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Abstract. The mission of theoretical cryptography is to define and con-
struct provably secure cryptographic protocols and schemes. Without
proofs of security, cryptographic constructs offer no guarantees what-
soever and no basis for evaluation and comparison. As most security
proofs necessarily come in the form of a reduction between the security
claim and an intractability assumption, such proofs are ultimately only
as good as the assumptions they are based on. Thus, the complexity
implications of every assumption we utilize should be of significant sub-
stance, and serve as the yard stick for the value of our proposals.

Lately, the field of cryptography has seen a sharp increase in the
number of new assumptions that are often complex to define and diffi-
cult to interpret. At times, these assumptions are hard to untangle from
the constructions which utilize them.

We believe that the lack of standards of what is accepted as a reason-
able cryptographic assumption can be harmful to the credibility of our
field. Therefore, there is a great need for measures according to which
we classify and compare assumptions, as to which are safe and which are
not. In this paper, we propose such a classification and review recently
suggested assumptions in this light. This follows the footsteps of Naor
(Crypto 2003).

Our governing principle is relying on hardness assumptions that are
independent of the cryptographic constructions.

1 Introduction

Conjectures and assumptions are instrumental for the advancement of science.
This is true in physics, mathematics, computer science, and almost any other
discipline. In mathematics, for example, the Riemann hypothesis (and its exten-
sions) have far reaching applications to the distribution of prime numbers. In
computer science, the assumption that P �= NP lies in the foundations of com-
plexity theory. The more recent Unique Games Conjecture [40] has been instru-
mental to our ability to obtain tighter bounds on the hardness of approximation
of several problems. Often, such assumptions contribute tremendously to our
understanding of certain topics and are the force moving research forward.

Assumptions are paramount to cryptography. A typical result constructs
schemes for which breaking the scheme is an NP computation. As we do not
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know that P �= NP, an assumption to that effect (and often much more) must
be made. Thus, essentially any cryptographic security proof is a reduction from
the existence of an adversary that violates the security definition to dispelling
an underlying conjecture about the intractability of some computation. Such
reductions present a “win-win” situation which gives provable cryptography its
beauty and its power: either we have designed a scheme which resists all poly-
nomial time adversaries or an adversary exists which contradicts an existing
mathematical conjecture. Put most eloquently, “Science wins either way1”.

Naturally, this is the case only if we rely on mathematical conjectures whose
statement is scientifically interesting independently of the cryptographic appli-
cation itself. Most definitely, the quality of the assumption determines the value
of the proof.

Traditionally, there were a few well-studied computational assumptions under
which cryptographic schemes were proven secure. These assumptions can be
partitioned into two groups: generic and concrete. Generic assumptions include
the existence of one-way functions, the existence of one-way permutations, the
existence of a trapdoor functions, and so on. We view generic assumptions as
postulating the existence of a cryptographic primitive. Concrete assumptions
include the universal one-way function assumption [31],2 the assumption that
Goldreich’s expander-based function is one-way [32], the Factoring and RSA
assumptions [47,49], the Discrete Log assumption over various groups [24], the
Quadratic Residuosity assumption [37], the DDH assumption [24], the parity
with Noise (LPN) assumption [2,10], the Learning with Error (LWE) assump-
tion [48], and a few others.

A construction which depends on a generic assumption is generally viewed as
superior to that of a construction from a concrete assumption, since the former
can be viewed as an unconditional result showing how abstract cryptographic
primitives are reducible to one another, setting aside the question of whether
a concrete implementation of the generic assumption exists. And yet, a generic
assumption which is not accompanied by at least one proposed instantiation by a
concrete assumption is often regarded as useless. Thus, most of the discussion in
this paper is restricted to concrete assumptions, with the exception of Sect. 2.5,
which discusses generic assumptions.

Recently, the field of cryptography has been overrun by numerous assump-
tions of radically different nature than the ones preceding. These assumptions are
often nearly impossible to untangle from the constructions which utilize them.
The differences are striking. Severe restrictions are now assumed on the class of
algorithms at the disposal of any adversary, from assuming that the adversary is
only allowed a restricted class of operations (such as the Random Oracle Model
restriction, or generic group restrictions), to assuming that any adversary who
breaks the cryptosystem must do so in a particular way (this includes various

1 Silvio Micali, private communication.
2 A universal one-way function is a candidate one-way function f such that if one-

way functions exist then f itself is one-way [31]. The universal one-way function
assumption asserts that this universal f is indeed one-way.
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knowledge assumptions). The assumptions often make mention of the crypto-
graphic application itself and thus are not of independent interest. Often the
assumptions come in the form of an exponential number of assumptions, one
assumption for every input, or one assumption for every size parameter. Over-
all, whereas the constructions underlied by the new assumptions are ingenious,
their existence distinctly lacks a “win-win” consequence.

