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ABSTRACT 63 

 Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates 64 

distributed throughout Madagascar for which the number of recognized species has exploded in 65 

the past two decades. This taxonomic explosion has prompted understandable concern that there 66 

has been substantial oversplitting in the mouse lemur clade. Here, we take an integrative 67 

approach to investigate species diversity in two pairs of sister lineages that occur in a region in 68 

northeastern Madagascar with high levels of microendemism and predicted habitat loss. We 69 

analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for 70 

three named species and an undescribed lineage previously identified to have divergent mtDNA. 71 

Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-72 

distance, and species delimitation results were found among them. Whereas all tests support the 73 

recognition of the presently undescribed lineage as a separate species, the species-level 74 

distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not 75 

supported – a result that is particularly striking when using the genealogical discordance index 76 

(gdi). Non-sister lineages occur sympatrically in two of the localities sampled for this study, 77 

despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of 78 

reproductive isolation in the focal lineages, and in the mouse lemur clade generally. The 79 

divergence time estimates reported here are based on the MSC and calibrated with pedigree-80 

based mutation rates and are considerably more recent than previously published fossil-81 
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calibrated concatenated likelihood estimates, however. We discuss the possible explanations for 82 

this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates 83 

in this case.  84 

 85 

Keywords: effective population size, cryptic species, multispecies coalescent, species 86 

delimitation, speciation, microendemism 87 
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INTRODUCTION 88 

 Mouse lemurs (Microcebus spp.) are small, nocturnal primates that are widespread in the 89 

forests of Madagascar (Mittermeier et al. 2010), one of the world's most biodiverse environments 90 

(Myers et al. 2000; Goodman and Benstead 2005; Estrada et al. 2017). Mouse lemur diversity 91 

was long overlooked (Zimmermann and Radespiel 2014) until the introduction of genetic 92 

analyses made it feasible to identify diverging lineages despite similar phenotypes and ecological 93 

niches. This genetic perspective has led to the description of many new species, with 24 species 94 

recognized at present. In one such study, Radespiel et al. (2008) surveyed the forests of the 95 

Makira region (Fig. 1) in northeastern Madagascar and found evidence for three divergent 96 

mitochondrial lineages occurring in sympatry. One of these was identified as M. mittermeieri 97 

(Louis et al. 2006), while the second was newly described as M. macarthurii. A third lineage, 98 

provisionally called M. sp. #3, was hypothesized to represent a new species closely related to M. 99 

macarthurii but was not formally named because the data was limited to mtDNA sequence data 100 

from one individual. Furthermore, two other species occur in the region, M. lehilahytsara (Roos 101 

and Kappeler in Kappeler et al. 2005) at higher elevations, and M. simmonsi (Louis et al. 2006) 102 

in lowland forests in the south (Fig. 1).  103 
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 104 

 Figure 1: Sampling sites in northeastern Madagascar. 

Size of the circles scales with the number of individuals sequenced for a given site. Green 

background indicates forest cover as per Du Put & Moat (1998), with darker green indicating 

“low altitude” and paler green indicating “mid altitude” evergreen humid forest. At Anjiahely 

and Ambavala, two species were detected; in both cases, the leftmost site marker was slightly 
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Given that many previous taxonomic descriptions of mouse lemurs have relied strongly, if 105 

not entirely, on mtDNA sequence divergence, there has been criticism that mouse lemurs (and 106 

lemurs more generally) may have been oversplit (Tattersall 2007; Markolf et al. 2011). Species 107 

delimitation using only mtDNA is now widely regarded as problematic, given that the 108 

mitochondrial genome represents a single non-recombining locus whose gene tree may not 109 

represent the underlying species tree (e.g., Pamilo and Nei 1988; Maddison 1997). Mitochondria 110 

are also maternally inherited and therefore susceptible to effects of male-biased dispersal (e.g., 111 

Dávalos and Russell 2014), which is prevalent in mouse lemurs (reviewed in Radespiel 2016). 112 

Moreover, previous attempts to resolve mouse lemur relationships using nuclear sequences have 113 

been complicated by high gene tree discordance, consistent with strong incomplete lineage 114 

sorting (e.g., Heckman et al. 2007; Weisrock et al. 2010). These issues can be overcome with 115 

genomic approaches, which provide power for simultaneously resolving phylogenetic 116 

relationships and estimating demographic parameters such as divergence times, effective 117 

population sizes, and rates of gene flow — even among closely related species (e.g., Palkopoulou 118 

et al. 2018; Pedersen et al. 2018). 119 

Given that cryptic species are by definition difficult to identify based on phenotypic 120 

characters (Bickford et al. 2007), recently developed methods for genomic species delimitation 121 

have advanced our ability to recognize and quantify their species diversity. In the past decade, 122 

both theory and methods for species delimitation have seen substantial progress, especially those 123 
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which leverage the multispecies coalescent (MSC) model (Pamilo and Nei 1988; Rannala and 124 

Yang 2003). MSC-based species delimitation methods have been increasingly applied to 125 

genomic data (e.g. Carstens and Dewey 2010; Yang and Rannala 2010; Grummer et al. 2014; 126 

Dincă et al. 2019; Hundsdoerfer et al. 2019), though they have also been considered 127 

controversial (Edwards and Knowles 2014; Sukumaran and Knowles 2017; Barley et al. 2018). 128 

The controversy largely relates to the idea that strong population structure can be mistaken for 129 

species boundaries, which may lead to oversplitting (Jackson et al. 2017; Sukumaran and 130 

