
TKK Dissertations in Information and Computer Science

Espoo 2008 TKK-ICS-D2

CRYPTOGRAPHIC PROTOCOL DESIGN

Sven Laur

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of

the Faculty of Information and Natural Sciences for public examination and debate in Auditorium T2

at Helsinki University of Technology (Espoo, Finland) on the 25th of April, 2008, at 12 noon.

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 3264

Fax. +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Sven Laur

ISBN 978-951-22-9292-9 (Print)

ISBN 978-951-22-9293-6 (Online)

ISSN 1797-5050 (Print)

ISSN 1797-5069 (Online)

URL:http://lib.tkk.fi/Diss/2008/isbn9789512292936/

Multiprint Oy

Espoo 2008

ABSTRACT: In this work, we investigate the security of interactive computa-
tions. The main emphasis is on the mathematical methodology that is needed
to formalise and analyse various security properties. Differently from many clas-
sical treatments of secure multi-party computations, we always quantify security
in exact terms. Although working with concrete time bounds and success prob-
abilities is technically more demanding, it also has several advantages. As all
security guarantees are quantitative, we can always compare different protocol
designs. Moreover, these security guarantees also have a clear economical in-
terpretation and it is possible to compare cryptographic and non-cryptographic
solutions. The latter is extremely important in practice, since cryptographic tech-
niques are just one possibility to achieve practical security. Also, working with
exact bounds makes reasoning errors more apparent, as security proofs are less
abstract and it is easier to locate false claims.

The choice of topics covered in this thesis was guided by two principles.
Firstly, we wanted to give a coherent overview of the secure multi-party com-
putation that is based on exact quantification of security guarantees. Secondly,
we focused on topics that emerged from the author’s own research. In that sense,
the thesis generalises many methodological discoveries made by the author.

As surprising as it may seem, security definitions and proofs mostly utilise prin-
ciples of hypothesis testing and analysis of stochastic algorithms. Thus, we start
our treatment with hypothesis testing and its generalisations. In particular, we
show how to quantify various security properties, using security games as tools.
Next, we review basic proof techniques and explain how to structure complex
proofs so they become easily verifiable. In a nutshell, we describe how to repre-
sent a proof as a game tree, where each edge corresponds to an elementary proof
step. As a result, one can first verify the overall structure of a proof by looking at
the syntactic changes in the game tree and only then verify all individual proof
steps corresponding to the edges.

The remaining part of the thesis is dedicated to various aspects of protocol
design. Firstly, we discuss how to formalise various security goals, such as input-
privacy, output-consistency and complete security, and how to choose a security
goal that is appropriate for a specific setting. Secondly, we also explore alterna-
tives to exact security. More precisely, we analyse connections between exact
and asymptotic security models and rigorously formalise a notion of subjective
security. Thirdly, we study in which conditions protocols preserve their security
guarantees and how to safely combine several protocols. Although composability
results are common knowledge, we look at them from a slightly different angle.
Namely, it is irrational to design universally composable protocols at any cost;
instead, we should design computationally efficient protocols with minimal us-
age restrictions. Thus, we propose a three-stage design procedure that leads to
modular security proofs and minimises usage restrictions.

KEYWORDS: asymptotic security, data authentication, exact security, homomor-
phic encryption, secure multi-party computation, sequential composability, sub-
jective security, time-stamping, universal composability.

TIIVISTELMÄ: Tässä työssä tutkitaan vuorovaikutteisen laskennan turvallisuutta.
Erityisesti painotetaan matemaattisia menetelmiä, joita tarvitaan erilaisten tur-
vallisuusominaisuuksien määrittelyyn ja analysointiin. Perinteisistä käsittelyta-
voista poiketen usean osapuolen laskennan turvallisuutta mitataan tässä työssä
tarkoilla suureilla. Vaikka tarkkojen rajojen käyttö arvioitaessa laskennallista
vaativuutta ja onnistumisen todennäköisyyttä on teknisesti vaativampaa, sillä on
myös useita etuja. Se tekee mahdolliseksi eri protokollien välisen vertailun.
Lisäksi, tällaisilla turvallisuuden mitoilla on selkeä kustannustaloudellinen tul-
kinta, mikä tekee mahdolliseksi vertailla salaustekniikkaa käyttävien ja muiden
tietoturvallisuusratkaisujen kustannuksia. Tällä on merkitystä käytännön kannal-
ta, koska salaustekniikkaan perustuvat menetelmät ovat usein vain yksi vaihto-
ehto käytännön turvallisuusjärjestelmiä toteutettaessa. Lisäksi tarkkojen rajo-
jen käyttö tekee turvallisuustodistuksista selkeämpiä ja siten helpottaa todistusten
päättelyvirheiden havaitsemista.

Tämän työn aiheiden valinta perustuu kahteen periaatteeseen. Ensimmäisen
mukaan tavoitteena on luoda johdonmukainen katsaus usean osapuolen lasken-
nan turvallisuuteen, joka perustuu turvallisuustakuiden tarkkaan määrittämiseen.
Toisen periaatteen mukaan keskitytään tarkastelemaan aiheita, jotka ovat olleet
tekijän tutkimusten kohteena. Tässä väitöskirjassa esitetään yleistetyssä muodossa
monia tekijän tekemiä menetelmiä koskevia löydöksiä.

Niin yllättävältä kuin se tuntuukin, turvallisuuden määritelmissä ja todistuk-
sissa käytetään tilastollisen päättelyn ja stokastisten algoritmien menetelmiä. Siksi
tämän työn aluksi tarkastellaan hypoteesien testausta ja sen yleistyksiä. Erityi-
sesti osoitetaan kuinka erilaisille turvallisuusominaisuuksille voidaan antaa nu-
meerinen arvo turvallisuuspelejä käyttäen. Seuraavaksi tarkastellaan todistuksen
perustekniikoita ja esitetään kuinka todistus tulee rakentaa, jotta se on helposti
todennettavissa. Kiteytettynä tämä tarkoittaa, että kuvataan turvallisuuspeli puu-
na, jonka jokainen kaari vastaa yksinkertaista askelta todistuksessa. Näin esitetty
todistus voidaan todentaa tarkastelemalla ensin sen syntaktista kokonaisraken-
netta ja sen jälkeen todentamalla jokaista puun kaarta vastaava todistusaskel.

Väitöskirjan loppuosassa tarkastellaan salausteknisten protokollien suunnit-
telun eri piirteitä. Ensiksi käsitellään erilaisten turvallisuustavoitteiden, kuten
syötteen yksityisyys, tuotoksen oikeellisuus ja täydellinen turvallisuus, täsmällistä
määrittelyä ja sitä, kuinka turvallisuustavoite tulee asettaa vastaamaan konkreet-
tista tilannetta. Toiseksi tutkitaan tarkan turvallisuuden vaihtoehtoja. Tarkem-
min sanottuna analysoidaan tarkan ja asymptoottisen turvallisuusmallin välisiä
yhteyksiä ja annetaan täsmällinen määritelmä subjektiiviselle turvallisuudelle.
Kolmanneksi tarkastellaan ehtoja, joilla protokolla säilyttää turvallisuusominai-
suutensa, ja kuinka useita protokollia voidaan yhdistää turvallisesti. Salausteknis-
ten protokollien teoriassa yhdistettävyyttä koskevat tulokset tunnetaan yleisesti,
mutta tässä työssä niitä tarkastellaan uudesta näkökulmasta. Nimittäin, ei ole
mielekästä rakentaa universaalisti yhdisteltävissä olevia protokollia mihin hin-
taan hyvänsä, vaan tuloksena olevien protokollien tulee olla tehokkaita ja käytön
rajoitusten niin pieniä kuin mahdollista. Tässä työssä esitetään kolmivaiheinen
menettely, jolla saavutetaan modulaariset turvallisuustodistukset ja minimaaliset
käytön rajoitukset.

AVAINSANAT: asymptoottinen ja tarkka turvallisuus, datan autentikointi, ho-
momorfinen salaus, turvallinen usean osapuolen välinen laskenta, peräkkäinen
yhdistettävyys, subjektiivinen turvallisuus, aikaleimaus, universaali yhdistettävyys.

CONTENTS

1 Introduction 1

1.1 Cryptography as an Engineering Discipline 2
1.2 Introduction to Cryptographic Protocol Design 4
1.3 Benefits of Finite Set Policy 7
1.4 Contributions of the Author 8

2 Common Notation and Basic Concepts 12

2.1 Basic Mathematical Concepts 12
2.2 Different Interpretations of Probability 14
2.3 Basic Properties of Random Variables 15
2.4 Different Formal Models of Computation 17

3 Hypothesis Testing 22

3.1 Simple Hypothesis Testing . 22
3.2 Negligible Events and Semantic Security 24
3.3 Interactive Inference and Security Games 26

4 Cryptographic Proof Techniques 31

4.1 Reductions As Rewriting Rules 32
4.2 Reductions and Time-success Profiles 33
4.3 Surprising Properties of Conditional Probabilities 36
4.4 From Game Chains to Proof Trees 38
4.5 Formal Verification of Cryptographic Proofs 41

5 Security of Interactive Computations 45

5.1 Formal Requirements to Security Definitions 46
5.2 Security of Idealised Computations 47
5.3 The Real versus Ideal World Paradigm 51
5.4 Security in Semi-Honest Model 55
5.5 Input-Privacy in Malicious Model 56
5.6 Output-Consistency in Malicious Model 57
5.7 Complete Security in Malicious Model 59
5.8 Canonical Constructive Correspondence 60

6 Alternative Security Models 64

6.1 Scalability and Polynomial Security 64
6.2 Asymptotic Security for Protocols 68
6.3 Gentle Introduction to Subjective Security 72
6.4 Setup Assumptions and Subjective Security 74
6.5 Rigorous Formalisation of Subjective Security 77
6.6 Reductions and Subjective Security Premises 80
6.7 Strictly Constructive Proof Techniques 83

CONTENTS vii

7 Modular Design of Complex Protocols 86
7.1 Duality between Protocol Design and Analysis 87
7.2 Layered Description of Computational Contexts 89
7.3 Two Flavours of Stand-Alone Security 92
7.4 Canonical Decomposition Techniques 95
7.5 Characterisation of Sequential Composability 97
7.6 Characterisation of Universal Composability 102
7.7 Trusted Setup and Universal Composability 107
7.8 Public Inputs and Universal Composability 111

Bibliography 114

Index 129

viii CONTENTS

PREFACE

This thesis is a result of studies and research at the Laboratory for Theoretical
Computer Science of Helsinki University of Technology. I remember vividly my
first days in Finland when I was a master student working under the supervision
of Helger Lipmaa. Much has changed during my stay in Finland, but the TCS
lab has always been a great place to work.

Although these last four years have been quite intense and sometimes even
overly stressful, I have learnt a lot during my studies. For that I am indebted to
my supervisors Helger Lipmaa and Kaisa Nyberg. They gave out enough puzzles
and problems to keep me intrigued. At the same time, they were always helpful
and taught me many secrets of research, scientific writing and publishing. They
also helped me to get funding from the Academy of Finland and managed the
corresponding CRYDAMI research project.

Besides my supervisors, I had pleasure to work together with many other beau-
tiful minds. I am especially grateful to my co-authors Ahto Buldas, Bart Goethals,
Emilia Käsper, Taneli Mielikäinen and Sylvain Pasini, who produced many ex-
cellent ideas and were patient enough to work with me. I would also like to
thank Pekka Orponen and Jaakko Hollmén for their excellent book suggestions,
which have made my literature exploration phases much easier.

Also, it would have been much more difficult to write the thesis without com-
ments from demanding readers. For that I am grateful to Billy Brumley, Ahto
Buldas, Emilia Käsper, Phillip Rogaway, Berry Schoenmakers and Jan Willem-
son, who took the time to read the drafts of this thesis, raised many interesting
questions, and pointed out many errors and inconsistencies.

Last but not least, I would like to thank my family and friends from Tartu,
Otaniemi and Espoo, who kept me in balance during tough times.

Tartu, March 2008

Sven Laur

PREFACE ix

CONTRIBUTIONS OF THE AUTHOR

This thesis consists of a mini-monograph followed by four articles. The articles
were carefully selected out of seven articles published by the author to illustrate
the theoretical methodology developed in the first part of the thesis. In short,
this thesis gives a systematic overview of secure multi-party computations in the
framework of exact security. To the author’s knowledge, no similar work has been
published in cryptographic literature, although the need for such treatment is
apparent. We emphasise that the first part of the thesis is not just a summary but
contains several technical novelties and methodological advances:

• We develop a consistent methodology for quantifying the security of in-
teractive computations. The corresponding security definitions are much
more descriptive than classical asymptotic security definitions.

• We show that not all security proofs can be formalised as game chains
and explain how game trees and new deduction rules solve this problem.
Additionally, we describe how to verify the overall structure of a proof by
looking at the syntactic changes in the game tree.

• We are the first to consistently use time-success and risk profiles to charac-
terise quantitative properties of cryptographic reductions.

• We explicitly discuss intermediate levels of security between security in the
semi-honest model and complete security in the malicious model. Such
models provide cost-efficient solutions for many practical tasks.

• We establish a rigorous formalisation of subjective security. As a result,
one can formulate and prove security claims for individual public keys
and hash functions and thus escape limitations of classical formalisations.

• Finally, we show how to combine protocols with different composability
guarantees. The corresponding three-stage design methodology can signif-
icantly simplify the design of complex protocols.

The included articles [P1, P2, P3, P4] provide solutions to specific but practi-
cally important computational tasks and thus nicely illustrate different theoreti-
cal aspects covered in the first part of the thesis.

[P1]: Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On
Private Scalar Product Computation for Privacy-Preserving Data Mining.
In Choonsik Park and Seongtaek Chee, editors, Information Security and
Cryptology - ICISC 2004, 7th International Conference, Seoul, Korea,
December 2-3, 2004, Revised Selected Papers, volume 3506 of Lecture
Notes in Computer Science, pages 104–120. Springer, 2004.

[P2]: Sven Laur and Helger Lipmaa. A New Protocol for Conditional Disclo-
sure of Secrets and Its Applications. In Jonathan Katz and Moti Yung, edi-
tors, Applied Cryptography and Network Security, 5th International Con-
ference, ACNS 2007, Zhuhai, 5-8 June, 2007, volume 4521 of Lecture
Notes in Computer Science, pages 207–225. Springer, 2007.

x CONTRIBUTIONS OF THE AUTHOR

[P3]: Ahto Buldas and Sven Laur. Knowledge-Binding Commitments with Ap-
plications in Time-Stamping. In Tatsuaki Okamoto and Xiaoyun Wang,
editors, The International Conference on Theory and Practice of Public-
Key Cryptography, PKC 2007, Beijing, 16-20 April, 2007, volume 4450 of
Lecture Notes in Computer Science, pages 150–165. Springer, 2007.

[P4]: Sven Laur and Kaisa Nyberg. Efficient Mutual Data Authentication Us-
ing Manually Authenticated Strings. In David Pointceval, Yi Mu, and
Kefei Chen, editors, The 5th International Conference on Cryptology and
Network Security, CANS 2006, Suzhou, Dec. 8-10, 2006, volume 4301
of Lecture Notes in Computer Science, pages 90–107. Springer, 2006.

The author has made significant contributions to all of the abovementioned arti-
cles. In short, the author derived most proofs and attacks in the article [P1]. The
basic methodology used in the article [P2] was also discovered by the author, al-
though the current exposition is a result of extensive joint work with H. Lipmaa.
Similarly, the author established the notion of knowledge-binding commitments
and corresponding reductions in the article [P3]. Finally, the original problem
statement and the initial solution in the article [P4] is due to K. Nyberg and
N. Asokan. However, the author derived all security proofs and made several
technical refinements that were essential for achieving provable security.

CONTRIBUTIONS OF THE AUTHOR xi

1 INTRODUCTION

Good design is always a trade-off between conflicting requirements regardless of
whether we talk about physical objects, such as buildings and devices, or mental
constructions, such as mathematical objects and computer programs. Some of
those design constraints are easy to describe and formalise, whereas others are
either subjective or inexplicable. Therefore, the design process itself is often a
mixture of creative and engineering steps and thus not completely expressible
using formal methodology. Nevertheless, we can use mathematical models as
powerful tools to formalise design requirements, to limit the search space and to
validate the resulting prototypes against objective constraints.

In this thesis, we describe how to formalise and analyse the security of dis-
tributed computations. Since a computational process is always inseparable
from physical phenomena that make it observable, simplified mathematical mod-
els, such as finite automata and Turing machines have their limitations. Namely,
some artefacts that are observable in theoretical models might not be present or
meaningful in practice. Therefore, we must make a constant conscious effort to
assure that theoretical models adequately represent the reality.

In particular, note that security as a concept cannot be viewed as a thing in
itself, rather it has a meaning only in a larger economical, political or military
context, where entities and organisations compete against each other. Conse-
quently, these entities have to withstand internal and external attacks in order to
achieve their goals. As reliable information transfer and processing are usually
among the key factors to success, we have to protect computations against wire-
tapping and device corruption. Essentially, there are three main types of pro-
tection methods: physical, organisational and cryptographic countermeasures.
Physical countermeasures limit the abilities of a potential attacker to compro-
mise critical computational processes. For example, servers that run mission
critical software are often located in physically guarded rooms. Organisational
countermeasures change the common process logic in order to demotivate po-
tential attackers, limit potential damage, or provide fail-safe recovery procedures.
For example, making regular back-ups from mission critical data can both limit
the potential damage and simplify the recovery procedure.

Cryptographic countermeasures are somewhat different, since they modify
the computational process itself and not the surrounding context. Although this
approach can be immensely flexible, there are certain inherent limitations. Most
importantly, cryptographic methods are applicable only in distributed settings.
Indeed, if an adversary gets full control over the computational process, then
he or she can ignore all cryptographic countermeasures built into the process.
Moreover, successful recovery from such attacks is impossible, as the adversary
can corrupt the entire internal state. In particular, note that back-up strategies
make sense only in a distributed setting, otherwise the adversary can corrupt the
back-ups, too. To minimise such risks, mission-critical processes are often di-
vided into well-isolated sub-processes or accompanied with unerasable logging
procedures. But the latter does not automatically imply that we need many com-
putational devices. In fact, we can still use a single device for all computations,
provided that a potential adversary cannot corrupt the entire device and all sub-
tasks look like different computational entities.

1. INTRODUCTION 1

We emphasise that one cannot achieve security without combining various
countermeasures against the attacks. In fact, one must find a proper balance
between various protection methods, otherwise a single weakness can make the
entire defence meaningless. In short, cryptographic countermeasures achieve
their purpose when attacks against non-cryptographic measures are more attrac-
tive to the adversary. In many cases, the cost of cryptographic countermeasures
is marginal compared to the other measures and thus people tend to use them as
cheap substitutes for real solutions. Although cryptographic constructions must
have an appropriate safety margin, it is impractical and wasteful to make them
overly strong compared to the other protection measures that users are willing to
accept. For the same reason, the total cost of countermeasures must match the
potential losses and sometimes the best strategy is to ignore threats.

To summarise, finding an appropriate balance between different protection
methods is mostly an economical decision that should be based on approximate
cost estimates. Unfortunately, precise estimation of potential losses and gains
currently resembles more to magic than science. In fact, we still cannot answer
even the simplest questions like what would it cost to break a modern 128-bit
block cipher, or when the use of 1024-bit RSA becomes a considerable liability
issue in e-commerce. Although such a sad state of affairs is really discouraging,
we should still try to capture practical requirements in theoretical models, or at
least try to develop solutions that are meaningful in practice.

1.1 CRYPTOGRAPHY AS AN ENGINEERING DISCIPLINE

Cryptography as a general term unites a wide spectrum of different subfields
ranging from empirical design of various base constructions to branches of pure
mathematics that focus on complexity theoretical aspects and fundamental lim-
itations in cryptography. Hence, there are many valid viewpoints and possible
research goals. In this thesis, we view cryptography mostly as an engineering dis-
cipline that should provide formal methodology for making economically sound
and scientifically justified decisions. More precisely, we study how to design pro-
tocols with desired properties using cryptographic primitives and how the achiev-
able security level depends on the properties of basic primitives. We are mostly
interested in the exact quantification of security and thus state all security guar-
antees in terms of concrete running times and success probabilities. Although
such a quantification does not directly reflect the corresponding monetary losses
and gains, we can easily overcome this by estimating the cost of computations
and the perceived utility of a successful attack. The corresponding cost estima-
tion phase is beyond our scope, since it is a purely economical problem. Nev-
ertheless, the existence of such transformations is important, as it gives a clear
interpretation to all security estimates and allows us to compare cryptographic
and non-cryptographic countermeasures.

In many cases, it is beneficial to combine cryptographic and non-crypto-
graphic countermeasures. Consequently, our formalism must be flexible enough
to model a wide range of security goals and adversarial powers. Moreover, none
of these theoretical models is a priori better than the others, since the corre-
sponding costs and gains depend on practical details. A solution that is tuned for
a particular setting may be completely unsuitable for other settings. As a result,

2 1. INTRODUCTION

there are literally hundreds, not to say thousands, of meaningful security models.
Since we cannot treat each model separately, we must limit ourselves to the most
important aspects that are shared by most of the models.

In particular, it makes sense to use the same formal model of interactive com-
putations. Although all standard formalisations are based on Turing machines,
there are some technical details that make Random Access machines more ap-
pealing. We remark here that the difference is only in exact resource consump-
tion and both models are qualitatively equivalent, see Chapter 2. Also, note that
security properties are commonly described in terms of computational indistin-
guishability or advantage. Both notions have their origins in statistics. Chapter 3
covers essential properties of hypothesis testing that are necessary to quantify and
analyse various security properties. Moreover, the knowledge of these basic con-
cepts is sufficient to carry out most common security proofs as long as we abstract
away all complexity theoretical details.

We can always specify complex constructions in terms of abstract primitives
that are known to satisfy certain functionality and security guarantees. In other
words, we actually specify a template that can be instantiated by replacing ab-
stract primitives with practical constructions. Therefore, the corresponding se-
curity proofs are free from implementation details and rely mostly on the ele-
mentary probability theory. Of course, the complexity theoretical problems do
not disappear entirely. They re-emerge as soon as we try to establish whether a
concrete realisation of an abstract primitive indeed satisfies the necessary secu-
rity requirements or not. However, the latter is the main concern of primitive
design and thus beyond our scope.

Such an approach leads to a hierarchy of cryptographic abstractions. At the
lowest level of this hierarchy, we find many low level primitives that formalise
our current beliefs and knowledge about computational complexity. For ex-
ample, we can talk about abstract Diffie-Hellman groups and abstract sets of
RSA composites that formalise certain complexity theoretical beliefs about the
hardness of discrete logarithm and integer factorisation. Again, we must use
the common methodology of primitive design to establish whether such abstract
constructions can be implemented in practice. Primitives that realise some well-
specified functionality, such as encryption or authentication, are often specified
in terms of lower level primitives. For example, ElGamal and Rabin encryp-
tion schemes are built on top of Diffie-Hellman groups and RSA composites.
The next abstraction level consists of lower level protocols that are designed and
optimised for well-specified tasks, such as authentic message delivery or entity
identification. These basic protocols can be combined in order to achieve more
complicated tasks like online banking and digital rights management. The hi-
erarchy of abstractions continues—we can combine these protocols to achieve
even more complex tasks. Since there are so many different levels, it is essential
to have a flexible formalism that makes it easy to change the levels of abstraction,
otherwise we are either trapped in the ocean of unnecessary technical details or
the viewpoint is too coarse for performance optimisations.

Still, many proofs are inherently complex, even if we choose a correct ab-
straction level, and occasionally we must increase the granularity to discover
performance bottlenecks. In these cases, we must handle proofs that are tens, if
not hundreds, of pages long. For obvious reasons, such proofs quickly become
unmanageable, unless they are extremely well structured. Ideally, these proofs

1. INTRODUCTION 3

should be automatically verifiable. Such a goal seems extremely hard to achieve,
as cryptographic proofs are often based on complex reductions and thus require
creative manipulation of probabilities. In Chapter 4, we explore this issue fur-
ther and show that all proofs share the same meta-structure. Any proof can be
formalised as a game tree, where each edge corresponds to an elementary proof
step. Although each elementary proof step itself may rely on complex reasoning,
it is easy to describe the related syntactical change in the game. More impor-
tantly, proof steps that lead to the same kind of syntactic changes also reuse
the same proof template. Therefore, we can formalise such steps as reduction
schemata. Notably, the total number of reduction schemata is rather limited,
since each primitive introduces few elementary reduction schemata and other
more complex reductions can be expressed as mixtures of those.

As reduction schemata abstract away complex technical details, the resulting
proof skeleton is compact and easily verifiable. In fact, a person who applies
reduction schemata does not have to know the exact technical details as long as
he or she applies reduction schemata correctly. In short, derivation of security
proofs is mostly an engineering task, whereas formalisation and systematisation
of reduction schemata requires a deeper understanding of cryptography. We
believe that such a representation of basic concepts brings us closer to computer-
aided design of complex cryptographic primitives and protocols. The need for
such design assistants becomes self-evident when we compare cryptography to
other engineering disciplines, where hundreds or even thousands of general and
special purpose design programs are routinely used by engineers. Although there
are many experimental protocol analysers, most of them put too much effort on
automatic derivation of proofs. The author believes that the latter is a secondary
goal and the most critical part is a human readable representation of proofs and
the ability to apply various reduction schemata without errors. Of course, the
development of such a computer environment is a major undertaking and it
may take several man-years to achieve significant progress.

1.2 INTRODUCTION TO CRYPTOGRAPHIC PROTOCOL DESIGN

A conceptual difference between cryptographic primitives and protocols lies in
the security guarantees. Primitives are designed to preserve security in few well-
defined scenarios, whereas protocols must resist different attacks aimed at differ-
ent targets. Often, there are literally thousands and thousands of potentially rel-
evant security goals and we cannot analyse them separately. Instead, we should
compare different protocols πα and πβ for the same functionality. Beaver was
the first to state the corresponding resilience principle [Bea91a]:

If any adversary attacking πα cannot gain more information or wield more in-
fluence than when it attacks πβ , then πα is at least as secure and reliable—i.e.
as resilient—as πβ .

Evidently, a protocol πα attains a maximal security level if πα is as resilient as any
other protocol πβ that correctly implements the same functionality. As a direct
comparison with any other imaginable protocol πβ is infeasible in practice, we
must use a methodological shortcut. Namely, we can easily define an ideal
implementation π◦ that is as resilient as any other protocol πβ . Since resilience

4 1. INTRODUCTION

is transitive by definition, it is sufficient to compare only protocols πα and π◦

to establish optimality. The corresponding real versus ideal world paradigm is a
central methodological approach in cryptographic protocol design.

However, the exact nature of these security guarantees depends on many tech-
nical details. Most importantly, we must define comparability between attacks
against real and ideal world implementations. In particular, note that participa-
tion in a protocol is economically justified if potential gains outweigh associated
risks. Thus, we must assure that all relevant economical aspects are also cap-
tured by the ideal implementation, otherwise real and ideal implementations
are not truly comparable. In Chapter 5, we study this problem thoroughly in
the simplest stand-alone setting, where a protocol is executed in isolation and
the adversary cannot use external information. Although the resulting security
definitions are equivalent to the standard formalisations [Can00a, Gol04], our
treatment also reveals underlying causes why the definitions must be formalised
in such a way.

Again, note that an appropriate solution for a specific task is often a balanced
mixture of cryptographic and non-cryptographic measures. Therefore, different
applications utilise different cryptographic properties. In Chapter 5, we describe
the most common security objectives. We start from the semi-honest model,
where all participants follow the protocol, and finish with the malicious model,
where the set of malicious participants can arbitrarily deviate form the protocol.
Since we consider input-privacy and output-consistency in addition to complete
security, we obtain four security models that capture the most essential secu-
rity requirements. Although practical settings are often more complex, they are
usually just intelligent variations of these basic models.

The biggest advantage of the stand-alone setting is conceptual simplicity,
which makes it easy to formalise and analyse various security objectives. How-
ever, the corresponding security models explicitly assume that adversaries are iso-
lated from external influences. The assumption rarely holds in practice, where
protocols are commonly used as subroutines to achieve more complex goals.
Hence, it is essential to know which computational contexts preserve the secu-
rity of the protocol. First, if we know the corresponding usage restrictions, we
can combine various protocols without unexpected consequences. Secondly,
usage restrictions are actually security guarantees that describe when it is secure
to execute a protocol. Since the whole computational context is often unknown
to the participants, it is important to state usage restrictions in local terms. We
emphasise that there is a natural trade-off between usage restrictions and the ef-
ficiency of a protocol. In other words, we cannot rank protocols only according
to the usage restrictions, since protocols with the most liberal usage restrictions
might have sub-optimal performance and unjustified deployment costs.

Although it is relatively straightforward to understand what a computational
context is, the corresponding formalisation is cluttered with many tedious techni-
cal details. Hence, we try to present the complex computational model as mod-
ularly as possible in Chapter 7. We also study the true limitations of stand-alone
security and establish the corresponding usage restrictions. Briefly, stand-alone
security is sufficient for all computational contexts, as long as we are willing
to assume that all external participants1 are corrupted during the protocol. Al-

1More formally, external participants are parties that do not participate in the protocol.

1. INTRODUCTION 5

though the result is a minor enhancement of classical sequential composability
theorems [Ore87, Can00a], it bears a huge conceptual significance. Namely, it
implies that stand-alone security is sufficient for all end-to-end applications that
treat all external participants as enemies.

However, the corresponding usage restrictions are also quite limiting, since
participants in a stand-alone secure protocol cannot perform any side-computa-
tions during the execution of the protocol. As a result, we obtain a centralised ex-
ecution model that treats the whole network as a single virtual processor. Since
network-wide synchronisation is often impossible or causes significant perfor-
mance penalties, we need protocols with more liberal usage restrictions. Sur-
prisingly, we can significantly relax usage restrictions for stand-alone secure pro-
tocols as soon as the correspondence between real and ideal world adversaries
satisfies certain structural restrictions already suggested in early works [Bea91b,
MR91b]. In fact, such protocols are called universally composable, as they pre-
serve security in any reasonable context. Moreover, all-or-nothing results by Lin-
dell [Lin04] indicate that a general class of protocols with simple and natural
usage restrictions consists of protocols that are either secure only in the stand-
alone model, or universally composable.

The structural restrictions mentioned above are difficult to fulfil. In fact, it
is impossible to achieve universal composability when honest participants are in
minority, i.e., malicious participants have more control over the protocol than
the coalition of honest parties. Fortunately, there is a loophole that allows us to
bypass the all-or-nothing nature of usage restrictions. Namely, we can often lo-
cate critical regions in a stand-alone protocol that must be executed in isolation,
whereas the other regions are indeed universally composable. Consequently,
our task is to minimise the duration and count of these critical regions without
losing the overall efficiency. Chapter 7 covers also the corresponding three-stage
design methodology and studies protocols with a trusted setup.

As a final detail, note that cryptographic protocol design borrows many con-
cepts from hypothesis testing and thus it also inherits many limitations of clas-
sical statistics. In particular, classical statistics describes only average-case be-
haviour and cannot be used for analysing individual experiments. Analogously,
classical cryptography describes only collective security properties and fails when
we want to analyse the security of specific instances. In other terms, design
and usage of cryptographic protection measures are two separate things. As an
illustrative example, consider a nation-wide public-key infrastructure. A well-
designed signature scheme assures that the number of weak signing keys and
potential monetary risks are negligible for the organisation that issues keys for all
individuals. However, the latter does not imply that a particular signing key is
secure to use. In fact, we cannot even formalise the corresponding design goal
by using classical statistics. The latter is a serious drawback as a key holder is only
interested in the security level provided by his or her signing key. In Chapter 6,
we show how to formalise such security goals by using the notion of subjective
probability. While we acknowledge that such concepts and security goals are
somewhat non-standard in cryptographic literature, the resulting formalism is
mathematically sound and well-aligned with practice.

6 1. INTRODUCTION

1.3 BENEFITS OF FINITE SET POLICY

There are many ways to obtain mathematically sound security definitions; exact
quantification of security properties is only one of them. In particular, various
asymptotic security models are widely used in theoretical cryptography, since
these models are well aligned with complexity theory and also hide many tire-
some technical details. Nevertheless, there are several compelling reasons why
we should stick to exact quantification of security. First, connections between
theoretical results and practical consequences are significantly weaker and we
must address the limitations already raised by Yao [Yao82]:

In this theory, the complexity of a computational problem is measured by the
asymptotic behaviour of algorithm as the input length becomes large. To apply
the theoretical result to input of a particular length, we tacitly assume that this
length is large enough that the asymptotic results can be used.

