidly in mouse lemurs.
410	Summer for Severate Sister Second Different Sharman the Two Clades
410	support for separate sister species Differs snarply between the Two Clades
411	Evidence for distinguishing M. sp. #3 and M. macarthurii as separate species was strong
412	and consistent across analyses. They were reciprocally monophyletic across all phylogenetic
413	analyses of RADseq data (Fig. 2C; Fig. S2; Fig. S3), separated unambiguously in
414	clustering and PCA analyses (Fig. 2B; Fig. 3BC; Fig. S4; Fig. S6-S10), were
415	strongly supported as separate lineages using SNAPP Bayes factors (Table 1) and BPP (Fig.

416	S12), and passed the heuristic species delimitation criterion of gdi (Fig. 3A). A comparison of
417	genetic and geographic distances moreover showed a clear distinction between intra- and
418	interspecific genetic distances (Fig. 4). Finally, gene flow between these two lineages was
419	estimated to have occurred at very low levels (G-PhoCS migration band = 0.08 ; Fig. 5c).
420	In contrast, separate species status of M. lehilahytsara and M. mittermeieri (Clade II) was
421	not supported by genomic data. These species were paraphyletic in RAxML and SVDquartets
422	analyses (Fig. 2A, C; Fig. S2) and not as clearly separated in clustering and PCA analyses
423	(Fig. 2B; Fig. 3BD; Fig. S5, S7-S9; Fig. S10). Although the Bayes factor support
424	from SNAPP was strong by standard guidelines (Kass and Raftery 1995), the evidence was much
425	weaker relative to species in Clade I and decreased when more individuals were included
426	(Table S6). It is unsurprising that Bayes factors will support splitting lineages with genetic
427	structure (Sukumaran and Knowles 2017; Leaché et al. 2019) even with low levels of gene flow
428	(Barley et al. 2018). Therefore, standard guidelines for interpreting Bayes factors may be of
429	limited value for delimiting species, as informed by the lack of monophyly, high levels of
430	inferred gene flow, and failure of additional delimitation tests observed here. Guided delimitation
431	also separated M. lehilahytsara and M. mittermeieri (Fig. S11), but similar criticisms of
432	oversplitting (e.g. Barley et al. 2018) lead us to not interpret MSC delimitation results as
433	evidence of species status. Most strikingly, reciprocal gdi statistics for Clade II were <0.2, thus

434	falling in the range suggested to unambiguously indicate a single species (Jackson et al. 2017;
435	Leaché et al. 2019; Fig. 3A). Finally, comparing genetic and geographic distances within Clade
436	II showed that a single isolation-by-distance pattern fits both intra- and interspecific comparisons
437	(Fig. 4). While the range of <i>M. lehilahytsara</i> expands considerably further south than the
438	populations examined here, our results strongly suggest that <i>M. mittermeieri</i> and <i>M.</i>
439	lehilahytsara are best considered a single species. Sampling gaps are expected to cause false
440	positive species delimitations rather than false negatives (Barley et al. 2018; Chambers and Hillis
441	2020; Mason et al. 2020), therefore additional sampling of <i>M. lehilahytsara</i> populations farther
442	south should not affect our recommendation to synonymize <i>M. mittermeieri</i> as <i>M. lehilahytsara</i> .
443	Mitonuclear Discordance and Gene Flow
444	Mitonuclear discordance was observed for a subset of <i>M. macarthurii</i> individuals from
445	Anjiahely. These individuals carried mtDNA similar to that of M . sp. #3 (see Radespiel et al.
446	2008) but had nDNA indistinguishable from sympatric <i>M. macarthurii</i> . Although genealogical
447	discordance could be due to incomplete lineage sorting (e.g., Heckman et al. 2007; Weisrock et
448	al. 2010), mitochondrial introgression is supported by D-statistics (Fig. S15) and the inferred
449	low levels of gene flow from the northern M. sp. #3 population into M. macarthurii by G-PhoCS
450	(Fig. $S13$) Besides a possible case in Sgarlata et al. (2019) of mitochondrial introgression has
	(119. 515). Desides a possible case in Sganda et al. (2017), or intoenonatial intogression has

452	mtDNA lineage at Anjiahely (Radespiel et al. 2008), which prompted the current work, was
453	apparently the result of mtDNA introgression from an undescribed species into its sister species.
454	Population Size and Species Delimitation
455	The comparison of effective population sizes in Clades I and II reveals that they are
456	markedly different, which can affect species delimitation tests such as gdi (Leaché et al., 2019).
457	The gdi is calculated using population sizes and divergence times estimated under models with
458	no gene flow, and since divergence time estimates in these models were highly similar in both
459	clades (Fig. 5), differences in effective population sizes also appear to play a role in the stark
460	difference in gdi. Indeed, gdi aims to quantify the probability that two sequences from the focal
461	taxon coalesce more recently than the divergence time between the taxa, and larger effective
462	population sizes result in slower sorting of ancestral polymorphisms (Maddison 1997).
463	Assessing "progress" in speciation by quantifying rates of neutral coalescence, however,
464	implies that the magnitude of genetic drift is a good predictor of species limits. At least when
465	considering reproductive isolation (i.e., biological species), this can be problematic, given that
466	the role of drift in speciation is generally thought to be small (Rice and Hostert 1993; Coyne and
467	Orr 2004; Czekanski-Moir and Rundell 2019; but see Uyeda et al. 2009). Therefore, additional
468	measures of divergence should be taken into account, including those that do not depend on

CRYPTIC SPECIATION IN MOUSE LEMURS

469 population size, such as rates of gene flow and divergence time itself (Yang and Rannala 2010;
470 Leaché et al. 2019).

471 Sympatric Occurrence and the Tempo of Speciation in Mouse Lemurs

472 Sympatric *Microcebus* species were found at two study sites, with a representative of 473 each of the two focal clades in Anjiahely (M. macarthurii and M. mittermeieri) as well as in 474 Ambavala (M. sp. #3 and M. lehilahytsara; Fig. 1). These cases of sympatric occurrence, with no evidence for recent admixture, imply that the two clades are reproductively isolated. Though 475 476 our methods cannot address the mechanisms underlying reproductive isolation, possible barriers 477 include male advertisement calls, which tend to differ strongly among species (Braune et al. 478 2008), and timing of reproduction, which has previously been found to differ among sympatric 479 mouse lemur species (Schmelting et al. 2000; Evasoa et al. 2018) including the focal species 480 (Schüßler et al., in revision). Only six other cases of sympatry among mouse lemur species are 481 known, five of which include *M. murinus* as one of the co-occurring species (Radespiel 2016; 482 Sgarlata et al. 2019).