Knowles 2017; Luo et al. 2018; Leaché et al. 2019; Chambers and Hillis 2020). To overcome this 131 

potential weakness, Jackson et al. (2017) proposed a heuristic criterion, the genealogical 132 

divergence index (gdi), with Leaché et al. (2019) further suggesting that gdi helps to differentiate 133 

between population structure and species-level divergence. In parallel, sophisticated statistical 134 

approaches have been developed that can detect the presence and magnitude of gene flow during 135 

or after speciation (Gronau et al. 2011; Payseur and Rieseberg 2016; Dalquen et al. 2017; Wen et 136 

al. 2018). Taken together, these analytical developments are crucial to our ability to recognize the 137 

patterns that characterize the speciation process, despite the challenge of identifying species 138 

without universally agreed upon criteria (de Queiroz 2007).  139 

In this study, we use a structured framework starting with phylogenetic placement of 140 

lineages and culminating with the MSC to delimit species, estimate divergence times, identify 141 

post-divergence gene flow, and to estimate both current and ancestral effective population sizes 142 
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(Fig. S1). We take advantage of increased geographic, population-level, and genomic sampling 143 

to comparatively examine speciation dynamics for two pairs of closely related lineages in the 144 

region (described below as Clades I and II) and perform MSC species delimitation methods with 145 

Restriction-site Associated DNA sequencing (RADseq) data to infer divergence times, effective 146 

population sizes, and rates of gene flow between these lineages. We also provide a novel whole-147 

genome assembly for the previously undescribed lineage and compare inferences of effective 148 

population size (Ne) through time from whole-genome versus RADseq data. We find notably 149 

different species delimitation results for the lineages in the two mouse lemur clades and believe 150 

that the integrative analytic framework here used can be applied more generally to allow 151 

investigators to test hypotheses of population- versus species-level differentiation. 152 

MATERIALS AND METHODS 153 

Summary of Analyses  154 

 We generated RADseq data for 63 individuals from 6 lineages, of which 48 were from 155 

the two focal clades and passed quality control. First, we used maximum likelihood approaches 156 

to infer relationships among lineages and to provide a framework for subsequent species 157 

delimitation analyses (Fig. 2A and C). To delimit species, we performed clustering (Fig. 2B) and 158 

PCA analyses (Fig. 3A-C), as well as formal MSC species delimitation analyses using SNAPP 159 

and BPP. We also used the recently developed genealogical divergence index gdi based on BPP 160 
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parameter estimates (Fig. 3D) and performed an isolation-by-distance analysis (Fig. 4). To 161 

determine to what extent ongoing and ancestral gene flow may have contributed to current 162 

patterns of divergence, we used G-PhoCS and D-statistics (Fig. 5). Finally, we generated whole-163 

genome sequencing data for a single individual designated as M. sp. #3 comparing it to one for 164 

M. mittermeieri from a previous study (Hunnicutt et al., 2020). The genomes were used to infer 165 

Ne though time with Multiple Sequentially Markovian Coalescent (MSMC) analysis and 166 

compared those estimated from G-PhoCS (Fig. 6). Below, we describe the methods in some 167 

detail, while further details can be found in the Supplementary Material. 168 

Study Sites and Sampling 169 

 Microcebus samples were obtained by taking ~2 mm² ear biopsies of captured (and 170 

thereafter released) individuals between 2008 and 2017 at seven humid evergreen forest sites 171 

(50-979 m a.s.l.) in the Analanjirofo and Sava regions of northeastern Madagascar (Fig. 1; 172 

Table S1). Additional samples were used from Riamalandy, Zahamena National Park (NP), 173 

Betampona Strict Nature Reserve (SNR) and Tampolo (Louis et al. 2006; Weisrock et al. 2010; 174 

Louis and Lei 2016) (Fig. 1). With this sampling strategy, we expected to include all mouse 175 

lemur species thought to occur in the region (from north to south): M. mittermeieri, M. 176 

macarthurii, M. sp. #3, M. lehilahytsara, and M. simmonsi (Fig. 1). Microcebus murinus, 177 

which occurs in western and southeastern Madagascar, was used as an outgroup. 178 
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Sequencing Data, Genotyping and Genome Assembly 179 

We generated RADseq libraries using the SbfI restriction enzyme, following three 180 

protocols (Supplementary Methods, Table S1). Sequences were aligned to the M. sp. #3 181 

nuclear genome generated by this study, and to the published M. murinus mitochondrial genome 182 

(LeCompte et al. 2016). We used two genotyping approaches to ensure robustness of our results. 183 

First, we estimated genotype likelihoods (GL) with ANGSD v0.92 (Nielsen et al. 2012; 184 

Korneliussen et al. 2014), which retains information about uncertainty in base calls, thereby 185 

alleviating some issues commonly associated with RADseq data such as unevenness in 186 

sequencing depth and allele dropout (Lozier 2014; Pedersen et al. 2018; Warmuth and Ellegren 187 

2019). Second, we called genotypes with GATK v4.0.7.0 (DePristo et al. 2011), and filtered GATK 188 

genotypes following the "FS6" filter of O‘Leary et al. (2018; their Table 2). We furthermore used 189 

three mtDNA fragments [Cytochrome Oxidase II (COII), Cytochrome B (cytB), and d-loop] that 190 

were amplified and Sanger sequenced for additional phylogenetic analyses. 191 

 The genome of the M. sp. #3 individual sampled in Mananara-Nord NP (Table S3) was 192 

sequenced with a single 500bp insert library on a single lane of an Illumina HiSeq 3000 with 193 

paired-end 150bp reads. We used MaSuRCA v3.2.2 (Zimin et al. 2013) for contig assembly and 194 

SSPACE (Boetzer et al. 2011) for scaffolding. Scaffolds potentially containing mitochondrial or 195 

X-chromosome sequence data were removed for downstream analyses. 196 
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Phylogenetic Analyses  197 

We used three phylogenetic approaches to infer relationships among lineages: (1) 198 

maximum likelihood using RAxML v8.2.11 (Stamatakis 2014), (2) SVDquartets, an MSC method 199 

that uses phylogenetic invariants, implemented in PAUP v4a163 (Chifman and Kubatko 2014), 200 

and (3) SNAPP, a full-likelihood MSC method for biallelic data that does not require joint gene 201 

tree estimation (v1.3.0; Bryant et al. 2012). Analyses with RAxML and SVDquartets used all 202 

available individuals, whereas SNAPP analyses were performed with subsets of 12 and 22 203 

individuals for computational feasibility (see Supplementary Methods). 204 

Species Delimitation 205 

Clustering approaches and summary statistics. — Clustering analyses were performed 206 

using corresponding methods based on ANGSD genotype likelihoods [clustering in NgsAdmix v32 207 