Obviously, in order to make progress and move a field forward, we should
occasionally embrace papers whose constructions rely on newly formed assump-
tions and conjectures. This approach marks the birth of modern cryptography
itself, in the landmark papers of [24,49]. However, any conjecture and any new
assumption must be an open invitation to refute or simplify, which necessitates
a clear understanding of what is being assumed in the first place. The latter has
been distinctly lacking in recent years.

Our Thesis. We believe that the lack of standards in what is accepted as a rea-
sonable cryptographic assumption is harmful to our field. Whereas in the past, a
break to a provably secure scheme would lead to a mathematical breakthrough,
there is a danger that in the future the proclaimed guarantee of provable secu-
rity will lose its meaning. We may reach an absurdum, where the underlying
assumption is that the scheme itself is secure, which will eventually endanger
the mere existence of our field.

We are in great need of measures which will capture which assumptions are
“safe”, and which assumptions are “dangerous”. Obviously, safe does not mean
correct, but rather captures that regardless of whether a safe assumption is
true or false, it is of interest. Dangerous assumptions may be false and yet of
no independent interest, thus using such assumptions in abundance poses the
danger that provable security will lose its meaning.

One such measure was previously given by Naor [43], who classified assump-
tions based on the complexity of falsifying them. Loosely speaking,3 an assump-
tion is said to be falsifiable, if one can efficiently check whether an adversary is
successful in breaking it.

We argue that the classification based on falsifiability alone has proved to
be too inclusive. In particular, assumptions whose mere statement refers to the
cryptographic scheme they support can be (and have been) made falsifiable.
Thus, falsifiability is an important feature but not sufficient as a basis for eval-
uating current assumptions,4 and in particular, it does not exclude assumptions
that are construction dependent.

In this position paper, we propose a stricter classification. Our governing
principle is the goal of relying on hardness assumptions that are independent of
the constructions.

3 We refer here to the notion of falsifiability as formalized by Gentry and Wichs [30],
which is slightly different from the original notions proposed by Naor. We elaborate
on these notions, and on the difference between them, in Sect. 2.6 and in Appendix A.

4 We note that this was also explicitly pointed out by Naor who advocated falsifiability
as an important feature, not as a sufficient one.
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2 Our Classification

We formalize the notion of a complexity assumption, and argue that such assump-
tions is what we should aim for.

Intuitively, complexity assumptions are non-interactive assumptions that pos-
tulate that given an input, distributed according to an efficiently sampleable
distribution D, it is hard to compute a valid “answer” (with non-negligible advan-
tage), where checking the validity of the answers can be done in polynomial time.

More specifically, we distinguish between two types of complexity assumptions:

1. Search complexity assumptions, and
2. Decision complexity assumptions.

Convention: Throughout this manuscript, for the sake of brevity, we refer to
a family of poly-size circuits M = {Mn} as a polynomial time non-uniform
algorithm M.

2.1 Search Complexity Assumptions

Each assumption in the class of search complexity assumptions consists of a
pair of probabilistic polynomial-time algorithms (D,R), and asserts that there
does not exist an efficient algorithm M that on input a random challenge x,
distributed according D, computes any value y such that R(x, y) = 1, with
non-negligible probability. Formally:

Definition 1. An assumption is a search complexity assumption if it consists
of a pair of probabilistic polynomial-time algorithms (D,R), and it asserts that
for any efficient5 algorithm M there exists a negligible function μ such that for
every n ∈ N,

Pr
x←D(1n)

[M(x) = y s.t. R(x, y) = 1] ≤ μ(n). (1)

Note that in Definition 1 above, we require that there is an efficient algo-
rithm R that takes as input a pair (x, y) and outputs 0 or 1. One could consider
a more liberal definition, of a privately-verifiable search complexity assumption,
which is similar to the definition above, except that algorithm R is given not
only the pair (x, y) but also the randomness r used by D to generate x.

Definition 2. An assumption is a privately-verifiable search complexity assump-
tion if it consists of a pair of probabilistic polynomial-time algorithms (D,R), and
it asserts that for any efficient algorithm M there exists a negligible function μ
such that for every n ∈ N,

Pr
r←{0,1}n

[M(x) = y s.t. R(x, y, r) = 1 | x = D(r)] ≤ μ(n). (2)

5 “Efficient” can be interpreted in several ways. We elaborate on the various interpre-
tations below.
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The class of privately-verifiable search complexity assumptions is clearly more
inclusive.