Given that the sympatrically occurring species were estimated to have had a common
ancestor as recently as ~700-800 ka ago (i.e., the divergence time between Clade I and Clade II,
see Fig. 5), this suggests rapid evolution of reproductive isolation and a short time to sympatry
among mouse lemurs. By comparison, Pigot & Tobias (2015) estimated that after 5 Ma of

CRYPTIC SPECIATION IN MOUSE LEMURS

487	divergence, only 21–23% of primate species have attained sympatry. In fact, the one sympatric
488	pair within their dataset of 74 sister species pairs younger than 2.5 million years consisted of the
489	sympatric Galago gallarum and G. senegalensis (Pigot and Tobias 2015), which are also
490	Strepsirrhini. Moreover, Curnoe et al. (2006) compiled data for naturally hybridizing primate
491	species, and found the median estimated divergence time to be 2.9 Ma. More broadly, primate
492	speciation rates do not appear to be lower than those for other mammals or even vertebrates
493	(Curnoe et al. 2006, Upham et al. 2019). It should be noted, however, that the temporal estimates
494	reported in our study are based on MSC analyses using mutation rates estimated from pedigree
495	studies, whereas dates for other primate clades were largely calculated from fossil-calibrated
496	relaxed clock methods.
497	Complexities of Divergence Time Estimates
498	There are two noteworthy discrepancies in divergence time estimates highlighted by this
499	study. First, the age estimate between the M. mittermeieri and M. lehilahytsara lineages
500	increased from approximately 100 kya (Fig. 5b) to more than 500 kya (Fig. 5c) when the
501	MSC model allowed for gene flow. The substantial effect of incorporating or disregarding gene

502 flow on divergence time estimation has been previously noted (Leaché et al. 2014; Tseng et al.

503 2014) and we here reiterate its significance. Second, the coalescent-based estimates of

504 divergence times presented here differ drastically from estimates based on fossil-calibrated

505 relaxed-clock methods. In the present study, we estimated the mean age of the most recent

CRYPTIC SPECIATION IN MOUSE LEMURS

506	common ancestor (MRCA) of mouse lemurs to be under 1.5 Ma, with the highest upper bound of
507	95% HPDs across models at 2.40 Ma. This age estimate is in stark contrast to previous fossil-
508	calibrated estimates of 8 - 10 Ma (Yang and Yoder 2003; dos Reis et al. 2018).
509	Several factors likely contribute to this large difference. First, the MSC estimate uses a de
510	novo mutation rate sampled from a distribution based on available pedigree-based mutation rates
511	in primates, including mouse lemurs (Campbell et al., 2019). This rate is nearly two-fold higher
512	than the estimated substitution rate for <i>M. murinus</i> (dos Reis et al., 2018). Second, converting
513	coalescent units to absolute time also requires a generation time estimate. We attempted to
514	account for uncertainty in generation time by similarly drawing from a distribution based on
515	empirical parent age estimates (Zohdy et al., 2014; Radespiel et al., 2019) in mouse lemurs.
516	Thus, either overestimation of the mutation rate and/or underestimation of the generation time
517	would lead to divergence time estimates that are too recent. However, theoretical considerations
518	suggest that instead, mouse lemur divergence time estimates from fossil-calibrated clock models
519	are too old.
520	When incomplete lineage sorting is common, clock models that assume a single topology
501	un deulies all la si son exercitiveste anosies diverses es commented to MSC estimates that allows
321	undernes an loci can overestimate species divergences compared to MISC estimates that allow
522	gene trees to vary (Stange et al., 2018; Feng et al., 2020). This is likely to apply to mouse lemurs

523 given that high levels of incomplete lineage sorting have been previously documented (Heckman

524	et al., 2007; Weisrock et al., 2010; Hotaling et al., 2016). Moreover, due to the absence of a post-
525	K-Pg terrestrial fossil record for Madagascar, clock-model estimates of divergence times in
526	mouse lemurs have relied on fossil calibrations from the distantly-related African sister lineage
527	of lemurs, the Lorisiformes (Seiffert et al., 2003), as well as from anthropoid primates and other
528	mammals. This scenario - estimation of divergence times for younger, internal nodes with
529	calibrations placed on much older nodes - is expected to lead to overestimation of divergence
530	times (Angelis and dos Reis 2015). Therefore, it is likely that divergence times between mouse
531	lemur species have been overestimated by previous studies with fossil-calibrated clock models
532	(e.g. Yang and Yoder 2003; dos Reis et al., 2018), and we suggest that the mutation rate-
533	calibrated MSC divergence times presented here are more accurate.
534	Our estimates of divergence times imply that the entire mouse lemur radiation originated in
535	the Pleistocene, in turn suggesting that Pleistocene climatic oscillations represent a likely factor
536	leading to geographic isolation and subsequent genetic divergence. Periods of drought during
537	glacial maxima are hypothesized to have caused dramatic contraction of forest habitats (Burney
538	et al. 1997; Gasse and Van Campo 2001; Wilmé et al. 2006; Kiage and Liu 2016) and to isolation
539	of previously connected populations. Notably, the patterns of differentiation observed in this
540	study are consistent with the predictions of Wilmé et al. (2006) wherein Madagascar's river
541	drainage systems created high-elevation retreat-dispersal corridors during periods of climatic
542	oscillation. That is, whereas the lineages in Clade I (highly differentiated and low Ne) appear to