Secondly, asymptotic behaviour can be surprisingly brittle and counterintuitive.
Misunderstanding of limiting processes has created countless errors and para-
doxes throughout the history of mathematics. There is no reason to believe that
cryptography or computer science are special in that respect and thus we should
always follow the finite set policy [Jay03]:

Apply the ordinary process of arithmetic and analysis only to expressions with
a finite number of terms. Then, after the calculation is done, observe how the
resulting finite expressions behave as the number of terms increases indefinitely.

Less formally, we first formulate models with precise bounds and only then
observe limiting behaviour. Indeed, violation of this simple principle has lead to
subtle errors or inconsistencies in cryptography. For example, aesthetic reasons
urged theoreticians to consider also algorithms that run in expected polynomial
time, see [Gol07] for further discussion. As a result, we have now at least four
different notions of polynomial security, which are incompatible. To make things
worse, several important results, such as composability theorems, do not hold for
all of these models, see the first half of Chapter 6. At the same time, there exists
basically one finite security model and we can safely apply a theorem as soon as
all quantitative requirements of the theorem are satisfied.

Another notorious example is the definition of universal composability. De-
pending on subtle details in definitions, some important equivalence results ei-
ther hold or not, see the discussion in [Can00b]. In fact, there are at least four
different asymptotic definitions of universal composability [DKMR05], whereas
there is a single finite security model for universal composability. All these results
clearly demonstrate that skipping the finite modelling step is dangerous.

Finally, we remark that many asymptotic models use a complex limiting pro-
cess over several variables to characterise many aspects in a single stroke. For
example, a zero-knowledge proof can be characterised by the complexity of
the statement to be proved and three other quantitative properties: correctness,
soundness and zero-knowledge property. However, the corresponding asymp-
totic model is unidimensional and thus many details that are important in prac-
tice are erased by an inherent dimension reduction.

1. INTRODUCTION 7

1.4 CONTRIBUTIONS OF THE AUTHOR

This thesis has a slightly non-standard structure. Most theses are either mono-
graphs or contain a brief summary and a listing of published articles, whereas
this thesis consists of a monograph followed by a few selected articles. Such a
choice was made mostly because the author felt compelled to first systematically
present essential theoretical concepts and then use the articles as illustrations for
the covered topics. The author believes that such a systematic approach is jus-
tified, since an engineering view on cryptography is currently underrepresented
in mainstream literature. Although exact quantification of security properties is
quite common in cryptographic primitive design, the corresponding formalisa-
tions are often very application specific. Moreover, all standard treatments of
secure multi-party computations [MR91b, Can00a, Can00b, Gol04] are based
on asymptotic settings and do not place results into a larger economical context.
Hence, the need for systematical treatment of exact security is real and hope-
fully this thesis is a step to the right direction. Also, most of the topics covered
in this thesis are closely connected with the problems that the author has faced
in his research. However, we put the main emphasis on the methodological is-
sues, since protocol design itself becomes a mundane engineering task as soon
as methodological issues are resolved and design criteria are fixed.

As this thesis covers many essential results, it is somewhat difficult to sep-
arate the author’s original contribution from prior art. Therefore, we list the
most important novelties and their connections to the author’s published arti-
cles. Conceptually, the most important novelty is an engineering viewpoint to
cryptographic protocol design and the coherent use of exact security guarantees
throughout this thesis. Differently from standard treatments, we use hypoth-
esis testing as a main tool and design a primitive or a protocol only from ab-
stract primitives that completely formalise all relevant security properties. Such
an approach allows us to present proofs in a more systematic manner and use
(semi-)formal methods to derive and verify security proofs. The corresponding
formalism established in Chapter 4 is a novel addition to game-playing proofs
popularised by Shoup and Rogaway, see for example [Sho04, BR06]. First, we
demonstrate that some security proofs cannot be converted to game chains and
show how to formalise these proofs by using game trees. Although such proofs are
quite rare in primitive design, they are often required in the security analysis of
protocols. In fact, the author experienced these limitations by analysing authen-
tication protocols in [LN06] and the proof methodology presented in Section 4.4
is just a direct generalisation of the techniques used in [LN06]. Secondly, we go
one step further than the standard game-playing proofs [Sho04, BR06] and show
how to abstract away all technical details and express the skeleton of the proof
via syntactic changes formalised as reduction schemata. The approach differs
from classical security calculi, as the proof skeleton is informative enough to re-
construct all technical details, including the bounds on advantages and running
times. The author has found the corresponding formal approach invaluable for
deriving and verifying technically complex reductions such as [LP08].

Thinking in terms of reduction schemata forces us to generalise individual
proof steps into parametric proof templates. The corresponding meta-level anal-
ysis often reveals analogies between proof steps that are formulated for com-
pletely different primitives, but use technically identical arguments. For exam-

8 1. INTRODUCTION

ple, the author’s study of specific collision extraction techniques [KLL06, BL07]
has shown that the corresponding security analysis deals with a certain combina-
torial problem. Hence, the results obtained in [KLL06, BL07] are not specific
to a certain primitive; but can be used in the contexts of hash functions, com-
mitment schemes, proofs of knowledge and digital signatures. We acknowledge
here that these results contain mostly technical improvements, but the generality
and optimality of the obtained bounds has a definite engineering value.

Time-success and risk profiles introduced in Chapters 4 and 5 is another
methodological advance that improves our understanding about cryptographic
reductions. In many security proofs, we must choose between alternative reduc-
tion methods, which lead to incomparable security guarantees. Consequently,
we need a methodology for comparing radically different reduction strategies. Al-
though the problem caught the author’s attention already in the article [BL07],
the issue was fully resolved during the preparation of the manuscript [KLL06]
that lead to the current formalisation presented in Section 4.2.

Also, note that standard formalisations of secure multi-party computations
just postulate the security criterion without explaining whether it also makes
sense from an economical viewpoint. Now, considering the problem in terms
of time-success and risk profiles provides an elementary explanation why these
security definitions are meaningful in the economical context as well.

As the third methodological advance, we explicitly discuss intermediate se-
curity levels between security in the semi-honest model and complete security
in the malicious model. Such models provide cost-efficient solutions for many
practical settings. In particular, we have studied many privacy-preserving data
mining tasks [GLLM04, LLM05, LLM06] that become practically intractable
in the malicious setting, if we want to achieve complete security. Still, we can
guarantee the privacy of inputs by using the techniques developed in the ar-
ticle [LL07]. Moreover, we have shown that one can detect cheating with a
significantly lower overhead than is needed for complete security [LL06].

Another, more debatable but still conceptually novel enhancement by the
author is a rigorous formalisation of subjective security. In Chapter 6, we de-
fine the corresponding notion and explain why classical security definitions are
inadequate for certain settings. Moreover, we also explain why random oracle
or generic group models provide only subjective security guarantees and why all
standard arguments, such as [CGH04b], against these models are unconvincing.

A final and probably the most important methodological advance is a co-
herent and practice-oriented treatment of modular protocol design. Differently
from the standard approach, we treat universal composability as a tool and not as
the final aim. In particular, we present an efficient three-stage design method-
ology that significantly simplifies the construction of complex protocols without
losing efficiency. The corresponding design process often leads to protocols that
share the same trusted setup phase. As all classical composability theorems are
inadequate in such settings, we must use more fine-grained methods. The cor-
responding methodology presented in Section 7.7 is a direct generalisation of
proof methods used in the article [LL07], where we proved composability the-
orems for very specific two-round protocols with a shared key generation phase.
Similar theoretical concerns emerge also in the articles [LN06, LP08] where
protocols are proved to be secure in the common reference string model.

On the choice of selected articles. As explained above, the first part of this

1. INTRODUCTION 9

thesis covers and generalises the most important methodological advances made
by the author. Thus, we include only four articles [GLLM04, LN06, BL07,
LL07] out of eight publications into this thesis. This does not mean that the
remaining four publications [LLM05, BL06, LLM06, LP08] are technically less
sound or otherwise inferior. Neither was the choice based on the author’s impact
on the articles. The author has made a significant contribution to all eight arti-
cles. The choice was made mainly on the basis that the selected articles illustrate
certain theoretical aspects and methods more vividly.

Published articles cover three different sub-fields of protocol design: privacy-
preserving data mining, time-stamping and message authentication. To be pre-
cise, we consider only such tasks of privacy-preserving data mining that are spe-
cial instances of secure multi-party computation. In a nutshell, we assume that
the data is split between several participants and they want to learn global pat-
terns in the data without revealing more information than absolutely necessary.
Many data mining algorithms are based mostly on linear vector and matrix op-
erations. Therefore, private evaluation of scalar products is one the most im-
portant tasks in privacy-preserving data mining and many authors have used ad
hoc methods to solve the problem. The first included article [GLLM04] shows
that these ad hoc protocols are not only cryptographically insecure but can com-
pletely reveal the private input if used in practical applications.

We remark here that ad hoc methods are still widely used in privacy-preserving
data mining, since cryptographic solutions are practically infeasible and people
are actually willing to reveal more information during the execution than ab-
solutely necessary. Consequently, the cryptographic models must be flexible
enough to model various trade-offs between privacy and efficiency, in order to
be useful. See Section 5.4 for the corresponding remarks. At the same time, the
article [GLLM04] also emphasises that small leakages can accumulate and cause
total disclosure and thus one must be extremely careful with such specifications.
As a positive application of cryptographic techniques, we show that scalar prod-
ucts can be privately computed by using homomorphic encryption. Moreover,
the follow-up articles [LLM05, LLM06, LL07] use homomorphic encryption to
implement more complex privacy-preserving tasks.

The second included article [LL07] presents a general methodology for eval-
uating complex predicates by using homomorphic encryption. More precisely,
we study a hybrid security model, where the owner of the private key is mali-
ciously corrupted but all opponents are guaranteed to be semi-honest. We show
that complex protocols can be methodically designed by using three elementary
operations based on homomorphic encryption. In terms of Chapter 7, we estab-
lish that these protocols are universally composable even if they share the same
trusted setup phase. We also show how to enhance the security of semi-honest
protocols so that they become secure in the hybrid model described above. Al-
though the article presents methodology for certain two-round protocols, the
methodology can be generalised for more complex protocol classes.

The third included article [BL07] explores various properties of time-stamping
schemes. Briefly, a time-stamping scheme is a multi-party protocol that imple-
ments an unalterable digital register of events. As such, time-stamping must be
based on binding commitments, such as hash trees. However, state of the art
results [BS04] indicate that not all binding commitments are suitable for time-
stamping. More formally, there exists a binding commitment scheme that is not

10 1. INTRODUCTION

provably secure for time-stamping if one considers only black-box reductions. In
this article, we prove that bounded list and set commitment schemes are suffi-
cient for time-stamping. Moreover, our security definitions are more precise and
well aligned with the ideal versus real world paradigm. Secondly, the article also
provides a nice example of how white-box reduction techniques can be built on
top of constructive combinatorial arguments.

The last included article [LN06] contains practical protocols for manual data
authentication and manual key agreement. The article was greatly motivated by
the recent advances in wireless communication. Nowadays, many handheld de-
vices, such as cell phones, music players, keyboards send and receive data over
wireless links and are thus vulnerable to active attacks. Moreover, practical lim-
itations prevent the use of pre-shared keys or public-key infrastructure. Hence,
we can assure authenticity only with the help of human operators who trans-
fer short messages from one device to another. The article presents protocols for
message authentication and key agreement that achieve a maximal security level
in such settings. Moreover, these protocols are now used in the Bluetooth and
Wireless-USB standards, see the discussion in [LN06].

1. INTRODUCTION 11

2 COMMON NOTATION AND BASIC CONCEPTS

History has repeatedly shown that notation is extremely important in mathemat-
ics. Hence, we try to make the notation as simple and mnemonic as possible.
Sometimes we intentionally omit details that can be grasped from the context.
On the other hand, many authors try to capture all details and leave no room for
misinterpretation. Although such presentation is pleasingly rigorous, it is often
tedious, not to say boring and incomprehensible. We, readers, tend to have a
limited amount of memory and thus exposing all details often makes the nota-
tions so complex that it overshadows the concepts behind them.

Modern cryptography is built on various subfields of mathematics and com-
puter science, such as computational algebra, complexity theory, probability the-
ory and statistics. As this thesis considers only the design of cryptographic pro-
tocols, we can narrow the set of necessary mathematical concepts and build the
theory on basic properties of algorithms, reductions, probability and hypothesis
testing. Surprisingly, we can actually abstract away all complexity theoretical de-
tails and provide a clean conceptual design of protocols for many tasks without
any knowledge of complexity theory. We emphasise here that we still need com-
plexity theoretical conjectures to reason about security. However, these com-
plexity theoretical conjectures come into play later, when we must construct
cryptographic primitives used in the design.

Next, we briefly list basic notations and then discuss the central concepts,
such as models of computation and probability, more thoroughly.

2.1 BASIC MATHEMATICAL CONCEPTS

Functions and domains. Cryptography deals mostly with discrete transforma-
tions; real-valued functions are used only in the security analysis. As usual the
set of all finite bit strings is denoted by {0, 1}∗. The set of finite bit string se-
quences is denoted by {0, 1}∗∗ and is identified with {0, 1}∗. Therefore, any
uniquely determined discrete transformation can be viewed as a deterministic
function f : {0, 1}∗ → {0, 1}∗ regardless of how many arguments the trans-
formation has. Some discrete transformations are randomised. A randomised
function is defined as f : {0, 1}∗ × Ω → {0, 1}∗, where Ω is a corresponding
sample space and the output f(x) : = f(x;ω) depends on the random choice
ω ∈ Ω. A randomised function without explicit arguments X : Ω → {0, 1}∗ is
known as a discrete random variable. We always assume that the random choices
for different functions are independent unless explicitly specified otherwise.

Distributions and probability. Randomised functions are inherently non-
deterministic, as the random choice ω is not known ahead. Probability the-
ory provides qualitative methods for assessing the corresponding uncertainty.
Usually, the probability is formalised according to the axiomatisation given by
Kolmogorov [Bil95]. The latter requires a formal definition of measurable sub-
sets F(Ω) and the corresponding probability measure Pr [·] : F(Ω) → [0, 1].
Fortunately, we can omit these measure theoretical details and give a more el-
ementary definition for discrete random variables and functions. Any discrete

12 2. COMMON NOTATION AND BASIC CONCEPTS

distribution can be viewed as a random variable X : Ω → {0, 1}∗ together
with a sequence of non-negative numbers (px)x∈{0,1}∗ such that px = 0 for all
x /∈ X(Ω) and

∑

x∈X(Ω)

px = 1 . (2.1)

Usually, one can only observe the output X(ω) and not the underlying random
choice ω ∈ Ω. Therefore, we can limit our attention to externally observable
events X(ω) ∈ A where A ⊆ {0, 1}∗ and define the probability measure as

Pr [ω ← Ω : X(ω) ∈ A] : =
∑

x∈A

px . (2.2)

The equations (2.1) and (2.2) assure that the corresponding probability measure
is indeed well-defined and satisfies Kolmogorov’s axioms.

To simplify notation, we use the following conventions. A shorthand x← X
denotes that x is chosen according to the distribution X . Since a randomised
function f : {0, 1}∗ × Ω → {0, 1}∗ defines a distribution Fz(ω) = f(z;ω)
for every input z, we can use analogous shorthand y ← f(z) to denote that y
is chosen according to the distribution Fz. Finally, let A be a finite subset of
{0, 1}∗ consisting of n elements. Then a shorthand x ← A denotes a uniform
distribution over A, i.e., Pr [x← A : x = a] = 1

n
for all a ∈ A.

Asymptotics and time complexity. Cryptographic proofs often contain many
lower or upper bounds. In many cases, we are only interested in the asymptotic
behaviour of these bounds. Then so called Landau notation can significantly
simplify the derivation and the form of corresponding bounds.

Let f and g be non-negative functions that are defined over the positive real
numbers. Then f(x) = O(g(x)) denotes that there exists constants c, x0 > 0
such that f(x) ≤ c · g(x) for all x > x0. Similarly, f(x) = Ω(g(x)) denotes
that there exists constants c, x0 > 0 such that c · g(x) ≤ f(x) for all x > x0.
Now f(x) = Θ(g(x)) stands for f(x) = O(g(x)) and f(x) = Ω(g(x)). Finally,
symbols o(·) and ω(·) denote differences in the growth rates: f(x) = o(g(x)) if
f(x)/g(x)→ 0 and f(x) = ω(g(x)) if f(x)/g(x)→∞, as x→∞.

Asymptotic behaviour can be studied in two different contexts. First, we can
investigate how the exact security bounds of the basic primitives influence the
overall security of a particular construction. For example, we can characterise
how a discovery of a new more efficient factoring algorithm influences the over-
all security if a construction is based on 1024-bit primes. Secondly, we can
consider construction families that are indexed by a security parameter k and
observe asymptotic behaviour of security guarantees as a function of k. Such an
approach helps us to choose optimal constructions for specific security levels. In
particular, we can consider various complexity classes for different time bounds.
A time bound f(k) is polynomial if f(k) = O(kc) for c > 0 and polylogarithmic
if f(k) = O(log(k)c) for c > 0. The corresponding shorthands are f ∈ poly(k)
and f ∈ polylog(k). Similarly, a function ε(k) is asymptotically negligible de-
noted by ε ∈ negl(k) if it decreases faster than a reciprocal of any polynomial,
i.e., ε(k) ∈ o(k−c) for all c > 0. We deliberately emphasise the asymptotic na-
ture of this notion and reserve the term negligible for values that are insignificant
in practice, say less than 2−80. Similarly, overwhelming probability is a constant
sufficiently close to 1 and not an asymptotic notion.

2. COMMON NOTATION AND BASIC CONCEPTS 13

2.2 DIFFERENT INTERPRETATIONS OF PROBABILITY

Most of the cryptographic security definitions are explicitly based on the con-
cepts of hypothesis testing. Therefore, cryptography also inherits many problems
and shortcomings from statistics. In particular, we must interpret probabilities.
Interpretation of probabilities is by no means an easy and unambiguous task as
there are at least five different interpretations. Basic differences of interpretations
concern objectivity or subjectivity of probabilities.

Imagine that you throw an unbiased coin. Then objective probability de-
scribes the potential of seeing heads and subjective probability your rational
opinion about the odds of seeing heads. In particular, the objective probabil-
ity disappears when the coin has landed even if you do not see it. The subjective
probability can exist also after the landing provided that you do not see the out-
come. In other words, objective probability describes a potential that realises in
the future, whereas subjective probability can handle completed events with un-
known outcomes. In that sense, objective probability describes always collective
properties—characteristics of possible future events—and subjective probability
individual properties—characteristics of a fixed event. This conflict between in-
dividual and collective properties is an unresolved theme in statistics.

Frequentists believe that probability is an inherently collective property of
distributions that manifests itself as a limiting relative frequency of independent
repeated trials. This line of thought was initiated by Cournot, Venn and Ellis
in the middle of the 19th century. These ideas were extended further by von
Mises in 1919 who explicitly stated that probability is a property of infinite se-
quences (collectives) that satisfy certain conditions. In particular, all “admissibly
selected” sub-sequences must have the same limiting frequency as the sequence
itself, i.e., no gambler can devise a winning strategy with fixed bets. Such a
strong form of frequentism was refuted in 1937 by the contemporary mathemati-
cians, as the theory had several “inconsistencies” and Kolmogorov had provided
a better alternative in 1933, see [Fie92, vL96, Bin00, Sti86, LV97] for further
comments and historical remarks. Such development boosted the popularity of
mathematical statistics as a more liberal branch of frequentism and it became
a prevalent school of thought. Starting from seminal works of Pearsons, Ney-
man and Fisher the main emphasis shifted to the design inference procedures
(algorithms) that behave well on average over the distributions.

To illustrate the tension between objective and subjective probability in the
context of cryptography, consider the security of a cryptosystem. Recall that
a cryptosystem is a collection of sub-instances indexed by a randomly chosen
secret key. In particular, we can fix an optimal attack algorithm and ask how well
the cryptosystem as a collection of sub-instances survives the attack on average.
Such a frequentistic viewpoint is appropriate in the design and evaluation of
cryptosystems. Assume that an attack succeeds with negligible probability on
average. Then by the law of large numbers, we expect that only a tiny, not to say
non-existent, fraction of users to suffer from the attack. However, if we take the
position of a user then the tables are turned. A user could not care less about the
overall security as long as his or her particular sub-instance is immune against
the attacks. Such a problem is ill-posed in the frequentistic setting: the secret
key has already been chosen, we just do not know if the particular key is easier
or harder to break than the average key.

14 2. COMMON NOTATION AND BASIC CONCEPTS

To answer the questions about individual instances, it is inevitable to accept
the notion of subjective probability. This line of thought was started by Bayes
and was later rediscovered by Laplace. According to them, the probability is a
quantitative measure of uncertainty that can be rationally updated by observing
empirical data. During the early twenties and thirties of the 20th century the
notion subjective probability was intensively studied by economists and math-
ematicians. Keynes and Ramsey were the first to propose formal theories that
treated probability as a measure of uncertainty. The process was later completed
by de Finetti who showed in 1937 that any rationally behaving entity must as-
sign prices to bets that confirm Kolmogorov’s axioms and satisfy Bayes’ theorem.
These results were later reproved by Savage in 1954 and Cox in 1961 under dif-
ferent but natural assumptions about rational behaviour. We refer to [Fie05] for
an excellent treatment of historical developments and to [Jay03, Jef04, BT92] for
a thorough treatment of subjective probability.

Essentially, there are two schools of Bayesianism. In statistics the main goal
is objectivity and thus the objective Bayesianism tries to minimise the impact of
the subjectivity and make the end results universally acceptable. The subjective
Bayesianism makes no efforts to achieve objectivity and is more common in
economics and game theory, where the buyers or players may indeed have biased
but still rational preferences. Since all individual decisions about a particular
choice of cryptographic primitives can and should be treated in the framework
of economical game theory, we follow the school of subjective Bayesianism.

Finally, we emphasise that both interpretations of probabilities and their cor-
responding extensions in cryptography are equally important. The objective
treatment is a natural choice when we assess the general design of cryptographic
solutions, whereas one cannot avoid subjectivity if we want to make theoretically
well-founded user level decisions, see the thorough discussion in Chapter 6.

2.3 BASIC PROPERTIES OF RANDOM VARIABLES

Independence and product space. Two random variables X : Ω1 → {0, 1}∗
and Y : Ω2 → {0, 1}∗ are independent if the corresponding random choices are
independent. Formally, we must form a joint sample space Ω = Ω1 × Ω2 with
random variables X(ω1, ω2) : =X(ω1) and Y (ω1, ω2) : =Y (ω2) such that

Pr [X ∈ A ∧ Y ∈ B] : = Pr [ω1 ← Ω1 : X ∈ A] · Pr [ω2 ← Ω2 : Y ∈ B] .
(2.3)

Alternatively, we can postulate that two random variables X and Y defined over
the same sample space Ω are independent if for all events A and B
Pr [ω ← Ω : X ∈ A ∧ Y ∈ B] = Pr [ω ← Ω : X ∈ A] · Pr [ω ← Ω : Y ∈ B] .

(2.4)

Conditional probability. Let random variables X = X(ω) and Y = Y (ω) be
defined over the same sample space Ω. Then the conditional probability of the
event that X ∈ A given that Y ∈ B is defined as

Pr [X ∈ A|Y ∈ B] : =
Pr [ω ← Ω : X(ω) ∈ A ∧ Y (ω) ∈ B]

Pr [ω ← Ω : Y (ω) ∈ B]
(2.5)

2. COMMON NOTATION AND BASIC CONCEPTS 15

provided that the denominator is not zero. In the Bayesian framework, a short-
hand Pr [X ∈ A|Y ∈ B] quantifies a subjective belief that X ∈ A when Y ∈ B
is known to hold and a priori it is not clear that the equation (2.5) must hold.
Nevertheless, it is possible to prove that the famous Bayes’ theorem

Pr [X ∈ A ∧ Y ∈ B] = Pr [X ∈ A|Y ∈ B] · Pr [Y ∈ B] (2.6)

and all other Kolmogorov axioms still hold for any rational belief system, see the
handbooks [Jay03, Jef04] for further details. In other words, all manipulation
rules are formally the same for objective and subjective probabilities.

Statistical distance. Let X and Y be random variables. Then statistical dis-
tance (also known as statistical difference) between X and Y is defined as

sd(X,Y) : = sup
A⊆{0,1}∗

|Pr [X ∈ A]− Pr [Y ∈ A]| , (2.7)

where the probabilities are computed over the corresponding distributions. It is
straightforward to prove that statistical difference has an alternative form1

sd(X,Y) =
1

2
·
∑

x∈{0,1}∗

|Pr [X = x]− Pr [Y = x]| (2.8)

and thus can be viewed as ℓ1-norm. Hence, it also satisfies the triangle inequality

sd(X,Z) ≤ sd(X,Y) + sd(Y, Z) . (2.9)

Intricate connections between statistical distance and hypothesis testing and
their extensions to computationally bounded cases are discussed in Chapter 3.

Random tape model. Many cryptographic models use coin-flipping as the
only source of randomness, i.e., the probability space is Ω∗ = {0, 1}∗ where
each consecutive binary digit ωi ∈ {0, 1} is generated by flipping a fair coin.
Note that it is fairly straightforward to show that any discrete distribution can be
constructed in such a way. That is, for any sequence of non-negative numbers
(px)x∈{0,1}∗ that satisfy the equation (2.1) there exists X : Ω∗ → {0, 1}∗ such
that Pr [X = x] = px. Moreover, the random variable X can be approximated
with arbitrary precision using enough coin-flips. More formally, we can define a
sequence of random variables Xn : Ω∗ → {0, 1}∗ such that Xn(ω) depends only
on the first n coin-flips (ω1, . . . , ωn) and sd(Xn, X)→ 0, as n→∞.

Surprisingly, a similar result holds in general. The Skorohod Representation
Theorem assures that any probability distribution on an arbitrary set X can be
represented as a random variable X : Ω∗ → X . See the handbook [Bil95] for
further details. Such a result is philosophically very pleasing, as it implies that
the random tape model can still adequately represent reality.

1The sum on the right is absolutely convergent, since all terms are non-negative and the sum
can be upper bounded by 2.

16 2. COMMON NOTATION AND BASIC CONCEPTS

2.4 DIFFERENT FORMAL MODELS OF COMPUTATION

Computability is another central concept in cryptography, which is essentially a
science of secure communication and computation. The notion of computabil-
ity emerged in the first half of 20th century during the systematisation and re-
evaluation of the foundations of mathematics. Initially, the emphasis was on
the limitations of formal proof systems but later the attention turned to fully au-
tomatic derivation of numeric results. The remarkable breakthrough came in
1936 when Alonzo Church and Alan Turing independently showed that it is im-
possible to algorithmically decide whether a certain claim holds in arithmetic or
not [Chu36, Tur37]. Both authors postulated that a rather simple model can be
used to describe any fully mechanistic computational processes.

These postulates were quickly accepted and the corresponding thesis explic-
itly stated by Stephen Kleene [Kle43]. The Church-Turing thesis states that all
“imaginable” algorithmic computations can be specified by Turing machines.
Of course, the Church-Turing thesis can never be proved, since the notion of
“imaginable” algorithmic computations is inherently vague.

We emphasise that the Turing machine is only a mathematical abstraction
that allows us to formally model some aspects of modern computational devices.
In the light of all known and foreseeable technologies, it is impossible to actually
construct a Turing machine. The problem lies in the fact that Turing machine
is an infinite object, whereas the observable universe is finite.2 Briefly, a Turing
machine is only a simple model of a modern computing device and not the other
way around. Moreover, in many situations Random Access Machines reflect
reality more precisely than Turing machines.

Turing Machines. A Turing machine can be viewed as a finite automaton
with access to an infinite stack of memory cells. The stack is usually modelled
by a one-sided infinite tape and a moving head that can read or write symbols
underneath it. The movement of the head is controlled by an automaton with
a finite number of states and a finite set of transition rules. A transition may
depend on the symbol read by the head and it can specify a replacement symbol.
However, the controller must be deterministic, i.e., there can be only a single
transition rule for each state and a symbol underneath the head. A more formal
treatment of Turing machines is given in textbooks [Pap93, HMU00].

Nevertheless, some peculiarities of Turing machines are worth stressing. By
common convention, the running time of a Turing machine is just the number
of transitions made by the controller before halting. In other words, the speed
of an elementary read-write operation is independent of the size of finite con-
troller. Therefore, for any predicate f : {0, 1}n → {0, 1} there exist a Turing
machine that outputs the correct answer for any input x ∈ {0, 1}n in n steps.
Basically, we can hardwire the binary search for the 2n element truth table. The
corresponding 2n+1 state finite controller finds the right entry in the truth table

2Astrophysicist have estimated that the mass of the Universe ranges from 1053–1060 kg. Even
if the Universe is infinite, then our current knowledge indicates that mankind can observe only
a finite portion of the Universe during a finite time interval. Therefore, all modern computing
devices are actually finite automatons whether we like it or not.

Another justification comes from the fundamental von Neumann-Landauer limit [Lan61]:
any logically irreversible bit operation leads to unavoidable energy dissipation. Hence, only a
finite number of logically irreversible operations can be carried out.

2. COMMON NOTATION AND BASIC CONCEPTS 17

Universal

RAM

machine

External

clock

· · · · · · Random tape · · · · · ·

· · · · · · Input tape · · · · · ·

· · · · · · Timer tape · · · · · ·

· · · · · · Code tape · · · · · ·

· · · · · · Communication tape · · · · · ·

Network

switch

· · · · · · Communication tape · · · · · ·

Figure 2.1: A schematic model of a computational node in a network

with n steps and outputs the corresponding result. More generally, any function
f : {0, 1}n → {0, 1}m can be computed in n+m steps.

To resolve the issue, we fix a universal Turing machine and require that any
algorithm must be specified as a read-only bit-string (program code) on the spe-
cial input tape. Such a model coincides with the non-uniform complexity model
where the Turing machine is fixed but one can feed a special advice string that
depends only on the input size n. Alternatively, we can directly penalise the Tur-
ing machine based on the size of the hardwired program. Interestingly enough,
the latter leads to circuit complexity, as the computational logic can be com-
pletely encapsulated in the controller design. Although circuit complexity pro-
vides a better insight into how well an algorithm can be parallelised, the corre-
sponding formalism is also much more difficult to understand.

Random Access Machines. Although Turing machines have no limits on the
amount of accessible memory, it takes time to move the head to a random loca-
tion. Often such linear memory access cost is not justified, since modern com-
puting devices provide a large chunk of volatile memory that can be randomly
accessed in a constant time. Similarly, read and write operations of modern
hard disks can be considered location independent. Consequently, if a program
has a small enough memory footprint, then a Random Access Machine (RAM
machine) models computations more precisely. Recall that a RAM machine
consists of a finite controller (processor) that can manipulate an infinite array
of registers by sequentially processing a finite hardwired program. Informally,
a RAM machine is just a program in some assembler dialect, i.e., it can do ba-
sic arithmetic operations with registers and conditional jumps. More formal
definitions of RAM machines together with comparison to other computational
models can be found in textbooks [Smi94, WW01, HMU00]. Similarly to Tur-
ing machines, we fix a single universal RAM machine to avoid an artificial speed
up that is caused by hardwired binary search techniques.

Standardised interface. Although the computing process itself is handled dif-
ferently by universal Turing and RAM machines, it is still possible to standardise
how these computing nodes interact with the surrounding environment. Briefly,
only three types of external events can influence computations: random choices,
messages from other computing devices and timer interrupts. In the following,
we gradually specify all these aspects of interaction, see Fig. 2.1.

18 2. COMMON NOTATION AND BASIC CONCEPTS

Randomised computations. A computing node has two one-sided read-only
input tapes: one for program code and one for randomness ω ∈ Ω∗. It also
has a one-sided read-write tape for input and output. Given a code of A, an
input x and a random tape ω, the interpreter U starts to execute code. The
computation ends successfully if the input is replaced by the output A(x;ω)
and U halts in the canonical end configuration. Otherwise, the output of A is
denoted by ⊥. An algorithm A is deterministic if no cells from the random tape
ω are read. A randomised algorithm A can access a prefix of ω proportional
to running time. Hence, we can talk about output distribution of A and the
distribution of running time t(ω) together with all statistical estimators.