(Skotte et al. 2013) and PCA in ngsTools va4d338d (Fumagalli et al. 2014)] and on GATK-called 208 

genotypes [clustering in ADMIXTURE v1.3.0 (Alexander et al. 2009) and PCA using the glPca() 209 

function in adegenet v2.1.1 (Jombart and Ahmed 2011)]. These analyses were run for Clade I 210 

and II together and separately. 211 

MSC-based approaches. — We used SNAPP to test if the two lineages each in Clade I and 212 

II could be delimited using Bayes factors (Leaché et al. 2014), interpreting 2ln Bayes factors 213 

greater than six as strong evidence for a given model (Kass and Raftery 1995). We also applied 214 
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guided species delimitation analyses with BPP (Yang and Rannala 2010; Rannala and Yang 2013) 215 

using full-length fasta files for a subset of individuals based on the species tree estimated by 216 

SVDquartets and SNAPP. 217 

 gdi. — Coalescent node heights (τ) and ancestral effective population sizes (θ) estimated 218 

by BPP were used to compute the genealogical divergence index (gdi; Jackson et al. 2017; 219 

Leaché et al. 2019) for the lineages in Clade I and II. We calculated gdi as in Leaché et al. 220 

(2019), using their equation 7 (gdi = 1−e−2τ/θ), where 2τ/θ represents the population divergence 221 

time between two taxa in coalescent units. θ is taken from one of the two taxa and therefore gdi 222 

was calculated twice for each species pair, alternating the focal taxon. We computed gdi using τ 223 

and θ parameter estimates for each posterior BPP sample to incorporate uncertainty in the 224 

estimates. Jackson et al. (2017) suggested the following interpretation of gdi values: the taxon 225 

pair (a) is unambiguously a single species for gdi < 0.2, (b) is unambiguously two separate 226 

species for gdi > 0.7, and (c) falls in an ambiguous zone for 0.7 > gdi < 0.2. 227 

Isolation-by-distance. — We tested for isolation-by-distance using the VCF file produced 228 

by GATK with the gl.ibd() function in the R package dartR 1.1.11 (Gruber et al. 2018).  229 

Inference of gene flow and divergence times 230 

 G-PhoCS v1.3 (Gronau et al. 2011), a Bayesian MSC approach that allows for the 231 
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estimation of periods of gene flow (i.e. “migration bands”), was used to jointly infer divergence 232 

times, population sizes, and rates of gene flow between specific lineages. Based on the results of 233 

exploratory models each containing a single “migration band” between two lineages, we ran a 234 

final model with a migration band allowing gene flow from mittermeieri to lehilahytsara, and a 235 

migration band allowing gene flow from macarthurii to M. sp. #3. Given the observed 236 

mitonuclear discordance between M. sp. #3 and M. macarthurii (see Results), we investigated 237 

gene flow between them in more detail by running G-PhoCS using a dataset with only M. sp. #3, 238 

M. macarthurii, and M. lehilahytsara individuals, wherein M. sp. #3 was divided into two 239 

populations detected using clustering approaches. 240 

The D-statistic and related formal statistics for admixture use phylogenetic invariants to 241 

infer post-divergence gene flow between non-sister populations or taxa. We used the qpDstat tool 242 

of admixtools v4.1 (Patterson et al. 2012) to compute four-taxon D-statistics for all possible 243 

configurations in which gene flow between non-sister lineages among the five ingroup lineages 244 

could be tested. We additionally tested for gene flow between M. macarthurii and M. sp. #3 by 245 

separately treating (1) the two distinct M. sp. #3 populations detected by clustering approaches, 246 

and (2) M. macarthurii individuals with and without “M. sp. #3-type” mtDNA (see Results). In 247 

all tests, M. murinus was used as P4 (outgroup). 248 

Effective Population Size Through Time 249 
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Studies have shown that population structure can generate spurious signals of population 250 

size change (Beaumont 2004; Chikhi et al. 2010; Heller et al. 2013). For example, sequentially 251 

Markovian coalescent approaches such as MSMC (Schiffels and Durbin 2014) actually estimate 252 

the inverse instantaneous coalescence rate, which is only equivalent to an effective size in 253 

panmictic models (Mazet et al. 2016; Rodríguez et al. 2018). We therefore inferred and 254 

compared population size histories using two methods. We estimated Ne over time with MSMC 255 

for two species, using the whole-genome data of M. sp. #3 and M. mittermeieri (Hunnicutt et al. 256 

2020) mapped to the chromosome-level genome assembly of M. murinus (Larsen et al. 2017). 257 

These estimates were compared to inferred changes in Ne over time based on θ estimates from G-258 

PhoCS for each predefined extant or ancestral population. Although the MSC was not expressly 259 

developed to estimate change in Ne over time, this allowed us to examine broad demographic 260 

trends for relatively small population-level sampling with RADseq data, and to explicitly 261 

incorporate divergence events.  262 

Mutation Rate and Generation Time 263 

We used empirical estimates of mutation rate and generation time to convert coalescent 264 

units from BPP, G-PhoCS and MSMC analyses into absolute times and population sizes. We 265 

incorporated uncertainty by drawing from mutation rate and generation time distributions for 266 

each sampled generation of the MCMC chains in BPP and G-PhoCS (MSMC parameter estimates 267 
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were converted using the point estimates). For the mutation rate, we used a gamma distribution 268 

based on the mean (1.236 x 10-8) and variance (0.107 x 10-8) of seven pedigree-based mutation 269 

rate estimates for primates (see Campbell et al. 2019, Table S1). For the generation time, we 270 

used a lognormal distribution with a mean of ln(3.5) and standard deviation of ln(1.16) based on 271 

estimates of 4.5 years calculated from survival data (Zohdy et al. 2014; Yoder et al. 2016) from 272 