543	occur only in lowland forests, those in the Clade II (poorly differentiated and high Ne) occur at
544	both higher and lower elevations (Schüßler et al., in revision). Moreover, the Mananara river
545	runs between the fairly distinct northern and southern populations of M . sp. #3, further
546	emphasizing the potential of large rivers to act as phylogeographic barriers in lemurs (Martin
547	1972; Pastorini et al. 2003; Goodman and Ganzhorn 2004; Olivieri et al. 2007).
548	Population Size Dynamics
549	A long-term decline in population size was inferred for the lineage leading to M . sp. #3.
550	While changes in inferred N_e may be confounded by changes in population structure – especially
551	for single-population sequential Markovian coalescent (PSMC/MSMC) models that do not
552	explicitly consider population subdivision (Mazet et al. 2016; Chikhi et al. 2018) - we recovered
553	similar results in both MSMC and G-PhoCS analyses (Fig. 6A). This congruence is especially
554	persuasive given the underlying differences between the G-PhoCS and MSMC models and their
555	input data. Moreover, Markovian coalescent approaches have been shown to be robust to genome
556	assembly quality (Patton et al. 2019), yielding further confidence in the results. The inferred
557	decline and population subdivision of M . sp. #3 was initiated long before anthropogenic land use,
558	supporting the emerging consensus that human colonization in Madagascar alone does not
559	explain the occurrence of open habitats and isolated forest fragments (Quéméré et al. 2012;
560	Vorontsova et al. 2016; Yoder et al. 2016; Salmona et al. 2017, 2020; Hackel et al. 2018).
561	Conversely, results for the <i>M. mittermeieri</i> lineage do not indicate a declining N_e through time

562	(Fig. 6B). This latter result may well be a simple corollary of the evidence described above,
563	that this lineage is part of a single species complex represented by Clade II and thus occurs at
564	both higher and lower elevations in northeastern Madagascar.
565	Conclusions
566	We have shown that substantial mouse lemur diversity exists within a 130-km-wide stretch
567	in northeastern Madagascar, including two instances of sympatric occurrence between
568	representatives of two closely related clades. Within one of these clades, our integrative approach
569	indicates that the undescribed lineage M . sp. #3 represents a distinct species, while the two
570	named species in the other clade, M. mittermeieri and M. lehilahytsara, are better considered a
571	single, widespread species with significant population structure. Given that the original
572	description of M. lehilahytsara precedes that of M. mittermeieri, primate taxonomists should
573	synonymize the two as <i>M. lehilahytsara</i> .
574	The divergence times calculated here using pedigree-based mutation rate estimates with
575	the MSC are much younger than those of previous studies that used external fossil-based
576	calibrations with concatenated likelihood methods. The younger dates suggest rapid evolution of
577	reproductive isolation in mouse lemurs as well as a Pleistocene origin of the radiation, likely
578	following population isolation due to climatic oscillations. This departure from previous
579	hypotheses of mouse lemur antiquity emphasizes the need for future studies focused on resolving

- 580 discrepancies in divergence time estimates, both in mouse lemurs and in other recently evolved
- 581 organismal groups for which such comparisons have yet to be made.

CRYPTIC SPECIATION IN MOUSE LEMURS

582 **ACKNOWLEDGMENTS**

583	This study was conducted under the research permit No.
584	197/17/MEEF/SG/DGF/DSAP/SCB.Re (DS), 072/15/MEEMF/SG/DGF/DCB.SAP/SCB
585	(MBB), 137/13/MEF/SG/DGF/DCB.SAP/SCB (DWR), 175/14/MEF/SG/DGF/DCB.SAP/SCB
586	(A. Miller), kindly issued by the directeur du système des aires protégées, Antananarivo and the
587	regional authorities (Direction Régional de l'Environnement, de l'Ecologie et de Forêts). We are
588	endebted to J.H. Ratsimbazafy, N.V. Andriaholinirina, C. Misandeau, B. Le Pors and S.
589	Rasoloharijaona, for their help with administrative tasks, to A. Miller for sharing samples, and to
590	G. Besnard for facilitating this study. We thank our field assistants (T. Ralantoharijaona, I.
591	Sitrakarivo, C. Hanitriniaina and T. Ralantoharijaona), the Wildlife Conservation Society
592	Madagascar and the ADAFAM (Association Des Amis de la Forêt d'Ambodiriana-Manompana,
593	C. Misandeau in particular) for their valuable help during sample collection. We warmly thank
594	the many local guides and cooks for sharing their incomparable expertise and help in the field,
595	misaotra anareo jiaby.
596	Funding was granted by the Bauer Foundation and the Zempelin Foundation of the

⁵⁹⁷ "Deutsches Stiftungszentrum" under grant no. T237/22985/2012/kg and T0214/32083/2018/sm

- 598 to DS, Duke Tropical Conservation Initiative Grant to ADY, and Duke Lemur Center/SAVA
- 599 Conservation research funds to MBB, the School of Animal Biology at The University of

600	Western Australia to AM, the Fundação para a Ciência e a Tecnologia, Portugal (PTDC/BIA-
601	BEC/100176/2008, PTDC/BIA-BIC/4476/2012, and SFRH/BD/64875/2009), the Groupement
602	de Recherche International (GDRI) Biodiversité et développement durable – Madagascar, the
603	Laboratoire d'Excellence (LABEX) TULIP (ANR-10-LABX-41) and CEBA (ANR-10-LABX-
604	25-01, the Instituto Gulbenkian de Ciência, Portugal to LC and JS, the ERA-NET BiodivERsA
605	project: INFRAGECO (Inference, Fragmentation, Genomics, and Conservation, ANR-16-
606	EBI3-0014 & FCT-Biodiversa/0003/2015) the LIA BEEG-B (Laboratoire International Associé
607	- Bioinformatics, Ecology, Evolution, Genomics and Behaviour, CNRS) to LC and JS. Further
608	financial support came from the Institute of Zoology, University of Veterinary Medicine
609	Hannover and UR acknowledges the long-term support of the late Elke Zimmermann for her
610	research activities on Madagascar. The genomic data were generated with funds from NSF DEB-
611	1354610 to ADY and DWW and from the EDB Lab to JS. ADY also gratefully acknowledges
612	support from the John Simon Guggenheim Memorial Foundation and the Alexander von
613	Humboldt Foundation. EELJ would like to acknowledge support from the Ahmanson Foundation
614	for the data generation. This work was performed in collaboration with the GeT core facility,
615	Toulouse, France (http://get.genotoul.fr), and was supported by France Génomique National
616	infrastructure, funded as part of "Investissement d'avenir" program managed by Agence
617	Nationale pour la Recherche (contract ANR-10-INBS-09). JS, UR & LC also gratefully

- 618 acknowledge support from the Get-Plage sequencing and Genotoul bioinformatics
- 619 (BioinfoGenotoul) platforms Toulouse Midi-Pyrenees. This is DLC publication #XXXX.