Interactive aspects of computing. Besides classical input tapes a comput-
ing node has a pair of read-write tapes: one for communication and the other
for timer services. The communication tape is connected to a network switch.
A network switch is a dedicated machine that delivers messages between differ-
ent nodes. More formally, a network switch has access to all communication
tapes and whenever a new message is output by a node, it determines the recip-
ient, copies the messages to the communication tape of the recipient and sends
a notification message to the sender after that. Obviously, a certain communi-
cation protocol between nodes and network switch must be fixed, or otherwise
some messages may get lost or infinitely delayed. Let us neglect the exact details
and just postulate properties of a correct implementation: (a) no messages are
dropped, inserted or modified; (b) each node has a physical network address; (c)
a node always waits for a notification message that indicates a successful transfer;
(d) messages are transferred in the same order as they are created.

Note that the actual time needed to copy messages is linear in the size of
the message, whereas the network delay depends on the exact configuration and
behaviour of the network. Finally, reliable point-to-point networking is only a
stepping stone: more complex network topologies such as non-reliable and asyn-
chronous communication can be built on top of the basic network layer.

Complexity theoretical setting. Turing and RAM machines model the tim-
ing aspects of computations differently, as they use different models of memory.
More precisely, a random memory access takes Θ(n) elementary operations for
Turing machines and Θ(1) operations for RAM machines, where n is the size
of the memory bank. Neither of these estimates is truly accurate, as we can
arrange memory cells into a three dimensional lattice. Thus, the maximal phys-
ical distance between two memory cells is Θ(3

√
n) and the corresponding access

time is o(n). Consequently, Turing machines overestimate and RAM machines
underestimate the actual time needed to compute the outcome.

These time differences are irrelevant in the classical complexity theoretical
setting that neglects polynomial factors. Although such an approach hides many
tedious details, the resulting estimates are often too crude in practice. For ex-
ample, algorithms with a quadratic asymptotic complexity are considered in-
tractable in the context of large numerical computations, whereas algorithms
with worst-case exponential complexity are successfully used in compilers. In
reality, the tractability of an algorithm depends on the number of required ele-
mentary steps. Moreover, the effective time bound depends on the context. It
can range from 10–1018 elementary operations depending whether it is a mission

2. COMMON NOTATION AND BASIC CONCEPTS 19

critical real-time software or an earthquake prediction algorithm.
Secondly, setting up a correct asymptotic feasibility definition is not a straight-

forward task at all, since there are so many choices. Often these choices are ir-
relevant and lead to equivalent descriptions, whereas sometimes they make a big
difference, see the discussion in manuscripts [Can00b, Gol07]. To avoid such
surprises, we persistently operate with exact time bounds and consider asymp-
totic behaviour whenever complexity theoretic results are needed.

Exact time complexity. Unfortunately, the definition of a Turing machine is
not robust if we consider exact time complexity. Namely, the running times
of different algorithms depend on whether a Turing machine has zero, one or
more than one internal working tape, see the discussion and further references
in [LV97, p. 432–444]. Although the difference in running times can be at most
quadratic, it is still very noticeable in practice. The same effect emerges also
when the computations are divided between several Turing machines. Then the
whole network has more working tapes at its disposal than a single Turing ma-
chine. Consequently, simulating an interactive computation on a single Turing
machine takes significantly more time steps than the total running time of all
the nodes in the network. Hence, the running time of an attack depends on
whether an attacker controls a single or a cluster of Turing machines. Of course,
the overhead is only polynomial in the total running time it but makes security
analysis more complex. Hence, we state security results only for RAM machines,
as they are more robust in terms of exact time complexity.

Let A be an algorithm, that is, a finite program code for the universal RAM
machine. Then the running time of A is counted as follows. First, the program
code of A is red command by command to the main memory. Next, the pro-
gram is interpreted according to a fixed instruction set such as [CR72, p. 75].
Each basic operation should require time at least proportional to the bit-length
of the corresponding operands. Otherwise, we get paradoxical results such as
a factoring algorithm that works in linear time in the input size [Sha79]. Now
the exact time complexity of an algorithm can be defined either in a strict or
liberal sense. An algorithm A is a t-time algorithm in the strict sense if A always
halts after t elementary steps regardless of inputs and random coins. In reality,
computations are often halted based on an external clock, i.e., the output of A

is set to ⊥ when the time limit t is exceeded. The latter gives a rise to the liberal
definition of t-time computations that is used throughout the thesis.

Obviously, the definitions can be generalised to Turing machines but then
one must explicitly fix the number of Turing machines controlled by an attacker
and the number of working tapes inside a Turing machine.

Time-bounded subroutines. Most of the cryptographic proofs are based on
black-box reductions, where an algorithm B calls an algorithm A as a subroutine
to complete its task. Now the liberal definition of t-time computations causes a
slight trouble. Imagine that a t-time routine A succeeds with probability 1

2
and

otherwise stays in the infinite loop. Then B that calls A must stop the subroutine
A after t steps, or otherwise B also stays in the infinite loop. Obviously, such an
external clock can be included into B with the cost of polynomial slowdown.
However, such slowdown is highly undesirable in our setting. Thus, we include
timers explicitly into the computational model. Note that algorithms can use
many timers, since subroutines can also call subroutines with timers.

20 2. COMMON NOTATION AND BASIC CONCEPTS

For clarity, we use an infinite timer model, where an algorithm can set po-
tentially unbounded number of timers. If a timer is fired then the algorithm is
stopped and an interrupt handler is called. More formally, an algorithm B can
always write an address L of an interrupt handler and a time bound t on the
dedicated timer tape. Given L and t, the timer decreases t until it reaches zero.
Then the execution is continued from the Lth command of B.

Even more formally, an external clock is a dedicated machine with a single
timer t, an address register L and a potentially infinite stack containing time
difference and address pairs (∆ti,Li). The external clock is coupled with the
interpreter and each elementary step decreases the value of t until it reaches
zero. If the timer value reaches zero, then the interpreter seeks the Lth command
from the code and continues execution from it. Next, the timer and the address
registers are updated by the topmost pair (∆ti,Li) in the stack. If the stack is
empty then the external clock waits for a an incoming query (ti,Li) to update
the timer and address registers. If a query (ti,Li) arrives and the timer is already
activated, then the clock computes ∆t = t − ti. If ∆t ≤ 0 then the query
is discarded, otherwise the values (∆t,L) are pushed on top of the stack and
registers (t,L) are replaced by (ti,Li). As a final detail, note that computation
of ∆t must take into account the time needed to do all computations connected
to stack updates to get timer interrupts at precise time moments.

The discussion above also shows that the infinite timer model is just a con-
venience and adversaries cannot use the timers for speeding up their compu-
tations. Indeed, the use of timers cannot cause a significant speedup, as the
external clock can be realised by a single Turing or RAM machine.

2. COMMON NOTATION AND BASIC CONCEPTS 21

3 HYPOTHESIS TESTING

One of the main objectives in cryptography is confidentiality. Throughout his-
tory various encryption schemes have been used to scramble communication
so that eavesdroppers cannot reconstruct the original messages. However, some-
times even partial message recovery can be as disastrous as full disclosure. Gener-
ally, secrecy is preserved only if an adversary cannot reject or accept non-trivial
hypotheses about secret inputs given access to public outputs. Thus, we must
formalise secrecy goals in the framework of hypothesis testing.

More formally, let s be a secret input and f(s) the corresponding public out-
put x where f is a publicly known randomised function. Then we can state at
least one trivial hypothesis s ∈ {0, 1}∗ and many non-trivial hypotheses such
as s ∈ {1, 4, 7}. We say that H is a simple hypothesis if it uniquely deter-
mines the output distribution, i.e., probabilities Pr [x|H] are well-defined for
any x ∈ {0, 1}∗. For obvious reasons, any hypothesis can always be represented
as a union of simple hypotheses. Therefore, we start with a question of how to
choose between two simple hypothesesH0 orH1 and then gradually extend the
approach to consider more and more complex settings.

3.1 SIMPLE HYPOTHESIS TESTING

Statistical tests. Assume that an adversary must choose one of two simple
hypotheses H0 or H1. A statistical test A : {0, 1}∗ → {0, 1} is a randomised
predicate that specifies whether to accept or reject the null hypothesis H0. The
rejection probability of H0 is often denoted by φ(x) = Pr [A(x) = 1]. A sta-
tistical test A can make two types of errors: false negatives and false positives.1

The ratio of false negatives is commonly denoted by α(A) and the ratio of false
positives is denoted by β(A). In other words

α(A) = Pr [A(x) = 1|H0] , (3.1)
β(A) = Pr [A(x) = 0|H1] . (3.2)

A common task in statistics is to find a strategy A that minimises the ratio of false
positives β(A) given a bound on false negatives α(A) ≤ α0. A statistical test A∗

is optimal w.r.t. the bound α0 on false negatives if

β(A∗) = inf {β(A) : α(A) ≤ α0} . (3.3)

The most obvious way to choose between hypothesesH0 andH1 is based on the
likelihood of outputs. This test is known as the likelihood ratio test :

φlrt(x) =

1 if Pr [x|H0] < η · Pr [x|H1] ,

ρ if Pr [x|H0] = η · Pr [x|H1] ,

0 if Pr [x|H0] > η · Pr [x|H1] .

(3.4)

Observe that α(φlrt) decreases monotonically when η ∈ [0,∞) is decreased and
ρ ∈ [0, 1] only determines how the ties are handled, see Fig. 3.1. Hence, for any

1Due to historical reasons, statisticians use terms Type I and Type II Errors instead.

22 3. HYPOTHESIS TESTING

Pr

x

H0 H1

Pr[x|H0]
Pr[x|H1]

> η Pr[x|H0]
Pr[x|H1]

< η

β(φlrt) α(φlrt)

Figure 3.1: Likelihood ratio test. Decreasing η moves the decision border to
the right and thus decreases α(φlrt) and increases β(φlrt). The aggregate error
γ(φlrt) is minimised when it coincides with the double crossed area.

α0 there exists a likelihood ratio test that achieves α(φlrt) = α0. Moreover, the
famous Neyman-Pearson Theorem states that the likelihood ratio test is optimal
and every optimal test is functionally indistinguishable from the corresponding
likelihood ratio test. See statistical handbooks such as [CB02] for more details.

Depending on the task at hand, the adversary can either reduce the ratio of
false positives α(A) by increasing the ratio of false negatives β(A) or vice versa.
Although different tests can provide different trade-offs, we can still establish
lower bounds for the aggregate error γ(A) = α(A) + β(A). Indeed, define a
statistical distance betweenH0 andH1 w.r.t. the output x as

sdx(H0,H1) = sup
A

|Pr [A(x) = 1|H0]− Pr [A(x) = 1|H1]| . (3.5)

Then γ(A) of a statistical test A is lower bounded as follows:

γ(A) = 1 + Pr [A(x) = 1|H0]− Pr [A(x) = 1|H1] ≥ 1− sdx(H0,H1) .
(3.6)

The inequality (3.6) also provides nice geometrical proof that the formula (2.8)
indeed computes the statistical distance. By the construction

γ(φlrt) ≥
∑

x∈{0,1}∗

min {Pr [x|H0] ,Pr [x|H1]} (3.7)

where the equality holds for parameters η = 1 and ρ = 1
2
. Again, by geometrical

considerations the right hand side of (3.7) can be expressed as the formula (2.8).
Since the likelihood test is optimal, the formulae (2.7) and (2.8) must be equal.

Computational tests. Although Fig. 3.1 correctly illustrates properties of op-
timal statistical tests, it is also slightly misleading. Namely, not all distribution
pairs have a simple decision boundary nor are the probabilities Pr [x|Hi] effi-
ciently computable. In short, likelihood ratio tests are often intractable and thus
it makes sense to consider only computationally feasible tests. Random variables
X and Y are (t, ε)-indistinguishable if for any t-time algorithm A

Advind
X,Y (A) = |Pr [x← X : A(x) = 1]− Pr [y ← Y : A(y) = 1]| ≤ ε . (3.8)

3. HYPOTHESIS TESTING 23

We emphasise that the computational effort needed to create a sample x is irrel-
evant, as the running time of A depends only on its input and not on the way
the input was created. The computational distance cdt

x(H0,H1) between two
hypotheses H0 and H1 w.r.t. the variable x is the minimal value2 of ε such that
the corresponding distributions are (t, ε)-indistinguishable. Observe that there is
a correspondence between statistical and computational distance:

sdx(H0,H1) = lim
t→∞

cdt
x(H0,H1) . (3.9)

Secondly, we can easily derive a new triangle inequality

Advind
H0,H2

(A) ≤ Advind
H0,H1

(A) + Advind
H1,H2

(A) , (3.10)

from the classical triangle inequality |a− c| ≤ |a− b| + |b− c| by substituting
a = Pr [A(x)=1|H0], b = Pr [A(x)=1|H1] and c = Pr [A(x)=1|H2] into it.
As the inequality holds for any algorithm A and any time bound t, we have

cdt
x(H0,H2) ≤ cdt

x(H0,H1) + cdt
x(H1,H2) . (3.11)

Thirdly, note that if H0 and H1 determine different distributions, there exists a
value x0 such that Pr [x0|H0] 6= Pr [x0|H1]. Consequently, an algorithm Ax0

that outputs 1 only if x = x0 and 0 otherwise achieves

Advind
H0,H1

(Ax0
) = |Pr [x0|H0]− Pr [x0|H1]| > 0 . (3.12)

Now, if the time bound t is large enough to compare an input x and the hard-
wired constant x0, then the operator cdt

x(·, ·) is positively definite

cdt
x(H0,H1) > 0 ⇐⇒ H0 6≡ H1 . (3.13)

As cdt
x(·, ·) is clearly symmetric, we have indeed established that cdt

x(·, ·) is a
distance measure between output distributions for sufficiently large t.

3.2 NEGLIGIBLE EVENTS AND SEMANTIC SECURITY

Computational distance between H0 and H1 characterises the selectivity of fea-
sible computational tests. If A is a t-time test then analogously to the inequal-
ity (3.6) we can prove a lower bound γ(A) ≥ 1 − cdt

x(H0,H1). However, the
bound on aggregate error is very non-intuitive. Hence, we pose the question
differently and ask whether the best feasible computational test is worth imple-
menting at all. Here, we view cryptology as a tool to make economically sound
and scientifically justified decisions. Usually, decisions are made by ignoring
events with insignificant probabilities. For example, a probability of an airplane
crash is roughly 2−23 but most of us are still willing to use air transportation.

More formally, let negligible denote a threshold for probabilities such that
a change of probability by a negligible amount does not affect economical de-
cisions. Clearly, the threshold depends on the exact setting. Nevertheless, the
famous Borel’s Law gives some rough estimates: probability 2−20 is negligible
on the personal scale, probability 2−50 is negligible on the terrestrial scale and

2Since there are only finite number of t-time algorithms, the minimum always exists.

24 3. HYPOTHESIS TESTING

probability 2−166 is negligible on the cosmic scale [Bor62]. Note that many au-
thors use the term negligible also for characterising the asymptotic growth rate
of variables. In such settings, we always use the term asymptotically negligible
in order to avoid confusion, see Section 2.1 for the precise definition.

Let us now return to simple hypothesis testing and consider the classical sce-
nario where the null hypothesis H0 holds with a probability Pr [H0] ≥ Pr [H1].
Then a t-time test A provides a correct answer with probability

Pr [success] = Pr [H0] · Pr [A(x) = 0|H0] + Pr [H1] · Pr [A(x) = 1|H1]

≤ Pr [H0] + Pr [H1] ·
(
Pr [A(x) = 1|H1]− Pr [A(x) = 1|H0]

)

≤ Pr [H0] + Pr [H1] · cdt
x(H0,H1) .

(3.14)

Now Pr [success] = Pr [H0] for a trivial test A∗ ≡ 0 and the optimal t-time test
A can exceed the trivial success probability only by cdt

x(H0,H1). Consequently,
the effort needed to implement A is not justified if cdt

x(H0,H1) is negligible.
Simple hypothesis testing is often inadequate for many real world scenarios.

Usually there are many plausible secret inputs s instead of two alternatives and
a partial disclosure of secrets is also harmful. Thus, given a public input f(s)
it should be infeasible to reliably predict the output g(s) for any non-constant
function g. Such inability to infer non-trivial information about secret inputs is
called semantic security. The corresponding security notion was first proposed
by Goldwasser and Micali in the context of probabilistic encryption [GM82] and
later extensively studied by others [Yao82, MRS88, Lub96, BDJR97].

The concept of semantic security can be modelled in the framework of hy-
pothesis testing. Let g(·) be a deterministic function. Then any hypothesis about
g(s) naturally splits all plausible values of s into two sets S0 and S1 so that the
null hypothesis H0 holds for all s ∈ S0 and the complementary alternative hy-
pothesis H1 for all s ∈ S1. Strictly speaking, the hypotheses H0 and H1 alone
do not determine the output distribution and we must assume the existence3 of
some unknown probability distributions over S0 and S1. Then the simple hy-
pothesis testing scenario still adequately describes the process and the inequal-
ity (3.14) holds whenever Pr [H0] ≥ Pr [H1]. Note that we can only upper bound
the value of cdt

x(H0,H1), as the distributions on S0 and S1 are unknown. Let
H[s=si] denote an elementary hypothesis that s = si for i ∈ {0, 1}. Then

cdt
x(H0,H1) ≤ sup

si∈Si

cdt
x(H[s=s0],H[s=s1]) , (3.15)

since we can upper bound |Pr [A(x)=1|H1]− Pr [A(x)=1|H0]| by
∑

s0∈S0

∑

s1∈S1

Pr [s0] · Pr [s1] · |Pr [A(x) = 1|s1]− Pr [A(x) = 1|s0]| (3.16)

and upper bound the absolute value by supsi∈Si
cdt

x(H[s=s0],H[s=s1]). By com-
bining the inequalities (3.14) and (3.15), we obtain the final upper bound

Pr [success] ≤ Pr [H0] + Pr [H1] · sup
si∈Si

cdt
x(H[s=s0],H[s=s1]) . (3.17)

3In our context, such a semi-Bayesian assumption is completely natural although orthodox
statisticians would use the notion of universally most powerful tests instead.

3. HYPOTHESIS TESTING 25

The inequality (3.17) holds also for randomised functions g(s) = g(s;ω) when
the random choices of f(s) and g(s) are independent. For proof, we must just
consider elementary hypothesesH[s=si,ω=ωi] instead ofH[s=si], repeat the deriva-
tion and use the independence assumption to verify

cdt
x(H[s=s0,ω=ω0],H[s=s1,ω=ω1]) = cdt

x(H[s=s0],H[s=s1]) . (3.18)

Finally, consider the scenario where an adversary does not test hypotheses but
predicts the output of g : {0, 1}∗ → {0, . . . , n} instead. Let Hi denote the
hypothesis g(s) = i and Si = {s : g(s) = i}. For simplicity, assume Pr [H0] ≥
Pr [Hi] for i ∈ {1, . . . , n}. Then we can derive

Pr [success] ≤ Pr [H0] +
n∑

k=1

Pr [Hi]·
(
Pr [A(x)=k|Hk]− Pr [A(x)=k|H0]

)
,

where the terms in the parenthesis are again averages over unknown but existing
distributions. Obviously, we can test A(x) = k in time O(log n) and thus

|Pr [A(x)=k|Hk]− Pr [A(x)=k|H0]| ≤ sup
si∈Si

cdτ
x(H[s=s0],H[s=sk]) , (3.19)

where τ = t+ O(log n). Therefore, we can conclude

Pr [success] ≤ Pr [H0] + Pr [¬H0] · sup
s0,s1

cdτ
x(H[s=s0],H[s=s1]) , (3.20)

where the supremum is taken over all possible secret inputs. To summarise,
we have established that for any function g(s) with a reasonable output length,
the inability to distinguish simple hypotheses implies the inability to predict the
output significantly better than choosing the most probable output. Hence, we
have established the classical result that indistinguishability implies semantic
security. Still, note that the proof technique is strictly non-constructive and the
function g(·) itself can be intractable. The latter is somewhat different from the
strictly constructive approach pursued in the article [BDJR97]. We re-examine
these issues in Sections 6.6 and 6.7 in the context of subjective security.

3.3 INTERACTIVE INFERENCE AND SECURITY GAMES

Thus far we have considered non-interactive inference where an adversary has no
control over public outputs. This model is adequate only if the adversary is an ex-
ternal party in the computational process, for example listens to network traffic or
breaks into a computational node after the computations have been completed.
Alternatively, the adversary can actively participate in the computations and thus
influence the sampling procedure itself. Such interactive scenarios are known as
games or experiments. Although games have been implicitly around since 1982
when Goldwasser, Micali and Yao first used hybrid arguments [GM82, Yao82],
a more formal treatment of games is rather recent. It gradually emerged together
with the notion of exact security and reached its maturity around 2004, when
several game-playing proof methodologies [BR04, Sho04, Hal05] were explic-
itly outlined. In some sense, this was an inevitable change forced by the ever-
growing complexity of cryptographic proofs and the nit-picking argumentation
style demanded by exact security.

26 3. HYPOTHESIS TESTING

Although the basic ideas behind game-playing proofs are rather simple, it
is always nice to start with illustrative examples. Various security definitions of
public-key cryptosystems are a good starting point, since they have a simple struc-
ture and are still complex enough to illustrate all the basic ideas.

Security of cryptosystems as an example. A public-key cryptosystem is spec-
ified by three efficient randomised algorithms Gen,Enc,Dec. A key generation
algorithm Gen outputs a key pair that consists of a secret key sk and a public key
pk. Two other algorithms Encpk : M → C and Decsk : C → M ∪ {⊥} are
used to encrypt and decrypt messages. SetsM and C are known as message and
ciphertext spaces, respectively. A cryptosystem is functional if, for all key pairs
(pk, sk)← Gen and messages m ∈M, the equality

Decsk(Encpk(m)) = m (3.21)

holds with overwhelming probability. Message and ciphertext space can depend
on the public key pk. Moreover, the decryption algorithm Decsk(·) can return
an error value ⊥ if non-ciphertext is used as an input.

Now, there are many security definitions for cryptosystems but all of them are
formalised using specific attack scenarios. Goldwasser and Micali were the first
to formalise the weakest classical security notion as indistinguishability under
chosen plaintext attack (IND-CPA security), see [GM84]. In a chosen plaintext
attack, an adversary A has partial control over the encrypted messages. The
corresponding attack scenario is formally captured by security games G0 and G1

that have oracle access to a stateful adversarial algorithm A.

GA
0

(sk, pk)← Gen

(m0,m1)← A(pk)
c← Encpk(m0)
return A(c)

GA
1

(sk, pk)← Gen

(m0,m1)← A(pk)
c← Encpk(m1)
return A(c)

Since random variables GA
0 and GA

1 describe the output of A under two different
hypotheses, we can generalise the indistinguishability definition. We say that a
cryptosystem is (t, ε)-IND-CPA secure if for any stateful t-time adversary A

Advind
G0,G1

(A) = |Pr [GA

0 = 1]− Pr [GA

0 = 1]| ≤ ε . (3.22)

Sometimes an adversary has limited access to the decryption procedure and thus
can conduct chosen ciphertext attacks. Therefore, we can also consider indistin-
guishability under chosen ciphertext attacks (IND-CCA security). There are two
possible formalisations: IND-CCA1 security proposed by Naor and Yung [NY90]
and IND-CCA2 security proposed by Rackoff and Simon [RS91]. The corre-
sponding indistinguishability games are very similar to the IND-CPA games ex-
cept A has black-box access to oracles O1 and O2.

GA
0

(sk, pk)← Gen

(m0,m1)← AO1(pk)
c← Encpk(m0)
return AO2(c)

GA
1

(sk, pk)← Gen

(m0,m1)← AO1(pk)
c← Encpk(m1)
return AO2(c)

3. HYPOTHESIS TESTING 27

In the IND-CCA2 games both oracles O1 and O2 decrypt inputs, i.e, Oi(ĉ) =
Decsk(ĉ). To avoid trivial attacks, the game is halted with ⊥ if A submits the
challenge ciphertext c to O2. In IND-CCA1 game, the oracle O1 decrypts inputs
and O2 does nothing. A cryptosystem is (t, ε)-IND-CCA1 or (t, ε)-IND-CCA2
secure if for any t-time adversary A the inequality (3.22) holds.

Basic properties of games. Formally, a game is a two-party protocol between
an honest challenger G and a malicious adversary A that satisfies some special
rules. Most importantly, the challenger and the adversary are executed in turns,
so that they are not active at the same time. The game is started by G that
sends some message to A and then stops. Next A wakes up reads the message,
composes a reply and stops. Then G wakes up, reads the message, composes a
reply and stops, and so on. The ping-pong with messages continues until either
A halts with ⊥ or G halts with out ∈ {0, 1,⊥}. The output of the game GA is
out, unless A outputs ⊥ then GA = ⊥. Note that such a ping-pong execution
ensures that A cannot measure the computational effort made by the challenger
and thus eliminates the possibility of timing-based side-channel attacks.4

Now it is straightforward to generalise the notion of computational distance
to games. The computational distance cdt

⋆(G0,G1) between games G0 and G1 is
the minimal value ε such that for any t-time algorithm A

Advind
G0,G1

(A) = |Pr [GA

0 = 1]− Pr [GA

1 = 1]| ≤ ε . (3.23)

The asterisk in the symbol cdt
⋆(·, ·) emphasises the fact that the resulting interac-

tion pattern may vary depending on the actions of the adversary. Clearly, cdt
⋆(·, ·)

is a semi-distance, as it is symmetric and the triangle inequality

cdt
⋆(G0,G2) ≤ cdt

⋆(G0,G1) + cdt
⋆(G1,G2) . (3.24)

follows from the basic triangle inequality |a− c| ≤ |a− b| + |c− b| similar to
the inequality (3.11). Again, we can define statistical distance as a limit

sd⋆(G0,G1) = lim
t→∞

cdt
⋆(G0,G1) . (3.25)

We say that games G0 and G1 are equivalent if sd⋆(G0,G1) = 0, since any adver-
sary A has an equal probability to win both games G0 and G1. Again, we can
set restrictions for the games so that for large enough t, the double implication
cdt

⋆(G0,G1) > 0 ⇔ G0 6≡ G1 always holds and cdt
⋆(·, ·) becomes a distance mea-

sure. Hence, the name computational distance is still justified.

Different description styles. Although a game is just a two-party protocol
between an honest challenger G and a malicious adversary A, different crypto-
graphic formalisms use different ways to describe games, see Fig. 3.2.

One viable option is to fully specify actions of the challenger together with a
rigid messaging schedule for the protocol as we specified for IND-CPA games.
Such a description style is the oldest and most widespread in cryptographic lit-
erature. More formally, a challenger-centric description specifies a game as
an oracle algorithm G that internally calls out a stateful subroutine A until G
reaches some output or is halted due to abnormal behaviour of A. Sometimes,

4Here, we just eliminate accidental exposure of timing artefacts, since we can re-introduce
timing information in a controlled way by modifying the description of the game.

28 3. HYPOTHESIS TESTING

Os

O1

O2

.

.

.

Of

S
h
a
r
e
d

v
a
r
ia

b
le

s

A

G

A1

A2

A3

.

.

.

An

S
h
a
r
e
d

v
a
r
ia

b
le

s

G

out

A A G

out out

Figure 3.2: Duality between challenger- and adversary-centric game descrip-
tions. Both formalisations describe the interactive process shown in the middle.

the adversary A is even represented as a collection of different stateless algo-
rithms A1, . . . ,An that communicate by using shared variables.

The main virtue of the challenger-centric description is simplicity. For games
with a deterministic scheduling, it is the most natural approach. However, for
non-deterministic scheduling, the approach quickly becomes cumbersome and
tedious. A reader can easily verify this by formalising the description of IND-
CCA2 games without explicit use of decryption oracles.

Another compelling alternative is an adversary-centric description of games.
Compared to the challenger-centric description, the tables are turned—the algo-
rithm A internally calls out a subroutine G, until G provides the desired output.
Formally, the challenger code is split into smaller threads Os,O1, . . . ,On,Of that
are scheduled according to the adversary’s requests. The game is started by an
oracle Os that initialises all necessary variables and provides input to the ad-
versary A. Next, A can interact with oracles O1, . . . ,On by submitting queries
and receiving replies. To end the game, A calls out the finalisation procedure
Of that computes the output of the game out ∈ {0, 1,⊥}. Note that oracles
Os,O1, . . . ,On,Of as threads of the same program can communicate through
shared variables and thus force constraints on the adversarial behaviour.

As an example, consider the adversary-centric description of the IND-CPA
games. The corresponding initialisation oracle Os runs the key generation algo-
rithm Gen and stores the corresponding key pair (sk, pk). The oracle Os always
replies pk to all queries that A makes. The second oracle O1 can be queried
only once. Given a message pair (m0,m1), the oracle O1 replies Encpk(m0) or
Encpk(m1) depending on whether we are in the game G0 or in the game G1. The
finalisation oracle Of always outputs the first message sent by A.

We emphasise that both description styles have their advantages and draw-
backs and it is only a matter of taste which syntactic sugar we choose. In short,
the challenger-centric approach forces constraints explicitly through message
scheduling, whereas the adversary-centric approach forces constraints implic-
itly through cooperative behaviour of oracles. Generally, the adversary-centric
approach is better in the context of complex interactions, since it is well suited
for non-deterministic scheduling. However, a suitable compromise between the
two approaches can often be even more descriptive and concise.

Indistinguishability and semantic security. A game corresponds to an in-
teractive hypothesis testing scenario if the challenger G always outputs the last
reply from the adversary A. Note that the argumentation given in Section 3.2

3. HYPOTHESIS TESTING 29

also holds for interactive hypothesis testing. More precisely, let {Gs}s∈S be a
set of games such that any pair of them is computationally indistinguishable. In
that case, the corresponding proofs in Section 3.2 still hold and consequently
bounded adversaries cannot restore even partial information about s. Hence,
confidentiality of secret inputs can be stated in terms of indistinguishability.

Naturally, the exact formulation is not as simple as that. Protocols usually leak
some information about secret inputs and thus the pairwise indistinguishability
of games is not always achievable. Moreover, interactive hypothesis testing forms
only a small subclass of games, i.e., games can specify more complex properties,
such as consistency and verifiability of protocol outputs. We discuss these issues
further in Chapters 5 and 7.

30 3. HYPOTHESIS TESTING

4 CRYPTOGRAPHIC PROOF TECHNIQUES

Games are powerful tools for analysing interactive computations, as they are
flexible enough to capture any attack pattern needed to define a specific design
goal, such as authenticity, confidentiality or fairness. Moreover, the strength of a
cryptographic construction is often quantified as an advantage

AdvG(A) = Pr [GA = 1] (4.1)

against a specific game G. Therefore, we must often upper bound advantages
in order to prove the security of a primitive or a protocol. To establish these
bounds, we can use either direct or conditional proofs. Direct proofs use Peano
axiomatisation of arithmetic and nothing more, whereas conditional proofs rely
on additional assumptions, such as the hardness of factoring or P 6= NP.

Note that direct proofs are somewhat trivial in the settings where the running
times of all participants are bounded. Since there is only a finite number of
different adversaries and a finite number of relevant random bits, maximising the
advantage AdvG(A) is a discrete optimisation task over a finite set. Hence, for
most cryptographic problems there exists either an exhaustive proof or an explicit
counterexample. However, the verification time for such proofs is gargantuan,
compared to the time bounds established in them. Hence, direct proofs are
useful only if they are compact enough to be efficiently verifiable.

Unfortunately, no compact direct proofs have been discovered so far in cryp-
tography. One of the few non-trivial results is a construction of a permutation
that can be inverted approximately 2 times slower than computed [Hil92] and
any significant advance in this field is believed to be hard [Mas96].