M. rufus, and 2.5 years from average parent age based on capture-mark-recapture and parentage 273 

data in the wild (Radespiel et al. 2019) for M. murinus. 274 

RESULTS 275 

RADseq Data and Whole-Genome Assembly 276 

 We used three library generation protocols, two sequencing lengths, and a combination of 277 

single and paired-end sequencing, yielding data for all 63 individuals in the study and 278 

demonstrating the utility of cross-laboratory RAD sequencing, as previously shown in other taxa 279 

(e.g., Gonen et al. 2015). From more than 447 million raw reads (Table S1), over 394 million 280 

passed quality filters, with approximately 182 million successfully aligning to the M. sp. #3 281 

reference genome. We obtained an average of 120,000 loci per individual with coverage ranging 282 

from ~1 to ~22x (Table S1).  283 
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We assembled approximately 2.5 Gb of nuclear genome sequence data for M. sp. #3 with a 284 

contig N50 around 36 Kb (Table S3). While the final assembly was fragmented, as expected 285 

for a single Illumina library genome, only 6.4% of mammalian BUSCOs were found to be 286 

missing. The genome sequence and associated gene annotations can be accessed through NCBI 287 

(Bioproject PRJNA512515). 288 

Phylogenetic Relationships 289 

 RAxML and SVDquartets recovered well-supported nDNA clades for M. simmonsi, M. 290 

macarthurii, and M. sp. #3, the latter two as sister taxa with 100% bootstrap support (Fig. 2; 291 

Fig. S2). SNAPP also supported M. sp. #3 as sister taxon to M. macarthurii (referred to as 292 

Clade I) and placed M. lehilahytsara as sister taxon to M. mittermeieri (referred to as Clade II) 293 

(Fig. S2). However, M. lehilahytsara was not monophyletic in RAxML analyses of nDNA 294 

(Fig. 2C) or mtDNA (Fig. 2A), and a SVDquartets analysis of nDNA placed one M. 295 

lehilahytsara individual from Ambavala as sister to all other M. lehilahytsara and M. 296 

mittermeieri, and only weakly supported a monophyletic M. mittermeieri (Fig. S2A). 297 
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 298 

Figure 2: Phylogenetic relationships and ancestry proportions 

a) Maximum-likelihood RAxML tree of 57 samples represented by 4,060 bp of mtDNA recovered 

from RADseq and Sanger sequencing (Table S1). The gray shaded box highlights individuals of 

M. macarthurii with M. sp. #3 mtDNA haplotypes. b) Clustering results for all species except the 

outgroup M. murinus, using NgsAdmix at K = 5. c) Maximum-likelihood RAXML tree obtained 

using RADseq nuclear data (nDNA). For all trees, M. murinus is used as the outgroup. In a) and 

c), bootstrap support values >90% are indicated above each node as a red asterisk. Clades 
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Although mtDNA analyses placed several individuals from Anjiahely in a well-supported 299 

clade with M. sp. #3, individuals from Ambavala (see Fig. 1), Mananara-Nord NP, and 300 

Antanambe (Fig. 2A; see lower gray box), nuclear RADseq data placed them unambiguously 301 

within the M. macarthurii clade (Fig. 2B,C). This suggests that individuals from Anjiahely are 302 

in fact M. macarthurii, but carry two divergent mtDNA lineages, and that true M. sp. #3 are only 303 

found between Ambavala and Antanambe (Fig. 1). The cause of this mitonuclear discordance 304 

for macarthurii in Anjiahely was investigated further (see the section “Interspecific Gene 305 

Flow”). 306 

Species Delimitation 307 

Genetic structure. — A PCA with both pairs of sister lineages (Clade I: M. macarthurii and 308 

M. sp. #3; Clade II: M. mittermeieri and M. lehilahytsara) distinguished the two clades along 309 

PC1, and distinguished M. macarthurii and M. sp. #3 along PC2 (Fig. 3B). When restricting 310 

clustering analyses to Clade I, K = 2 was the best-supported number of clusters with both 311 

approaches, distinguishing M. macarthurii and M. sp. #3 (Fig. S5; Fig. S7B). At K = 3, M. 312 

sp. #3 was divided into two clusters with individuals from Mananara-Nord NP and Antanambe 313 

separated from Ambavala individuals (Fig. S7B, Fig. S10). A separate PCA analysis for 314 

Clade I also distinguished these two groups along PC2 (Fig. 3C), which we hereafter refer to 315 

as “southern M. sp. #3” (Mananara-Nord NP and Antanambe are south of the Mananara river) 316 

and “northern M. sp. #3” (Ambavala is north of the river, and 24.0 km from Mananara-Nord NP 317 
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and 35.2 km from Antanambe; Fig. 1). When restricting clustering analyses to Clade II, 318 

Figure 3: Population genetic structure and the gdi.  

a) Genealogical divergence index (gdi) for M. macarthurii – M. sp. #3 and M. lehilahytsara – M. 

mittermeieri. gdi values > 0.7 suggest separate species, gdi values < 0.2 are below the lower 

threshold for species delimitation, and 0.2 < gdi < 0.7 is an “ambiguous” range (Jackson et al. 

2017). b-d) PCA analyses for b) all four species in Clades I and II, c) Clade I only: M. sp. #3 and 

M. macarthurii, with the former showing a split into two population groups: “northern” 

(Ambavala) and “southern” M. sp. #3 (Antanambe and Mananara-Nord NP), d) Clade II only: M. 

lehilahytsara and M. mittermeieri. 
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ADMIXTURE and ngsAdmix suggested optimal values of 1 and 2, respectively; at K=2, M. 319 

mittermeieri and M. lehilahytsara were largely but not entirely separated by both approaches 320 

(Fig. S5, Fig. S7C, Fig. S11). A PCA distinguished M. mittermeieri and M. lehilahytsara 321 

along PC1 but with little separation (Fig. 3D). 322 

SNAPP and BPP. — SNAPP Bayes factors strongly favored splitting Clade I into two 323 

species (2lnBF = 17,304 and 34,326 for two different datasets, Table S6), as well as splitting 324 