CRYPTIC SPECIATION IN MOUSE LEMURS

620 **REFERENCES**

- Alexander D.H., Novembre J., Lange K. 2009. Fast model-based estimation of ancestry in unrelated
 individuals. Genome Res. 19:1655–1664.
- Ali O.A., O'Rourke S.M., Amish S.J., Meek M.H., Luikart G., Jeffres C., Miller M.R. 2016. RAD capture
 (Rapture): Flexible and efficient sequence-based genotyping. Genetics. 202:389–400.
- Angelis K., Dos Reis M. 2015. The impact of ancestral population size and incomplete lineage sorting on
 Bayesian estimation of species divergence times. Curr. Zool. 61:874–885.
- Barley A.J., Brown J.M., Thomson R.C. 2018. Impact of model violations on the inference of species
 boundaries under the multispecies coalescent. Syst. Biol. 67:269–284.
- Beaumont M.A. 2004. Recent developments in genetic data analysis: what can they tell us about human
 demographic history? Heredity. 92:365–379.
- Bickford D., Lohman D.J., Sodhi N.S., Ng P.K.L., Meier R., Winker K., Ingram K.K., Das I. 2007.
 Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22:148–155.
- Blanco M.B., Rasoazanabary E., Godfrey L.R. 2015. Unpredictable environments, opportunistic
 responses: Reproduction and population turnover in two wild mouse lemur species (Microcebus
 rufus and M. griseorufus) from eastern and western Madagascar. Am. J. Primatol. 77:936–947.
- Boetzer M., Henkel C.V., Jansen H.J., Butler D., Pirovano W. 2011. Scaffolding pre-assembled contigs
 using SSPACE. Bioinformatics. 27:578–579.
- Braune P., Schmidt S., Zimmermann E. 2008. Acoustic divergence in the communication of cryptic
 species of nocturnal primates (*Microcebus* ssp.). BMC Biology. 6:19.
- Brown J.L., Yoder A.D. 2015. Shifting ranges and conservation challenges for lemurs in the face of
 climate change. Ecology and Evolution. 5:1131–1142.

CRYPTIC SPECIATION IN MOUSE LEMURS

642	Bryant D., Bouckaert R., Felsenstein J., Rosenberg N.A., RoyChoudhury A. 2012. Inferring species trees
643	directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol.
644	Biol. Evol. 29:1917–1932.
645	Burney D., James H., Grady F., Rafamantanantsoa JG., Ramilisonina, Wright H., Cowart J. 1997.
646	Environmental change, extinction and human activity: evidence from caves in NW Madagascar.
647	Journal of Biogeography. 24:755–767.
648	Campbell C.R., Tiley G.P., Poelstra J.W., Hunnicutt K.E., Larsen P.A., Reis M. dos, Yoder A.D. 2019.
649	Pedigree-based measurement of the de novo mutation rate in the gray mouse lemur reveals a high
650	mutation rate, few mutations in CpG sites, and a weak sex bias. bioRxiv.:724880.
651	Carstens B.C., Dewey T.A. 2010. Species delimitation using a combined coalescent and information-
652	theoretic approach: an example from North American Myotis bats. Syst. Biol. 59:400-414.
653	Chambers E.A., Hillis D.M. 2020. The multispecies coalescent over-splits species in the case of
654	geographically widespread taxa. Syst. Biol. 69:184–193.
655	Chifman J., Kubatko L. 2014. Quartet inference from SNP data under the coalescent model.
656	Bioinformatics. 30:3317–3324.
657	Chikhi L., Rodríguez W., Grusea S., Santos P., Boitard S., Mazet O. 2018. The IICR (inverse
658	instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic
659	inference and model choice. Heredity. 120:13-24.
660	Chikhi L., Sousa V.C., Luisi P., Goossens B., Beaumont M.A. 2010. The confounding effects of
661	population structure, genetic diversity and the sampling scheme on the detection and
662	quantification of population size change. Genetics. 186:983–995.
663	Curnoe D., Thorne A., Coate J.A. 2006. Timing and tempo of primate speciation. J. Evol. Biol. 19:59-65.

664	Czekanski-Moir J.E., Rundell R.J. 2019. The ecology of nonecological speciation and nonadaptive
665	radiations. Trends Ecol. Evol. 34:400-415.
666	Dalquen D.A., Zhu T., Yang Z. 2017. Maximum likelihood implementation of an isolation-with-migration
667	model for three species. Syst. Biol. 66:379-398.
668	Dávalos L.M., Russell A.L. 2014. Sex-biased dispersal produces high error rates in mitochondrial
669	distance-based and tree-based species delimitation. J. Mammal. 95:781-791.
670	DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel
671	G., Rivas M.A., Hanna M., McKenna A., Fennell T.J., Kernytsky A.M., Sivachenko A.Y.,
672	Cibulskis K., Gabriel S.B., Altshuler D., Daly M.J. 2011. A framework for variation discovery
673	and genotyping using next-generation DNA sequencing data. Nature Genetics. 43:491–498.
674	Dincă V., Lee K.M., Vila R., Mutanen M. 2019. The conundrum of species delimitation: a genomic
675	perspective on a mitogenetically super-variable butterfly. Proc. R. Soc. Lond. B Biol. Sci.
676	286:20191311.
677	dos Reis M., Gunnell G.F., Barba-Montoya J., Wilkins A., Yang Z., Yoder A.D. 2018. Using
678	phylogenomic data to explore the effects of relaxed clocks and calibration strategies on
679	divergence time estimation: primates as a test case. Syst. Biol. 67:594-615.
680	Du Puy D.J., Moat J. 1998. Vegetation mapping and classification in Madagascar (using GIS):
681	implications and recommendations for the conservation of biodiversity. In: Huxley C., Lock J.,
682	Cutler D., editors. Chorology, Taxonomy and Ecology of the Floras of Africa and Madagascar.
683	Kew: Royal Botanical Gardens. p. 97–117.
684	Edwards D.L., Knowles L.L. 2014. Species detection and individual assignment in species delimitation:
685	can integrative data increase efficacy? Proc. R. Soc. Lond. B Biol. Sci. 281:20132765.