As a way out, we take the existence of certain cryptographic primitives for
granted and build everything else on top of these basic primitives. As a result, we
can use indirect conditional proofs to establish security. More precisely, it is suf-
ficient to prove that a construction can be insecure only if some basic primitive
fails to meet the specification. Moreover, the approach separates abstract design
goals form practical implementation details. Still, we cannot completely ignore
complexity theoretical details, or otherwise we end up with basic primitives that
cannot be implemented at all. Consequently, the choice of basic primitives
should always reflect our beliefs in various complexity theoretical conjectures.
Also, note that the choice of basic primitives determines the abstraction level.
For example, we can use basic primitives to model high-level properties, such as
one-way functions or IND-CPA secure cryptosystems, or more specific compu-
tational assumptions, such as intractability of factoring RSA composites.

In this chapter, we show how to decompose conditional proofs into small ele-
mentary steps that are easy to apply and verify. The verification procedure itself
can be completely formalised. In fact, it is possible to construct a hypothetical
proof system CRYPROOF that automatically verifies a proof and computes the
corresponding security guarantees, see the discussion in Section 4.5.

4. CRYPTOGRAPHIC PROOF TECHNIQUES 31

4.1 REDUCTIONS AS REWRITING RULES

Although the use of abstract security properties simplifies proofs and makes them
more universal, it also brings along some drawbacks. In particular, such a choice
restricts the structure of possible proofs. Let us consider the IND-CPA cryptosys-
tem as an illustrative example. Recall that a public-key cryptosystem is spec-
ified by efficient algorithms Gen,Enc,Dec and a functional requirement that
Decsk(Encpk(m)) ≡ m for every key pair (sk, pk) ← Gen. There are no re-
strictions as to how a cryptosystem must operate or what its internal structure is.
Hence, a new construction built on top of the (t, ε)-IND-CPA cryptosystem can-
not use any other operations than Gen,Enc,Dec to manipulate keys, messages
and ciphertexts. Of course, such restrictions do not extend to potential adver-
saries. As the construction assumes nothing about the implementation details,
the provable security guarantees must hold for all implementations of (t, ε)-IND-
CPA secure cryptosystems regardless of how bizarre they might seem. Thus, the
only way to prove security is to show that the insecurity of the construction im-
plies an explicit contradiction with the IND-CPA security premise.

More generally, the abstraction of security properties always leads to indirect
proofs with identical structure where one must prove cdt1

⋆ (G0,G1) ≤ ε1 from
premises of type cdt0

⋆ (Q0,Q1) ≤ ε0. The corresponding indirect proof shows
that an assumption cdt1

⋆ (G0,G1) > ε1 implies a contradiction cdt0
⋆ (Q0,Q1) > ε0.

The heart of the proof is a code transformation rule (reduction), which converts
any t1-time adversary A to a t0-time adversary B such that

Advind
G0,G1

(A) > ε1 =⇒ Advind
Q0,Q1

(B) > ε0 . (4.2)

Most of the reductions are black-box reductions, where B internally runs A in
the black-box manner to play the gamesQ0 andQ1. That is, B analyses only the
messages that A writes on the communication and input-output tapes. However,
B controls all external factors influencing A: inputs, random coins, received
messages and used timers. In particular, B can always restart A with different in-
puts, replies and random coins or just rewind A back to any other suitable state.
In white-box reductions, the dependence between A and B can be arbitrary, for
example B can actively alter the internal variables of A.

If game pairs (G0,G1) and (Q0,Q1) are similar enough, it is often advanta-
geous to construct a reduction where B simulates the game Gi to A. Fig. 4.1
depicts an illustrative example where games G0 and G1 differ only by a single
line c ← Encpk(m0) versus c ← Encpk(m1). More formally, in the game Gi the
challenger generates (sk, pk) ← Gen, interacts with A and somehow obtains a
valid message pair m0,m1 ∈ M. Next, the challenger computes an encryption
c ← Encpk(mi) and then continues with the game Gi. Now consider an ad-
versary B against IND-CPA games that first obtains pk from the challenger and
then simulates the game Gi to A until the line c ← Encpk(mi) is reached. Next
B outputs (m0,m1) and uses the reply as c and finally outputs GA

i .
Note that the simulation of Gi is possible only if sk is not used in the game.

Similarly, the line c ← Encpk(mi) must be reachable only once, or otherwise B

violates the rules of IND-CPA gamesQi. If these two preconditions are satisfied,
B simulates the game Gi perfectly and thus Pr [GA

i = 1] = Pr [QB
i = 1]. Con-

sequently, we have proven that cdt
⋆(G0,G1) ≤ ε if the cryptosystem is (t + τ +

O(1), ε)-IND-CPA secure, where τ is the running time of Gi. More precisely,

32 4. CRYPTOGRAPHIC PROOF TECHNIQUES

B

· · ·
Ask for pk.
· · ·
m0 ← · · ·
m1 ← · · ·
Output (m0, m1) and ask for c.
· · ·

return . . .

GA
0

· · ·
(sk, pk)← Gen

· · ·
m0 ← · · ·
m1 ← · · ·
c← Encpk(m0)
· · ·

return . . .

GA
1

· · ·
(sk, pk)← Gen

· · ·
m0 ← · · ·
m1 ← · · ·
c← Encpk(m1)
· · ·

return . . .

Figure 4.1: A schematic description of an IND-CPA reduction. By construction,
the adversary B = BA on the left simulates perfectly a game GA

i on the right.

the claim only holds for RAM machines, since the simulation of GA
i can take

more time on a Turing machine due to tape rewinding.
Note that the reasoning above holds for any game pair (G0,G1) that satisfies

the preconditions. Moreover, such semi-transparent reasoning is common in
cryptography. In fact, any valid reduction proof implicitly specifies a code trans-
formation T that preserves computational closeness under certain preconditions
P . The closeness guarantee S is often in the form: if the conditionP holds for G0

and G1 = T (G0) then cdt
⋆(G0,G1) ≤ ε. For such reductions, we use shorthands

G0
T

==⇒
ε
G1 to emphasise the bound on the computational distance.

Definition 1. A reduction schema is a triple (P , T ,S), where P is a precondi-
tion, T is a code transformation and S is the corresponding security guarantee.

These reduction schemata significantly simplify the derivation of security
proofs. It is much easier to test whether a certain precondition holds than to
construct the same reduction over and over again. However, we should note
that reduction schemata are not usually rigorously formalised and applied, rather
they are used informally to construct complex reductions as proofs.

Generally, each basic primitive introduces at least one reduction schema,
but there can be more than one schema for each of them. Since reductions
schemata can have different preconditions and security guarantees, the major
task in cryptography is to identify triples (P , T ,S) that are optimal, i.e., P can-
not be weakened or T generalised without changing S. Note that compiling a
security proof, given a proper set of optimal reduction schemata, is just a plain
engineering task. In other words, such an approach can be viewed as a further
modularisation of cryptographic proofs into trivial and non-trivial portions.

4.2 REDUCTIONS AND TIME-SUCCESS PROFILES

Any attack against a cryptographic construction or a protocol is a trade-off be-
tween desired goals and available resources. It is possible to break any con-
struction by applying a sufficient amount of computational resources, unless it
is information-theoretically secure. At the same time, additional computational
resources increase the cost of the attack and thus a rationally behaving attacker
must find a proper balance between estimated losses and potential gains.

4. CRYPTOGRAPHIC PROOF TECHNIQUES 33

The time-success profile is the most obvious way to describe trade-offs be-
tween the losses and gains. For many security objectives, we can construct a
game G such that the advantage AdvG(A) = Pr [GA = 1] quantifies the success
probability of an adversary A. Now a time-success profile is a function

ε(t) = max
A∈A(t)

AdvG(A) , (4.3)

where A(t) consists of all t-time adversaries. Note that the time-success profile is
well-defined for every concrete construction or primitive. In fact, a time-success
profile is even computable by exhaustive inspection of all possibilities. However,
such a process is clearly intractable for all practical constructions and thus we
can only approximate time-success profiles. One possibility is to view a crypto-
graphic reduction as a rule that combines time-success profiles of basic primi-
tives into a time-success profile of a new construction. More precisely, we get an
upper bound on the time-success profile in terms of basic primitives.

Unfortunately, even the approximate shapes of time-success profiles are un-
known for all cryptographic primitives used in practice. Only some indicative
results have been established for uninstantiable generic models. For example,
the time-success profile of the discrete logarithm and Diffie-Hellman problem is
known to be Θ(t2) in generic groups [Nec94, Sho97, SJ00]. Analogous results
are known for the RSA root finding problem in generic rings [DK02, LR06].

Time-success ratio is a more conservative alternative for approximating time-
success profiles. The term itself was first proposed in the context of asymptotic se-
curity [HL92, Lub96], but it has a natural interpretation also for a fixed primitive
in the exact security setting. Namely, one can estimate the minimal time-success
ratio α for a primitive and thus fix a linear upper bound:

α = min
t

t

ε(t)
⇐⇒ ∀t : ε(t) ≤ t

α
. (4.4)

If the time-success profile has a globally convex-cup shape, then α is the mini-
mum time needed to completely break the primitive, see Fig. 4.2. For many low
level primitives, the adversary can compute the output GA by himself, e.g., verify
that he or she has factored a large number or has found a discrete logarithm. For
such primitives, the time-success profile becomes approximately convex-cup if
the adversary can restart1 the security game at any point. Then an estimate on
the minimal breaking time is a theoretically sound estimate of α.

A time-success profile captures the essential information about the crypto-
graphic construction. In particular, one can assess how secure the construction
is in real world scenarios. For a moment, consider the security against ratio-
nal adversaries that always choose the most beneficial attack. To analyse such
behaviour, we must rescale the time and success axes so that they represent ex-
pected losses and gains, see Fig. 4.2. Obviously, the cost of an attack depends
on the computational complexity. Let x(t) be the correspondence between run-
ning time and computing costs. Similarly, there is a connection between success
probability and the potential utility y(ε) in dollars. Note that besides direct ob-
jective costs, an adversary may have indirect subjective costs, such as a threat

1If the problem is randomly self-reducible, the adversary can restart the game internally.
Therefore, the profile is approximately convex-cup for the discrete logarithm problem.

34 4. CRYPTOGRAPHIC PROOF TECHNIQUES

Li
ne

ar
bo

un
d

Shoup’s bound

T
ru

e
bo

un
d

ε

1

0
t

280 281α

Payo
ff bound

S
o
ci
a
l
a
tt

a
ck

Cry
pt

og
ra

ph
ic

at
ta

ck

Gain

1M

1

1µ

Cost
1K 1M 100M

Figure 4.2: A hypothetical time-success profile for a discrete logarithm problem
and the corresponding cost-gain profile in the case of 1 million dollar award. The
left graph is given in the linear and the right in the logarithmic scale.

to ruin his or her reputation by attacking. Analogously, the correspondence be-
tween success probability and potential gains may be nonlinear.

Evidently, a construction is secure against rational adversaries if the costs are
always greater than the potential gains. Since an adversary may also conduct
physical and social engineering attacks, the whole system may still be insecure,
even if the cryptographic construction is secure, see Fig. 4.2. Ideally, the crypto-
graphic strength should be comparable to other weaknesses, as the use of overly
complex cryptographic primitives leads to unjustified maintenance costs.

Not all entities behave rationally. Some of them may want to cause maximal
achievable damage even at any cost. To analyse such scenarios, we must turn
the tables and consider the situation from the perspective of legitimate users. In
particular, we must use different rescaling such that the x(t) axis still represents
the potential costs of an attack, whereas y(ε) counts potential losses of legitimate
users, including the resources needed to run the system. As a result, we can
estimate the losses in terms of available resources and thus compare different
protection mechanisms with different profiles. In particular, it may turn out that
the most cost-efficient solution is to have no protection at all.

Since time-success profiles are so important, it is crucial to understand how
cryptographic reductions change these profiles. In the simplest case, one can
prove that a (t1, ε1)-attack against a construction can be converted to a (t0, ε0)-
attack against the basic primitive. The corresponding tightness factor

β(ε1, t1) =
α1

α0

=
t1ε0

t0ε1

(4.5)

characterises the inevitable security loss, i.e., how much does the bound on the
total breaking time decrease. Again, the tightness factors have been used in the
context of asymptotic security [HL92, Lub96], but the corresponding classifica-
tion [Lub96, p. 21–34] of reductions is too coarse for our purposes.

For more precise classification, consider the correspondence between time-
success profiles. Fix a linear target bound ε1 = Θ(t1). In such case, a reduc-
tion is linear if it leads to a linear bound ε0 = Θ(t0). Most cryptographic
reductions are linear but complex reductions can lead to convex-cup bounds
ε0 = Θ(tk0). The constant k ≥ 1 determines the order of the reduction, for
example, a reduction is quadratic if ε0 = Θ(t20). Since we normally start with
linear bounds ε0 = Θ(t0) for basic primitives, we get convex-cap security guar-
antees ε1 = Θ

(
k
√
t
)

for the derived construction or primitive. Such a shape is

4. CRYPTOGRAPHIC PROOF TECHNIQUES 35

GA
0

(sk, pk)← Gen

(m0, m1)← A(pk)
c1 ← Encpk(m0)
b← A(c1)
if b ∈ {0, 1} then return b
c2 ← Encpk(m0)
return A(c2)

GA
2

(sk, pk)← Gen

(m0, m1)← A(pk)
c1 ← Encpk(m1)
b← A(c1)
if b ∈ {0, 1} then return b
c2 ← Encpk(m1)
return A(c2)

Figure 4.3: Two-stage attack against a public-key cryptosystem.

quite unsuitable from game theoretical viewpoint, as it increases the potential
payoff in a low costs range and also increases the bound on α1.

Sometimes, it is possible to provide several reductions for the same problem.
Often, these reductions have incomparable structure and security bounds. Then
the comparison of tightness factors β(ε1, t1) provides some insight. Assume that
basic primitives have linear time-success bounds. Then a reduction with the
largest tightness ratio allows us to choose a primitive with the smallest α0 and
thus we gain efficiency without changing the security level.

Finally, the tightness ratio characterises the robustness of the bounds. As all
current estimates on the security of cryptographic primitives are heuristic, they
are likely to change in the future. The ratio β characterises how big the corre-
sponding changes in derived security guarantees are.

4.3 SURPRISING PROPERTIES OF CONDITIONAL PROBABILITIES

Before we investigate standard proof techniques, it is instructive to consider com-
mon dangers first. In particular, note that conditional probabilities often behave
counter-intuitively and the corresponding confusion can cause subtle argumen-
tation flaws in security proofs. Let us start with a simple example and analyse
games G0 and G2 in Fig. 4.3 under the assumption that a cryptosystem is (t, ε)-
IND-CPA secure. Note that the adversary A must distinguish between cipher-
texts of messages m0 and m1 but differently from IND-CPA games, the adversary
A can choose not to answer. Namely, if b ∈ {0, 1} then the challenger accepts b
as a final guess, otherwise a new ciphertext c2 is generated and the adversary A

gets a second chance. In other words, if b ∈ {0, 1}, then A plays the IND-CPA
game with the challenge c1 and otherwise A plays the IND-CPA game with chal-
lenge c2. Hence, it would be natural to assume that the following inequalities
should hold for any t-time adversary A:

Adv1(A) = |Pr [GA

0 = 1|b ∈ {0, 1}]− Pr [GA

2 = 1|b ∈ {0, 1}]| ≤ ε , (4.6)
Adv2(A) = |Pr [GA

0 = 1|b /∈ {0, 1}]− Pr [GA

2 = 1|b /∈ {0, 1}]| ≤ ε . (4.7)

However, neither of these inequalities (4.6) and (4.7) holds, as efficient adver-
saries A1 and A2 depicted in Fig. 4.4 achieve Adv1(A1) = Adv2(A2) = 1. For
the proof, note that if messages differ m0 6= m1, then a collision Encpk(mj) =
Encpk(mi) impliesmi = mj . Therefore, A1 outputs a correct answer if b ∈ {0, 1}

36 4. CRYPTOGRAPHIC PROOF TECHNIQUES

A1

given pk

reply m0 6= m1

given c1

ĉ0 ← Encpk(m0)
ĉ1 ← Encpk(m1)
if c1 = ĉ0 then reply 0
if c1 = ĉ1 then reply 1
if c1 /∈ {ĉ0, ĉ1} then reply 2

given c2

return 0

A2

given pk

reply m0 6= m1

given c1

ĉ0 ← Encpk(m0)
ĉ1 ← Encpk(m1)
if c1 ∈ {ĉ0, ĉ1} then reply 2
if c1 /∈ {ĉ0, ĉ1} then reply 0

given c2

if c1 = ĉ0 then return 0
if c1 = ĉ1 then return 1

Figure 4.4: Adversaries A1 and A2 which achieve Adv1(A1) = Adv2(A2) = 1.

and A2 outputs a correct answer if b /∈ {0, 1}. Hence, we have proven that

Pr [GA1

0 = 1|b ∈ {0, 1}] = 0 , Pr [GA1

2 = 1|b ∈ {0, 1}] = 1 , (4.8)
Pr [GA2

0 = 1|b /∈ {0, 1}] = 0 , Pr [GA2

2 = 1|b /∈ {0, 1}] = 1 . (4.9)

Note that the drastic discrepancy between superficial estimates (4.6) and (4.7),
and true bounds (4.8) and (4.9) is caused by the unintentional mismatch of prior
probabilities in the reasoning. Namely, the inequality (4.6) follows from IND-
CPA security only if Pr [b ∈ {0, 1}] = 1, but the actual probability Pr [b ∈ {0, 1}]
can be arbitrarily small. Flaws in the derivation of (4.7) are analogous.

A similar flaw, but in a much more subtle form appears in the classical proofs
of the PRP/PRF Switching Lemma (Theorem 5.1 in [IR88]). The error itself
was discovered alarmingly late, in 2004, by Kohno, see the discussion in [BR04].
The theorem estimates a statistical distance between two games G0 and G1. In
the game G0 the challenger chooses a function f uniformly from the set of all
functions f : X → X , whereas f is a uniformly chosen permutation on X in the
game G1. The task of an adversary A is do distinguish these games by adaptively
querying at most q values of f(xi). Note that any deterministic strategy A can
be formalised as a tree, where the nodes represent queries f(xi) and the edges
correspond to the responses as illustrated in Fig. 4.5. In the game G0 all paths
are possible, whereas no path that leads to a collision f(xi) = f(xj) is possible
in G1. In both games, the probability to reach a plausible node depends only on
the number of queries. Now if A always makes exactly q distinct queries, then

Pr [GA

1 = 1] = Pr [GA

0 = 1|¬Collision] (4.10)

as nodes are sampled with uniform probability. However, if A decides to stop
earlier in some paths, then conditional probabilities Pr [node|¬Collision] start to
differ between the games. For example, the conditional probabilities from left
to right on the decision border in Fig. 4.5 are

(
0
7
, 1

7
, 1

7
, 0

7
, 1

7
, 1

7
, 3

7

)
in the game G0

and
(

0
6
, 1

6
, 1

6
, 0

6
, 1

6
, 1

6
, 2

6

)
in the game G1. Therefore, the equation. (4.10) is not

guaranteed to hold when A halts prematurely in some paths. Consequently, in
the strict sense, the proofs given in [IR88, BKR94] are correct as they consider
adversaries that make exactly q distinct queries. If we consider adversaries that

4. CRYPTOGRAPHIC PROOF TECHNIQUES 37

αi

1

1

3

1

9

βi

1

1

3

1

6

f(1)?

f(3)? f(2)? f(2)?

f(2)? f(2)? f(2)? f(3)? f(3)? f(3)? f(3)? f(3)? f(3)?

1
2

3

1 2

3 1 2

3 1 2

3

Figure 4.5: A querying strategy for X = {1, 2, 3} with premature stopping. The
dashed line denotes the decision border and αi, βi denote the probabilities of
plausible queries f(x1), . . . , f(xi) in the games G0 and G1, respectively.

can make up to q queries, then these proofs are indeed incorrect [BR04]. Nev-
ertheless, the final claim is still correct, as adversaries that make up to q queries
cannot outperform adversaries that make exactly q queries.

To summarise, reasoning about conditional probabilities is counterintuitive
and non-robust against microscopic changes in the security claims.

4.4 FROM GAME CHAINS TO PROOF TREES

Let us return to the first example posed in the previous section. Observe that the
description of G0 and G2 differ in two places, namely, ciphertexts c1 and c2 are
computed differently. As the secret key sk is not used in the games, we can apply
the IND-CPA reduction schema twice to G0 and obtain a game chain

GA
0

(sk, pk)← Gen

(m0, m1)← A(pk)
c1 ← Encpk(m0)
b← A(c1)
if b ∈ {0, 1} then . . .
c2 ← Encpk(m0)
return A(c2)

GA
1

(sk, pk)← Gen

(m0, m1)← A(pk)

c1 ← Encpk(m1)

b← A(c1)
if b ∈ {0, 1} then . . .
c2 ← Encpk(m0)
return A(c2)

GA
2

(sk, pk)← Gen

(m0, m1)← A(pk)
c1 ← Encpk(m1)
b← A(c1)
if b ∈ {0, 1} then . . .

c2 ← Encpk(m1)

return A(c2)

where the grey boxes emphasise changes. To represent reductions, we can write

G0
IND-CPA

====⇒
ε
G1

IND-CPA
====⇒

ε
G2 . (4.11)

Now if the cryptosystem is (t, ε)-IND-CPA secure, there exists a time bound
t1 = t − O(1) such that cdt1

⋆ (G0,G1) ≤ ε and cdt1
⋆ (G1,G2) ≤ ε. Hence, the

triangle inequality yields

cdt1
⋆ (G0,G2) ≤ cdt1

⋆ (G0,G1) + cdt1
⋆ (G1,G2) ≤ 2ε . (4.12)

More generally, we can use game chains as a systematic way to estimate compu-
tational distances. Moreover, note that for any t-time algorithm A

AdvG0
(A) = Pr [GA

0 = 1] ≤ cdt
⋆(G0,Gn) + AdvGn

(A) (4.13)

38 4. CRYPTOGRAPHIC PROOF TECHNIQUES

GA
0

(sk0, pk0)← Gen

(sk1, pk1)← Gen

x← {0, 1}
q ← A(pk0, pk1)
if q /∈ {0, 1} then return ⊥
c0 ← Encpk0

(x)
c1 ← Encpk1

(x)
return A(skq, c0, c1)

GA
1

(sk0, pk0)← Gen

(sk1, pk1)← Gen

x← {0, 1}
q ← A(pk0, pk1)
if q /∈ {0, 1} then return ⊥
c0 ← Encpk0

(x)
c1 ← Encpk1

(1− x)
return A(skq, c0, c1)

Figure 4.6: A game pair derived from the Bellare-Micali protocol.

and thus we can use game chains to also upper bound advantages against in-
dividual games. Often, such proofs are compressed further by combining the
elementary reductions into a single aggregate construction. The latter is known
as a constructive hybrid argument, see Section 6.7. However, this is just a trade-
off between compactness and clarity: complex reductions are much harder to
comprehend and verify than the corresponding elementary reductions.

It is important to note that not all security proofs can be represented as game
chains. See Fig. 4.6 contains for a specific counterexample. We remark that the
game pair is not arbitrary—slightly more sophisticated game pairs appear in the
security proof of the Bellare-Micali oblivious transfer protocol [BM89].

As the adversary A can decrypt only a single value ci, he or she cannot learn
whether c1 and c2 are ciphertexts of the same message or not. However, we
cannot use the IND-CPA transformation, as we do not know in advance whether
A uses a secret key sk0 or sk1. Hence, we must define four auxiliary games Gij

where Gij denotes a game Gi that is halted with ⊥ if q 6= j. As

Pr [GA

0 = 1] = Pr [GA

0 = 1 ∧ q = 0] + Pr [GA

0 = 1 ∧ q = 1] , (4.14)
Pr [GA

1 = 1] = Pr [GA

1 = 1 ∧ q = 0] + Pr [GA

1 = 1 ∧ q = 1] , (4.15)

the straightforward application of the triangle inequality yields

cdt
⋆(G0,G1) ≤ cdt

⋆(G00,G10) + cdt
⋆(G01,G11) . (4.16)

The analysis simplifies as games G00,G10 do not use sk1 and G01,G11 do not use
sk0. Consequently, we can now use IND-CPA transformation for both games:

G00
IND-CPA

====⇒
ε
G10 and G01

IND-CPA
====⇒

ε
G11 . (4.17)

Again, if the cryptosystem is (t, ε)-IND-CPA secure, there exists t1 = t − O(1)
such that cdt1

⋆ (G00,G10) ≤ ε, cdt1
⋆ (G01,G11) ≤ ε and thus cdt1

⋆ (G0,G1) ≤ 2ε.
This horizon-splitting technique can be generalised to handle any finite set of

exhaustive but mutually exclusive hypotheses H1, . . . ,Hn about the interaction
pattern in the game G. Namely, we can define narrowings of the game G:

GA
∣
∣
Hi

=

{

GA, ifHi holds ,
⊥, otherwise .

(4.18)

4. CRYPTOGRAPHIC PROOF TECHNIQUES 39

AdvG0(A) ≤ ε1 + ε2

G0

G1 G2 G3

G4 G5

⊥

⊥ ⊥

H1 H2
H3

ε1 ε2

cd
t

⋆(G0,G1) ≤ ε23 + ε45

(G0,G1)

(G2,G3) (G4,G5)

(G6,G3) (G4,G7)

G6 ≡ G3 G4 ≡ G7

ε23 ε45

H1 H2

Figure 4.7: Game trees together with the corresponding bounds. Simple arrows
represent horizon-splitting and double arrows represent reduction schemata.

where the verification ofHi is done by the challenger. Now, the ordinary triangle
inequality induces two tight splitting bounds

AdvG(A) ≤ AdvG|H1
(A) + · · ·+ AdvG|Hn

(A) , (4.19)

cdt
⋆(G0,G1) ≤ cdt

⋆(G0|H1
,G1|H1

) + · · ·+ cdt
⋆(G0|Hn

,G1|Hn
) . (4.20)

Horizon-splitting technique can be used whenever no elementary transfor-
mation is applicable due to the unknown behaviour of A. In a sense, splitting
bounds are more detailed analogs of the formal derivation rule

Γ, F ⊢ A Γ, G ⊢ A
Γ, F ∨G ⊢ A (4.21)

in logic that allows us to strengthen the assumptions by splitting the proof into
several branches. In our case, we get a game tree instead of a proof tree.

To summarise, we can bound the advantage AdvG(A) by constructing a game
tree such that all leaf level games Gi have trivial bounds AdvGi

(A) ≤ εi, since we
can use triangle inequalities (4.13), (3.23) and splitting bounds (4.19)–(4.20) to
estimate AdvG(A). Moreover, we can find a tight upper bound on the running
times by aggregating all time constraints corresponding to the edges of the game
tree. Similarly, we can bound a computational distance cdt

⋆(G0,G1) but the cor-
responding proof tree consists of game pairs. Namely, the pair (G0,G1) is a root
node and we can derive new nodes by applying reductions schemata to indi-
vidual components of a pair, or alternatively create several siblings by using the
horizon-splitting technique. Again, if all leaf level nodes (Gi,Gj) are bounded
cdt

⋆(Gi,Gj) ≤ εij , then we can use inequalities (3.23) and (4.20) to compute the
final bound cdt

⋆(Gi,Gj). See Fig. 4.7 for illustrative examples. Note that such a
proof technique is sound and complete. More formally, if we cannot represent a
valid handcrafted proof as a game tree, then we can view the proof itself as a new
reduction schema and thus obtain a two-element game chain.

This approach is particularly useful when we have to derive technically com-
plex proofs, since it is straightforward to apply and it is immune to argumenta-
tion flaws. At the same time, the corresponding proofs can be extremely boring
to read, since they are quite long and mechanical. Moreover, it is often easier
to construct reductions for specific games than to formalise respective reduction
schemata (P , T ,S). Thus, it is common to compress proof trees by providing
more complex handcrafted reductions after the proof is derived.

40 4. CRYPTOGRAPHIC PROOF TECHNIQUES

4.5 FORMAL VERIFICATION OF CRYPTOGRAPHIC PROOFS

The methodology outlined above has slowly evolved together with the concept
of exact security. As the main emphasis has always been on practical results,
the meta-analysis of proof methodology itself is rather recent. Only in the year
2004, Bellare, Rogaway and Shoup started to talk about game-playing proofs as
a general methodology [BR04, Sho04]. Although some interesting proof meth-
ods, such as [LMMS98, Mau02], have been published before, none of them has
claimed to be universal, as the approach [BR04] proposed by Bellare and Rog-
away. Next, Halevi took a step further and suggested that cryptographers should
build an automatic tool for generating, analysing and verifying the game-playing
proofs [Hal05]. The first proposal CRYPTOVERIF [BP06] for such a formal proof
system is now available. Notably, the authors have taken effort to transform the
ordinary program analysis lingo into an adversary-centric description language,
which is almost understandable without any prior preparation.

Despite the existence of CRYPTOVERIF and the corresponding extensive
documentation [Bla06b, Bla07] and numerous other approaches that work in
the asymptotic setting (e.g. [CV01, Bla01, Low97, MRST06]), the author still
feels compelled to explain the high-level structure of such a formal proof system.
Firstly, a majority of these systems are quite unnatural from a cryptographer’s
viewpoint, as they are formalised by logicians, who have put proof theoretical
aspects in the first place. Secondly, all of them are rather limited as they utilise
only reduction schemata and not the horizon-splitting technique. In fact, the
linearity of proofs is one of the main reasons why current automatic provers are
so successful. To be fair, we note that horizon splitting is not a well known
technique. In fact, only a weak form of it has been semi-officially published by
Dent [Den06]. Finally, thinking in terms of proof systems makes certain proper-
ties and limitations of conditional proofs more apparent.

In the following, we describe a proof system in which the emphasis is placed
on cryptographic aspects. In particular, note that the derivation of proofs is not
the main problem in cryptography, the actual problem lies in the verification
of subtle details. Hence, the automatic derivation of proofs is not a key feature
at all, although the system should handle mundane tasks in the proofs, such as
verification of the preconditions for various reduction schemata.

High-level description. Our hypothetical computer environment CRYPROOF

should be a proof system in a strict sense, i.e., it is just an interactive environ-
ment for proving cryptographic statements about advantages and computational
distances of different games. Secondly, CRYPROOF should directly manipulate
games that are given in challenger- or adversary-centric description style similar
to [BR04, App. B]. Since the imperative programming paradigm is dominant in
cryptography, all alternative description styles based on various forms of process
calculi have an extremely high entrance cost.2 Finally, CRYPROOF should do
the automatic bookkeeping and output the resulting time-success profiles given
a characterisation of basic primitives used in the construction.

Let us now briefly describe how one should use CRYPROOF. As explained in
the previous section, any security proof is a game tree and the CRYPROOF envi-

2Repeated switching between different programming paradigms is annoying both from a tech-
nical and cognitive viewpoint. Engineers and cryptographers just do not do subtitles!

4. CRYPTOGRAPHIC PROOF TECHNIQUES 41

(P1, T1,S1)
· · ·

(Pn, Tn,Sn)

(Pi, Ti,Si)

Advice

G

R
u
le

Pi,G

Pi(G)

Code
Transformer

Program

Analyser

Program

Annotator

User

Interface

T (G) G∗∗

Figure 4.8: High-level description of the proof system CRYPROOF.

ronment should assure that a game tree is properly formed. Hence, a single step
in CRYPROOF is either an application of a reduction schemata or a horizon-
splitting step. Testing the validity of horizon-splitting step is more straightfor-
ward, as we must check that hypotheses H1, . . . ,Hm are mutually disjoint and
exhaustive. The application of a reduction schema is more complex, see Fig. 4.8.
Essentially, we must check that a precondition Pi holds for the game G. Since
a precondition describes a non-trivial property of a program GA, the predicate
Pi(G) might be undecidable. Consequently, a user must be able to prove Pi(G)
by annotating the program G when automatic methods fail.

Any formal annotation method that makes the verification of Pi(G) easy is
suitable for the task. Hoare logic is one of the best choices, since it resembles
the way we actually reason about properties of a program. In a nutshell, Hoare
logic is a systematic way to label the code statements with pre- and postcondi-
tions. For example, a labelling {y ≤ 5} y ← y + 3 {y ≤ 8} means that if y ≤ 5
before the statement y ← y+3 then y ≤ 8 afterwards. Notably, only a small lan-
guage dependent set of derivation rules determines the labelling for the whole
algorithm. Thus, one can prove the correctness of the labelling by giving the
corresponding derivation tree. For more detailed discussion see [NN92].