What is an Efficient Algorithm? Note that in Definitions 1 and 2 above, we
restricted the adversary M to be an efficient algorithm. One can interpret the
class of efficient algorithms in various ways. The most common interpretation
is that it consists of all non-uniform polynomial time algorithms. However, one
can interpret this class as the class of all uniform probabilistic polynomial time
algorithms, or parallel NC algorithms, leading to the notions of search complexity
assumption with uniform security or with parallel security, respectively. One can
also strengthen the power of the adversary M and allow it to be a quantum
algorithm.

More generally, one can define a (t, ǫ) search complexity assumption exactly
as above, except that we allow M to run in time t(n) (non-uniform or uni-
form, unbounded depth or bounded depth, with quantum power or without)
and require that it cannot succeed with probability ǫ(n) on a random chal-
lenge x ← D(1n). For example, t(n) may be sub-exponentially large, and ǫ(n)
may be sub-exponentially small. Clearly the smaller t is, and the larger ǫ is, the
weaker (and thus more reasonable) the assumption is.

Uniformity of (D,R). In Definition 1 above, we require that the algorithms D
and R are uniform probabilistic polynomial-time algorithms. We could have con-
sidered the more general class of non-uniform search complexity assumptions,
where we allow D and R to be non-uniform probabilistic polynomial-time algo-
rithms. We chose to restrict to uniform assumptions for two reasons. First, we
are not aware of any complexity assumption in the cryptographic literature that
consists of non-uniform D or R. Second, allowing these algorithms to be non-
uniform makes room for assumptions whose description size grows with the size
of the security parameter, which enables them to be construction specific and
not of independent interest. We would like to avoid such dependence. We note
that one could also consider search complexity assumptions where D and R are
allowed to be quantum algorithms, or algorithms resulting from any biological
process.

Examples. The class of (publicly-verifiable) search complexity assumptions
includes almost all traditional search-based cryptographic assumptions, includ-
ing the Factoring and RSA assumptions [47,49], the strong RSA assump-
tion [6,26], the Discrete Log assumption (in various groups) [24], the Learning
Parity with Noise (LPN) assumption [10], and the Learning with Error (LWE)
assumption [48]. An exception is the computational Diffie-Hellman assumption
(in various groups) [24], which is a privately-verifiable search complexity assump-
tion, since given (gx, gy, z) it is hard to test whether z = gxy, unless we are given
x and y, which constitutes the randomness used to generate (gx, gy).
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We note that the LPN assumption and the LWE assumption each consists
of a family of complexity assumptions,6 one assumption for each m, where m is
the number of examples of noisy equations given to the adversary. However, as
was observed by [29], there is a reduction between the LPN (repectively LWE)
assumption with a fixed m to the LPN (repectively LWE) assumption with an
arbitrary m, that incurs essentially no loss in security.

t-Search Complexity Assumptions. The efficient algorithm R associated
with a search complexity assumption can be thought of as an NP relation algo-
rithm. We believe that it is worth distinguishing between search complexity
assumptions for which with overwhelming probability, x ← D(1n) has at most
polynomially many witnesses, and assumptions for which with non-negligible
probability, x ← D(1n) has exponentially many witnesses. We caution that the
latter may be too inclusive, and lead to an absurdum where the assumption
assumes the security of the cryptographic scheme itself, as exemplified below.

Definition 3. For any function t = t(n), a search complexity assumption (D,R)
is said to be a t-search complexity assumption if there exists a negligible func-
tion μ such that

Pr
x←D(1n)

[|{y : (x, y) ∈ R}| > t] ≤ μ(n) (3)

Most traditional search-based cryptographic assumptions are 1-search com-
plexity assumptions; i.e., they are associated with a relation R for which every
x has a unique witness. Examples include the Factoring assumption, the RSA
assumption, the Discrete Log assumption (in various groups), the LPN assump-
tion, and the LWE assumption. The square-root assumption in composite order
group is an example of a 4-search complexity assumption, since each element
has at most 4 square roots modulo N = pq.

An example of a traditional search complexity assumption that is a t-search
assumption only for an exponentially large t, is the strong RSA assumption.
Recall that this assumption assumes that given an RSA modulus N and a ran-
dom element y ← Z

∗
N , it is hard to find any exponent e ∈ Z

∗
N together with

the e’th root ye−1

mod N . Indeed, in some sense, the strong RSA assumption is
“exponentially” stronger, since the standard RSA assumption assumes that it is

6 Loosely speaking, the LPN assumption with error parameter p ∈ (0, 1) (where p

is a constant), asserts that for any poly-size adversary that observes polynomially

many noisy linear equations of the form {(ai, ai · x + ei)}
poly(n)
i=1 , outputs x with at

most negligible probability, where x ∈R {0, 1}n is random, all the linear equations
ai ∈R {0, 1}n are independent and random, and each ei is an independent Bernoulli
random variable, where ei = 1 with probability p and ei = 0 otherwise. The LWE
assumption is similar to the LPN assumption, except that it is associated with
a (possibly large) field F. It assumes that as above, given noisy linear equations

{(ai, ai · x + ei)}
poly(n)
i=1 it is hard to find x, where now the equations are over the

field F, and x ∈R F, each ai ∈R F
n, and each error ei is independently distributed

according to a discrete Gaussian distribution. We refer the reader to [48] for the
precise definition.
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hard to find the e’th root, for a single e, whereas the strong RSA assumption
assumes that this is hard for exponentially many e’s.