Clade II, although with a smaller difference in marginal likelihood scores (2lnBF = 1,828 and 325 

993). All putative species assignments were recovered by the guided delimitation analysis with 326 

BPP (Fig. S12). 327 

Genealogical divergence index (gdi). — For the Clade I sister pair, gdi was 0.727 (95% 328 

HPD: 0.718-0.737) from the perspective of M. macarthurii (i.e. above the upper threshold for 329 

species delimitation), and 0.500 (0.488-0.511) from the perspective of M. sp. #3 (i.e. in the upper 330 

ambiguous zone for species delimitation; Fig. 3A). In contrast, gdi values for the Clade II 331 

putative species pair were much lower and even below the lower threshold for species 332 

delimitation: 0.080 (0.074-0.086) from the perspective of M. lehilahytsara, and 0.193 (0.187-333 

0.201) from the perspective of M. mittermeieri (Fig. 3A). 334 
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Isolation-by-distance (IBD). — While comparisons within and between lineages appeared 335 

to follow a single isolation-by-distance pattern for M. mittermeieri and M. lehilahytsara (Clade 336 

II, r=0.693, p=0.002, Fig. 4B), comparisons within versus between lineages differed strongly 337 

for M. macarthurii and M. sp. #3 (Clade I, Fig. 4A). Specifically, genetic distances between M. 338 

macarthurii and M. sp. #3 were much larger than within lineages and were also much larger than 339 

between M. mittermeieri and M. lehilahytsara, despite similar geographic distances. 340 

Figure 4: Patterns of isolation-by-distance in the two clades. 

a) Clade I (M. macarthurii and M. sp. #3). b) Clade II (M. mittermeieri and M. lehilahytsara). 

Population comparisons within lineages are shown as blue points, and comparisons between 

lineages are shown as red points. Both panels have the same y-axis scale, while the inset in B has 

a lower limit on the y-axis to better show the spread of points, given the smaller genetic distances 

between M. mittermeieri and M. lehilahytsara. 
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 341 

Interspecific gene flow. — G-PhoCS inferred high levels of gene flow in Clade II, from M. 342 

mittermeieri to M. lehilahytsara [population migration rate (2Nm) = 1.59 (95% HPD: 1.50-1.68), 343 

migrants per generation: 0.18% (95% HPD: 0.09-0.27%)], and much lower levels of gene flow in 344 

Clade I, from M. sp. #3 to macarthurii [2Nm = 0.08 (95% HPD: 0.07-0.09), migrants per 345 

generation: 0.10% (0.05-0.15%)] (Fig. 5C). G-PhoCS also inferred low levels of gene flow 346 

between the two clades, most likely between ancestral populations, but the timing and direction 347 

of gene flow could not be determined (Supplementary Results; Fig. S13), and D-statistics 348 

testing for gene flow between the clades were not significant (Fig. S14).  349 

 We further investigated gene flow between M. sp. #3 and M. macarthurii by taking the 350 

strong population structure within M. sp. #3 into account. D-statistics suggested that northern M. 351 

sp. #3 and M. macarthurii with “M. sp. #3-type” mtDNA share a slight excess of derived alleles 352 

in relation to southern M. sp. #3, significantly deviating from 0, which indicates gene flow 353 

(Fig. S15A). Using a G-PhoCS model with separate northern and southern groups for M. sp. 354 

#3, we found that (1) gene flow with M. macarthurii took place before and after the onset of 355 

divergence between northern and southern M. sp. #3, (2) gene flow between extant lineages 356 

occurred or occurs only between northern (and not southern) M. sp. #3 and M. macarthurii, and 357 

(3) gene flow is asymmetric, predominantly into M. macarthurii (Fig. S15B). 358 
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Divergence Times 359 

 We estimated divergence times under the MSC model using BPP and G-PhoCS both with 360 

and without interspecific gene flow (Fig. 5; Fig. S17). Results were similar across these 361 

approaches, with the exception of divergence times between sister lineages in G-PhoCS models 362 

with versus without gene flow (Fig. 5). Specifically, the divergence time between M. sp. #3 363 

and M. macarthurii (Clade I) without gene flow was estimated at 115 ka ago (95% HPD range: 364 

52-190 ka across G-PhoCS and BPP models) (Fig. 5; Fig. S17), but at 193 ka ago (95% 365 

HPD: 89-318 ka) when incorporating gene flow (Fig. 5C-D). In Clade II, this difference in 366 

estimated divergence times was considerably larger: under an isolation model it was estimated to 367 

be 103 ka ago (95% HPD: 49-171 ka; Fig. 5) and as much as 520 ka ago (95% HPD: 249-871 368 

ka) when modeled with gene flow (Fig. 5). Deeper nodes were not as strongly affected: 369 

divergence time between Clades I and II was estimated at 687 ka ago (95% HPD: 337-1126 ka) 370 

across G-PhoCS and BPP isolation models, and at 796 ka ago (95% HPD: 360-1311 ka) in a G-371 

PhoCS model with gene flow (Fig. 5D). 372 
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 373 

Figure 5: Demographic histories inferred by G-PhoCS and BPP.  

a-c) Divergence times (y-axis) and effective population sizes (x-axis) inferred with and without 

migration.  Migration bands representing the estimated magnitude of gene flow are illustrated in 

(c). d-e) Comparison of divergence times and effective population sizes for each node and 

lineage, respectively. The symbol “A” represents the lineage ancestral to M. simmonsi, M. 

mittermeieri and M. lehilahytsara, “B” represents the lineage ancestral to M. sp. #3, M. 

macarthurii, M. simmonsi, M. mittermeieri and M. lehilahytsara, and “root” represents the 

lineage ancestral to all six species included. 
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Effective Population Sizes 374 

 We found large differences in Ne among lineages, with considerably larger Ne for the 375 

lineages in Clade II, M. lehilahytsara (point estimate and 95% HPD range across the BPP and G-376 

PhoCS models with and without interspecific gene flow: 159 k; 58-265 k) and M. mittermeieri 377 