Note that the challenger can always test whether Pi(G) holds for any partic-
ular run. Let G∗ be the description of a modified game, where the challenger
sets a flag bad← 1 if the precondition Pi(G) does not hold. Then a valid Hoare
triple {∅} (G∗)A{bad 6= 1} proves that the condition Pi holds for all runs of GA.
Consequently, a valid annotation G∗∗ that proves {∅} (G∗)A{bad 6= 1} is also a
proof for Pi(G). Moreover, all provable properties of an algorithm are provable
also in Hoare logic provided that one allows a sufficiently rich description lan-
guage for the pre- and postconditions [NN92]. Therefore, the annotation G∗∗
exists if and only if the condition Pi(G) is indeed provable.

All other operations, such as applying the transformations, constructing the
proof trees and computing various bounds, are straightforward. Clearly, the
database of reduction schemata {(Pi, Ti,Si)} is the central part of CRYPROOF,
since it captures the domain knowledge. Also, it is likely to be incomplete at
the beginning. Therefore, we must update it when handcrafted security proofs
reveal missing reduction schemata, i.e., some proofs cannot be formalised in
the CRYPROOF environment. The task of the system maintainer is to carefully
verify handcrafted proofs to extract and generalise the corresponding reduction
schema. The latter is the only non-engineering task in the long run.

Axioms and deduction rules. Normally, a domain of knowledge is formalised

42 4. CRYPTOGRAPHIC PROOF TECHNIQUES

by axioms. Indeed, all reduction schemata (Pi, Ti,Si) are axiomatic theorems.
However, it is far easier to interpret them as deduction rules and postulate that
one must apply reduction schemata until the leafs of game trees contain only
pairs Gi ≡ Gj or single games Gi ≡ ⊥, see again Fig. 4.7.

Note that our proof system must have deduction rules for code simplifica-
tions that do not change the behaviour of GA, such as algebraic manipulations
and dead code elimination. For advantage computations, we need a special
WRAP rule that formalises the intuition that advantage cannot decrease if we
push some computations from the honest challenger into the malicious adver-
sary. Similarly, the computational distance cannot increase if some messages
sent out by the challenger are dropped and never reach the adversary A.

The second group of transformations is used for manipulating cryptographic
primitives like Encpk(·) or Hash(·). As such symbols represent unknown func-
tions, we must finally eliminate them from a game G, otherwise it is formally
impossible to establish bounds on AdvG(A). Therefore, for every legitimate us-
age of a primitive, there must be an elimination rule. Consider a cryptosystem
(Gen,Enc,Dec) as an example. If a game G uses only the Gen symbol, then the
WRAP rule is sufficient to remove Gen. If a game G does not contain Decsk(·)
symbol, then IND-CPA and WRAP rule together are sufficient to eliminate Gen

and Encpk(·) symbols. For the Decsk(·) symbol, there are three alternatives.
The WRAP rule is sufficient if there are no Encpk(·) symbols, since key gener-
ation together with decryption can be wrapped into A. Secondly, in code lines
c← Encpk(m1), . . . ,m2 ← Decsk(c), we can simplify m2 ← m1. In the remain-
ing cases, we need IND-CCA2 transformation, as A can alter ciphertexts.

The third class of transformations is used in the probability analysis after all
cryptographic primitives are removed from the games. Such transformations are
extensively used in primitive design, where the elimination of all cryptographic
primitives can create difficult combinatorial problems. Notably, most of these
reductions are based on the BAD reduction schema, see [BR04]. In a nutshell,
we can substitute any code block seg0 with a block bad ← 1; seg1 provided
that seg0 is reached with low probability. Let GA

0 (ω) and GA
1 (ω) denote random

variables that correspond to the transformation G0
BAD

==⇒
ε
G1, where ω = (ωA, ωG)

consists of all random coins used by the adversary and the challenger. Then
values GA

0 (ω) and GA
1 (ω) can differ only if bad = 1 and we obtain

Advind
G0,G1

(A) ≤ Pr [ω←Ω∗ : GA

0 (ω) 6= GA

1 (ω)] ≤ Pr [ω←Ω∗ : bad = 1] .

To bound Pr [bad = 1], we have to specify a set Ω∆ ⊇ {ω ∈ Ω∗ : bad = 1} and
an estimate Pr [Ω∆] ≤ ε∆. Now if we omit the probability calculations, then
a valid annotation of the Hoare triple {ω /∈ Ω∆} GA

1 (ω) {bad = 0} is sufficient.
Hence, we can formally verify combinatorial transformations, which seem to be
the major hurdle in symmetric primitive design [Mau02, Hal05].

Relativised models. A conditional security proof is meaningful only if there
exists a plausible instantiation of abstract primitives. Since direct proofs are prac-
tically out of reach, we must indirectly verify that various abstract demands for
the primitive are not contradictory. More precisely, we need a computational
model, where all instantiations of all basic primitives do exist and are provably
secure. As we use black-box specification for all primitives, it is straightforward
to build such a model by employing external oracles.

4. CRYPTOGRAPHIC PROOF TECHNIQUES 43

For concreteness, we construct a model for IND-CPA secure cryptosystem.
Assume that an external oracle O provides replies to Gen, Enc and Dec queries.
To serve the ith query Gen, the oracle draws ri ← {0, 1}n, stores (i, ri) and
outputs a key pair ((i, ri), i). To serve Enc(i,m), the oracle stores m into the
first open slot of an array (mij)

∞
j=1 and returns the corresponding index num-

ber j0. Let Dec((i, r), c) = ⊥ if no recorded secret key coincides with (i, r)
and Dec((i, r), c) = mic otherwise. Note that the cryptosystem is functional
and (t · 2−n, t)-IND-CPA secure, since any t-time adversary can try out only t
potential secret keys and the ciphertext is independent from a message.

Limitations of conditional proofs. It is not trivial to guess whether a con-
ditional proof provides optimal security bounds or whether a security claim is
provable at all. To solve such conundrums, we can provide counterexamples
for establishing that we cannot have a conditional proof unless we add new as-
sumptions. Commonly, these proofs describe a relativised world, where all basic
primitives exist but a new construction is insecure. As a result, there are no
valid security proofs provided that the proof system itself is consistent. However,
these oracle separation results do not eliminate the possibility of direct proofs, as
the additional usage of Peano axioms might reveal additional relations between
abstract security properties that make these proofs possible.

For stronger separation results, we need to construct a counterexample from
the basic primitives that are assumed to exist. Namely, we must construct a
secondary set of weakened primitives that explicitly invalidates the hypothetical
security claim. Such a black-box separation proves that there are no valid security
proofs as long as the initial set of basic primitives exists and the proof system
itself remains consistent. The separation itself can be as artificial as needed.
For example, we can prove that IND-CPA security is insufficient for IND-CCA2
security by defining a new encryption rule Encpk(m) = b‖Encpk(m) where b ←
{0, 1}. To decrypt a message, one just has to omit the first bit. Clearly, the
new cryptosystem is (t, ε)-IND-CPA secure whenever the original cryptosystem
is (t+ O(1), ε)-IND-CPA secure, but not IND-CCA2 secure, as we can flip the
first bit of the encryption to fool the decryption oracle.

As there are many sub-optimal ways to prove security, separation techniques
are often employed to show that obtained security guarantees are tight or at least
near-optimal. At the same time, such separation results do not guarantee that
bounds remain optimal if we take a more fine-grained view on the construction
and break some basic primitives into smaller ones. Neither do these separation
results prove that some constructions are inherently insecure, sometimes they
just indicate underspecification of security premises.

44 4. CRYPTOGRAPHIC PROOF TECHNIQUES

5 SECURITY OF INTERACTIVE COMPUTATIONS

For obvious reasons, we can rigorously analyse only the security of well-specified
distributed computations. Such well-specified distributed algorithms are com-
monly referenced as protocols. Security analysis of protocols is one of the main
tasks in cryptography. Essentially, we can talk about security in two different con-
texts. We can analyse the security of a protocol in a stand-alone setting, where
participants do not execute any other protocols. Alternatively, we can consider
the security of a protocol in a wider computational context, where several proto-
cols are executed to achieve more complex computational goals. In this chapter,
we consider only stand-alone security.

Superficially, the stand-alone setting is quite restrictive, since protocol outputs
cannot be processed further. In Chapter 7, we show that this restriction is purely
formal and stand-alone security is sufficient to achieve sequential composability.
In layman’s terms, a protocol remains secure if no other protocols are executed
in parallel. For many settings, such a requirement is naturally forced by the
design of the system and thus the provided security level is sufficient. We discuss
these issues more thoroughly in the following chapters, as even the stand-alone
security model is complex enough to confuse non-experts.

The number of potential security models is humongous even in the stand-
alone setting. There are literally hundreds of different security models that char-
acterise various practical settings. Although only few of them are well studied,
the others are equally meaningful. Therefore, we concentrate on the real versus
ideal world paradigm that forms the core of all security models.

The real versus ideal world concept itself is easy to formalise—a protocol in-
stance is secure if it is sufficiently similar to an ideal implementation. However,
it is somewhat nontrivial to describe what the similarity between real and ideal
world exactly implies or what happens if we change some minor details in the
formalism. Thus, we start with basic consistency principles that must hold for
any reasonable formalisation. Next, we consider what security levels are achiev-
able in the ideal setting. Although the latter may seem a rather absurd question
to ask as we cannot do any better, it is actually one of the most important ones.
If the risks caused by joining an ideal world protocol are not rewarded by the po-
tential gains, then the whole task is hopeless from the start and there is no reason
to design a cryptographic solution at all. Secondly, the ideal world behaviour
also reveals what kind of properties must be preserved by the correspondence
between real and ideal world adversaries.

As a result, we can justify all details of the ideal versus real world approach
from a game theoretical viewpoint. The latter provides stronger validity guaran-
tees, since all security definitions that contradict or ignore economical princi-
ples are meaningless in practice. Secondly, only a deep understanding of de-
sired security goals provides a justified way to choose a proper security model.
Essentially, there are four basic levels of security ranging form input-privacy to
complete security and all of them are covered in this chapter. More advanced
topics, like asymptotic security and setup assumptions, are left out and are treated
separately in remaining chapters.

5. SECURITY OF INTERACTIVE COMPUTATIONS 45

5.1 FORMAL REQUIREMENTS TO SECURITY DEFINITIONS

Before we actually start formalising various security goals, it is wise to contem-
plate what software and hardware designers mean by the terms ‘attack’ and ‘secu-
rity’ and what kind of results are expected from cryptographers. These questions
are often considered trivial and thus ignored. The ignorance is often rewarded
by aesthetically pleasing formalisations and beautiful theories. But at the same
time, these results can be cumbersome, not to say completely unrelated to the
demands of everyday life. Beautiful theories that are touching the limits of math-
ematical reasoning are not something to be ashamed of. However, we choose a
viewpoint that is as close to practice as possible.

Obviously, all security definitions must be well defined and non-contradictory
with itself. Briefly, a cryptographic construction either meets the security defi-
nition or not and alternative descriptions of a same construction are either all
secure or all insecure. This property is known as internal consistency.

However, the definition has to be appropriate also for practical settings, or
otherwise we have hopelessly departed from reality. To assure that a security
definition has a clear interpretation in practice, we postulate four restrictions to
capture external consistency. First, the effect of an attack must be observable
and unambiguously detectable, as emphasised by the restrictions (C1)–(C2).
Second, a security notion must be defined as a resistance level against potential
attacks, as emphasised by the remaining restrictions (C3)–(C4).

(C1) The effect of a successful attack must be observable. If an attack induces
changes that manifest only in the internal retrospection of a participant
and not in any observable outcome, then the attack is not successful.

(C2) For each protocol run and each attack against the protocol, it must be
possible to determine whether the attack was successful or not. More for-
mally, the overall success of an adversarial strategy A is quantified in terms
of an appropriate game G such that GA ∈ {0, 1,⊥} and the advantage
Pr [GA = 1] is the corresponding quantitative measure.

(C3) A construction is secure if no plausible adversarial algorithm is success-
ful enough. For example, a construction is (t, ε)-secure if the advantage
Pr [GA = 1] ≤ ε, for all plausible t-time adversaries A.

(C4) Adding restrictions to attack algorithms can only increase the security level.
For example, if a construction is (t1, ε)-secure and not (t2, ε)-secure for
t1 > t2, the corresponding success criterion is inconsistent.

Let us emphasise some details before going any further. First, it is really im-
possible to detect how a person or an algorithm internally perceives the situation
when there is no measurable outcome. Moreover, we as designers are often in-
terested only in certain behavioural aspects. For example, the output of a poker
automate does not have to be truly pseudorandom. A player may even register
certain regularities, but the latter is completely irrelevant as long as it does not
change his or her gaming behaviour or winning odds.

Secondly, the external consistency requirements are crucial only in the con-
text of practical security, where one has to make economical decisions based on
cryptographic results. Consequently, cryptographic definitions may violate some

46 5. SECURITY OF INTERACTIVE COMPUTATIONS

of the postulates (C1)–(C4), as long as they are used as tools to achieve exter-
nally consistent security goals. For example, the original definition of universal
composability [Can01] violates assumptions (C2)–(C3), and at first glance some
asymptotic definitions of statistical security [Gol04, Can00a] contradict postu-
lates (C3)–(C4). For clarity, we note that universal composability has also an
externally consistent formulation [Lin03b, Can00b], and that the problems with
statistical security are caused by ambiguities in the interpretation, see Section 7.6
and Section 6.2. Nevertheless, one can view the external consistency postulates
as a litmus test for detecting possible errors in the formalisations.

Thirdly, a bound of the total running time is often a too coarse measure for
defining a class of plausible adversarial strategies. For most protocols, an adver-
sary must provide replies to the other participants in a certain time frame and it is
justified to quantify online and offline complexity of the attack. Now, if we add
some additional constraints, then the conditions (C3)–(C4) must be modified
accordingly to capture all monotonicity requirements.

5.2 SECURITY OF IDEALISED COMPUTATIONS

Suitability of a cryptographic construction can be viewed as any other design
problem: we have to state some clear objectives and then assess the construction
in respect to them. For example, we may state that an e-voting scheme is secure
if one cannot submit incorrect votes, valid votes are correctly counted, and it is
impossible to disclose the choice made by an individual voter. However, such
a specification is incomplete, as it does not rule out other possible abuses. For
example, a voter may still be able to sell her vote, if she can disclose her vote
in an indisputable way to a potential buyer. We can add this restriction to the
black-list of malicious behavioural patterns but we can never be sure that the list
is complete. Also, it may be difficult to verify that such a black-list specification
is internally consistent, i.e., does not contain non-resolvable conflicts between
security goals. Therefore, a white-list based specification that explicitly states
what behavioural patterns are plausible is a far better alternative.

Let us start with some simplifying conventions. First, let symbols P1, . . . ,Pn

always denote the participants of a protocol. Second, a protocol must implement
some, possibly randomised, functionality f1, . . . , fn in order to be useful, i.e.,
each party should obtain yi = fi(x1, . . . , xn), where x1, . . . , xn are the inputs
of all participants. The computational process itself can be either non-adaptive
or adaptive. For non-adaptive protocols, the functionality f1, . . . , fn is known
ahead, whereas fi is determined dynamically during an adaptive protocol. In
this chapter, we consider only non-adaptive computations. Adaptive protocols
are normally composed from smaller non-adaptive basic blocks and thus it makes
sense to consider them together with composability in Chapter 7.

Additionally, we have to resolve the question whether the inputs x1, . . . , xn

are automatically deleted after the completion of a protocol or not. Both choices
are equally expressive but preserving the inputs is technically cleaner and looks
more natural. Therefore, we require that each non-corrupted node Pi outputs
zi = (xi, yi) at the end of the protocol. Such requirement makes it straight-
forward to consider the security in the scenarios, where the output zi is further

5. SECURITY OF INTERACTIVE COMPUTATIONS 47

x1 xn ⊘x2

· · ·

· · ·

Ideal implementation

π
◦

A
◦Pn

· · ·P1T

⊘ · · ·

P2

· · ·

· · ·

x1
x̂2

xn

y1 y2

yn

x2

y2

x̂2

zaz1 z1z2 zn z2
zn za

Figure 5.1: Ideal implementation of a protocol π. An example attack on the left
and a schematic description as an abstract computational block on the right.

processed by Pi locally, or used as an input to another protocol.

Idealised computational process. Note that a protocol must reveal some
information about the inputs as long as it implements a desired functionality
f1, . . . , fn. Namely, if parties P1, . . . ,Pn run a protocol π, then each of them
must learn fi(x1, . . . , xn). Moreover, a malicious party Pi can always change
the outcome of Pj by choosing a different input x̂i instead of xi. Finally, a party
Pi may decide to halt in the middle of the protocol or not to participate at all.
Obviously, no cryptographic countermeasure can avoid these actions.

Cryptographers use a concept of ideal implementation to model such un-
avoidable attacks. The ideal implementation π◦ of a protocol is defined using
a trusted third party T that does all computations on behalf of the others, see
Fig. 5.1. That is, all participants P1, . . . ,Pn first submit their inputs x1, . . . , xn

securely to the trusted third party T. Next, the trusted third party T computes
the desired outcomes yi ← fi(x1, . . . , xn) and sends them securely back to the
participants P1, . . . ,Pn. In particular, if a party Pi does not submit his or her
input xi, the protocol is halted and T sends ⊥ to all participants. As a result,
either all participants will get their desired outputs or neither of them will.

Alternatively, we can fix a schedule how T must deliver the replies and allow
participants to stop T. More formally, a participant Pi must send zero-one verdict
to T after receiving yi. If a participant Pi sends 1, T continues as usual, otherwise
T halts and sends ⊥ instead of all remaining replies yj .

The second idealised model does not guarantee fairness, since a malicious
party Pi can force honest parties to compute fi(x1, . . . , xn) and halt compu-
tations before the others obtain their outputs. Clearly, it is easier to design
protocols without fairness. Moreover, fundamental limits already outlined by
Cleve [Cle86] imply that fairness is unachievable for two-party protocols and
protocols with honest minority. Although certain solutions like gradual release
of secrets [LMR83, BG89, GL90] and use of external referees [ASW98, CC00]
can alleviate the problem, none of them is universally applicable.

Tolerated adversarial behaviour. In many settings, participants can form coali-
tions to achieve their malicious goals. We model such behaviour by considering
an ideal world adversary A◦ which can corrupt some of the nodes P1, . . . ,Pn,
see again Fig. 5.1. The set of possible coalitions can be specified by listing all
possible subsets of parties that can be corrupted. The corresponding set of sets
A is called an adversary structure. Obviously, if it is possible to corrupt a subset

48 5. SECURITY OF INTERACTIVE COMPUTATIONS

A ∈ A, it is also possible to corrupt a subset B ⊆ A. Hence, we can always
assume that the adversarial structure A is monotone.

Exact details about the nature of a plausible corruption determine the maxi-
mal achievable damage. Adversarial behaviour can be static, adaptive or mobile.
A static adversary corrupts all participants already before the beginning of the
protocol. An adaptive adversary corrupts parties adaptively, based on the ac-
quired information; a mobile adversary can additionally retreat from corrupted
nodes. A mobile adversary respects the adversarial structure A if at any moment
in time, the adversary controls a subset of participants that belongs toA. We em-
phasise here that adaptive and mobile adversaries can corrupt participants also
after protocol values yi are sent out by T.

In a sense, the mobile adversary models the reality most precisely in large
infrastructures, whereas static and adaptive adversaries are more suited for small
well-protected networks. Two-party protocols always have static adversaries, as
the adversarial structure is simplistic A = {{P1} , {P2}}.
Non-standard ideal world models. Sometimes all parties P1, . . . ,Pn are guar-
anteed to be honest in the real world and the ideal adversary A◦ represents the
effects of malicious outsiders. For example, key agreement protocols [BR93a,
PV06b, LN06] try to resolve problems caused by malicious message transmis-
sion. In such cases, it is more natural to include A◦ as a direct participant in the
ideal computation instead of introducing a dummy corrupted party P0.

There are many similar minor details that can be varied to express design goals
more succinctly. For example, the idealised computational process for adaptive
tasks may have more than two rounds. In all these non-standard cases, the ideal
world model can still be decomposed into a model of idealised computational
behaviour and a model of tolerable adversarial behaviour.

Highest achievable security level. An ideal world implementation itself does
not guarantee privacy of inputs nor correctness of outputs. The model just shows,
which security goals are achievable for all protocols that correctly implement the
desired functionality. For example, if two parties both want to obtain y = x1+x2,
then the output y reveals the opponent’s input and thus privacy of inputs cannot
be preserved. Therefore, it is important to understand what kind of security guar-
antees are achievable at all. Although we cannot answer these questions without
making additional assumptions about the adversarial behaviour, it is still an im-
portant aspect to consider. If the ideal implementation fails to provide a desired
security level, there is no reason to design the corresponding cryptographic pro-
tocols. Secondly, a proper understanding of ideal world attacks provides an im-
portant insight into what kind of correspondence between ideal and real world
implementations is needed.

Recall that any externally consistent security goal can be formalised as a game,
see Section 5.1. Although protocol inputs are normally fixed, it is more instruc-
tive to first consider a game that measures average-case security.

GA◦

x← D

zobs ← GA◦

id-atk(x)
return B(zobs)

That is, the challenger first draws inputs x = (x1, . . . , xn) from an input dis-
tribution D and then runs a sub-game Gid-atk(x) to simulate the ideal world

5. SECURITY OF INTERACTIVE COMPUTATIONS 49

Lo
wer

bo
un

dUpp
er

bou
nd

Adv

∆H
5.42.70.0

0.0

1.0

0.5

Low risk
strategy

Medium risk
strategy

High risk
strategy

Adv

x1
10 20 30 400

0.0

1.0

0.5

Figure 5.2: Analysis of ideal addition protocol for an attack target x1 + x̂2 = 42.
Dependence between the prior knowledge and the advantage on the left and
dependence between the advantage and the true value of x1 on the right.

attack, and finally evaluates a predicate B(·) on the set of observable outcomes
zobs = (z1, . . . , zn, za) to determine whether an attack was successful or not.
Now the maximal achievable advantage depends on the input distribution D

and on the maximal running time of A◦. Let us first consider the uniform distri-
bution Du where all plausible inputs are equiprobable. Then

AdvG(A◦) =
1

|D| ·
∑

x∈D

AdvG(A◦|x) , (5.1)

where

AdvG(A◦|x) = Pr [zobs ← GA◦

id-atk(x) : B(zobs) = 1] (5.2)

quantifies the success probability for a fixed input x.
As a concrete example, consider a scenario, where a cheating party P2 wins

if the output of ideal addition protocol is 42. For clarity, assume also that the
trusted third party T provides outputs to participants only if submitted inputs
x1, x̂2 are in the range {0, 1, 2, . . . , 42}. As the output of P1 is z1 = (x1, y1),
the security goal B(z1, z2, za) = 1 iff y1 = x1 + x̂2 = 42 is indeed legiti-
mate. Now the right sub-figure of Fig. 5.2 depicts graphically the dependence
of AdvG(A◦|x1) and shows clearly that different strategies can lead to different
trade-offs between maximal and minimal success. A sharp and peaky risk profile
AdvG(A◦|x) indicates that the strategy is risky, since the success probability is
high for a few inputs. As the input x will rarely fall to the high success region,
the adversary executes an all-or-noting attack strategy. Conservative uniformly
flat risk profiles minimise the potential losses with the cost of decreasing the
maximal possible winning probability. That is, it is possible to win the game for
each input x, but the corresponding success probability is equally low.

As the time-success profile ε(t) w.r.t. Du limits the area under a risk profile, it
also determines the basic properties of various trade-offs. In particular, no t-time
strategy A◦ can guarantee AdvG(A◦|x) > ε(t) for all x and AdvG(A◦|x) ≈ ε(t)
for conservative strategies. Moreover, AdvG(A◦|x) ≥ c · ε(t) only for 1

c
fraction

of inputs and thus achieving high c values means taking a huge risk.
Situation can change drastically if an adversary has additional prior informa-

tion about the inputs. Formally, such prior information is modelled as a subjec-
tive input distribution D that characterises the adversaries beliefs on the likeli-
hood of various inputs. For example, the knowledge 7 ≤ x1 ≤ 17 is represented

50 5. SECURITY OF INTERACTIVE COMPUTATIONS

by the uniform distribution over {7, . . . , 17}. As the distribution D is fixed, the
adversary can find an optimal strategy A◦ that maximises AdvG(A◦) or evaluate
the subjective risk of missing a ε0-success region

Pr [x← D : Adv(A◦|x) ≤ ε0] . (5.3)

Again, the time-success profile ε(t) w.r.t. D describes basic choices for trade-
offs between risk and success. We emphasise here that using prior information
leads to sharper risk profiles and consequently a potential attacker may seriously
underperform if the used information is fraudulent. In other words, the potential
attacker must really believe in the validity of information.

For many tasks, we can even quantify the direct effect of prior information to
success probability. Namely, we can measure the information content in bits as a
difference between maximal and actual Shannon entropy of variables unknown
to the adversary, and compute the corresponding success bounds, see Fig. 5.2.
Similarly, we can quantify the inevitable privacy loss of a protocol as

∆H = H(Xprior)−H(Xpost) , (5.4)

where Xprior is the prior and Xpost is the posterior distribution of unknown vari-
ables and H(·) denotes Shannon entropy. Note that such bounds characterise
only average properties and may underestimate the privacy loss for concrete in-
puts. Nevertheless, if an ideal implementation causes a huge privacy loss mea-
sured in hundreds or thousands of bits, then it might be acceptable to have a
leakage of few extra bits in the real protocol to gain higher efficiency.

So far we have considered the situation from the adversarial viewpoint. The
choices of honest parties are even more difficult, as the expected attack strategy
depends on the risk tolerance and the prior knowledge of a potential adversary.
Therefore, one must make even more subjective assumptions about adversarial
behaviour. In principle, such choices can be summarised as a single randomised
adversarial strategy A◦. Consequently, we can use the corresponding security
profiles to make justified economical decisions about potential losses. In prac-
tice, one often makes the decision based on a hunch or has no choice at all. Still,
it is important to know that the basic security and the game theoretical properties
of the ideal model are captured by time-success and risk profiles.

5.3 THE REAL VERSUS IDEAL WORLD PARADIGM

Evidently, a protocol provides the highest achievable security level if it satisfies
all externally consistent security goals that are achievable in the ideal world.
Such a reductionist view is quite old and can be traced back to the early works of
Beaver, Micali and Rogaway [Bea91b, MR91b]. Our approach is based on the
formalisation given by Canetti and Goldreich [Can00a, Gol04]. However, there
are minor differences between our approach and the one pursued by Canetti
and Goldreich. We discuss these matters explicitly at the end of this section.

Formal definition of proximity. As a starting point, recall that any externally
consistent security goal can be formalised as a game between an adversary and
a challenger. More precisely, such a game can be split into online and offline
phases. The online phase of a game models the attack against the protocol, where

5. SECURITY OF INTERACTIVE COMPUTATIONS 51

b

b

b

Adv

t
t∗

0

ε∗

L
ow

er
bo

un
d

U
pp

er
b
ou

nd

b

b b

Upper bound

Lower bound

Adv

Input

Figure 5.3: Correspondence between ideal and real world models. A real world
time-success profile can be approximated with the corresponding ideal world
profile. Similarly, the risk profile of A◦ induces bounds for the risk profile of A.

all participants reach a final observable outcome zi. In the subsequent offline
phase, the challenger decides, based on the observable outcomes zobs whether
the attack was successful or not. Hence, the offline phase can be formalised as
a predicate B(·) that is independent of the implementation details and thus we
can compare ideal and real world implementations.

More formally, let Gre-atk and Gid-atk denote sub-games that model the execu-
tion of a real and an ideal protocol. Let A and A◦ be the corresponding real and
ideal world adversaries. Then, for any input distribution D, we can compare the
advantages of the corresponding security games:

GA
real

x← D

zobs ← GA
re-atk(x)

return B(zobs)

GA◦

ideal

x← D

zobs ← GA◦

id-atk(x)
return B(zobs)

The sub-game Gid-atk(x) is played as follows. The challenger runs the partic-
ipants P1, . . . ,Pn, T with inputs x = (x1, . . . , xn) and interacts with the ad-
versary A◦ according to the specification of the ideal world. In particular, the
challenger immediately halts the game if A◦ violates the description of tolerable
adversarial behaviour. Also, the challenger gives control over a participant Pi to
the adversary A◦ as soon as A◦ corrupts Pi. Finally, all participants P1, . . . ,Pn

and A◦ halt with some output values z1, . . . , zn and za and the corresponding
vector zobs = (z1, . . . , zn, za) is returned as an output of Gid-atk(x).

The specification of the sub-game Gre-atk(x) is similar. The challenger runs
the participants P1, . . . ,Pn with inputs x = (x1, . . . , xn) and interacts with the
adversary A according to the description of the protocol. Again, the challenger
halts the game immediately if A violates the description of tolerable adversarial
behaviour. Finally, all participants P1, . . . ,Pn and the adversary A halt and the
vector of observable outputs zobs is returned as an output of Gre-atk(x).

Now consider a situation where, for a fixed security goal B(·) and for any real
world adversary A, there exists a comparable ideal world adversary A◦ such that
the corresponding advantages are negligibly close

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε (5.5)

for any input distribution D. Then the corresponding time-success profiles in
the real and ideal world are also close as illustrated in Fig. 5.3. More precisely,

52 5. SECURITY OF INTERACTIVE COMPUTATIONS

for any fixed input distribution and a time bound, we can execute the corre-
sponding optimal ideal world attack with a constant overhead in the real world.
The latter gives a lower bound for the time-success profile. The the correspon-
dence (B,A) 7→ A◦ that satisfies the inequality (5.5) explicitly determines the
corresponding upper bound. Moreover, as the correspondence (B,A) 7→ A◦

preserves closeness for all input distributions, then for any real world attack A,
there exists a generic attack A◦ with a similar risk profile and comparable run-
ning time that is applicable against any protocol that implements the functional-
ity. In other words, if an honest participant believes that a protocol π is insecure
due to the prior information acquired by other parties, then no other protocol
that implements the same functionality can be secure.

Note that the correspondence (B,A) 7→ A◦ must be independent of the in-
put distribution D, otherwise the ideal world attacker has more prior information
than the real world attacker. Namely, if the attack A◦ in the ideal world uses the
whole description of D, then the dependence leaks information about inputs and
we lose privacy guarantees. Similarly, one should assume that A◦ corresponding
to A corrupts the same set of participants, otherwise the attack strategies A and
A◦ are incomparable. At the same time, the dependence on B(·) does not in-
troduce any side-effects, since the predicate B(·) is assumed to be known to all
attackers. In fact, an attacker is assumed to behave optimally w.r.t. B(·).

More generally, let the set of relevant security objectives B(·) be denoted as
B. Then a real and an ideal world model are (tre, tid, ε)-close w.r.t. the predicate
set B if for any tre-time A and B(·) ∈ B, there exists a tid-time ideal world
adversary A◦ such that for any input distribution D

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (5.6)

Alternatively, we can view (tre, tid, ε)-closeness w.r.t. B as a reduction schema1

GA

real

MPC-SEC
====⇒

ε
GA◦

ideal
(5.7)

that can be applied to simplify analysis of security games, where the predicate
B(·) ∈ B is computed interactively after the completion of the protocol π; tre
limits the online complexity of an attack A and the inequality (5.6) limits the
discrepancy between GA

real
and GA◦

ideal
. See Sections 7.2-7.5 for further details.

Finally, note that the exact dependencies tid = tid(tre) and ε = ε(tre) are
important, as they determine the correspondence between the ideal and the real
world time-success profiles ε0(t) and ε1(t). Indeed, let tπ be the total running
time of the protocol π and ε(tre) the right hand side of (5.6). Then any ideal
world attack can be carried out in the real world with a constant tπ-time over-
head. Similarly, the correspondence (B,A) 7→ A◦ assures that any tre-time real
world attack has tid-time ideal world counterpart. Consequently, we get

ε0(tre − tπ) ≤ ε1(tre) ≤ ε0(tid(tre)) + ε(tre) . (5.8)

In short, the time-success profiles are comparable ε0(t) ≈ ε1(t) only if ε(tre) is
small and time bounds tre and tid are comparable. Note that the inequality (5.8)

1The name of the reduction schema MPC-SEC emphasises the fact that the reduction
schemata can be applied as the protocol π is secure in the multi-party sense.