Whereas the strong RSA assumption is considered quite reasonable in our
community, the existence of exponentially many witnesses allows for assumptions
that are overly tailored to cryptographic primitives, as exemplified below.

Consider for example the assumption that a given concrete candidate two-
message delegation scheme for a polynomial-time computable language L is
adaptively sound. This asserts that there does not exist an efficient non-uniform
algorithm M that given a random challenge from the verifier, produces an
instance x �∈ L together with an accepting answer to the challenge. By our defi-
nition, this is a t-complexity assumption for an exponential t, which is publicly
verifiable if the underlying delegation scheme is publicly verifiable, and is pri-
vately verifiable if the underlying delegation scheme is privately verifiable. Yet,
this complexity assumption is an example of an absurdum where the assumption
assumes the security of the scheme itself. This absurdum stems from the fact
that t is exponential. If we restricted t to be polynomial this would be avoided.

We emphasize that we are not claiming that 1-search assumptions are nec-
essarily superior to t-search assumptions for exponential t. This is illustrated in
the following example pointed out to us by Micciancio and Ducas. Contrast the
Shortest Integer Solution (SIS) assumption [41], which is a t-search assumption
for an exponential t, with the Learning with Error (LWE) assumption, which is
1-complexity assumption. It is well known that the LWE assumption is reducible
to the SIS assumption [48]. Loosely speaking, given an LWE instance one can use
an SIS breaker to find short vectors in the dual lattice, and then use these vec-
tors to solve the LWE instance. We note that a reduction in the other direction
is only known via a quantum reduction [53].

More generally, clearly if Assumption A possesses properties that we consider
desirable, such as being 1-search, falsifiable, robust against quantum adversaries,
etc., and Assumption A is reducible to Assumption B, then the latter should be
considered at least as reasonable as the former.

2.2 Decisional Complexity Assumptions

Each assumption in the class of decisional complexity assumptions consists of
two probabilistic polynomial-time algorithms D0 and D1, and asserts that there
does not exist an efficient algorithm M that on input a random challenge x ← Db

for a random b ← {0, 1}, outputs b with non-negligible advantage.

Definition 4. An assumption is a decisional complexity assumption if it is
associated with two probabilistic polynomial-time distributions (D0,D1), such
that for any efficient7 algorithm M there exists a negligible function μ such
that for any n ∈ N,

Pr
b←{0,1},x←Db(1n)

[M(x) = b] ≤
1

2
+ μ(n). (4)

7 “Efficient algorithms” can be interpreted in several ways, as we elaborated on in
Sect. 2.1.
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Example 1. This class includes all traditional decisional assumptions, such as the
DDH assumption [24], the Quadratic Residuosity (QR) assumption [37], the N ’th
Residuosity assumption [44], the decisional LPN assumption [2], the decisional
LWE assumption [48], the decisional linear assumption over bilinear groups [11],
and the Φ-Hiding assumption [15]. Thus, this class is quite expressive. The Multi-
linear Subgroup Elimination assumption, which was recently proposed and used
to construct IO obfuscation in [28], is another member of this class. To date,
however, this assumption has been refuted in all proposed candidate (multi-
linear) groups [18,19,42].

An example of a decisional assumption that does not belong to this class is
the strong DDH assumption over a prime order group G [16]. This assumption
asserts that for every distribution D with min-entropy k = ω(log n), it holds that

(gr, gx, grx) ≈ (gr, gx, gu),

where x ← D and r, u ← Zp, where p is the cardinality of G, and g is a genera-
tor of G.

This assumption was introduced by Canetti [16], who used it to prove the
security of his point function obfuscation construction. Since for point function
obfuscation the requirement is to get security for every point x, it is impossible
to base security under a polynomial complexity assumption. This was shown by
Wee [54], who constructed a point function obfuscation scheme under a complex-
ity assumption with an extremely small ǫ. We note that if instead of requiring
security to hold for every point x, we require security to hold for every distrib-
ution on inputs with min-entropy nǫ, for some constant ǫ > 0, then we can rely
on standard (polynomial) complexity assumptions, such as the LWE assump-
tion [36], and a distributional assumption as above is not necessary.