(78 k; 36-140 k), than the lineages in Clade I, M. sp. #3 (24 k; 12-38 k) and M. macarthurii (12 378 

k; 5-19 k) (Fig. 5A-C). Wide HPD intervals for M. mittermeieri and lehilahytsara are due to 379 

differences between models with and without gene flow. Using the G-PhoCS model focused on 380 

Clade I, fairly similar effective population sizes were estimated separately for northern (47 k; 17-381 

78 k), southern (23 k; 12-37 k), and ancestral (33 k; 17-53 k) M. sp. #3 lineages (Fig. S13). 382 

 Using the whole-genome data for one individual of M. sp. #3 (from the southern group) 383 

and for M. mittermeieri, a comparison of MSMC analyses and G-PhoCS models with and without 384 

gene flow (Fig. 6) showed highly similar and markedly declining estimates of population 385 

sizes towards the present for M. sp. #3 (Fig. 6A). Estimates for M. mittermeieri were more 386 

variable across analyses and did not show a consistent decline towards the present (Fig. 6B). 387 
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Figure 6: Estimates of effective population size through time for two species.  388 

Effective population sizes through time as inferred by MSMC for whole-genome data from a single individual (green 389 

lines), and by G-PhoCS for RADseq data without (“RAD: iso”, orange lines) and with (“RAD: mig”, blue lines) gene 390 

flow. (A) M. sp. #3. G-PhoCS analyses are shown for the southern M. sp. #3 population group and its ancestral 391 

lineages in the 3-species model given that the whole-genome individual was sampled from that population. (B) M. 392 

mittermeieri. G-PhoCS analyses are shown for M. mittermeieri and its ancestral lineages in the 5-species model. The 393 

sharp “jag” in the model with gene flow represents a small Ne estimate for the M. mittermeieri-lehilahytsara 394 

ancestor, which exists for an extremely short time in this model (see Fig. 6B,C), likely preventing proper estimation 395 

of Ne. 396 
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DISCUSSION 397 

We used a MSC-based framework for genomic species delimitation and identified rapid 398 

and recent diversification of mouse lemurs in a relatively small area in northeastern Madagascar. 399 

The same region was previously identified to harbor high levels of lemur microendemism that is 400 

vulnerable to the effects of climate change (Brown and Yoder 2015) and anthropogenic habitat 401 

alteration (Schüßler et al. 2020), marking it as a region of conservation concern. Species-level 402 

divergence was strongly supported for M. sp. #3 and its sister species M. macarthurii (Clade I, 403 

Fig. 2), but not for the pair of M. mittermeieri and M. lehilahytsara (Clade II, Fig. 2), 404 

despite our baseline assumption that the latter were distinct species (Olave et al., 2014). We 405 

inferred that the focal species all diverged from their common ancestors within the past million 406 

years and documented two cases of sympatric occurrence, each with one representative from 407 

Clade I and one from Clade II. The combined findings of recent divergence and sympatric 408 

overlap suggest that reproductive isolation can evolve rapidly in mouse lemurs. 409 

Support for Separate Sister Species Differs Sharply Between the Two Clades 410 

 Evidence for distinguishing M. sp. #3 and M. macarthurii as separate species was strong 411 

and consistent across analyses. They were reciprocally monophyletic across all phylogenetic 412 

analyses of RADseq data (Fig. 2C; Fig. S2; Fig. S3), separated unambiguously in 413 

clustering and PCA analyses (Fig. 2B; Fig. 3BC; Fig. S4; Fig. S6-S10), were 414 

strongly supported as separate lineages using SNAPP Bayes factors (Table 1) and BPP (Fig. 415 
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S12), and passed the heuristic species delimitation criterion of gdi (Fig. 3A). A comparison of 416 

genetic and geographic distances moreover showed a clear distinction between intra- and 417 

interspecific genetic distances (Fig. 4). Finally, gene flow between these two lineages was 418 

estimated to have occurred at very low levels (G-PhoCS migration band = 0.08; Fig. 5c).  419 

In contrast, separate species status of M. lehilahytsara and M. mittermeieri (Clade II) was 420 

not supported by genomic data. These species were paraphyletic in RAxML and SVDquartets 421 

analyses (Fig. 2A,C; Fig. S2) and not as clearly separated in clustering and PCA analyses 422 

(Fig. 2B; Fig. 3BD; Fig. S5, S7-S9; Fig. S10). Although the Bayes factor support 423 

from SNAPP was strong by standard guidelines (Kass and Raftery 1995), the evidence was much 424 

weaker relative to species in Clade I and decreased when more individuals were included 425 

(Table S6). It is unsurprising that Bayes factors will support splitting lineages with genetic 426 

structure (Sukumaran and Knowles 2017; Leaché et al. 2019) even with low levels of gene flow 427 

(Barley et al. 2018). Therefore, standard guidelines for interpreting Bayes factors may be of 428 

limited value for delimiting species, as informed by the lack of monophyly, high levels of 429 

inferred gene flow, and failure of additional delimitation tests observed here. Guided delimitation 430 

also separated M. lehilahytsara and M. mittermeieri (Fig. S11), but similar criticisms of 431 

oversplitting (e.g. Barley et al. 2018) lead us to not interpret MSC delimitation results as 432 

evidence of species status. Most strikingly, reciprocal gdi statistics for Clade II were <0.2, thus 433 
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falling in the range suggested to unambiguously indicate a single species (Jackson et al. 2017; 434 

Leaché et al. 2019; Fig. 3A). Finally, comparing genetic and geographic distances within Clade 435 

II showed that a single isolation-by-distance pattern fits both intra- and interspecific comparisons 436 

(Fig. 4). While the range of M. lehilahytsara expands considerably further south than the 437 

populations examined here, our results strongly suggest that M. mittermeieri and M. 438 

lehilahytsara are best considered a single species. Sampling gaps are expected to cause false 439 

positive species delimitations rather than false negatives (Barley et al. 2018; Chambers and Hillis 440 