5. SECURITY OF INTERACTIVE COMPUTATIONS 53

is more precise if we assume that the computational effort done by the trusted
third party T is free for the ideal world adversary A◦.

The choice of relevant predicates. The most conservative alternative is to
include all predicates B : {0, 1}n+1 → {0, 1} into the set B. Such a choice
implicitly states that the real world and the ideal world implementations lead to
comparable outputs even if the computational process following the protocol is
unbounded. We can talk about statistical (tre, tid, ε)-closeness of the real world
and the ideal world if B consists of all possible predicates. Alternatively, we
can assume that the adversary is computationally unbounded. Then bounds on
the online complexities tre and tid become irrelevant and we can talk about ε-
closeness of the real and the ideal world. Both notions of statistical closeness lead
to externally consistent security models. However, the nature of these security
guarantees is completely different, see Section 6.2 for further discussion.

Statistical closeness is unachievable for most cryptographic tasks, since many
cryptographic primitives, like (asymmetric) encryption, hash functions and dig-
ital signatures, are secure only due to our limited computational abilities. Also,
one often needs security guarantees only for limited time intervals. For exam-
ple, in many countries secret governmental information is usually declassified
after 25–75 years. Therefore, it makes sense to consider the set of time-bounded
predicates B or add even more severe restrictions. In particular, we can talk
about computational (tre, tpr, tid, ε)-closeness between the real and the ideal
world when the set B consists of all tpr-time predicates. The latter gives se-
curity guarantees for all scenarios, where the total time needed to post-process
the protocol outputs and to evaluate the success criterion is less than tpr.

Comparison with the standard approach. As said before, our approach is
slightly different from the mainstream formalisation [Can00a, Gol04]. In the
classical formalisation, the correspondence A 7→ A◦ between real and ideal
adversaries must be universal for all predicates B(·) ∈ B and input distributions
D. In other words, given an adversary A, we can find a corresponding universal
adversary A◦ that works equally well for all possible security objectives B(·) and
we get a seemingly stronger security guarantee. However, such an appearance
is deceptive, since for each security goal B(·), time bound tid, level of prior
information specified as D and risk tolerance, there exists an optimal generic
attack A◦

∗ that already depends on B(·). Hence, even if the map A 7→ A◦ is
independent of B(·), we must still estimate the success in terms of A◦

∗:

AdvGreal
(A) ≤ AdvGideal

(A◦) + ε ≤ AdvGideal
(A◦

∗) + ε . (5.9)

Consequently, the independence from B(·) does not have any effect on time-
success or risk profiles. Also, one cannot rationally eliminate the possibility that
an attacker actually knows his or her attack target B(·) and can thus use both
schemes to convert his or her attack to the universal attack A◦.

In Section 7.3 we also show that both formalisations are quantitatively equiv-
alent for static adversaries, i.e., the choice of formalism is just a matter of taste.
From a practical viewpoint, there is no difference anyway, as standard security
proofs provide a construction of A◦ that depends only on A. Recall that reduc-
tion schemata are usually stated in terms of computational distance and conse-
quently we get natural bounds for cdtpr

zobs
(GA

re-atk,GA◦

id-atk).
Another small but still important difference lies in the way we treat corrup-

tion. Note that corruption is not objectively observable, since it describes the

54 5. SECURITY OF INTERACTIVE COMPUTATIONS

internal state of a participant, which may or may not influence the observable
outcomes. In particular, a predicate B(·) cannot treat zi differently depending
on whether Pi is corrupt or not, since such a dependence would lead to exter-
nally inconsistent security goals. In practice, one can detect corruption with
high probability by forcing each participant Pi to prove in zero-knowledge that
he or she knows an input xi and randomness ωi that would lead to the observed
protocol transcript. However, the latter is already a new protocol.

Various levels of security. The correspondence between the real and the ideal
world implementations is amazingly flexible. The description of the ideal world
model, the tolerated adversarial behaviour and the set of relevant predicates B

are the three fundamental factors that determine the corresponding security
guarantees. Intelligent variation of these basic factors can produce myriads of
relevant security models. However, four of them are more essential than the oth-
ers, since they formalise somewhat canonical security objectives. The following
four sections are dedicated to these fundamental models.

5.4 SECURITY IN SEMI-HONEST MODEL

Semi-honest model provides the weakest but still meaningful security guaran-
tees. Briefly, semi-honest participants follow the protocol description, but qui-
etly store all intermediate values and later try to deduce some extra information
about the remaining inputs or outputs. Hence, semi-honest behaviour is always
possible, unless we take extreme organisational measures to assure that inter-
nal computational results cannot be stored. Moreover, note that the following
formal definition captures only the basic privacy requirements, as malicious be-
haviour is prohibited and the outputs cannot be tampered with.

Definition 2. A protocol π is (tre, tid, tpr, ε)-private w.r.t. the idealised function-
ality f1, . . . , fn and the adversarial structure A in the semi-honest model if the
corresponding real and ideal world models are (tre, tid, tpr, ε)-close. That is, for
any tre-time adversary A and for any tpr-time predicate B(·), there exists a tid-
time ideal world adversary A◦ such that for any input distribution D

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (5.10)

Some important details in the definition are worth stressing. First, the time
difference tid− tre quantifies the maximal computational gain that the adversary
may achieve. Second, the bound tpr determines the maximal time complexity
of a post-processing phase that preserves security. Third, ideal world model is
flexible enough to accommodate any general purpose security objective.

Non-cryptographers often complain that the formalism is overly restrictive
in practice, since participants may tolerate bigger information leakage than is
needed to compute the outputs. However, it is surprisingly simple to model
such protocols by providing a proper description of an ideal world model. More
precisely, assume that participants need to compute a functionality f̂1, . . . , f̂n,
however, they are willing to leak f1, . . . , fn instead. This setting is meaningful
only if the desired outputs can be computed from the leaked ones:

f̂i(x1, . . . , xn) = gi

(
fi(x1, . . . , xn)

)
. (5.11)

5. SECURITY OF INTERACTIVE COMPUTATIONS 55

Consequently, we can consider an ideal world model, where the participants
P1, . . . ,Pn first use a trusted third party T to get replies fi(x1, . . . , xn) and after
that locally compute ŷi = gi(yi). That is, a non-corrupted party Pi deletes yi and
outputs zi = (xi, ŷi). The computational closeness between the real and the
ideal world models implies that the semi-honest node Pi cannot learn anything
beyond yi but at the same time the protocol π must correctly reproduce only
the values ŷi. Therefore, we can easily analyse protocols where the outputs are
strictly less informative than potentially leaked information. In the limiting case,
one can reveal enough information, so that each participant can compute all
protocol messages, i.e., the methodology is universally applicable.

As a concrete example, consider private evaluation of randomised approxima-
tion algorithms [FIM+06]. In such settings, the distribution of approximations
f̂i(x1, . . . , xn) can be simulated knowing only fi(x1, . . . , xn) and we can for-
malise the maximal leakage as f1, . . . , fn. Similarly, we can formalise security
for the protocols that sometimes fail to produce the correct output. In fact, we
can state the correctness requirement as a separate property.

Definition 3. A failure probability δ for a protocol π is the maximal probability
that the obtained outputs ŷi differ from the intended outputs fi(x1, . . . , xn) in
the semi-honest model. A protocol π is called correct if there are no failures.

One can often achieve significant gains in efficiency by allowing negligible
failure probability. For example, many protocols for private predicate evaluation
based on homomorphic encryption and oblivious polynomial evaluation have a
small tunable failure probability. See the articles [Fis01, FNP04, BK04, KS05]
for the most prominent examples and [LLM05, LL07] for the author’s results.

We emphasise that any efficiently computable functionality can be privately
evaluated. Yao was the first theoretician to state these completeness theorems
for the semi-honest model [Yao82, Yao86]. We refer to the manuscript [LP04]
for the corresponding proofs and historical remarks. For the multi-party pro-
tocols, these completeness theorems were first proven by Goldreich, Micali
and Wigderson for the computational setting [GMW87]. The information-
theoretical setting where the adversary is unbounded was covered only a year
later [BOGW88, CCD88]. See the articles [MR91b, Bea91b, Can00a, Gol04]
for further historical references.

5.5 INPUT-PRIVACY IN MALICIOUS MODEL

Before going any further, note that the privacy in the semi-honest model captures
two different security goals: input-privacy and output-privacy. Moreover, these
goals are quite loosely coupled. As an example, consider a randomised proto-
col, where participants generate outputs locally without using inputs. Then the
protocol preserves the privacy of these inputs even if participants broadcast all
outputs. Similarly, the privacy of outputs is preserved when participants broad-
cast all inputs. For deterministic functionalities, output-privacy implies input-
privacy, since additional knowledge about inputs leaks information about out-
puts. Also, it is evident that output-privacy and correctness guarantees are tightly
coupled when the adversary can deviate from the protocol description, since the
ability to influence outputs violates privacy constraints.

56 5. SECURITY OF INTERACTIVE COMPUTATIONS

Consequently, input-privacy is one of the weakest security objectives that still
makes sense in the malicious model, where a coalition of corrupted parties can
arbitrarily deviate from the protocol description. Moreover, input-privacy itself
is an economically justified design goal for some settings.

Consider a video on demand service as an illustrative example. Assume that a
single subscription server delivers content decryption keys to all potential clients.
The functionality and the threats are asymmetric for this setting. As there are
thousands, if not millions, potential subscribers, it is impossible to guarantee
semi-honest behaviour for all clients. However, we can still use organisational
methods to assure that the server is semi-honest. Also, the service provider itself
is economically motivated to ensure that an honest client gets the desired out-
put. On the other hand, the service provider must limit potential information
leakages against a coalition of malicious clients.

Input-privacy is formally defined in terms of interactive hypothesis testing,
where a malicious adversary tries to verify hypotheses about protocol inputs. Al-
though it is sufficient to bound the total running time, we separate online and
offline attack complexities to achieve more precise classification. More formally,
let the set Bza

(tpr) consists of all tpr-time predicates B(z1, . . . , zn, za) = B(za)
that can be computed offline by the adversary in the following definition.

Definition 4. A protocol is (tre, tid, tpr, ε)-input-private w.r.t. the idealised func-
tionality f1, . . . , fn and the adversarial structureA in the malicious model if the
corresponding real and ideal world models are (tre, tid, ε)-close w.r.t. Bza

(tpr).
That is, for any tre-time adversary A and for any tpr-time predicate B(·) in the
form B(z1, . . . , zn, za) = B(za), there exists a tid-time ideal world adversary A◦

such that for any input distribution D

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (5.12)

Input-privacy is strictly weaker than the complete security in the malicious
model and thus input-private protocols are often more efficient. In particular,
no non-trivial protocol can be secure in the malicious model and have only two
rounds, see the discussions in [GK96b, KO04]. Nevertheless, many two-round
protocols do achieve input-privacy. For example, standard security definitions
of oblivious transfer [NP99a, AIR01] require input-privacy with respect to un-
bounded receivers and computationally bounded senders. The same security
requirements are often posed for other two-round client-server protocols, where
only one participant obtains the output. One of the articles included into the
thesis [LL07] investigates a certain subclass of two round client-server protocols
and provides an automatic compilation technique, which converts any private
protocol in the semi-honest model to an input-private protocol in the malicious
model. The transformation preserves round complexity and has a relatively small
overhead for many practical protocols.

5.6 OUTPUT-CONSISTENCY IN MALICIOUS MODEL

For many applications, input-privacy is not enough as honest parties need also
explicit correctness guarantees. In particular, malicious behaviour should be de-
tectable and one should be able to issue verifiable complaints about cheating.

5. SECURITY OF INTERACTIVE COMPUTATIONS 57

H

A
◦Pn

· · ·P1 P2

T executes π
◦

x1 x2 xny1 y2 yn

x1, . . . , xn

s1, . . . , sn

φ

Figure 5.4: Ideal world model of output-consistent computations.

Now such correctness guarantees come in two flavours: honest parties may ei-
ther detect malicious behaviour in general, or only the malicious changes in the
outcomes. The second design goal can be viewed as output-consistency.

Observe that output-consistency is strictly weaker than complete security.
Namely, if a malicious participant can alter his or her behaviour so that the
outputs are changed only for few inputs x ∈ X , then a public complaint about
such a change reveals that x ∈ X . The latter is not true for complete security,
since the corresponding complaint only implies that the outputs could have been
altered for some inputs. Therefore, output-consistency usually causes a signifi-
cantly smaller overhead than complete security. Moreover, output-consistency is
an economically justified design goal for scenarios, where trustworthy reputation
is worth more than the potential gain achieved by cheating.

Informally, a protocol is output-consistent if a malicious adversary cannot
tamper the outputs without causing honest parties to halt. More formally, an ad-
versary has partial control over the ideal protocol π◦. A non-corruptible trusted
party T still computes the outcomes of a protocol, however, a halting-machine
H controls the delivery of outputs, see Fig. 5.4. That is, the halting-machine H

gets inputs x1, . . . , xn from T and sends back zero-one verdicts s1, . . . , sn. Next,
the trusted third party T sends the output yi to the participant Pi only if si = 1.
The communication between the halting-machine H and the adversary A◦ is
unidirectional—only the adversary A◦ can send messages to H. Formally, it is
sufficient to assume that H is a universal computing device such that the ad-
versary A◦ can start H by sending the initial program code φ and possibly later
fine-tune H by sending additional instructions.

Definition 5. A protocol is (tre, tid, tpr, ε)-output-consistent w.r.t. the idealised
functionality f1, . . . , fn and the adversarial structure A in the malicious model
if the corresponding real and ideal world models are (tre, tid, tpr, ε)-close. That
is, for any tre-time adversary A and for any tpr-time predicate B(·), there exists a
tid-time ideal world adversary A◦ such that for any input distribution D

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (5.13)

First, observe that an output-consistent protocol must also be private in the
semi-honest model and input-private in the malicious model. Second, the exact
interaction pattern between A◦ and H determines the maximal expressiveness of
leaked predicates when an honest participant issues a rightful complaint. There-
fore, it makes sense to characterise the underlying structure of these predicates.
Sometimes one can show that H always evaluates predicates that have a simple

58 5. SECURITY OF INTERACTIVE COMPUTATIONS

structure, see our manuscript [LL06] for further discussion. Finally, the com-
putational effort done by H should be free for A◦ to make the correspondence
between the ideal and the real world time-success profiles more tight.

The concept of output-consistency can be traced back to the classical works
on secure multi-party computation [FY92, CFGN96, CO99], where authors
consider detectability of malicious behaviour. However, none of them clearly
formulates the ideal world model. The concept has also implicitly surfaced as a
natural design property for adaptive oblivious transfer [NP99b], since it is almost
trivial to achieve. Recently, Aumann and Lindell generalised these early notions
and proposed three alternative security models [AL07]. However, their formu-
lations are strictly weaker than output-consistency, as none of them guarantees
even input-privacy nor the ability to detect altered outputs.

Output-consistency also alleviates the problem of false accusations. When a
complaint is issued about malicious behaviour in an input-private protocol, one
has to prove his or her innocence. Since tampering with outputs is detectable
in an output-consistent protocol, the burden of proof lies on persons who raise
complaints. In particular, malicious coalition cannot frame honest participants
if one can use digital signatures to protect the authenticity of protocol messages.
This property is specially useful in the client-server scenarios, where clients have
different access rights and the server may rightfully fail for some queries, e.g.
private inference control problem [WS04]. However, there is a slight difference
between two- and multi-party protocols. In two-party protocols, an output failure
exposes the malicious participant, whereas the latter is not a priori true in the
multi-party setting. Hence, we can talk about a stronger form of consistency that
also reveals some maliciously acting participants.

5.7 COMPLETE SECURITY IN MALICIOUS MODEL

The highest attainable security level in the malicious model is of course the com-
putational closeness between the real world and ideal world without a halting-
machine H. In this case, malicious participants can cause only non-selective
protocol failures and public complaints reveal nothing about inputs.

Definition 6. A protocol is (tre, tid, tpr, ε)-secure w.r.t. the idealised functionality
f1, . . . , fn and the adversarial structure A in the malicious model if the corre-
sponding real and ideal world models are (tre, tid, tpr, ε)-close. That is, for any
tre-time adversary A and for any tpr-time predicate B(·), there exists a tid-time
ideal world adversary A◦ such that for any input distribution D

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (5.14)

A major drawback of secure protocols is the overhead needed to achieve se-
curity, since all participants have to prove that they obey the protocol without
disclosing their inputs and random coins. The latter can be done with zero-
knowledge proofs of correctness, using the famous GMW-compiler [GMW87],
or with verifiable secret sharing [BOGW88, CCD88] in the information theo-
retical setting. See also the state of the art results [Pin03, KO04, LP07] for Yao’s
two-party computation and its extensions to multi-party case [BMR90].

It is well known that secure protocols can be practically intractable when the
input size is large and functionalities have a large circuit complexity. Also, the

5. SECURITY OF INTERACTIVE COMPUTATIONS 59

⊘

· · ·

Ideal implementation

π
◦

A
◦

Pn
· · ·P1 P2

z1 z2
zn za

S

za

Services

Figure 5.5: Canonical constructive correspondence between adversaries.

strength of organisational and physical methods is often enough to protect the
computational processes and thus lower security levels are sufficient.

In particular, the difference between output-consistency and complete secu-
rity can be marginal. Recall that issuing a complaint in output-consistent pro-
tocols reveals one bit of extra information. Consequently, such a leak may be a
reasonable sacrifice for additional efficiency, if the protocol output itself reveals
hundreds or thousands of bits. Moreover, adversaries must take a tremendous
subjective risks to learn beyond 20 bits of new information. Namely, let D be
a subjective probability distribution that describes the adversaries prior knowl-
edge about the inputs. Then the maximal entropy loss due to selective halting
is H(s1, . . . , sn), where s1, . . . , sn are halting decisions made by H and the en-
tropy is computed with respect to D. Hence, the adversary must take a risk of
being exposed with a subjective probability 2−k to learn k bits.

Another interesting aspect that is worth commenting is the issue of correct-
ness guarantees raised by Micali and Rogaway [MR91a]. Namely, the compu-
tational closeness between the real and the ideal world models does not guar-
antee that honest participants obtain the correct values, rather they are tpr-
indistinguishable from the values obtained in the ideal world. We can naturally
strengthen the correctness constraints, if we considers only the subclass of nice
adversaries that append a flag corrupted to outputs of all corrupted participants.
Namely, we must consider an additional set of predicates Bcor that consists of all
predicates that ignore the inputs zi with the flag corrupted, i.e., require that the
outputs of honest parties are statistically indistinguishable from the ideal world.
Formally, this strengthening is externally inconsistent, since the corruption is not
an externally observable phenomenon. Nevertheless, any hostile adversary can
be converted to the corresponding nice adversary with minimal overhead so that
the end result of a security game does not change. Hence, in principle such a
strengthening can be incorporated into the model.

5.8 CANONICAL CONSTRUCTIVE CORRESPONDENCE

Note that all security definitions given above require a correspondence between
the real and the ideal world adversaries. A canonical way to achieve such a
correspondence is based on code wrappers that internally run a real world adver-
sary and translate their actions into legitimate ideal world attacks, see Fig. 5.5.
Briefly, a code wrapper Sim is guaranteed to succeed if it manages to simulate
the protocol execution for an adversary A. Thus, it is more common to use a
term simulator instead. We emphasise that a simulator Sim has complete con-

60 5. SECURITY OF INTERACTIVE COMPUTATIONS

trol over the real adversary A. In particular, the simulator Sim provides random
coins and timer services to A. The simulator Sim can also restart or rewind A to
acquire extra knowledge or to bypass security checks in the protocol. All other
participants see the algorithm pair (Sim,A) as an ideal world adversary A◦, i.e.,
Sim can corrupt ideal world participants and interact with the halt machine H.

Most security proofs are based on black-box simulation, where the simula-
tor Sim does not inspect nor manipulate the internal state and random coins of
the adversary A. Necessary information is gathered from the protocol messages
exchanged between Sim and A. The latter is not compulsory in white-box
reductions, where Sim may act arbitrarily. Nevertheless, white-box reductions
must be somehow constructive, or otherwise we are no closer to the correspon-
dence (B,A) 7→ A◦. Generally, white-box reductions use some sort of adversary
dependent information to interact with the adversary A.

Simulatability as a security criterion appeared only after the discovery of zero-
knowledge proofs [GMR85] and early definitions of secure multi-party compu-
tations [Yao82, Yao86] were given in terms of maximal indistinguishability. For
clarity, consider two-party computations with a corrupted node P1 in the semi-
honest model. Then an adversary A should be unable to distinguish protocol
runs corresponding to the inputs x2 and x̂2 whenever f1(x1, x2) = f1(x1, x̂2).
Now, if the adversary A is good in predicting a function g(x1, x2), then g must
be constant over the class of inputs

Mx1,y = {(x1, x2) : f1(x1, x2) = y} (5.15)

or we get a contradiction with the basic properties of semantic security, see Sec-
tion 3.2. Consequently, A cannot predict anything that is not expressible in
terms of x1 and y. However, the limitation does not apply for the functions g
that can be computed from x1 and y. For example, assume that F is a permu-
tation that is hard to invert and consider a protocol, where the participant P2

sends a message e = F−1(x2) to P1 who outputs y1 = F (e) = x2. Then the
protocol runs corresponding to the same output y1 are indistinguishable by the
construction. However, the participant P1 learns F−1(x2), which is difficult to
obtain from the output x2 alone. Therefore, the approach based on the maxi-
mal indistinguishability is unsuitable, since it does not provide adequate security
guarantees for all target functions g(x1, x2).

Simulating the protocol execution in the ideal world can be quite challeng-
ing. Fortunately, the semi-honest model has two important properties that make
the task easier. First, the adversary A cannot change the inputs of corrupted par-
ties. Second, the adversary A must follow the protocol and it is sufficient if the
simulator Sim can simulate all messages sent to corrupted parties. Let C be the
set of corrupted parties and C be its complement. Then simulating a static ad-
versary A is particularly straightforward. The simulator Sim first corrupts nodes
that belong to C, submits their inputs (xi)i∈C to the trusted third party T and
uses the received values (fi(x))i∈C to simulate all messages sent to C in the real
execution. Adaptive and mobile corruption makes the task more difficult, since
the simulator Sim must decide when to submit inputs to T and assure that the
adversary’s view remains consistent after a new corruption instruction.

Providing a good simulation in the malicious model is more demanding, as a
simulator Sim cannot automatically submit inputs (xi)i∈C . Namely, a malicious
adversary A can always replace the initial input xi of a corrupted node Pi by

5. SECURITY OF INTERACTIVE COMPUTATIONS 61

A za

S za

T

Final run

(xi)i∈C

Extraction phase

(yi)i∈C

Equivocation phase

Figure 5.6: Canonical structure of a simulation procedure.

a new value x̂i and thus Sim must reconstruct the actual inputs (x̂i)i∈C . Con-
sequently, the simulation must follow a specific structure depicted in Fig. 5.6.
Briefly, the simulator must first extract all inputs of corrupted parties and then,
given corresponding outputs, continue the simulation appropriately.

Extractability. If we want to achieve a black-box simulation, the simulator must
extract inputs from the messages sent by corrupted participants. In particular,
one should be able to extract the inputs of a semi-honest coalition. Such an ex-
traction property seems to contradict input-privacy. However, such impression is
misleading, as the powers of a simulator and adversary are always asymmetric. In
the multi-party setting, the asymmetry is achieved by the clever choice of the ad-
versarial structureA. Namely, the adversarial structureA is often chosen so that
a complement C of a plausible coalition C ∈ A can never be corrupted. Thus,
the simulator can form a malicious coalition C that is large enough to extract the
inputs (xi)i∈C from the received protocol messages, whereas the coalition C is
impossible in the real protocol.

The same trick does not work for protocols with honest minority, where an
adversary can corrupt as many or even more parties than a simulator. Corre-
sponding security proofs use another important asymmetry. Namely, the simula-
tor Sim can always rewind A to previous states and then change messages sent to
A. Thus, the simulator Sim can restore x̂i by observing many correlated protocol
transcripts, whereas the latter is impossible for an adversary A.

Equivocability. Observe that a protocol is input-private only if a protocol binds
all participants to their future outputs. For the sake of contradiction, assume that
an adversary A can legitimately change the inputs after the extraction of inputs
(x̂i)i∈C . Namely, A can efficiently find yet another set of inputs (x̃i)i∈C and
random coins (ωi)i∈C such that messages exchanged so far are consistent with
the protocol. Then the adversary A can clearly learn (ỹi)i∈C instead of (ŷi)i∈C

obtained by the simulator. Consequently, the new set of outputs (ỹi)i∈C must
be efficiently computable from the old ones (ŷi)i∈C . For most protocols, this
implies that (ỹi)i∈C ≡ (ŷi)i∈C for all legitimate input changes (x̃i)i∈C .

For many protocols, such an implicit or explicit commitment to the outputs
creates another problem, since the simulator Sim itself does not know (ŷi)i∈C in
the extraction phase. As a result, Sim must be able to legitimately retrofit the out-
puts (ŷi)i∈C . More precisely, the simulator Sim must produce a continuation for
the protocol run that leads to (ŷi)i∈C if A behaves honestly after the extraction.
Hence, we have a similar asymmetry as before. For malicious parties, the pro-

62 5. SECURITY OF INTERACTIVE COMPUTATIONS

tocol must be binding, and for the simulator, the protocol must be equivocable.
Again, a clever choice of the adversarial structureA can create the desired asym-
metry of powers for multi-party protocols. For two-party protocols, we must use
rewinding to bypass consistency checks that force (ỹi)i∈C ≡ (ŷi)i∈C . Moreover,
it is often impossible to rewind the entire extraction phase to retrofit the desired
outputs, as the latter may change the extractable inputs (x̂i)i∈C .

Trusted setup. Many protocols use a special setup procedure, where a trusted
dealer either broadcasts a single message or provides a trustworthy public key
infrastructure. Note that the trusted dealer exists only in the real world model
and thus a simulator can corrupt the trusted dealer in the ideal world to achieve
extractability and equivocability. Hence, we can construct non-rewinding sim-
ulators also for two-party protocols where rewinding is otherwise unavoidable.
Since the rewinding techniques do not scale well for parallel compositions, the
trusted setup procedures are the only known way to achieve composability in the
two-party setting, see Section 7.7 for more detailed discussion.

To summarise, the canonical constructive correspondence is achievable only
by explicit embedding of trapdoor mechanisms that violate both input-privacy
and output-consistency. The latter causes a tension between the security and
simulation, which is always resolved by introducing the asymmetry of powers
between the simulator and the adversary. In less formal terms, no protocol can
be “unconditionally” secure in all settings.

5. SECURITY OF INTERACTIVE COMPUTATIONS 63

6 ALTERNATIVE SECURITY MODELS

Exact quantification of security properties is only one of many paradigms used
in cryptography. Therefore, it is important to know the connections between
exact security and its alternatives. We start from asymptotic security, since it is
probably the most popular and widely studied alternative approach. Note that
the initial simplicity of asymptotic security models is highly deceptive. In fact,
even the notion of polynomial security varies in cryptographic literature. There-
fore, we first formalise the limiting process that is needed to define asymptotic
security and then explore common formalisations. As a result, we obtain the de-
scription of eight asymptotic security models and a corresponding hierarchy that
characterises the qualitative relations between these models.

Subjective security models are another common alternative to exact security.
The main difference between objective and subjective security models lies in
the choice of possible adversaries. Objective security models can only restrict
available computing resources, whereas subjective security models can place ad-
ditional constraints on the set of potential adversaries. For example, all security
definitions that consider only uniform adversaries are actually subjective, since
a potential attacker is not allowed to choose algorithms that are optimal for con-
crete security parameters. We remark here that subjective security models are
quite popular in cryptographic literature. For example, the random oracle, the
ideal cipher and the generic group model are all subjective security models,
since the corresponding security guarantees are meaningful in practice only if
we are willing to make certain subjective assumptions about the set of possible
adversarial algorithms. Finally, subjective security notions are also appropriate
when we consider protocols with trusted setup, see Section 6.4.

Subjective and objective security models share many technical similarities
but there are also important conceptual differences. Most importantly, it is im-
possible to formalise certain natural security properties without using the notion
of subjective security. In Section 6.4, we discuss these limitations more thor-
oughly and explain why objective approach is destined to fail in some settings.
In Section 6.5, we rigorously formalise the notion of subjective security that al-
lows us to escape these limitations. We also show that the corresponding security
proofs are technically very close to standard proofs. Namely, a standard security
proofs is also valid in the subjective setting if it is strictly constructive. Neverthe-
less, it might be challenging to find strictly constructive proofs, especially since
the proof methodology presented in Chapter 4 is actually non-constructive. For-
tunately, most of these non-constructive proof steps can be eliminated. We de-
scribe the corresponding semi-automatic techniques in Section 6.7. As a result,
we can still describe proofs by using game trees and reduction schemata, and
thus hide tedious technical details.

6.1 SCALABILITY AND POLYNOMIAL SECURITY

It is easy to see that all conditional security proofs just reduce the amount of
unjustified trust by isolating few essential simplistic assumptions that guarantee
the security of the entire construction. However, all instantiations of these basic

64 6. ALTERNATIVE SECURITY MODELS

primitives are currently heuristic and the corresponding security guarantees are
essentially unknown. Although there are some numerical security estimates for
these basic primitives, they are based on empirical experiments or on heuristic
claims, and thus likely to change over time. Moreover, the amount of available
computing power is also likely to increase in time. Therefore, it is not wise to
design protocols so that the underlying primitives cannot be replaced.

Fortunately, cryptographic constructions and protocols are seldomly tied to
specific building blocks, such as the 128-bit MD5 hash function, and can thus
be “regularly” updated to take advantage of more powerful computing devices
and ensure the proper safety margin against plausible attacks. As conditional se-
curity proofs abstract away all unnecessary implementation details, we can view
a cryptographic construction as a parametrised template, i.e., we can increase
the security level by using stronger but slower basic primitives.

Let k be a security parameter that indexes both a sequence of basic primi-
tives and the construction in question. For clarity, assume that security can be
characterised by the advantage

ε(k) = max
A∈A(k)

AdvGk(A) , (6.1)

where Gk captures the attack against the construction πk and A(k) is the set of all
t(k)-time adversaries. W.l.o.g. we can assume that t(k) is an increasing function
and ε(k) is a decreasing function. Let us also define a relative security margin

δ(k) =
t(k)

τ(k)
, (6.2)

where τ(k) denotes the overall running time of πk. Note that essential algorith-
mic and cryptographic properties of the construction family (πk) are determined
by the functions τ(·), t(·), ε(·), δ(·). For example, one can determine appropri-
ate security level k. To achieve (t0, ε0)-security, one has to choose minimal k0

such that ε(k0) ≤ ε0 and t(k0) ≤ t0 provided that running time τ(k0) is still
feasible in practice. To make similar economical decisions, one must consider
rescalings that characterise true costs and gains. Since the underlying principle
of analysis remains the same, we consider only the algorithmic aspects.

The choice of the security parameter is quite arbitrary, usually it describes
important implementation details, such as the bit length of the RSA modulus.
From a theoretical viewpoint it is advantageous to identify k with the maximal
running time τ(k) that is needed to complete the protocol πk. Then we must
consider only the properties of ε(·) and δ(·). For obvious reasons, a decreasing
safety margin δ(·) implies that the construction becomes more vulnerable in
the future. More generally, a construction is sustainable in the long run only if
the function δ(k) is increasing and ε(k) is decreasing fast enough. Hence, it is
tempting to analyse only the limiting behaviour of δ(·) and ε(·).

When one considers asymptotic behaviour, polynomial-time algorithms are
special. Mostly, because the class of polynomially bounded functions poly(k)
is the first nontrivial class of functions that contains the identity function and
is closed under the multiplication and superposition. The latter is sufficient to
prove that the notion of polynomial-time algorithms is machine independent
and the corresponding set of algorithms is closed under recursive composition.
Mainly because of these reasons, Cobham and Edmonds postulated already in

6. ALTERNATIVE SECURITY MODELS 65

k
ε

1

1
2

0

bc εA1

bc

εA2

bc

εA3

bc

εA4

bc

εA5

Figure 6.1: A construction may be completely insecure, although for each poly-
nomial time bound t(k) the advantage εAi

(k) ∈ negl(k) for any algorithm Ai.

the early 1960s that the set of feasible and polynomial algorithms must coin-
cide [Cob64, Edm65]. This description of tractability was quickly adopted by
other theoreticians and it led to the birth of the complexity theory.