Many versus two distributions. One can consider an “extended” decision com-
plexity assumption which is associated with polynomially many distributions,
as opposed to only two distributions. Specifically, one can consider the decision
complexity assumption that is associated with a probabilistic polynomial-time
distribution D that encodes t = poly(n) distributions, and the assumption is
that for any efficient algorithm M there exists a negligible function μ such that
for any n ∈ N,

Pr
i←[t],x←D(1n,i)

[M(x) = i] ≤
1

t
+ μ(n). (5)

We note however that such an assumption can be converted into an equivalent
decision assumption with two distributions D0 and D1, using the Goldreich-Levin
hard-core predicate theorem [34], as follows: The distribution D0 will sample at
random i ← [t], sample at random x ← D(1n, i), sample at random r ← [t], and
output (x, r, r · i). The algorithm D1 will similarly sample i, x, r but will output
(x, r, b) for a random bit b ← {0, 1}.
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2.3 Worst-Case vs. Average-Case Hardness

Note that both Definitions 1 and 4 capture average-case hardness assumptions,
as opposed to worst-case hardness assumptions. Indeed, at first sight, rely-
ing on average-case hardness in order to prove the security of cryptographic
schemes seems to be necessary, since the security requirements for cryptographic
schemes require adversary attacks to fail with high probability, rather than in the
worst case.

One could have considered the stricter class of worse-case (search or decision)
complexity assumptions. A worst-case search assumption, is associated with a
polynomial time computable relation R, and requires that no polynomial-time
non-uniform algorithm M satisfies that for every x ∈ {0, 1}∗, R(x,M(x)) = 1.
A worst-case decisional assumption is a promise assumption which is associated
with two sets of inputs S0 and S1, and requires there is no polynomial-time
non-uniform algorithm M, that for every x ∈ {0, 1}∗, given the promise that it
is in S0 ∪ S1, guesses correctly whether x ∈ S0 or x ∈ S1.

There are several cryptographic assumptions for which there are random
self-reductions from worst-case to average-case for fixed-parameter problems8.
Examples include the Quadratic-Residuosity assumption, the Discrete Loga-
rithm assumption, and the RSA assumption [37]. In fact, the Discrete Log
assumption over fields of size 2n has a (full) worst-case to average case reduc-
tion [7].9 Yet, we note that the Discrete Log assumption over fields of small
characteristic (such as fields of size 2n) have been recently shown to be solvable
in quasi-polynomial time [5], and as such are highly vulnerable.

There are several lattice based assumptions that have a worst-case to average-
case reduction [1,13,46,48]. Such worst-case assumptions are usable for cryptog-
raphy, and include the GapSVP assumption [33] and the assumption that it is
hard to approximate the Shortest Independent Vector Problem (SIVP) within
polynomial approximation factors [41].

Whereas being a worst-case complexity assumption is a desirable property
and average to worst case reductions are a goal in itself, we believe that at this
point in the life-time of our field establishing the security of novel cryptographic
schemes (e.g., IO obfuscation) based on an average case complexity assumption
would be a triumph. We note that traditionally cryptographic hardness assump-
tions were average-case assumptions (as exemplified above).

2.4 Search versus Decision Complexity Assumptions

An interesting question is whether search complexity assumptions can always be
converted to decision complexity assumptions and vice versa.

8 By a “worst-case to average-case reduction for a fixed-parameter problem”, we think
of a problem instance as a pair (n, x) and a reduction which holds per fixed n.

9 More generally, such a worst-case to average case reduction exists if the security
parameter determines the field, its representation, and a generator of the field. As was
shown by Shoup in [50,51], finding a representation (i.e., an irreducible polynomial)
and a generator for fields of small characteristic can be done in polynomial time.
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We note that any decision complexity assumption can be converted into a
privately-verifiable search complexity assumption that is sound assuming the
decision assumption is sound, but not necessarily into a publicly verifiable search
complexity assumption. Consider, for example, the DDH assumption. Let fDDH

be the function that takes as input n tuples (where n is the security parame-
ter), each tuple is either a DDH tuple or a random tuple, and outputs n bits,
predicting for each tuple whether it is a DDH tuple or a random tuple. The
direct product theorem [39] implies that if the DDH assumption is sound then it
is hard to predict fDDH except with negligible probability. The resulting search
complexity assumption is privately-verifiable, since in order to verify whether
a pair ((x1, . . . , xn), (b1, . . . , bn)) satisfies that (b1, . . . , bn) = fDDH(x1, . . . , xn),
one needs the private randomness used to generate (x1, . . . , xn).