CRYPTIC SPECIATION IN MOUSE LEMURS

686	Eriksson A., Manica A. 2012. Effect of ancient population structure on the degree of polymorphism
687	shared between modern human populations and ancient hominins. Proc. Natl. Acad. Sci. U.S.A.
688	109:13956–13960.
689	Estrada A., Garber P.A., Rylands A.B., Roos C., Fernandez-Duque E., Fiore A.D., Nekaris K.AI.,
690	Nijman V., Heymann E.W., Lambert J.E., Rovero F., Barelli C., Setchell J.M., Gillespie T.R.,
691	Mittermeier R.A., Arregoitia L.V., Guinea M. de, Gouveia S., Dobrovolski R., Shanee S., Shanee
692	N., Boyle S.A., Fuentes A., MacKinnon K.C., Amato K.R., Meyer A.L.S., Wich S., Sussman
693	R.W., Pan R., Kone I., Li B. 2017. Impending extinction crisis of the world's primates: Why
694	primates matter. Science Advances. 3:e1600946.
695	Feder J.L., Egan S.P., Nosil P. 2012. The genomics of speciation-with-gene-flow. Trends in Genetics.
696	28:342–350.
697	Feng B, Merilä J, Matschiner M, Momigliano P. 2020. Estimating uncertainty in divergence times among
698	three-spined stickleback clades using the multispecies coalescent. Mol Phylogent Evol.
699	142:106646
700	Flouri T., Jiao X., Rannala B., Yang Z. 2018. Species tree inference with BPP using genomic sequences
701	and the multispecies coalescent. Mol. Biol. Evol. 35:2585-2593.
702	Fujita M.K., Leaché A.D., Burbrink F.T., McGuire J.A., Moritz C. 2012. Coalescent-based species
703	delimitation in an integrative taxonomy. Trends Ecol. Evol. 27:480–488.
704	Fumagalli M., Vieira F.G., Linderoth T., Nielsen R. 2014. ngsTools: methods for population genetics
705	analyses from next-generation sequencing data. Bioinformatics. 30:1486–1487.
706	Gasse F., Van Campo E. 2001. Late Quaternary environmental changes from a pollen and diatom record
707	in the southern tropics (Lake Tritrivakely, Madagascar). Palaeogeography, Palaeoclimatology,
708	Palaeoecology. 167:287–308.

709	Gavrilets S., Boake C.R. 1998. On the evolution of premating isolation after a founder event. Am. Nat
710	152:706–716.

- Gonen S., Bishop S.C., Houston R.D. 2015. Exploring the utility of cross-laboratory RAD-sequencing
 datasets for phylogenetic analysis. BMC Research Notes. 8:299.
- Goodman S.M., Benstead J.P. 2005. Updated estimates of biotic diversity and endemism for Madagascar.
 Oryx. 39:73–77.
- Goudet J. 2005. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes.
 5:184–186.
- Gronau I., Hubisz M.J., Gulko B., Danko C.G., Siepel A. 2011. Bayesian inference of ancient human
 demography from individual genome sequences. Nat. Genet. 43:1031–1034.
- Gruber B., Unmack P.J., Berry O.F., Georges A. 2018. dartr: An r package to facilitate analysis of SNP
 data generated from reduced representation genome sequencing. Mol. Ecol. Res. 18:691–699.
- Grummer J.A., Bryson R.W., Reeder T.W. 2014. Species delimitation using Bayes factors: simulations
 and application to the *Sceloporus scalaris* species group (Squamata: Phrynosomatidae). Syst.
 Biol. 63:119–133.
- Hackel J., Vorontsova M.S., Nanjarisoa O.P., Hall R.C., Razanatsoa J., Malakasi P., Besnard G. 2018.
 Grass diversification in Madagascar: In situ radiation of two large C3 shade clades and support
 for a Miocene to Pliocene origin of C4 grassy biomes. Journal of Biogeography. 45:750–761.
- Heckman K.L., Mariani C.L., Rasoloarison R., Yoder A.D. 2007. Multiple nuclear loci reveal patterns of
 incomplete lineage sorting and complex species history within western mouse lemurs
 (*Microcebus*). Mol. Phylogenet. Evol. 43:353–367.
- Heller R., Chikhi L., Siegismund H.R. 2013. The confounding effect of population structure on Bayesian
 skyline plot inferences of demographic history. PLoS ONE. 8:e62992.

CRYPTIC SPECIATION IN MOUSE LEMURS

Huang J.-P., Leavitt S.D., Lumbsch H.T. 2018. Testing the impact of effective population size on

732

733	speciation rates – a negative correlation or lack thereof in lichenized fungi. Scientific Reports.
734	8:1–6.
735	Hundsdoerfer A.K., Lee K.M., Kitching I.J., Mutanen M. 2019. Genome-wide SNP data reveal an
736	overestimation of species diversity in a group of hawkmoths. Genome Biol. Evol. 11:2136–2150.
737	Hunnicutt K.E., Tiley G.P., Williams R.C., Larsen P.A., Blanco M.B., Rasoloarison R.M., Campbell C.R.,
738	Zhu K., Weisrock D.W., Matsunami H., Yoder A.D. 2020. Comparative genomic analysis of the
739	pheromone receptor class 1 family (V1R) reveals extreme complexity in mouse lemurs (Genus,
740	Microcebus) and a chromosomal hotspot across mammals. Genome Biol. Evol. 12:3562–3579.
741	Jackson N.D., Carstens B.C., Morales A.E., O'Meara B.C. 2017. Species delimitation with gene flow.
742	Syst. Biol. 66:799–812.
743	Jombart T., Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data.
744	Bioinformatics. 27:3070–3071.
745	Kappeler P.M., Rasoloarison R.M., Razafimanantsoa L., Walter L., Roos, C. 2005. Morphology,
746	behaviour and molecular evolution of giant mouse lemurs (Mirza spp.) Gray, 1870, with
747	description of a new species. Primate Rep. 71:3–26.
748	Kass R.E., Raftery A.E. 1995. Bayes Factors. J. Am. Stat. Assoc. 90:773–795.
749	Kiage L.M., Liu K. 2016. Late Quaternary paleoenvironmental changes in East Africa: a review of
750	multiproxy evidence from palynology, lake sediments, and associated records. Progress in
751	Physical Geography. 30:633–658.
752	Kim B.Y., Wei X., Fitz-Gibbon S., Lohmueller K.E., Ortego J., Gugger P.F., Sork V.L. 2018. RADseq data
753	reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species
754	(Quercus sect. Quercus: Fagaceae). Mol. Ecol. 27:4556–4571.