Cryptographers reached an analogous consensus and postulated that a con-
struction family (πk) is asymptotically secure if for all polynomial safety bounds
δ(k) ∈ poly(k) the corresponding advantage decreases faster than a recipro-
cal of any polynomial, i.e., ε(k) ∈ negl(k). More precisely, we can talk about
uniform and non-uniform polynomial security model. The essential difference
between the models is in the definition of the set A(k). In the non-uniform
model, the set A(k) consists of all t(k)-time algorithms and thus represents ob-
jective security. The uniform model is a subjective security model, since the
model assumes that an adversary uses a single self-tunable algorithm A for all
attacks. Formally, the set A(k) consists of a single t(k)-time algorithm Ak that
is obtained from A by feeding k as the first argument. As the universal algo-
rithm A is unknown, the advantage εA(k) must be asymptotically negligible for
all algorithms A and polynomial time bounds t(k) ∈ poly(k).

The uniform security model is completely natural under a super-strong artifi-
cial intelligence assumption. If we believe that any intelligent behaviour can be
outperformed by an artificial intelligence—an algorithm A, then we may indeed
set A(k) = {Ak} and study the limitations of intelligent reasoning. For more
conservative readers, it is evident that uniform security model provides ques-
tionable security guarantees. Namely, security in the uniform model does not
exclude the possibility that a potential adversary may achieve constant advantage
by cleverly choosing algorithms for each instance, as depicted in Fig. 6.1. From
this perspective, the naming convention is awfully misleading, as the uniform
model assures only pointwise convergence of security guarantees, whereas the
non-uniform model assures fast uniform convergence over all algorithms.

On a more practical note, observe that advances in computing technology
show rather interesting trends. Although available computing power has grown
in an exponential pace, the approximate ratio between ordinary and maximal
available computing power has always been more or less constant with occa-
sional fluctuations. Fig. 6.2 illustrates these trends by comparing the computa-
tional capabilities of widely accessible computing devices and the fastest super-
computers throughout the entire history of computing. In particular, note that
the available adversarial power t has always been in the range

10 · τ ≤ t ≤ 100, 000 · τ , (6.3)

66 6. ALTERNATIVE SECURITY MODELS

1940 1960 1980 2000

10−5

100

105

ENIAC

IBM 7090

CDC 7600

Gray-1
NEC SX-3

Fujitsu

Blue Gene/L

b b

b
b

b
b b

b

b

b

b

b

b

Zuse-4

LGP-30
Commodore

Macintosh

PowerMac

AMD

bc

bc

bc bc

bc bc
bc

bc

bc

bc

bc

bc
bc

10−8 10−4 100 104

108

104

100

10−4

b b

b

b

b
b b

b

b

b

b

b

b

1945 1955

1965
1970

19751980

1985

1995

2005

t =
10

5 · τ

t =
10

· τ

Figure 6.2: Comparison of conventional and supercomputers on the left and the
corresponding dependence between honest and adversarial power on the right.
Computing power measured in MIPS and the data is taken from [Mor98].

where τ is the power of an ordinary computing device. Of course, the capabil-
ities of the fastest supercomputer do not adequately characterise the total com-
puting power available in the world. On the other hand, this measure clearly
indicates how much monetary resources organisations are willing to spend on
extremely important computational tasks and thus the estimate is adequate for
practical purposes. Consequently, one can argue that the polynomial security
model is overly conservative in the context of short-term security. In particular,
non-existence proofs in the asymptotic security models are not convincing, un-
less they hold for all superlinear time bounds t(k) ∈ ω(k). The latter was the
main reason why we established such strong non-existence proofs in [LN06].

Note that the ratio between ordinary and adversarial power is bounded even
for longer time periods provided that the growth rate is not super-exponential. Of
course, we cannot make irrefutable conclusions, since the empirical evidence is
rather limited and not collected for cryptographic purposes. Still, one should
be extremely careful in interpreting results that are obtained in the asymptotic
setting. Both positive and negative results obtained in the asymptotic security
model are usually inconclusive, unless they have explicitly stated and practi-
cal time bounds. For example, the first proposal for the public key cryptosys-
tem [Mer78]—so called Merkle’s puzzle system—has only a quadratic relative
safety margin and thus it is insecure in polynomial security model. However, in
practice an ordinary computer can do 1011 operations in minutes, whereas 1022

operations takes roughly 1 year on Blue Gene/L. In other words, a quadratic se-
curity margin is already sufficient for short time security and the gap is growing
with every year, since the computing power becomes cheaper and cheaper.

On the other hand, many constructions that are asymptotically secure under
reasonable assumptions, such as Ajtai-Dwork cryptosystem [AD97], are insecure
for all practical parameter sizes [NS98]. Going even further, note that a generic
encoding of an NP-problem as a CNF-SAT formula leads to quadratic blow-
up and thus a quadratic safety margin might be preserved even if CNF-SAT
problems can be solved in linear time. As a result, even a constructive proof for
the statement P = NP does not rule out the existence of practical cryptographic
primitives. Similarly, the existence of asymptotically secure cryptography does
not rule out the existence of efficient adversarial algorithms for all practical time
bounds. To summarise, life is not so dull as Impagliazzo’s famous five world
model [Imp95] predicts: cryptography might be a booming business even in

6. ALTERNATIVE SECURITY MODELS 67

stat-n-post-proc

strong-n-poly

weak-n-poly

strong-n-stat

weak-n-stat

stat-u-post-proc

strong-u-poly

weak-u-poly

|

||

||

Figure 6.3: Relations between asymptotic security models. Hatched arrows de-
note implications with known separations, the others are believed to be strict.
Symbols -u- and -n- denote uniform and non-uniform complexity.

Algorithmica, where the statement P = NP holds; whereas obtaining exact
security bounds might be troublesome in Cryptomania, where asymptotically
secure one-way trapdoor permutations are guaranteed to exist.

6.2 ASYMPTOTIC SECURITY FOR PROTOCOLS

Classifying protocols according to asymptotic properties is not as simple as it
seems at first glance. As before, assume the maximal total running time of all
honest participants τ(k) = k. We emphasise here that the bound τ must hold
for any plausible attack pattern, i.e., τ quantifies the maximal workload that
attacker can cause. Now regardless of the ideal world description, the security of
a protocol π is characterised by a quadruple (tre, tid, tpr, ε). More precisely, the
standard way to define the advantage1 is the following

ε(k) = cdtpr(k)
⋆ (Gk

re-atk,Gkid-atk) , (6.4)

where games Gk
re-atk and Gk

id-atk capture the effects of active attacks. The game
Gk

re-atk models the attack of tre(k)-time real world adversary A against the protocol
πk. Similarly, Gk

id-atk models the attack of tid(k)-time adversary A◦ in the ideal
world. Observe that time bounds tre(·), tid(·) and tpr(·) can be arbitrarily fixed
and thus there are several ways to define the limiting process k→∞.

Strong and weak polynomial security model. Recall that actual security goals
are always specified by individual security games and the ideal world model is
just a mind experiment that simplifies the reasoning for such games. Hence,
the polynomial security model for protocols should be consistent with the defi-
nition given in the previous section. Indeed, the standard definition postulates
that a protocol family (πk) is secure in a (strong) polynomial model if for any
tre(k), tpr(k) ∈ poly(k) there exists tid(k) ∈ poly(k) such that ε(k) ∈ negl(k).
Hence, for any polynomial-time security game the advantage in the real and the
ideal world differ by a negligible amount. As the ideal world adversary is also
polynomial, the corresponding advantage εA◦(k) cannot be avoided for any cor-

1In the previous chapter, we used a slightly more liberal notion, where the construction of
A◦ could depend on the target relation B. But Section 7.3 shows that the latter is equivalent to
the classical definition if we discard polynomial factors.

68 6. ALTERNATIVE SECURITY MODELS

rect implementation of the desired functionality. Thus, a properly scaled advan-
tage that omits the trivial success probability is indeed negligible.

However, soon after the wide acceptance of polynomial security model, cryp-
tographers failed to prove the security of many interesting protocols. Remark-
ably, the first zero-knowledge proof [GMR85] is not secure in the strict polyno-
mial model. The corresponding journal article [GMR89] had to explicitly relax
security requirements and thus implicitly defined a weaker security model.

The weakened model bounds only the expected running time t̂id of the ideal
adversary A◦, where the average is taken over its coin tosses. The corresponding
security definitions for zero-knowledge [GMR89, GMW91] and proofs of knowl-
edge [BG92] require that for any tre(k), tpr(k) ∈ poly(k) there exists a bound
on average running time t̂id(k) ∈ poly(k) such that ε(k) ∈ negl(k). Although
this change is seemingly marginal, it leads to several unexpected consequences,
see [BL04, KL05]. The main drawback lies in the fact that a sequential com-
position theorem for zero-knowledge proofs [GO94] holds only in the strong
polynomial model. Moreover, Barak and Lindell showed that there can be no
constant round black-box zero-knowledge proofs for non-trivial problems in the
strong polynomial model [BL04] and thus achieving constant round complexity
and composability simultaneously is difficult. As a small consolation, they also
showed that under reasonable cryptographic assumptions, there exists a constant
round zero-knowledge protocol for any NP language with a white-box reduction
but the corresponding security guarantees were quite loose.

Such a sad state of affairs has led to several technical refinements [KL05,
Gol07] that avoid the unpleasant dilemma. Briefly, the refinements show that
if the distribution of running time satisfies certain specific constraints, then the
composition theorems hold for the model, where only the expected running
times t̂re(k) and t̂id(k) are known to be polynomial. More importantly, almost
all zero-knowledge proofs, including classical constant round proofs [GMW91,
GK96a, FS89] for all NP languages, satisfy these constraints. Therefore, one
can indeed avoid the choice between round efficiency and composability.

However, if one looks deeper into the issue, he or she soon discovers that the
expected running time is just a camouflage for hiding unpleasant facts. Namely,
certain properties of proofs of knowledge make the strict polynomial time black-
box zero-knowledge impossible. In a nutshell, if a cheating prover succeeds with
a probability εpok, then the corresponding knowledge-extraction algorithm must
work in time Θ(ε−1

pok) to succeed with overwhelming probability. Such a lower
bound on the running time has a natural explanation: a black-box knowledge-
extractor can succeed only if it gets a valid proof of knowledge and the latter
requires on average Ω(ε−1

pok) repetitions. A corresponding zero-knowledge proof
that uses a proof of knowledge as a sub-protocol runs in expected polynomial
time only because with probability 1 − εpok a cheating verifier fails in the proof
of knowledge, and thus one has to run the slow knowledge-extraction algorithm
with probability εpok. Consequently, the unknown probability εpok cancels out
and we are left with the expected running time t̂id(k) ∈ poly(k).

However, such a trick does not solve the underlying intrinsic difficulties with
knowledge extraction, since “useful computations” are done only in long runs.
Moreover, the corresponding security guarantees are machine dependent, pro-
vide only average-case security, and have thus questionable interpretation in
practice [BL04, p. 785]. Therefore, we choose a more obvious and sincere ap-

6. ALTERNATIVE SECURITY MODELS 69

proach to relax polynomial security model. We say that a protocol family (πk) is
weakly secure in the polynomial model if for any asymptotically non-negligible
bound ε(k) ∈ Ω(k−c) and for any tre(k), tpr(k) ∈ poly(k) there exists an ideal
world adversary with a strict running time tid(k) ∈ poly(k).

The corresponding security model is not novel at all. In fact, the original
definition of proofs of knowledge [FFS87] was indeed given in the weak poly-
nomial security model. Later the same concept resurfaced under the name of
ε-knowledge [DNS04]. It is straightforward to show that the classical definition
for proof of knowledge [BG92] also satisfies the original definition [FFS87] and
thus all troublesome zero-knowledge proofs are secure in the weak model. More
importantly, the security guarantees have clear interpretations and all composi-
tion theorems that hold in strong polynomial model also hold in the weak model.
Hence, the author believes that the explicit definition of weak polynomial secu-
rity model is better than various technical tweaks [KL05, Gol07].

Evidently, the strong polynomial security model is contained in the weak
polynomial security model. Moreover, Barak and Lindell have proven the non-
existence of constant round black-box zero-knowledge proofs for all languages
L /∈ BPP [BL04]. Thus, the aforementioned inclusion is strict for black-box
reductions under a widely believed assumption NP 6= BPP. For white-box re-
ductions, it is not known whether the inclusion is strict or not. At the same time,
it is straightforward to prove that if a protocol is secure in a weak non-uniform
polynomial security model, then for any tre(k), tpr(k) ∈ poly(k) there exists an
ideal world adversary with super-polynomial but sub-exponential running time
tid(k) ∈ kω(1) ∩ 2o(k) such that the advantage is negligible ε(k) ∈ negl(k).

The proof is based on a simple diagonalisation argument. Fix bounds on the
running times tre(k), tpr(k) ∈ poly(k) and consider the sequence of decreasing
bounds εi(k) = k−i. Then, by the definition, we also get a corresponding se-
quence of asymptotic polynomial time bounds tid,i(k) ≤ kci for large enough k.
Now, if we fix a sequence of switching points (ki)

∞
i=1 and use the ith reduction

in the range k ∈ [ki,ki+1), then by the construction the resulting bound on the
advantage ε(k) ∈ negl(k). To complete the proof, we must choose switching
points so that the running time is sub-exponential. If we take ki = 2ci+1 , then
tid ∈ O(klog k) but in principle, any super-polynomial bound is achievable.

Analogously, we can define the strong and the weak uniform polynomial se-
curity model. However, these notions make sense only if the protocol inputs are
generated by a uniform polynomial algorithm. Otherwise, the adversary can use
the inputs of corrupted participants as an external advice and we are still in the
standard non-uniform setting. This additional requirement for inputs makes it
difficult to interpret the resulting security guarantees. Hence, uniform security
models are seldomly used. Nevertheless, it is the only plausible choice when the
basic primitives are secure solely in the uniform model.

Three alternatives for statistical security. The first and the most obvious
choice is to consider adversaries that are computationally bounded on the online
phase of the attack, but afterwards have infinite time to analyse the obtained
results. More formally, let us consider redefined advantage

ε(k) = sd⋆(Gkre-atk,Gkid-atk) . (6.5)

Then a protocol family (πk) is secure against polynomial online and unbounded
post-processing attacks if for any tre(k) ∈ poly(k) there exists tid(k) ∈ poly(k)

70 6. ALTERNATIVE SECURITY MODELS

such that ε(k) ∈ negl(k). Similarly to the discussion above, we can relax the se-
curity conditions, i.e., a protocol family (πk) is weakly secure against polynomial
online and unbounded post-processing attacks if for any non-negligible error
bound ε(k) ∈ Ω(k−c) and for any tre(k) ∈ poly(k) there exists a polynomial
bound tid(k) ∈ poly(k). Since the adversary can store all received messages,
two-party protocols that implement non-trivial functionality cannot be secure
against unbounded post-processing attacks, see for example [CK89]. Neverthe-
less, these models are meaningful for certain two-party protocols that implement
limited functionality. Various settings for statistical and perfect zero-knowledge
(such as [BC86, Cha86, For87]) are most utilised examples but there are others,
such as data authentication, see for example [BR93a].

Many multi-party protocols can also handle online attacks with unbounded
time complexity. However, there are two ways of relaxing the online complex-
ity. The most simplistic way is to postulate that the adversary has an indeed
infinite computing power and thus the computational complexity is irrelevant.
Under such assumptions it is natural to say that a protocol family (πk) is secure
in the weak statistical security model if for any time bound tre(k) there exists a
corresponding time bound tid(k) that achieves ε(k) ∈ negl(k). Although the
definition limits the amount of extra information the adversary can gain, it does
not limit the extra computational power that he or she can achieve by participat-
ing in the protocol. As a result, a protocol that is secure in the weak statistical
model can still be insecure in the polynomial model. An excellent example of
such a protocol is given in the seminal article [Can00a, p. 159].

Alternatively, we can require that the running times of the real and the ideal
world adversaries are comparable for all functions tre(k). More formally, a proto-
col family (πk) is secure in the strong statistical security model if for any function
tre(k) there exists a bound tid(k) ∈ poly(k) · tre(k) such that ε(k) ∈ negl(k).
This definition assures that the adversary cannot use the protocol to significantly
speed up his or her computations. Thus, the strong statistical security model
is a natural strengthening of all other asymptotic security models. The latter
makes it the most dominant in the literature [Gol04, Can00a]. Also, all generic
multi-party computation techniques [BOGW88, CCD88, GRR98] satisfy this
definition. We emphasise that the strong statistical security model limits the
discrepancy between the time-success profiles of the real and the ideal world.
Intuitively, strong statistical security assures that a collapse of a computational
basic primitive cannot cause abrupt jump in the time-success profile.

The weak statistical security model loses this correspondence between the
time-success profiles of the real and the ideal world. As a result, the weak statis-
tical security model has several weird and unexpected properties. Nevertheless,
the definition is externally consistent. If one really assumes that the adversary
has infinite computational resources, the gain in computational power is irrele-
vant and the honest parties must accept consequences of all possible attacks in
the ideal world. In some practical applications, honest parties indeed care about
specific properties that hold in the ideal world even for unbounded adversaries.
For example, the concept of weak statistical security is often used in the con-
text of oblivious transfer [AIR01, Lip05] and other two-party privacy-preserving
operations, see for example [FNP04, FIPR05, KS05, LL07].

6. ALTERNATIVE SECURITY MODELS 71

6.3 GENTLE INTRODUCTION TO SUBJECTIVE SECURITY

At first glance, the concept of subjective security seems a bit odd, not to say inap-
propriate, for a rational scientific discipline, such as cryptography. As scientists,
we should seek impartial and well-justified descriptions of security threats and
avoid any subjective and questionable assumptions on the adversarial behaviour.
However, a closer inspection reveals that such models are quite common in
mainstream literature. Even the celebrated uniform security model is strongly
subjective, as there are no objective reasons to assume that an attacker will al-
ways use the same generic solution for all instances of a protocol.

The random oracle model is another widely used but often misunderstood
security model that provides only subjective security guarantees. Bellare and
Rogaway proposed the random oracle model [BR93b] as an idealised computa-
tional model to mimic hash functions. More formally, assume that a function
h is chosen uniformly from the set Hall where Hall = {h :M→ T } consists of
all functions from the setM to the set T . Now, let O be an oracle that provides
black-box access to the function h, i.e., given m ∈ M the oracle replies h(m).
As a result, we have defined a computational model, where the oracle O can be
used as an idealised hash function from the setM to the set T .

Assume that a game G describes the desired properties of a construction or a
protocol. Then the definition of the random oracle model yields

Advrom
G (A) =

1

|Hall|
·
∑

h∈Hall

Pr
[
GA,O = 1|O(·) = h(·)

]
. (6.6)

In practice, one must substituteHall with another function familyH ⊆ Hall that
has a more succinct description and can be efficiently evaluated. As a result, the
advantage in the standard model is computed over a much smaller sample

Advstd
G (A) =

1

|H| ·
∑

h∈H

Pr
[
GA,O = 1|O(·) = h(·)

]
. (6.7)

A small sample size |H| ≪ |Hall| by itself is not a problem. If a family H is
randomly sampled fromHall then by the central limit theorem

Advrom
G (A) ≈ Advstd

G (A) (6.8)

holds with overwhelming probability over the choice of H. However, the func-
tion family H must have a very short description and the latter introduces a pos-
sible bias into the estimate (6.8). Hence, a security proof in the random oracle
model is convincing only under a subjective equivalence assumption that the
approximation (6.8) still holds for the set of all relevant adversaries A.

Here, the concept of relevant adversary A ∈ A needs further clarification.
Although humans have admirable intellectual abilities, these powers are still
limited. Therefore, humans are likely to choose a suboptimal adversarial strate-
gies and one should not worry about optimal attacks that never materialise. The
set A is meant to denote all algorithms that a mankind can devise. Of course, it
is impossible to describe the set A ahead and thus we can objectively verify the
claim (6.8) only after the attacks have taken place.

72 6. ALTERNATIVE SECURITY MODELS

Nevertheless, one can try to describe a set of algorithms such that the sub-
jective equivalence assumption is satisfied for this set. Assume that H is a (t, ε)-
pseudorandom function family, i.e., the security games

QA
0

h← H
return AO

QA
1

h← Hall

return AO

are (t, ε)-indistinguishable. Now, consider a class of generic t-time attack algo-
rithms Abb that always evaluate h in a black-box manner. By definition

Advstd
G (A) ≤ Advrom

G (A) + ε, (6.9)

for any A ∈ Abb, otherwise we can use the adversary GA,· to distinguish between
the gamesQ0 andQ1. Thus, any attack that significantly violates the bound (6.9)
must use the description of h in an essential way. As such an attack is specialised
for h, it is likely not to succeed for other functions h∗ ∈ H. At the same time,
a black-box adversary A ∈ Abb can still exploit the description of the family H
and thus the corresponding attacks can be quite specific. Hence, security in the
random oracle model is a reasonable starting point whenever the hash function
must exhibit pseudorandom properties in the construction.

The fact that the random oracle model is a subjective security model makes
it quite different from objective security models. In particular, the validity of the
subjective equivalence assumption (6.8) is not automatic and must be individ-
ually re-evaluated for each specific construction. Even a single decision is not
universal, since different persons may reach different conclusions. As a result, a
specific subjective equivalence assumption that is associated with a specific con-
struction π can be falsified only by showing a concrete algorithm A0 that for this
concrete construction π achieves

Advrom
Gπ

(A0)≪ Advstd
Gπ

(A0) . (6.10)

Since one must make an individual subjective decision for each construction
separately, the subjective equivalence assumption cannot be falsified by showing
the existence of specially crafted protocols π∗ that indeed satisfy (6.10). If we
acknowledge this essential property of the model, the wave of critique [CGH04b,
GK03, BBP04, MRH04, CGH04a] started by Canetti, Goldreich and Halevi
falls apart. Essentially, all these results show that the subjective equivalence
assumption (6.8) is not universal. But the latter is an expected result, otherwise
the assumption (6.8) would be a valid mathematical claim.

The random oracle model is not the only widely used computational model
that forces cryptographers to make subjective assumptions in order to interpret
the results. All so-called black-box models starting from the ideal cipher model
already proposed by Shannon [Sha49] and ending with the generic group and
ring models [Nec94, Sho97, LR06] force cryptographers to make subjective
equivalence assumptions similar to the approximation (6.8). Again, several ex-
tensions [Den02, Bla06a] of basic techniques [CGH04b, MRH04] indeed show
that the corresponding equivalence assumption is not universal.

Finally, let us show that such a subjective equivalence assumption can be dis-
puted in a more persuading manner. Assume that instead of a random oracle one
uses standard iterative hash function family like SHA-1 and WHIRLPOOL. The

6. ALTERNATIVE SECURITY MODELS 73

AP1 P2 Pn
· · ·

Pts

Gre-atk

B

Setup

P1 P2 Pn
· · ·

B

A
◦

Gid-atk

Figure 6.4: Real and ideal world models for a protocol with a trusted setup phase.

vanilla hash function f ∗
iv without an appropriate padding is computed iteratively

according to the Merkle-Damgård construction

h(x) = f ∗
iv(x1, . . . , xk) = f(f ∗

iv(x1, . . . , xk−1), xk) , (6.11)

where f : {0, 1}m × {0, 1}n → {0, 1}m is a round function, iv is a m-bit initial
value and x is parsed as a vector (x1, . . . , xk) of n-bit blocks. Consequently, we
have a hash function family that is indexed by the initial value iv:

Hf = {f ∗
iv : {0, 1}n∗ → {0, 1}n}iv∈{0,1}m . (6.12)

Now given a value f ∗
iv(x1) and the black-box access to the round function f , it

is straightforward to compute f ∗
iv(x) and thus it becomes trivial to distinguish

between the function families Hf and Hall.2 Hence, the inequality (6.9) fails
for a general class of adversaries that access functions f ∗

iv and f in a black-
box manner. In more explicit terms, there might exist a universal black-box
algorithm A that breaks the construction for all possible iterative hash func-
tions. Hence, one should use a one-way function g to get the final hash value
h(x) = g(f ∗

iv(x1, . . . , xn)) in order to reduce the amount of subjective trust.

6.4 SETUP ASSUMPTIONS AND SUBJECTIVE SECURITY

In a certain sense, it is impossible to avoid subjective security. Even if we try to
prove the security in the objective non-uniform computational model, we soon
reach fundamental limitations of hypothesis testing. Many cryptographic proto-
cols are specified as a part of a communication standard, such as the DSS stan-
dard [Nat00] for digital signatures, or the TLS v1.1 standard [Net06] for secure
web browsing. Such standards almost always explicitly fix some cryptographic
primitives, for example, state that messages must be hashed with SHA-1. Hence,
contrary to the belief of most theoreticians, almost all cryptographic applications
are implemented in the common reference string model, where all protocol
participants can access authentically distributed setup parameters.

Such a setting is formally modelled by a trusted setup procedure, where a
non-corruptible party Pts sends some initial parameters to the participants of the
protocol. Usually, it is sufficient if the communication between the dealer Pts

and other participants is authentic but some settings also require confidentiality.

2The argumentation can be generalised for the actual hash functions with a padding.

74 6. ALTERNATIVE SECURITY MODELS

For example, the Digital Signature Standard fixes some recommended param-
eters including SHA-1 as a preferred hash function. Another class of similar
examples consists of various theoretical models for public-key infrastructure.

From a technical viewpoint, analysis of a protocol with a trusted setup proce-
dure is not different from ordinary protocol, except that the real world model has
an extra phase that is missing in the ideal world, see Fig. 6.4. A bigger, not to say
an essential, problem lies in the fact that the corresponding objective security
model does not faithfully reflect the reality:

• For many standards, the setup procedure is run only once. Consequently,
one really cares how successful a potential adversary is for this particular
outcome of the setup procedure, whereas the objective security finds only
an average-case success bound over all possible runs of the setup.

• Public setup parameters psp are often fixed for years. Thus, an adversary
can and should in principle devise a specific attack that utilises the prop-
erties of psp. No objective security model can capture such a dependence,
as the algorithms are always chosen before the parameters are generated.

We emphasise that the problem lies in the fundamental mismatch between in-
dividual and collective properties of the setup procedure and thus cannot be
resolved by clever modifications of security games.

It is instructive to consider a couple of concrete examples before giving more
abstract reasoning. Recall that a function familyH is (t, ε)-collision resistant if

Advcr
H(A) = Pr [h← H, (x0, x1)← A(h) : h(x0) = h(x1) ∧ x0 6= x1] ≤ ε

for any t-time adversary A. Observe that collision resistance is a collective prop-
erty of the function family H. For a fixed non-injective function h, the notion
of collision resistance does not make sense, since there exists a trivial adversary
Ax0,x1

that outputs a fixed collision h(x0) = h(x1). Such discrepancy between
individual and collective properties leads to a hashing paradox:

• It is impossible to objectively use collision resistant hash functions, even
if one has an explicit description of a collision resistant function familyH.

• Any protocol that is compromised by a hash collision h(x0) = h(x1) be-
comes insecure in the objective sense as soon as h is chosen from H, as
we can then use a fixed algorithm Ax0,x1

to break the protocol.

The problem is not specific to any practical hash function, such as SHA-1 or
WHIRLPOOL, nor to the way they have been designed. The hashing paradox
holds for any imaginable compressing function. In particular, it is impossible to
talk about the objective security of a digital signature scheme that uses a fixed
hash function to compress messages before signing them.

As a second example, we present a similar paradox for asymmetric encryption.
Observe that IND-CPA security is again a collective property of a cryptosystem.
For a fixed public key pk there exists a trivial adversary Ask that uses a hard-
wired secret key sk to successfully decrypt all messages encrypted by Encpk(·).
Consequently, we can state an encryption paradox:

• It is impossible to use an objectively confidential asymmetric enciphering
method even if one has explicit description of an IND-CPA cryptosystem.

6. ALTERNATIVE SECURITY MODELS 75

General purpose
Weakly specialised

Trivial

ωst

AdvG(A|ωst)

1

ε

Figure 6.5: The advantage AdvG(A|ωts) as a function of randomness ωts used by
the dealer Pts for various different types of attacking algorithms.

• Any protocol that uses asymmetric encryption becomes insecure in the
objective sense as soon as the public key pk is officially published.

A similar paradox emerges for digital signatures. Moreover, this problem cannot
be ignored as a weird theoretical observation that has no practical consequences,
since the public-key infrastructures are common in everyday life. We have en-
joyed secure web-browsing from 1994, when Netscape developed the first ver-
sion of SSL protocol, and many countries are deploying country-wide official
public-key infrastructures. All such infrastructures collapse if one obtains a mas-
ter secret key that is used to guarantee the authenticity of all public keys. Hence,
a potential adversary needs to crack a single fixed master key.

For clarity, assume that the master secret key is a full factorisation of an
RSA modulus N = p · q. Now finding a factorisation of a specific integer N
might be much easier than the factoring problem in general. For example, the
state of the art factoring efforts have produced a full factorisation of a 1039-bit
Mersenne number, whereas the current record of factoring RSA moduli is 640-
bits [AFK+07, RSA07]. However, if an adversary can specify an algorithm for the
concrete modulus N , then we cannot exclude a trivial algorithm Ap,q that just
prints out the corresponding factors p and q. Thus, no objective security model
can capture the intractability of factoring for a particular modulus N .

The essence of the trusted setup problem is revealed, if we consider an advan-
tage of a t-time algorithm A as a function of random coins used by Pts

AdvG(A|ωts) = Pr [GA = 1|Pts uses randomness ωts] . (6.13)

As the overall advantage can be computed as an average

AdvG(A) =
1

|Ωts|
·
∑

ωts∈Ωts

AdvG(A|ωts) , (6.14)

the objective security bounds limit only the area under the profile, as illustrated
in Fig. 6.5. Now the advantage for a fixed setup run is just a single point in the
profile of AdvG(A|ωts). Consequently, objective setting for a fixed setup run is
meaningful only if for all t-time adversaries A and randomness ωts ∈ Ωts

AdvG(A|ωts) ≤ ε0 ≪ 1 . (6.15)

76 6. ALTERNATIVE SECURITY MODELS

But then the setup procedure is redundant, as we can fix all random coins
ωts = 0 . . . 0 and let all parties compute the setup messages by themselves. Anal-
ogously, we can remove the setup procedure even if the inequality (6.15) holds
only for a single choice of random coins ω∗

ts ∈ Ωts.
Hence, for any meaningful setup procedure, there must exist a trivial attack

for any protocol run. We can eliminate them, but the corresponding choice be-
tween weakly specialised and trivial attacks is inherently subjective. Fortunately,
there is a heuristic bridge between objective and subjective security.

Fairness Postulate. If the setup procedure has been properly carried out, it
is rational to assume that the value AdvG(A|ωts) exceeds an objective bound
AdvG(A) ≤ ε only by several magnitudes for all relevant algorithms A ∈ A.

Of course, it is impossible to prove the postulate, we can only justify it. Since
the area under the profile is bounded by ε, the advantage AdvG(A|ωts) can ex-
ceed c · ε only for a fraction 1

c
of all ωts ∈ Ωts. Hence, algorithms with ultra-high

advantages must be extremely specialised and should be left out. Also, if an at-
tacker manages to find an ultra-specialised algorithm A for a significant fraction
of ωts ∈ Ωts, then the attacker itself as a self-tuning attacking strategy exceeds the
objective security bound. Evidently, we cannot exclude such super-intelligent
adversaries but in that case there is nothing we could do anyway.

Finally, we emphasise that objective and subjective security are not conflict-
ing concepts but rather complementary formalisations. Objective security pro-
vides a rigorous way to design protocols that are resistant to general purpose
attacks, whereas subjective security is unavoidable if we want to analyse security
guarantees after some parameters are fixed. A similar duality between the de-
sign and the actual usage also appears in the statistics. It is possible to design
statistical estimation algorithms that behave well on average, but a meaningful
interpretation of the resulting outputs must use subjective probabilities.