In the other direction, it would seem at first that one can map any (privately-
verifiable or publicly verifiable) search complexity assumption into an equiva-
lent decision assumption, using the hard-core predicate theorem of Goldreich
and Levin [34]. Specifically, given any (privately-verifiable) search complexity
assumption (D,R), consider the following decision assumption: The assumption
is associated with two distributions D0 and D1. The distribution Db generates
(x, y), where x ← D(1n) and where R(x, y) = 1, and outputs a triplet (x, r, u)
where r is a random string, and if b = 0 then u = r · y(mod 2) and if b = 1 then
u ← {0, 1}. The Goldreich-Levin hard-core predicate theorem states that the
underlying search assumption is sound if and only if x ← D0 is computationally
indistinguishable from x ← D1. However, D0 and D1 are efficiently sampleable
only if generating a pair (x, y), such that x ← D(1n) and R(x, y) = 1, can
be done efficiently. Since the definition of search complexity assumptions only
assures that D is efficiently sampleable and does not mandate that the pair
(x, y) is efficiently sampleable, the above transformation from search to decision
complexity assumption does not always hold.

2.5 Concrete versus Generic Assumptions

The examples of assumptions we mentioned above are concrete assumptions.
Another type of assumption made in cryptography is a generic assumption, such
as the assumption that one-way functions exist, collision resistant hash families
exist, or IO secure obfuscation schemes exist.

We view generic assumptions as cryptographic primitives in themselves, as
opposed to cryptographic assumptions. We take this view for several reasons.
First, in order to ever make use of a cryptographic protocol based on a generic
assumption, we must first instantiate it with a concrete assumption. Thus, in a
sense, a generic assumption is only as good as the concrete assumptions it can
be based on. Second, generic assumptions are not falsifiable. The reason is that
in order to falsify a generic assumption one needs to falsify all the candidates.

The one-way function primitive has the unique feature that it has a universal
concrete instantiation, and hence is falsifiable. Namely, there exists a (universal)
concrete one-way function candidate f such that if one-way functions exist then f
itself is one-way [31]. This state of affairs would be the gold standard for any
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generic assumption; see discussion in Sect. 2.7. Moreover, one-way functions can
be constructed based on any complexity assumption, search or decision.

In the other extreme, there are generic assumptions that have no instantia-
tion under any (search or decisional) complexity assumption. Examples include
the generic assumption that there exists a 2-message delegation scheme for NP,
the assumption that P-certificates exist [20], the assumption that extractable col-
lision resistant hash functions exist [8,21,23], and the generic assumption that
IO obfuscation exists.10

2.6 Falsifiability of Complexity Assumptions

Naor [43] defined the class of falsifiable assumptions. Intuitively, this class
includes all the assumptions for which there is a constructive way to demon-
strate that it is false, if this is the case. Naor defined three notions of falsifiabil-
ity: efficiently falsifiable, falsifiable, and somewhat falsifiable. We refer the reader
to Appendix A for the precise definitions.

Gentry and Wichs [30] re-formalized the notion of a falsifiable assumption.
They provide a single formulation, that arguably more closely resembles the
intuitive notion of falsifiability. According to [30] an assumption is falsifiable if
it can be modeled as an interactive game between an efficient challenger and
an adversary, at the conclusion of which the challenger can efficiently decide
whether the adversary won the game. Almost all followup work that use the
term of falsifiable assumptions use the falsifiability notion of [30], which captures
the intuition that one can efficiently check (using randomness and interaction)
whether an attacker can indeed break the assumption. By now, when researchers
say that an assumption is falsifiable they most often refer to the falsifiability
notion of [30]. In this paper we follow this convention.

Definition 5. [30] A falsifiable cryptographic assumption consists of a proba-
bilistic polynomial-time interactive challenger C. On security parameter n, the
challenger C(1n) interacts with a non-uniform machine M(1n) and may out-
put a special symbol win. If this occurs, we say that M(1n) wins C(1n). The
assumption states that for any efficient non-uniform M,

Pr[M(1n)wins C(1n)] = negl(n),

where the probability is over the random coins of C. For any t = t(n) and
ǫ = ǫ(n), an (t, ǫ) assumption is falsifiable if it is associated with a probabilistic
polynomial-time C as above, and for every M of size at most t(n), and for every
n ∈ N,

Pr[M(1n)wins C(1n)] ≤ ǫ(n).

The following claim is straightforward.

Claim 1. Any (search or decision) complexity assumption is also a falsifiable
assumption (according to Definition 5), but not vice versa.

10 We note that this assumption was recently reduced to the subgroup elimination
assumption [28], which is a new decisional complexity assumptions. To date, however,
this assumption has been refuted in all proposed candidate (multi-linear) groups.
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2.7 Desirable Properties of Complexity Assumptions

We emphasize that our classification described above is minimal and does not
take into account various measures of how “robust” the assumption is. We men-
tion two such robustness measures below.