CRYPTIC SPECIATION IN MOUSE LEMURS

755	Knaus B.J., Grünwald N.J. 2017. vcfr: a package to manipulate and visualize variant call format data in	ıR.
756	Mol. Ecol. Res. 17:44–53.	

- 757 Knoop S., Chikhi L., Salmona J. 2017. Mouse lemurs' and degraded habitat. bioRxiv.:216382.
- Korneliussen T.S., Albrechtsen A., Nielsen R. 2014. ANGSD: Analysis of Next Generation Sequencing
 Data. BMC Bioinformatics. 15:356.
- Langmead B., Trapnell C., Pop M., Salzberg S.L. 2009. Ultrafast and memory-efficient alignment of short
 DNA sequences to the human genome. Genome Biology. 10:R25.
- Leaché A.D., Fujita M.K., Minin V.N., Bouckaert R.R. 2014. Species delimitation using genome-wide
 SNP data. Syst. Biol. 63:534–542.
- Leaché A.D., Zhu T., Rannala B., Yang Z. 2019. The spectre of too many species. Syst Biol. 68:168–181.
- LeCompte E., Crouau-Roy B., Aujard F., Holota H., Murienne J. 2016. Complete mitochondrial genome
 of the gray mouse lemur, *Microcebus murinus* (Primates, Cheirogaleidae). Mitochondrial DNA A
 DNA Mapp. Seq. Anal. 27:3514–3516.
- Linck E., Epperly K., Van Els P., Spellman G.M., Bryson R.W., McCormack J.E., Canales-Del-Castillo
 R., Klicka J. 2019. Dense geographic and genomic sampling reveals paraphyly and a cryptic
 lineage in a classic sibling species complex. Syst. Biol. 68:956–966.
- Louis E.E., Coles M.S., Andriantompohavana R., Sommer J.A., Engberg S.E., Zaonarivelo J.R., Mayor
 M.I., Brenneman R.A. 2006. Revision of the mouse lemurs (*Microcebus*) of eastern Madagascar.
 Int. J. Primatol. 27:347–389.

Louis E.E.Jr., Engberg S.E., McGuire S.M., McCormick M.J., Randriamampionona R., Ranaivoarisoa
 J.F., Bailey C.A., Mittermeier R.A., Lei R. 2008. Revision of the mouse lemurs, *Microcebus* (Primates, Lemuriformes), of northern and northwestern Madagascar with descriptions of two

777	new species at Montagne d'Ambre National Park and Antafondro Classified Forest. Primate
778	Conservation. 23:19–38.

- Louis E.E.Jr., Lei R. 2016. Mitogenomics of the family Cheirogaleidae and relationships to taxonomy and
 biogeography in Madagascar. In: Lehman S., Radespiel U., Zimmermann E., editors. The Dwarf
 and Mouse Lemurs of Madagascar: Biology, Behavior and Conservation Biogeography of the
 Cheirogaleidae. Cambridge, UK: Cambridge University Press. p. 54–93.
- Lozier J.D. 2014. Revisiting comparisons of genetic diversity in stable and declining species: assessing
 genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol. Ecol.
 23:788–801.
- Luo A., Ling C., Ho S.Y.W., Zhu C.-D. 2018. Comparison of methods for molecular species delimitation
 across a range of speciation scenarios. Syst. Biol. 67:830–846.
- 788 Maddison W.P. 1997. Gene trees in species trees. Syst. Biol. 46:523–536.
- 789 Mallet J., Besansky N., Hahn M.W. 2016. How reticulated are species? Bioessays. 38:140–149.
- Markolf M., Brameier M., Kappeler P.M. 2011. On species delimitation: Yet another lemur species or just
 genetic variation? BMC Evol. Biol. 11:216.
- Mason NA, Fletcher NK, Gill BA, Funk WC, Zamudio KR. 2020. Coalescent-based species delimitation
 is sensitive to geographic sampling and isolation by distance. Systematics and Biodiversity,
 18:269-280.
- Matute D.R. 2013. The role of founder effects on the evolution of reproductive isolation. J. Evol. Biol.
 26:2299–2311.
- Mazet O., Rodríguez W., Grusea S., Boitard S., Chikhi L. 2016. On the importance of being structured:
 instantaneous coalescence rates and human evolution--lessons for ancestral population size
 inference? Heredity. 116:362–371.

CRYPTIC SPECIATION IN MOUSE LEMURS

800	McLaughlin J.F., Winker K. 2020. An empirical examination of sample size effects on population
801	demographic estimates in birds using single nucleotide polymorphism (SNP) data.
802	bioRxiv.:2020.03.10.986463.

Mittermeier R. A., Louis E. E. Jr., Richardson M., Schwitzer C., Langrand O., Rylands A. B., Hawkins F.,
 Rajaobelina S., Ratsimbazafy J., Rasoloarison R., Roos C., Kappeler P. M., Mackinnon J..
 2010. Lemurs of Madagascar, 3rd Edition. Conservation International Tropical Field Guide Series,
 Washington, USA.

- Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. 2000. Biodiversity hotspots
 for conservation priorities. Nature. 403:853–858.
- Nielsen R., Korneliussen T., Albrechtsen A., Li Y., Wang J. 2012. SNP calling, genotype calling, and
 sample allele frequency estimation from new-generation sequencing data. PLoS ONE. 7:e37558.
- O'Leary S.J., Puritz J.B., Willis S.C., Hollenbeck C.M., Portnoy D.S. 2018. These aren't the loci you're
 looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27:3193–
 3206.
- Olave M, Sola E, Knowles LL. 2014. Upstream analyses create problems with DNA-based species
 delimitation. Syst Biol, 63:263-271.
- Olivieri G, Zimmermann E, Randrianambinina B, Rasoloharijaona S, Rakotondravony D, Guschanski K,
 Radespiel U. 2007. The ever-increasing diversity in mouse lemurs: Three new species in north
 and northwestern Madagascar. Mol. Phy. Evol., 43:309-327.