2020; Mason et al. 2020), therefore additional sampling of M. lehilahytsara populations farther 441 

south should not affect our recommendation to synonymize M. mittermeieri as M. lehilahytsara.  442 

Mitonuclear Discordance and Gene Flow 443 

 Mitonuclear discordance was observed for a subset of M. macarthurii individuals from 444 

Anjiahely. These individuals carried mtDNA similar to that of M. sp. #3 (see Radespiel et al. 445 

2008) but had nDNA indistinguishable from sympatric M. macarthurii. Although genealogical 446 

discordance could be due to incomplete lineage sorting (e.g., Heckman et al. 2007; Weisrock et 447 

al. 2010), mitochondrial introgression is supported by D-statistics (Fig. S15) and the inferred 448 

low levels of gene flow from the northern M. sp. #3 population into M. macarthurii by G-PhoCS 449 

(Fig. S13). Besides a possible case in Sgarlata et al. (2019), of mitochondrial introgression has 450 

not previously been reported in mouse lemurs. Somewhat curiously, the discovery of a divergent 451 
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mtDNA lineage at Anjiahely (Radespiel et al. 2008), which prompted the current work, was 452 

apparently the result of mtDNA introgression from an undescribed species into its sister species. 453 

Population Size and Species Delimitation 454 

 The comparison of effective population sizes in Clades I and II reveals that they are 455 

markedly different, which can affect species delimitation tests such as gdi (Leaché et al., 2019). 456 

The gdi is calculated using population sizes and divergence times estimated under models with 457 

no gene flow, and since divergence time estimates in these models were highly similar in both 458 

clades (Fig. 5), differences in effective population sizes also appear to play a role in the stark 459 

difference in gdi. Indeed, gdi aims to quantify the probability that two sequences from the focal 460 

taxon coalesce more recently than the divergence time between the taxa, and larger effective 461 

population sizes result in slower sorting of ancestral polymorphisms (Maddison 1997). 462 

Assessing “progress” in speciation by quantifying rates of neutral coalescence, however, 463 

implies that the magnitude of genetic drift is a good predictor of species limits. At least when 464 

considering reproductive isolation (i.e., biological species), this can be problematic, given that 465 

the role of drift in speciation is generally thought to be small (Rice and Hostert 1993; Coyne and 466 

Orr 2004; Czekanski-Moir and Rundell 2019; but see Uyeda et al. 2009). Therefore, additional 467 

measures of divergence should be taken into account, including those that do not depend on 468 
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population size, such as rates of gene flow and divergence time itself (Yang and Rannala 2010; 469 

Leaché et al. 2019). 470 

Sympatric Occurrence and the Tempo of Speciation in Mouse Lemurs 471 

 Sympatric Microcebus species were found at two study sites, with a representative of 472 

each of the two focal clades in Anjiahely (M. macarthurii and M. mittermeieri) as well as in 473 

Ambavala (M. sp. #3 and M. lehilahytsara; Fig. 1). These cases of sympatric occurrence, with 474 

no evidence for recent admixture, imply that the two clades are reproductively isolated. Though 475 

our methods cannot address the mechanisms underlying reproductive isolation, possible barriers 476 

include male advertisement calls, which tend to differ strongly among species (Braune et al. 477 

2008), and timing of reproduction, which has previously been found to differ among sympatric 478 

mouse lemur species (Schmelting et al. 2000; Evasoa et al. 2018) including the focal species 479 

(Schüßler et al., in revision). Only six other cases of sympatry among mouse lemur species are 480 

known, five of which include M. murinus as one of the co-occurring species (Radespiel 2016; 481 

Sgarlata et al. 2019). 482 

Given that the sympatrically occurring species were estimated to have had a common 483 

ancestor as recently as ~700-800 ka ago (i.e., the divergence time between Clade I and Clade II, 484 

see Fig. 5), this suggests rapid evolution of reproductive isolation and a short time to sympatry 485 

among mouse lemurs. By comparison, Pigot & Tobias (2015) estimated that after 5 Ma of 486 
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divergence, only 21–23% of primate species have attained sympatry. In fact, the one sympatric 487 

pair within their dataset of 74 sister species pairs younger than 2.5 million years consisted of the 488 

sympatric Galago gallarum and G. senegalensis (Pigot and Tobias 2015), which are also 489 

Strepsirrhini. Moreover, Curnoe et al. (2006) compiled data for naturally hybridizing primate 490 

species, and found the median estimated divergence time to be 2.9 Ma. More broadly, primate 491 

speciation rates do not appear to be lower than those for other mammals or even vertebrates 492 

(Curnoe et al. 2006, Upham et al. 2019). It should be noted, however, that the temporal estimates 493 

reported in our study are based on MSC analyses using mutation rates estimated from pedigree 494 

studies, whereas dates for other primate clades were largely calculated from fossil-calibrated 495 

relaxed clock methods. 496 

Complexities of Divergence Time Estimates 497 

 There are two noteworthy discrepancies in divergence time estimates highlighted by this 498 

study. First, the age estimate between the M. mittermeieri and M. lehilahytsara lineages 499 

increased from approximately 100 kya (Fig. 5b) to more than 500 kya (Fig. 5c) when the 500 

MSC model allowed for gene flow. The substantial effect of incorporating or disregarding gene 501 

flow on divergence time estimation has been previously noted (Leaché et al. 2014; Tseng et al. 502 

2014) and we here reiterate its significance. Second, the coalescent-based estimates of 503 

divergence times presented here differ drastically from estimates based on fossil-calibrated 504 

relaxed-clock methods. In the present study, we estimated the mean age of the most recent 505 
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common ancestor (MRCA) of mouse lemurs to be under 1.5 Ma, with the highest upper bound of 506 

95% HPDs across models at 2.40 Ma. This age estimate is in stark contrast to previous fossil-507 

calibrated estimates of 8 - 10 Ma (Yang and Yoder 2003; dos Reis et al. 2018). 508 