Robustness to auxiliary inputs. One notion of robustness that was considered
for search assumptions is that of robustness to auxiliary inputs.

Let us consider which auxiliary inputs may be available to an adversary of
a complexity assumption. Recall that search complexity assumptions are asso-
ciated with a pair of probabilistic polynomial time algorithms (D,R) where the
algorithm D generates instances x ← D and the assumption is that given x ← D
it is computationally hard to find y such that (x, y) ∈ R. As it turns out however,
for all known search assumptions that are useful in cryptography, it is further
the case that one can efficiently generate not only an instance x ← D, but pairs
(x, y) such that (x, y) ∈ R. Indeed, it is what most often makes the assumption
useful in a cryptographic context. Typically, in a classical adversarial model, y is
part of the secret key, whereas x is known to the adversary. Yet due to extensive
evidence a more realistic adversarial model allows the adversary access to partial
knowledge about y which can be viewed generally as access to an auxiliary input.

Thus, one could have defined a search complexity assumption as a pair (D,R)
as above, but where the algorithm D generates pairs (x, y) (as opposed to only x),
such that (x, y) ∈ R and the requirement is that any polynomial-size adversary
who is given only x, outputs some y′ such that (x, y′) ∈ R, only with negligible
probability. This definition is appropriate when considering robustness to auxil-
iary information. Informally, such a search assumption is said to be resilient to
auxiliary inputs if given an instance x sampled according to D, and given some
auxiliary information about the randomness used by D (and in particular, given
some auxiliary information about y), it remains computationally hard to find y′

such that (x, y′) ∈ R.

Definition 6. A search complexity assumption (D,R) as above is said to be
resilient to t(n)-hard-to-invert auxiliary inputs if for any t(n)-hard-to-invert
function L : {0, 1}n → {0, 1}∗,

Pr
r←{0,1}n,(x,y)←D(r)

[M(x, L(r)) = y′ s.t. R(x, y′) = 1] ≤ μ(n), (6)

where L is said to be t(n)-hard-to-invert if for every t(n)-time non-unform algo-
rithm M there exists a negligible μ such that for every n ∈ N,

Pr
z←L(Un)

[M(z) = r : L(r) = z] = μ(n). (7)

It was shown in [36] that the decisional version of the LWE assumption is

resilient to t(n)-hard-to-invert auxiliary inputs for t(n) = 2nδ

, for any constant
δ > 0. In particular, this implies that the LWE assumption is robust to leakage
attacks. In contrast, the RSA assumptions is known to be completely broken
even if only 0.27 fraction of random bits of the secret key are leaked [38].
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Universal assumptions. We say that a (concrete) complexity assumption A is
universal with respect to a generic assumption if the following holds: If A is false
then the generic assumption is false. In other words, if the generic assumption has
a concrete sound instantiation then A is it. Today, the only generic assumption
for which we know a universal instantiation is one-way functions [31].

Open Problem: We pose the open problem of finding a universal instantia-
tions for other generic assumptions, in particular for IO obfuscation, witness
encryption, or 2-message delegation for NP.

3 Recently Proposed Cryptographic Assumptions

Recently, there has been a proliferation of cryptographic assumptions. We next
argue that many of the recent assumptions proposed in the literature, even the
falsifiable ones, are not complexity assumptions.

IO Obfuscation constructions. Recently, several constructions of IO obfuscation
have been proposed. These were proved under ad-hoc assumptions [27], meta
assumptions [45], and ideal-group assumptions [4,14]. These assumptions are
not complexity assumptions, for several reasons: They are either overly tailored
to the construction, or artificially restrict the adversaries.

The recent result of [28] constructed IO obfuscation under a new complexity
assumption, called Subgroup Elimination assumption. This is a significant step
towards constructing IO under a standard assumption. However, to date, this
assumption is known to be false in all candidate (multi-linear) groups.