Palkopoulou E., Lipson M., Mallick S., Nielsen S., Rohland N., Baleka S., Karpinski E., Ivancevic A.M.,
To T.-H., Kortschak R.D., Raison J.M., Qu Z., Chin T.-J., Alt K.W., Claesson S., Dalén L.,
MacPhee R.D.E., Meller H., Roca A.L., Ryder O.A., Heiman D., Young S., Breen M., Williams
C., Aken B.L., Ruffier M., Karlsson E., Johnson J., Palma F.D., Alfoldi J., Adelson D.L., Mailund

823	T., Munch K., Lindblad-Toh K., Hofreiter M., Poinar H., Reich D. 2018. A comprehensive
824	genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. U.S.A. 115:E2566-E2574.
825	Pamilo P., Nei M. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5:568–583.
826	Patton AH, Margres MJ, Stahlke AR, Hendricks S, Lewallen K, Hamede RK, Ruiz-Aravena M, Ryder O,
827	McCallum HI, Jones ME, et al. 2019. Contemporary Demographic Reconstruction Methods Are
828	Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Mol Biol Evol,
829	36:2906-2921.
830	Pastorini J., Thalmann U., Martin R.D. 2003. A molecular approach to comparative phylogeography of
831	extant Malagasy lemurs. Proc. Natl. Acad. Sci. U.S.A. 100:5879-5884.
832	Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., Genschoreck T., Webster T., Reich D.
833	2012. Ancient admixture in human history. Genetics. 192:1065–1093.
834	Pedersen CE.T., Albrechtsen A., Etter P.D., Johnson E.A., Orlando L., Chikhi L., Siegismund H.R.,
835	Heller R. 2018. A southern African origin and cryptic structure in the highly mobile plains zebra.
836	Nat. Ecol. Evol. 2:491–498.
837	Pigot A.L., Tobias J.A. 2015. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. Lond.
838	B Biol. Sci. 282:20141929.
839	de Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol. 56:879-886.
840	Quéméré E., Amelot X., Pierson J., Crouau-Roy B., Chikhi L. 2012. Genetic data suggest a natural
841	prehuman origin of open habitats in northern Madagascar and question the deforestation narrative
842	in this region. Proc. Natl. Acad. Sci. U.S.A. 109:13028-13033.
843	R Core Development Team. 2013. R: A Language and Environment for Statistical Computing. R
844	Foundation for Statistical Computing. Vienna, Austria.

845	Radespiel U. 2016. Can behavioral ecology help to understand the divergent geographic range sizes of
846	mouse lemurs? In: Lehman S., Radespiel U., Zimmermann E., editors. The Dwarf and Mouse
847	Lemurs of Madagascar: Biology, Behavior and Conservation Biogeography of the
848	Cheirogaleidae. Cambridge, UK: Cambridge University Press. p. 498–519.
849	Radespiel U., Lutermann H., Schmelting B., Zimmermann E. 2019. An empirical estimate of the
850	generation time of mouse lemurs. Am. J. Primatol. 81:e23062.
851	Radespiel U., Olivieri G., Rasolofoson D.W., Rakotondratsimba G., Rakotonirainy O., Rasoloharijaona
852	S., Randrianambinina B., Ratsimbazafy J.H., Ratelolahy F., Randriamboavonjy T.,
853	Rasolofoharivelo T., Craul M., Rakotozafy L., Randrianarison R.M. 2008. Exceptional diversity
854	of mouse lemurs (Microcebus spp.) in the Makira region with the description of one new species.
855	Am. J. Primatol. 70:1033–1046.
856	Radespiel U., Sarikaya Z., Zimmermann E., Bruford M.W. 2001. Sociogenetic structure in a free-living
857	nocturnal primate population: sex-specific differences in the grey mouse lemur (Microcebus
858	murinus). Behav. Ecol. Sociobiol. 50:493-502.
859	Rannala B., Yang Z. 2003. Bayes estimation of species divergence times and ancestral population sizes
860	using DNA sequences from multiple loci. Genetics. 164:1645–1656.
861	Rannala B., Yang Z. 2013. Improved reversible jump algorithms for Bayesian species delimitation.
862	Genetics. 194:245–253.
863	Rasolooarison R.M., Goodman S.M., Ganzhorn J.U. 2000. Taxonomic revision of mouse lemurs
864	(Microcebus) in the western portions of Madagascar. Int. J. Primatol. 21:963–1019.
865	Rice W.R., Hostert E.E. 1993. Laboratory experiments on speciation: what have we learned in 40 years?
866	Evolution. 47:1637–1653.

CRYPTIC SPECIATION IN MOUSE LEMURS

867 Evasoa M., Radespiel U., Hasiniaina A.F., Rasoloharijaona S., Randrianambinina B., Rakotondravony R., 868 Zimmermann E. 2018. Variation in reproduction of the smallest-bodied primate radiation, the 869 mouse lemurs (Microcebus spp.): A synopsis. Am. J. Primatol. 80:e22874. 870 Rodríguez W., Mazet O., Grusea S., Arredondo A., Corujo J.M., Boitard S., Chikhi L. 2018. The IICR and 871 the non-stationary structured coalescent: towards demographic inference with arbitrary changes in 872 population structure. Heredity. 121:663-678. 873 Salmona J., Heller R., Quéméré E., Chikhi L. 2017. Climate change and human colonization triggered 874 habitat loss and fragmentation in Madagascar. Mol. Ecol. 26:5203-5222. 875 Salmona J., Olofsson J.K., Hong-Wa C., Razanatsoa J., Rakotonasolo F., Ralimanana H., 876 Randriamboavonjy T., Suescun U., Vorontsova M.S., Besnard G. 2020. Late Miocene origin and 877 recent population collapse of the Malagasy savanna olive tree (Noronhia lowryi). Biol. J. Linn. 878 Soc. 129:227-243. 879 Schmelting B., Ehresmann P., Lutermann H., Randrianambinina B., Zimmermann, E. 2000. Reproduction 880 of two sympatric mouse lemur species (*Microcebus murinus* and *M. ravelobensis*) in northwest 881 Madagascar: first results of a long term study. In: Lourenço W.R., Goodman S.M. editors. 882 Diversité et Endémisme à Madagascar. Paris: Société de Biogéographie. p. 165-175. 883 Schüßler D., Mantilla-Contreras J., Stadtmann R., Ratsimbazafy J.H., Radespiel U. 2020. Identification of 884 crucial stepping stone habitats for biodiversity conservation in northeastern Madagascar using 885 remote sensing and comparative predictive modeling. Biodivers. Conserv. 886 https://doi.org/10.1007/s10531-020-01965-z. 887 Seiffert ER, Simons EL, Attia Y. 2003. Fossil evidence for an ancient divergence of lorises and galagos. 888 Nature, 422:421-424. 889 Sgarlata G.M., Salmona J., Pors B.L., Rasolondraibe E., Jan F., Ralantoharijaona T., Rakotonanahary A., 890 Randriamaroson J., Marques A.J., Aleixo-Pais I., Zoeten T. de, Ousseni D.S.A., Knoop S.B.,