Several factors likely contribute to this large difference. First, the MSC estimate uses a de 509 

novo mutation rate sampled from a distribution based on available pedigree-based mutation rates 510 

in primates, including mouse lemurs (Campbell et al., 2019). This rate is nearly two-fold higher 511 

than the estimated substitution rate for M. murinus (dos Reis et al., 2018). Second, converting 512 

coalescent units to absolute time also requires a generation time estimate. We attempted to 513 

account for uncertainty in generation time by similarly drawing from a distribution based on 514 

empirical parent age estimates (Zohdy et al., 2014; Radespiel et al., 2019) in mouse lemurs. 515 

Thus, either overestimation of the mutation rate and/or underestimation of the generation time 516 

would lead to divergence time estimates that are too recent. However, theoretical considerations 517 

suggest that instead, mouse lemur divergence time estimates from fossil-calibrated clock models 518 

are too old. 519 

When incomplete lineage sorting is common, clock models that assume a single topology 520 

underlies all loci can overestimate species divergences compared to MSC estimates that allow 521 

gene trees to vary (Stange et al., 2018; Feng et al., 2020). This is likely to apply to mouse lemurs 522 

given that high levels of incomplete lineage sorting have been previously documented (Heckman 523 
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et al., 2007; Weisrock et al., 2010; Hotaling et al., 2016). Moreover, due to the absence of a post-524 

K-Pg terrestrial fossil record for Madagascar, clock-model estimates of divergence times in 525 

mouse lemurs have relied on fossil calibrations from the distantly-related African sister lineage 526 

of lemurs, the Lorisiformes (Seiffert et al., 2003), as well as from anthropoid primates and other 527 

mammals. This scenario - estimation of divergence times for younger, internal nodes with 528 

calibrations placed on much older nodes - is expected to lead to overestimation of divergence 529 

times (Angelis and dos Reis 2015). Therefore, it is likely that divergence times between mouse 530 

lemur species have been overestimated by previous studies with fossil-calibrated clock models 531 

(e.g. Yang and Yoder 2003; dos Reis et al., 2018), and we suggest that the mutation rate-532 

calibrated MSC divergence times presented here are more accurate.  533 

Our estimates of divergence times imply that the entire mouse lemur radiation originated in 534 

the Pleistocene, in turn suggesting that Pleistocene climatic oscillations represent a likely factor 535 

leading to geographic isolation and subsequent genetic divergence. Periods of drought during 536 

glacial maxima are hypothesized to have caused dramatic contraction of forest habitats (Burney 537 

et al. 1997; Gasse and Van Campo 2001; Wilmé et al. 2006; Kiage and Liu 2016) and to isolation 538 

of previously connected populations. Notably, the patterns of differentiation observed in this 539 

study are consistent with the predictions of Wilmé et al. (2006) wherein Madagascar's river 540 

drainage systems created high-elevation retreat-dispersal corridors during periods of climatic 541 

oscillation. That is, whereas the lineages in Clade I (highly differentiated and low Ne) appear to 542 
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occur only in lowland forests, those in the Clade II (poorly differentiated and high Ne) occur at 543 

both higher and lower elevations (Schüßler et al., in revision). Moreover, the Mananara river 544 

runs between the fairly distinct northern and southern populations of M. sp. #3, further 545 

emphasizing the potential of large rivers to act as phylogeographic barriers in lemurs (Martin 546 

1972; Pastorini et al. 2003; Goodman and Ganzhorn 2004; Olivieri et al. 2007).  547 

Population Size Dynamics 548 

A long-term decline in population size was inferred for the lineage leading to M. sp. #3. 549 

While changes in inferred Ne may be confounded by changes in population structure – especially 550 

for single-population sequential Markovian coalescent (PSMC/MSMC) models that do not 551 

explicitly consider population subdivision (Mazet et al. 2016; Chikhi et al. 2018) – we recovered 552 

similar results in both MSMC and G-PhoCS analyses (Fig. 6A). This congruence is especially 553 

persuasive given the underlying differences between the G-PhoCS and MSMC models and their 554 

input data. Moreover, Markovian coalescent approaches have been shown to be robust to genome 555 

assembly quality (Patton et al. 2019), yielding further confidence in the results. The inferred 556 

decline and population subdivision of M. sp. #3 was initiated long before anthropogenic land use, 557 

supporting the emerging consensus that human colonization in Madagascar alone does not 558 

explain the occurrence of open habitats and isolated forest fragments (Quéméré et al. 2012; 559 

Vorontsova et al. 2016; Yoder et al. 2016; Salmona et al. 2017, 2020; Hackel et al. 2018). 560 

Conversely, results for the M. mittermeieri lineage do not indicate a declining Ne through time 561 
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(Fig. 6B). This latter result may well be a simple corollary of the evidence described above, 562 

that this lineage is part of a single species complex represented by Clade II and thus occurs at 563 

both higher and lower elevations in northeastern Madagascar. 564 

Conclusions 565 

We have shown that substantial mouse lemur diversity exists within a 130-km-wide stretch 566 

in northeastern Madagascar, including two instances of sympatric occurrence between 567 

representatives of two closely related clades. Within one of these clades, our integrative approach 568 

indicates that the undescribed lineage M. sp. #3 represents a distinct species, while the two 569 

named species in the other clade, M. mittermeieri and M. lehilahytsara, are better considered a 570 

single, widespread species with significant population structure. Given that the original 571 

description of M. lehilahytsara precedes that of M. mittermeieri, primate taxonomists should 572 

synonymize the two as M. lehilahytsara.  573 

The divergence times calculated here using pedigree-based mutation rate estimates with 574 

the MSC are much younger than those of previous studies that used external fossil-based 575 

calibrations with concatenated likelihood methods. The younger dates suggest rapid evolution of 576 

reproductive isolation in mouse lemurs as well as a Pleistocene origin of the radiation, likely 577 

following population isolation due to climatic oscillations. This departure from previous 578 

hypotheses of mouse lemur antiquity emphasizes the need for future studies focused on resolving 579 
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discrepancies in divergence time estimates, both in mouse lemurs and in other recently evolved 580 

organismal groups for which such comparisons have yet to be made. 581 
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