Assuming IO obfuscation exists. A large body of work which emerged since the
construction of [27], constructs various cryptographic primitives assuming IO
obfuscation exists. Some of these results require only the existence of IO obfus-
cation for circuits with only polynomially many inputs (eg., [9]). Note that any
instantiation of this assumption is falsifiable. Namely, the assumption that a
given obfuscation candidate O (for circuits with polynomially many inputs) is
IO secure, is falsifiable. The reason is that to falsify it one needs to exhibit two
circuits C0 and C1 in the family such that C0 ≡ C1, and show that it can dis-
tinguish between O(C0) and O(C1). Note that since the domain of C0 and C1

consists of polynomially many elements one can efficiently test whether indeed
C0 ≡ C1, and of course the falsifier can efficiently prove that O(C0) �≈ O(C1) by
showing that one can distinguish between these two distributions. On the other
hand, this is not a complexity assumption. Rather, such an assumption consists
of many (often exponentially many) decision complexity assumptions: For every
C0 ≡ C1 in the family Cn (there are often exponentially many such pairs), the
corresponding decision complexity assumption is that O(C0) ≈ O(C1). Thus,
intuitively, such an assumption is exponentially weaker than a decisional com-
plexity assumption.
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Artificially restricted adversaries assumptions. We next consider the class of
assumptions that make some “artificial” restriction on the adversary. Examples
include the Random Oracle Model (ROM) [25] and various generic group mod-
els [12,52]. The ROM restricts the adversary to use a given hash function only in
a black-box manner. Similarly, generic group assumptions assume the adversary
uses the group structure only in an “ideal” way. Another family of assump-
tions that belongs to this class is the family knowledge assumptions. Knowledge
assumptions artificially restrict the adversaries to compute things in a certain
way. For example, the Knowledge-of-Exponent assumption [22] assumes that any
adversary that given (g, h) computes (gz, hz), must do so by “first” computing z
and then computing (gz, hz).

We note that such assumptions cannot be written even as exponentially many
complexity assumptions. Moreover, for the ROM and the generic group assump-
tions, we know of several examples of insecure schemes that are proven secure
under these assumptions [3,17,35].

We thus believe that results that are based on such assumption should be
viewed as intermediate results, towards the goal of removing such artificial con-
straints and constructing schemes that are provably secure under complexity
assumptions.

4 Summary

Theoretical cryptography is in great need for a methodology for classifying
assumptions. In this paper, we define the class of search and decision complexity
assumptions. An overall guiding principle in the choices we made was to rule out
hardness assumptions which are construction dependent.

We believe that complexity assumptions as we defined them are general
enough to capture all “desirable” assumptions, and we are hopeful that they
will suffice in expressive power to enable proofs of security for sound construc-
tions. In particular, all traditional cryptographic assumptions fall into this class.

We emphasize, that we do not claim that all complexity-based complexity
assumptions are necessarily desirable or reasonable. For example, false complex-
ity assumptions are clearly not reasonable. In addition, our classification does
not incorporate various measures of how “robust” an assumption is, such as: how
well studied the assumption is, whether it is known to be broken by quantum
attacks, whether it has a worst-case to average-case reduction, or whether it is
known to be robust to auxiliary information.
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A Falsifiable Assumptions

Naor [43] defined three notions of falsifiability: efficiently falsifiable, falsifiable,
and somewhat falsifiable.

Definition 7. A (t, ǫ) assumption is efficiently falsifiable if there exists a family
of distributions {Dn}n∈N, a verifier V : {0, 1}∗ × {0, 1}∗ → {0, 1}, such that the
following holds for any parameter δ > 0:

1. If the assumption is false then there exists a falsifier B that satisfies

Pr
x→Dn

[B(x) = y s.t. V (x, y) = 1] ≥ 1 − δ. (A.1)

Moreover, the runtime of B is polynomial in the runtime of the adversary that
breaks the assumption and polynomial in n, log 1/ǫ, log 1/δ.

2. The runtime of V and the time it takes to sample an element from Dn is
poly(n, log 1/ǫ, log 1/δ).

3. If there exists a falsifier B that runs in time t and solves random challenges
x ← Dn with probability γ, then there exists an adversary A that runs in time
poly(t) and breaks the original assumption with probability poly(γ).

Definition 8. A (t, ǫ) assumption is falsifiable if everything is as in Definition 7
except that the runtime of V and of sampling Dn may depend on 1/ǫ (as opposed
to log 1/ǫ).

Definition 9. A (t, ǫ) assumption is somewhat falsifiable if everything is as in
Definition 7 except that the runtime of V and of sampling Dn may depend on
1/ǫ (as opposed to log 1/ǫ), and on the runtime of B. In particular, this means
that V may simulate B.

Remark 1. We note that any efficiently falsifiable assumption is also a relation-
based complexity assumption. However, we find the notion of efficiently falsifiable
to be very restrictive, since intuitively it only includes assumptions that are
random self reducible. The definition of falsifiable is less restrictive, however a
falsifiable assumption is not necessarily a complexity assumption, since in order
to verify a break of the assumption one needs to run in time 1/ǫ which is super-
polynomial. We view the notion of somewhat falsifiable to be too weak. Allowing
the runtime of the verifier to depend on the runtime of the falsifier B makes this
class very inclusive, and it includes many interactive assumptions (we refer the
reader to [43] for details).
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