891	Teixeira H., Gabillaud V., Miller A., Ibouroi M.T., Rasoloharijaona S., Zaonarivelo J.R.,
892	Andriaholinirina N.V., Chikhi L. 2019. Genetic and morphological diversity of mouse lemurs
893	(Microcebus spp.) in northern Madagascar: The discovery of a putative new species? Am. J.
894	Primatol. 81:e23070.
895	Skotte L., Korneliussen T.S., Albrechtsen A. 2013. Estimating individual admixture proportions from next
896	generation sequencing data. Genetics. 195:693-702.
897	Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
898	phylogenies. Bioinformatics. 30:1312–1313.
899	Stange M, Sánchez-Villagra MR, Salzburger W, Matschiner M. 2018. Bayesian divergence-time
900	estimation with genome-wide single-nucleotide polymorphism data of sea catfishes (Ariidae)
901	supports Miocene closure of the Panamanian Isthmus. Syst Biol. 67:681-699.
902	Sukumaran J., Knowles L.L. 2017. Multispecies coalescent delimits structure, not species. Proc. Natl.
903	Acad. Sci. U.S.A. 114:1607–1612.
904	Tattersall I. 2007. Madagascar's lemurs: Cryptic diversity or taxonomic inflation? Evolutionary
905	Anthropology: Issues, News, and Reviews. 16:12-23.
906	Tseng SP., Li SH., Hsieh CH., Wang HY., Lin SM. 2014. Influence of gene flow on divergence
907	dating - implications for the speciation history of Takydromus grass lizards. Mol. Ecol. 23:4770-
908	4784.
909	Upham N.S., Esselstyn J.A., Jetz W. 2019. Inferring the mammal tree: Species-level sets of phylogenies
910	for questions in ecology, evolution, and conservation. PLOS Biology 17(12): e3000494.
911	Uyeda J.C., Arnold S.J., Hohenlohe P.A., Mead L.S. 2009. Drift promotes speciation by sexual selection.
912	Evolution. 63:583–594.

913	Vorontsova M.S., Besnard G., Forest F., Malakasi P., Moat J., Clayton W.D., Ficinski P., Savva G.M.,
914	Nanjarisoa O.P., Razanatsoa J., Randriatsara F.O., Kimeu J.M., Luke W.R.Q., Kayombo C.,
915	Linder H.P. 2016. Madagascar's grasses and grasslands: anthropogenic or natural? Proc. R. Soc.
916	Lond. B Biol. Sci. 283:20152262.
917	Wang K., Mathieson I., O'Connell J., Schiffels S. 2020. Tracking human population structure through
918	time from whole genome sequences. PLoS Genetics. 16:e1008552.
919	Warmuth V.M., Ellegren H. 2019. Genotype-free estimation of allele frequencies reduces bias and
920	improves demographic inference from RADSeq data. Mol. Ecol. Res. 19:586–596.
921	Weisrock D.W., Rasoloarison R.M., Fiorentino I., Ralison J.M., Goodman S.M., Kappeler P.M., Yoder
922	A.D. 2010. Delimiting species without nuclear monophyly in Madagascar's mouse lemurs. PLoS
923	ONE. 5:e9883.
924	Wen D., Nakhleh L., Kubatko L. 2018. Coestimating reticulate phylogenies and gene trees from
925	multilocus sequence data. Syst. Biol. 67:439–457.
926	Wilmé L., Goodman S.M., Ganzhorn J.U. 2006. Biogeographic evolution of Madagascar's microendemic
927	biota. Science. 312:1063–1065.
928	Yang Z., Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proc. Natl.
929	Acad. Sci. U.S.A. 107:9264–9269.
930	Yang Z., Yoder A.D. 2003. Comparison of likelihood and Bayesian methods for estimating divergence
931	times using multiple gene Loci and calibration points, with application to a radiation of cute-
932	looking mouse lemur species. Syst. Biol. 52:705–716.
933	Yoder A.D., Campbell C.R., Blanco M.B., Reis M. dos, Ganzhorn J.U., Goodman S.M., Hunnicutt K.E.,
934	Larsen P.A., Kappeler P.M., Rasoloarison R.M., Ralison J.M., Swofford D.L., Weisrock D.W.

935	2016. Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of
936	Madagascar's forests past. Proc. Natl. Acad. Sci. U.S.A. 113:8049-8056.
937	Yoder A.D., Rasoloarison R.M., Goodman S.M., Irwin J.A., Atsalis S., Ravosa M.J., Ganzhorn J.U. 2000.
938	Remarkable species diversity in Malagasy mouse lemurs (primates, Microcebus). Proc. Natl.
939	Acad. Sci. U.S.A. 97:11325–11330.
940	Zimin A.V., Marçais G., Puiu D., Roberts M., Salzberg S.L., Yorke J.A. 2013. The MaSuRCA genome
941	assembler. Bioinformatics. 29:2669–2677.
942	Zimmermann E., Cepok S., Rakotoarison N., Zietemann V., Radespiel U. 1998. Sympatric mouse lemurs
943	in north-west Madagascar: a new rufous mouse lemur species (Microcebus ravelobensis). Folia
944	Primatol. 69:106–114.
945	Zimmermann E., Radespiel U. 2014. Species concepts, diversity, and evolution in primates: Lessons to be
946	learned from mouse lemurs. Evolutionary Anthropology: Issues, News, and Reviews. 23:11-14.
947	Zohdy S., Gerber B.D., Tecot S., Blanco M.B., Winchester J.M., Wright P.C., Jernvall J. 2014. Teeth, sex,
948	and testosterone: aging in the world's smallest primate. PLoS ONE. 9:e109528.
949	