6.5 RIGOROUS FORMALISATION OF SUBJECTIVE SECURITY

The fairness postulate has the same drawbacks as the subjective equivalence as-
sumption used in the random oracle model. Both of them rely on inherently
subjective decisions, which might turn out to be inappropriate in retrospection.
Therefore, one should apply them only in very simplistic settings and use the
resulting subjective security premises as stepping stones in the analysis of more
complex constructions. Such an approach reduces the amount of subjectivity by
locating the essential subjective security premises one must believe.

A proper formalisation of subjective security premises and proofs is needed for
other more technical reasons as well. First, it is not evident at all that excessive
application of the fairness postulate or its analogues does not lead to inconsisten-
cies. Moreover, there are no objectively secure cryptographic primitives known
so far and thus the fairness postulate is de facto inapplicable. Additionally, it
is not apparent at all that compact direct proofs do exist in the computational
setting, even if primitives like one-way functions exist. In other words, we do
not know whether one can ever provide a complete security proof for a specific
cryptographic primitive that is verifiable in reasonable time. As a result, the sub-
jective security might be truly unavoidable. Finally, a proper formalisation of

6. ALTERNATIVE SECURITY MODELS 77

subjective security is interesting in its own right, as it clarifies what we actually
mean by subjective security. In particular, what is the main difference between
security proofs in objective and subjective settings.

It turns out that most proofs can be freely translated from the objective setting
to the subjective setting and vice versa, and that the main difference is only in
the exact bounds on the running times. The latter is somewhat expected, as
the uniform polynomial security model is also subjective and so far most of the
published security proofs hold for both polynomial security models.

Formalisation of subjective security. At first glance, it seems impossible to
formalise the intuition that some algorithms are not accessible to adversary, since
we do not know how the algorithms are generated. Indeed, we showed above
that such a formalisation is impossible in the classical frequentistic setting. How-
ever, if we accept the subjectivity of probabilities, the solution becomes evident.
Namely, we must assign subjective occurrence properties to all possible adver-
sarial algorithms to exclude ultra-specialised attacks.

More formally, one must specify a distribution of algorithms A for a particular
problem. A choice of the corresponding distribution is entirely subjective, as
it reflects personal beliefs on which algorithms are more likely to be used in
potential attacks. In practice, one does not have to specify the entire distribution,
it is sufficient to fix several unquestionable beliefs about adversarial distribution
and then use principles of coherent reasoning. A fully determined distribution
A is needed to formally define a relative advantage against a game G

AdvG(A) = Pr [A← A : GA = 1] (6.16)

and a relative distinguishing advantage for a game pair G0 and G1

Advind
G0,G1

(A) = |Pr [A← A : GA

0 = 1]− Pr [A← A : GA

1 = 1]| . (6.17)

We emphasise that the distribution A does not have to be not uniform. Hence,
the success probabilities of more probable algorithms A have a much bigger
impact to AdvG(A) and Advind

G0,G1
(A) than other less probable algorithms.3

Observe that it is reasonable to specify different distributions for different time
bounds t, as some attacks might require a certain amount of time to be useful at
all. Hence, we use a shorthand A(·) to denote a family of distributions, where
A(t) denotes a distribution of t-time adversaries. Now a relative computational
distance with respect to a time bound t is defined as

cdA(t)
⋆ (G0,G1) = Advind

G0,G1
(A(t)) . (6.18)

As an example, recall that in the uniform polynomial model, a distribution
family A(·) consists of a single adversary A that gets a security parameter k as
an extra argument. Also, note that even a non-uniform adversary can be mod-
elled by a distribution family, where A(t) consists of a single adversary At that is
optimal over the set of all t-time adversaries.

Now, as the distribution family A(·) puts restrictions on the set of plausible
adversaries, the security with respect to fixed parameters becomes meaningful.

3Of course, there are no objective measures for determining the right occurrence proba-
bilities for all algorithms, since we cannot objectively predict what “useful” algorithms will be
discovered and used in the future. Hence, these notions are inherently subjective.

78 6. ALTERNATIVE SECURITY MODELS

In particular, the following instantiations of IND-CPA games

QA
0

(m0, m1)← A(pk)
c← Encpk(m0)
return A(c)

QA
1

(m0, m1)← A(pk)
c← Encpk(m1)
return A(c)

where pk is a fixed valid public key, might lead to nontrivial bounds on the
relative computational distance cdA(t)

⋆ (Q0,Q1). In other words, the subjective
notion of IND-CPA security is meaningful also for a fixed public key pk.

Principles of coherent reasoning. Since a rational entity is free to choose
subjective probabilities, it is impossible to formally prove the (in)validity of secu-
rity assumptions. We can only try to eliminate inconsistencies between various
beliefs in order to achieve coherence. Therefore, we are going to mimic the
classical approach that is used to formalise subjective probabilities, see hand-
books [Jay03, Jef04]. In a nutshell, we assume that all subjective probability
distributions are assigned by a rational entity who is willing to correct his or her
assignments if he or she finds out that they contradict common sense. We specify
this vague definition by fixing a set of axioms (R1)–(R3) that directly follow from
the common-sense understanding of attack strategies.

For brevity, we only consider probability assignments for game pairs, since
a relative advantage AdvG(A) can be restated as a relative computational dis-
tance Advind

G,⊥(A), where⊥ denotes a game that always ends with⊥. Assume that
a rational entity has specified different adversarial distributions A,B,C, . . . for
different problems. In other words, the rational entity acknowledges that an at-
tacker can sample an algorithm from these candidate distributions A,B,C,
Then it is irrational to assume that a potential attacker cannot use the candidate
distribution A for other problems. Similarly, it is irrational to assume that an
attacker cannot use a well-known code transformation T to convert a sampled
adversarial algorithm A to a different algorithm B← T (A). For example, there
is no reason to refute the possibility that an attacker may encode a factoring task
as a Boolean formula if he or she has access to a very efficient solver for Boolean
formulae. In other terms, well-known transformations introduce new candidate
distributions T (A), T (B), T (C), However, such transformations are not for
free, since the application of the transformation itself takes time. Shortly, if
B ← T (A), then the time needed to compute T (A) is added to the running
time of B. As a result, we have discovered three basic coherence axioms that
reveal inconsistencies between subjective probability assignments:

(R1) Let T be a code transformation known to a rational entity and A be a
candidate distribution for distinguishing G0 and G1. Then a distribution
B = T (A) induced by T and A must also be a candidate distribution.

(R2) Let B = T (A) as specified above. Then the time needed to compute
T (A) from a sample A← A must be added to the running time of T (A).

(R3) Let A(t) and B(t) be two candidate distributions for distinguishing G0 and
G1. Now if the entity knows that cdA(t)

⋆ (G0,G1) < cdB(t)
⋆ (G0,G1) then the

entity must prefer the distribution B(t) to the distribution A(t).

The verb ‘know’ and the term ‘knowledge’ are used here to denote explicit
awareness, i.e., an entity who reasons about security must literally know the

6. ALTERNATIVE SECURITY MODELS 79

description of a transformation T or possess a valid proof that the inequality
cdA(t)

⋆ (G0,G1) < cdB(t)
⋆ (G0,G1) holds. In particular, a person who knows noth-

ing about cryptography can arbitrarily assign adversarial distributions to various
problems, since any assignment is coherent with his or her knowledge about
these problems. When the person gains more knowledge, then certain assign-
ments become irrational and thus he or she must sometimes accept that certain
constructions are secure. Nevertheless, note that a set of facts rarely determines
unique candidate distributions for all problems and thus entities can reach differ-
ent conclusions even if they share the same set of facts. In other words, a rational
entity can and should discover inconsistencies according to his or her knowledge,
but a certain amount of subjectivity is unavoidable in his or her assignments.

Note that all security proofs must be strongly constructive in the subjective
setting, since a rational entity must explicitly know a distribution B that is a
better alternative than a distribution A. A mere existence of a better alternative
does not cause inconsistencies as long as the rational entity is not informed. Such
a position is unavoidable, or otherwise we cannot escape the objective setting. If
we require consistency for all possible transformations, then we also allow trivial
transformations that ignore the input code and output an optimal adversary for
a particular problem and we back in the objective setting.

Finally, observe that the axiomatisation cannot lead to contradictory restric-
tions for adversarial distributions as long as the objective security model itself is
non-contradictory. Namely, a rational entity can always assume that a distribu-
tion A(t) for a game pair G0 and G1 consist of a single t-time adversary A that
maximises the advantage Advind

G0,G1
(A). Consequently, there can be no better al-

ternatives for the distribution A(t) and none of the axioms (R1)–(R3) is violated.
Note that this conservative assignment of adversarial distributions corresponds to
the objective setting and thus must be well defined.

6.6 REDUCTIONS AND SUBJECTIVE SECURITY PREMISES

The axioms of coherent reasoning (R1)–(R3) alone are not sufficient to prove
the subjective security of a protocol or a construction, as they just reveal the in-
consistencies. A decision how such inconsistent assignments should be changed
is also a subjective decision and can depend on personal preferences of rational
entities. To solve the ambiguity, one must fix a small set of fundamental beliefs
that is never changed if it is possible to achieve coherence otherwise. These

beliefs will play the role of subjective security assumptions. Formally, a basic
security premise [[Q0

∼= Q1|(t, ε)]] is an unquestionable belief that the relative
computational distance satisfies cdA(t)

⋆ (Q0,Q1) ≤ ε for any achievable distri-
bution family A(·). As a result, we can formalise the subjective (t, ε)-collision
resistance for a function h and (t, ε)-IND-CPA security for a public key pk by
adding the corresponding security premises into the set of fundamental beliefs.

We emphasise here that fundamental beliefs are empirically falsifiable. For
example, the MD5 hash function was believed to be collision resistant in 1992
but the publication of successful attacks has forced us to change our beliefs.

Technically, subjective security proofs are very similar to classical proofs. As-
sume that a security premise [[Q0

∼= Q1|(t0, ε0)]] is fundamental. Then an effi-

80 6. ALTERNATIVE SECURITY MODELS

cient constructive reduction T that maps an algorithm A to B so that

Advind
G0,G1

(A) > ε =⇒ Advind
Q0,Q1

(B) > ρ(ε) (6.19)

for a known function ρ : [0, 1] → [0, 1] introduces an upper bound on the com-
putational distance cdA

⋆ (G0,G1). Namely, if the security guarantee ρ is convex-
cup, the corresponding distribution B = T (A) satisfies

cdB

⋆ (Q1,Q1) =
∑

A∈A

Pr [A] · Advind
Q0,Q1

(T (A)) ≥ ρ
(
cdA

⋆ (G0,G1)
)
, (6.20)

as the definition of ρ and Jensen’s inequality assure

∑

A∈A

Pr [A] · Advind
Q0,Q1

(T (A)) ≥
∑

A∈A

Pr [A] · ρ
(
Advind

G0,G1
(A)
)
, (6.21)

∑

A∈A

Pr [A] · ρ
(
Advind

G0,G1
(A)
)
≥ ρ

(
∑

A∈A

Pr [A] · Advind
G0,G1

(A)

)

. (6.22)

Therefore, we obtain an average-case security guarantee

Advind
G0,G1

(A) > ε =⇒ Advind
Q0,Q1

(B) > ρ(ε) . (6.23)

If the security guarantee ρ is not convex-cup, the pointwise guarantee (6.19) does
not automatically imply the average-case guarantee (6.23) and we have to bound
Advind

Q0,Q1
(B) by using other methods. Given a fundamental security premise

[[Q0
∼= Q1|(t0, ε0)]] and an average case security guarantee (6.23) that respects

the time bound t0, we can conclude

cdA

⋆ (G0,G1) ≤ ρ−1(ε0) , (6.24)

otherwise we violate either the axiom (R3) or the security premise. Hence,
subjective security proofs are technically identical to traditional objective secu-
rity proofs, provided that the code transformation T has an explicit description.
Moreover, as all common pointwise reductions have convex-cup security guar-
antees, and even the quantitative success bounds of traditional and subjective
security estimates coincide. The difference appears only in running times, since
we must also consider the complexity of the code transformation T .

We remark here that the same issues have also been addressed by Rogaway
who tried to solve the hashing paradox described in Section 6.4. However, the
corresponding article [Rog06] does not provide a proper mathematical founda-
tion of subjective security (human ignorance). In fact, Rogaway believes that
rigorous formalisation of subjective security is impossible [Rog06]:

What is meant is that there is no efficient algorithm known to man that outputs a
collision in H . But such a statement would seem to be unformalizable—outside
the realm of mathematics.

We have clearly shown that such a formalisation is possible as soon as one is
willing to accept subjective interpretation of probabilities. Moreover, our treat-
ment of subjective security also provides a formal justification to the method-
ology used in [Rog06]. More precisely, Rogaway required that all reductions

6. ALTERNATIVE SECURITY MODELS 81

should be strictly constructive and accompanied with appropriate pointwise se-
curity guarantees (6.19). As a result, both formalisations give qualitatively equiv-
alent security guarantees for most constructions and protocols.

However, there is still a major conceptual difference that makes our formali-
sation different from the traditional objective setting and the formalisation given
by Rogaway. Namely, the axioms (R1)–(R3) are applicable only if a concrete
security premise is known to be violated. Therefore, we cannot prove

cdA(t)
⋆ (G0,G2) ≤ ε1 + ε2 (6.25)

from premises [[G0
∼= G1|(t, ε1)]] and [[G1

∼= G2|(t, ε2)]], although the violation of
the inequality (6.25) implies that one of the inequalities

cdA(t)
⋆ (G0,G1) > ε1 or cdA(t)

⋆ (G1,G2) > ε2 (6.26)

holds. The problem lies in the fact that we do not know which disjunct is true
and thus the distribution A(t) that violates the inequality (6.25) does not con-
tradict the axioms (R1)–(R3) nor security premises. Hence, a non-constructive
use of triangle inequality is not allowed. One might think that such a strong
constructivity requirement is artificial and redundant. However, a consistent
formalisation of subjective security without this assumption is impossible, other-
wise we end up in the objective setting. For example, we can always consider
singleton distributions Ai(t) that consist of a single t-time algorithm Ai. Now if
A1(t), . . . ,As(t) cover all t-time algorithms, the formula

cdA1(t)
⋆ (G0,G1) > ε ∨ cdA2(t)

⋆ (G0,G1) > ε ∨ · · · ∨ cdAs(t)
⋆ (G0,G1) > ε (6.27)

holds whenever ε < cdt
⋆(G0,G1). Hence, we cannot conclude the contradiction

from the formula (6.27), or otherwise the non-contradictory assignment must
satisfy

cdA(t)
⋆ (G0,G1) = cdt

⋆(G0,G1) . (6.28)

Since formulae (6.26) and (6.27) are analogous, we must treat them similarly.
In many occasions, we can circumvent the problem by finding more explicit

reductions, but when a construction is based on different basic primitives, it is
often impossible to eliminate non-constructivity. Therefore, we allow explicit
strengthenings of fundamental beliefs. More formally, let

[[Q0
∼= Q1|(t1, ε1)]] ∧ [[Q2

∼= Q3|(t2, ε2)]] (6.29)

denote a strengthened premise that distributions A and B are inconsistent if

cdA(t1)
⋆ (Q0,Q1) > ε1 or cdB(t2)

⋆ (Q2,Q3) > ε2 (6.30)

even if it is not known which disjunct of the statement holds. Such explicit way
of strengthening keeps the amount of non-constructiveness under tight control
and we do not lose the connection with theoretical foundations.

Moreover, it is possible to express strengthened beliefs as a belief about a
special game if we use a signed advantage

cdA(t1)
⋆ (G0,G1) = Pr [A← A : GA

0 = 1]− Pr [A← A : GA

1 = 1] (6.31)

82 6. ALTERNATIVE SECURITY MODELS

instead of the computational distance cdA(t1)
⋆ (G0,G1). We omit the correspond-

ing technical details, since it is just a theoretically pleasing reassurance that the
axioms (R1)–(R3) are expressive enough and does not give additional insight.

Subjective security for protocols. Recall that the classical ideal real world
comparison was just a convenient way to define security with respect to all rele-
vant security goals B. More precisely, the classical definition allowed to replace
the real world adversary A with an ideal world adversary A◦ in order to get a
contradiction. The subjective security setting also adds an efficiency restriction.
The real and ideal world are constructively (tre, tid, ε)-close w.r.t. a distribu-
tion of adversaries A and a distribution of security goals B if there exists a code
transformation T that satisfies the following constraints. First, T transforms a
distribution of real world adversaries A into a distribution of ideal world adver-
saries A◦. Secondly, the time needed to compute A◦ = T (A) is included in the
running time of A◦. Finally, for the time bounds tre and tid on the running times
of A and A◦ and for any feasible input distribution D:

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε , (6.32)

where the probability is also taken over the distributions A, A◦ and B.
Observe that we must limit the set of security goals B that are used to compute

the outputs of Greal and Gideal or otherwise the requirements may be too strict.
For example, consider a protocol where an honest party P1 sends an encryption
Encpk(x1) to corrupted P2. If pk is a fixed public parameter, then there exists an
efficient predicate B that uses hardwired sk to decrypt the output of A. Hence
a trivial adversary A that outputs Encpk(x1) clearly violates input-privacy. To put
it in another way, the distribution B must be restricted as it captures also the
further offline behaviour of an adversary.

Now assume that one has provided a universal simulator construction Sim

and shown that a tre-time distribution A and tpr-time distribution B that vio-
late inequality (6.32) for some input distribution D can be used to construct an
adversary distribution that violates a subjective security premise. Then for all
coherent distributions A, B and D the reduction schema

GA

real

MPC-SEC
====⇒

ε
GA◦

ideal
(6.33)

still holds and the real and the ideal worlds are subjectively (tre, tid, tpr, ε)-close
w.r.t. the security premises. To summarise, the proximity is still defined by the
reduction schema (6.33) but the latter may fail for incoherent distributions.

Consider the uniform polynomial security model as an illustrative example.
Evidently, not all input distributions are allowed or otherwise an adversary can
use the inputs of corrupted parties as an external advice and we are back in the
non-uniform model. Hence, all inputs should be generated by uniform polyno-
mial algorithm. Also, note that the security goal B(·) must be a uniform algo-
rithm or otherwise reductions may fail, too.

6.7 STRICTLY CONSTRUCTIVE PROOF TECHNIQUES

Classical security proofs can be invalid in the context of subjective security, since
they may contain non-constructive steps. In particular, one cannot use game

6. ALTERNATIVE SECURITY MODELS 83

trees in the classical manner, as an application of a triangle inequality or a hori-
zon splitting is a non-constructive proof step. Fortunately, most non-constructive
proof steps can be substituted by constructive counterparts.

Let us start with the constructive hybrid argument. The technique itself is
quite old and can be traced back to the early works of Yao and Goldreich [Yao82,
Gol98]. Namely, consider a classical non-constructive game chain

G0==⇒G1

Q00,Q01

G1==⇒G2

Q10,Q11

· · ·

· · ·

Gn−1==⇒Gn

Qn−1,0,Qn−1,1

T1 T2 Tn

where each game has an efficient reduction Ti to another more elementary game
pair Qi,0 and Qi,1 and the reduction provides perfect simulation

QTi(A)
i,0 ≡ GA

i−1 and QTi(A)
i,1 ≡ GA

i . (6.34)

Then we can express cdA(t)
⋆ (G0,Gn) as a telescopic sum

∣
∣
∣
∣
∣

∑

A∈A

n∑

i=1

Pr [A] · Pr [QTi(A)
i,0 = 1]−

∑

A∈A

n∑

i=1

Pr [A] · Pr [QTi(A)
i,1 = 1]

∣
∣
∣
∣
∣
. (6.35)

In the simplest case, all elementary game pairs coincide (Qi,0,Qi,0) ≡ (Q0,Q1).
A randomised transformation that given a code sample A from A applies the
transformation Ti with probability 1

n
produces a distribution B such that

cdA

⋆ (G0,Gn) ≤ n · cdB

⋆ (Q0,Q1) , (6.36)

since the term n · cdB

⋆ (Q0,Q1) can be also expressed as the sum (6.35). Gen-
erally, we have nj different transformations Ti that lead to the same game pairs
(Q2j−2,Q2j−1). Now for each j ∈ {1, . . . , k}, we can generate an adversar-
ial distribution Bj by choosing uniformly at random a transformation Ti that
leads to the game pair (Q2j−2,Q2j−1). The resulting adversarial distributions
B1, . . . ,Bk satisfy the inequality

cdA

⋆ (G0,Gn) ≤ n1 · cdB1

⋆ (Q0,Q1) + · · ·+ nk · cdBk

⋆ (Q2k−2,Q2k−1) , (6.37)

since the right hand side can again be lower bounded by the sum (6.35).
To complete the picture, we also consider a non-constructive horizon splitting

step for cdA

⋆ (G0,G1) under the analogous simulatability assumption

QTi(A)
i,0 ≡ (G0|Hi

)A and QTi(A)
i,1 ≡ (G1|Hi

)A . (6.38)

Again, we can express cdA(t)
⋆ (G0,Gn) as a telescopic sum (6.35) and use similar

regrouping techniques to obtain

cdA

⋆ (G0,Gn) ≤ n1 · cdB1

⋆ (Q0,Q1) + · · ·+ nk · cdBk

⋆ (Q2k−2,Q2k−1) , (6.39)

where the distributions B1, . . . ,Bk are generated by analogous uniform choice
over the transformations corresponding to the same game pair.

84 6. ALTERNATIVE SECURITY MODELS

To summarise, under the perfect simulation assumptions (6.34) and (6.38),
we can use both game chains and horizon splitting to bound the computational
distance cdA(t)

⋆ (G0,Gn) by using only a strengthened security premise

[[Q0
∼= Q1|(t1, ε1)]] ∧ . . . ∧ [[Q2k−2

∼= Q2k−1|(tk, εk)]] .

Naturally, we must take into account the running times of Ti and additional
O(log n) time needed for random sampling, but these are minor details.

Note that the perfect simulatability assumptions is satisfied for elementary
reductions that define computational indistinguishability for a primitive, for ex-
ample various encryption schemes and pseudorandom generators have the cor-
responding reductions. Other primitives are normally defined in terms of ad-
vantage in a single game Qi like collision resistance and one-wayness. Conse-
quently, the corresponding game hops rely on constructive reductions

Advind
Gi−1,Gi

(A) > εi =⇒ AdvQi
(Ti(A)) > ρi(εi) . (6.40)

Again, consider the simplest case where all games coincide Qi ≡ Q. Then the
corresponding triangle inequality

cdA

⋆ (G0,Gn) ≤ cdA

⋆ (G0,G1) + · · ·+ cdA

⋆ (Gn−1,Gn) (6.41)

for a game chain still holds, although we do not know the computational dis-
tances εi = cdA

⋆ (Gi−1,Gi). Nevertheless, we can get an adversarial distribution
B by applying a transformation Ti with uniform probability 1

n
. The correspond-

ing advantage can be lower bounded by solving the optimisation task

AdvQ(B) ≥ min
ε1+···+εn≥ε

ρ1(ε1) + · · ·+ ρn(εn)

n
, (6.42)

where ε = cdA

⋆ (G0,Gn). This approach can be directly generalised to handle sev-
eral premises or horizon splittings. Linear bounds ρi(·) lead us back to classical
inequalities, otherwise we get slightly more loose bounds.

To summarise, most non-constructive black-box proofs can be made construc-
tive by following the corresponding game tree. Moreover, the type of required
security assumptions do not change, although the resulting time bounds and
advantages may differ. The latter also applies for the white-box reductions that
are efficiently constructible, i.e., the borderline between translatable and non-
translatable proofs is not determined by the reduction type.

6. ALTERNATIVE SECURITY MODELS 85

7 MODULAR DESIGN OF COMPLEX PROTOCOLS

Appropriate abstraction level and modular design are the key factors to success in
cryptographic protocol design. In particular, it is not enough to have a definition
that adequately describes the desired security goals. We also need intermediate
security definitions that support modular design and analysis. More precisely, the
security of a compound protocol should automatically follow from the security of
its sub-protocols, or otherwise the analysis of complex protocols quickly becomes
intractable. To achieve such modularity, we must consider more complex attack
models than used for defining stand-alone security.

Since there are various decomposition methods, we also need protocols with
different usage restrictions. In the simplest case, small sub-protocols are executed
one by one to accomplish the final goal, and therefore we need a security defini-
tion that is closed under sequential composition. Alternatively, we can consider
compound protocols that schedule sub-protocols dynamically and possibly exe-
cute them in parallel to minimise the total running time. In such cases, we need
universally composable protocols that preserve security in such ultra-liberal set-
tings. Of course, there are many other alternatives between these two extremes
and each of them induces a new related security definition.

We emphasise that the choice of an appropriate protocol is a trade-off be-
tween various conflicting requirements and usage restrictions are an important
but not the only relevant aspect. In a nutshell, various composability theo-
rems [Ore87, Can00a, DM00, Can01] provide just a formal methodology that
is needed to establish simple and natural-looking usage restrictions. Moreover,
the precise knowledge of the expected usage patterns is important, as it poses
structural restrictions to the corresponding protocol, see Sections 7.5–7.6.

Alternatively, we can use composability theorems for making security proofs
more modular. In particular, we can use universal composability as a tool to de-
sign complex protocols in a systematic way. The corresponding methodology has
three stages. First, we construct universally composable protocols for all neces-
sary sub-tasks. More precisely, we can employ trusted setup to achieve universal
composability with minimal overhead. In the second stage, we combine these
sub-protocols into a round optimal solution and utilise universal composability
in the corresponding security proofs. As the final design step, we replace the
trusted setup phase with a corresponding sub-protocol that is secure in the stand-
alone model. As a result, we obtain a round efficient protocol that is secure in
the stand-alone model and has a short and modular security proof.

The formalism needed to describe and analyse various attack models is rather
complicated. Hence, we start from the main concepts in Section 7.1 and only
then formalise the corresponding computational model in Section 7.2. After-
wards, we gradually describe various subtle details in Sections 7.3 and 7.4 until
we can establish important composability results. Last two sections are dedicated
to the non-standard issues arising from our design methodology.

86 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

Preceding computations

Succeeding computations

π
◦

σ

Preceding computations

Succeeding computations

π σ

Figure 7.1: Computational context ̺〈·〉 is a template, which describes all com-
putations preceding, co-occurring and following the protocols π and π◦.

7.1 DUALITY BETWEEN PROTOCOL DESIGN AND ANALYSIS

A protocol that implements a complex functionality is not only difficult to design
but also difficult to analyse. To alleviate the underlying complexity, such proto-
cols are commonly split into a collection of well-defined sub-protocols. The
corresponding security proof is modular if it gradually replaces all sub-protocols
with the ideal implementations until we obtain the desired ideal functionality.
As a result, we have to consider the security of a protocol π in a computational
context ̺〈·〉 that uses the protocol π in order to compute something else.

In the following, we always consider contexts that use protocols in a black-
box manner, i.e., a context first provides inputs to the protocol and later uses
the resulting outputs in subsequent computations. In fact, a context ̺〈·〉 is like
a template that can be instantiated by specifying the missing protocol. The re-
sulting compound protocols ̺〈π〉 share the same general structure. Participants
first precompute some values, then execute the protocol π together with side-
computations σ and finally do post-processing, see Fig. 7.1 for schematic de-
scription. In particular, note that the adversarial behaviour can cause an infor-
mation flow between the computational processes π and σ, although they are
formally separated from each other by the specification. Such coupling effects
can make the security analysis extremely difficult.

The security of a protocol π in a context ̺〈·〉 is defined by comparing the
corresponding real and ideal world implementations. Let ̺〈π〉 denote the real
world implementation and ̺〈π◦〉 the corresponding ideal world implementa-
tion. Then, for any input distribution D and for any security objective B(·), we
can define the corresponding security games

GA
real

x← D

zobs ← GA
re-atk(x)

return B(zobs)

GA◦

ideal

x← D

zobs ← GA◦

id-atk(x)
return B(zobs)

where zobs is the vector of observable outcomes and the sub-games Gre-atk and
Gid-atk model online attacks against the protocols ̺〈π〉 and ̺〈π◦〉. We omit the
exact details here and discuss them separately afterwards.

More precisely, note that a context ̺〈·〉 defines only the usage of a protocol π
and not the exact scheduling of protocol messages. As a result, we must formally
define security in terms of game pairs, since each context might create several

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 87

game pairs (Greal,Gideal). More formally, fix a set of relevant contexts ̺〈·〉, a set of
relevant security objectives B and possible message schedulings. Let G be the
set of corresponding game pairs. Then the ideal and real world implementations
are (tre, tid, ε)-close w.r.t. all game pairs G if for any pair (Greal,Gideal) ∈ G and for
any tre-time real world adversary A there exists a tid-time ideal world adversary
A◦ such that for any input distribution D

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (7.1)

Alternatively, we can view (tre, tid, ε)-closeness w.r.t. G as a reduction schema

GA

real

G -SEC
===⇒

ε
GA◦

ideal
(7.2)

that can be applied to any game pair (Greal,Gideal) ∈ G. Moreover, one often de-
fines the set of relevant contexts implicitly by specifying usage restrictions for the
protocol π. For example, we can consider all game pairs, where the participants
execute the protocol π sequentially or in parallel with some other protocols, i.e.,
we can talk about sequential and parallel composability.

In principle, we can arbitrarily choose the set of game pairs. However, only a
few of these choices lead to modular security proofs. We remark that a standard
design methodology creates a chain of hybrid protocols

π◦ ≡ ̺0
π1==⇒ ̺1

π2==⇒ . . .
πs−1

===⇒ ̺s−1
πs==⇒ ̺s ≡ π (7.3)

that gradually change the ideal implementation into a practical protocol without
calls to the trusted third party. More precisely, each step in the chain introduces
a new sub-protocol πi that implements some task needed to complete the desired
functionality. Note that the sub-protocol πi itself may utilise additional ideal sub-
protocols that are implemented with the help of the trusted third party. These
calls must be eliminated by the subsequent steps in the chain, so that the final
protocol π does not depend on the trusted third party.

The corresponding modular security proof uses appropriate reduction sche-
mata to traverse the chain in the opposite direction

GA

real
≡ GAs

s

Gs -SEC
===⇒

εs
GAs−1

s−1

Gs−1 -SEC
=====⇒

εs−1
. . .

G2 -SEC
====⇒

ε2
GA1

1

G1 -SEC
====⇒

ε1
GA0

0 ≡ GA◦

ideal
, (7.4)

where the game Gi captures the tolerated adversarial behaviour against the hybrid
protocol ̺i〈πi〉. As a result, the game chain converts a real world adversary A step
by step to an ideal world adversary A◦ such that

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε1 + · · ·+ εs (7.5)

and thus there exists a composite reduction schema

GA

real

⋆⋆⋆

=====⇒
εs+···+ε1

GA◦

ideal
(7.6)

provided that (Gi,Gi−1) ∈ Gi for all i ∈ {1, . . . , s} and all reduction steps can be
carried out. As a result, security guarantees of all protocols π1, . . . , πs implicitly
determine a set of valid game pairs G, where the compound protocol π remains
(tre, tid, ε)-secure. For example, we often want to establish that the compound
protocol π is secure in the stand-alone model.

88 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

Basic computational model

Message delivery Network dynamics

Other relevant artifacts

Context ̺〈·〉 together with a scheduling

π1 · · · πs

︸
︷
︷

︸

Complete
computational

context︸
︷
︷
︸

Canetti’s basic
model

︸
︷
︷
︸

Canetti’s
computational

context

Figure 7.2: Layered description of a compound protocol ̺〈π1, . . . , πs〉.

Note that there are many trade-offs between efficiency and generality. Evi-
dently, we obtain the most efficient solution when we tailor a protocol π specif-
ically for a pre-specified context ̺〈·〉. However, such design cannot be reused
and the corresponding security proof might be difficult to find. Alternatively, we
may design a protocol π that is secure in almost any context. However, such a
protocol might be impossible to devise or it might be highly inefficient. Thus,
one has to find a proper balance between these extreme cases.

As a way out from this anarchy of security models, we require that each pro-
tocol is specified with usage restrictions that determine the supported contexts.
Namely, one should fix a set of composition rules that determine the basic struc-
tural properties of plausible contexts; for example, whether the protocol shares
some variables with the context or what kind of pre-, post- and side-computations
are supported. Secondly, one should fix a tolerated adversarial behaviour and the
maximal running time for computational contexts. Of course, any other unam-
biguous specification methodology is also appropriate.

7.2 LAYERED DESCRIPTION OF COMPUTATIONAL CONTEXTS

Although the general concept of computational context is quite intuitive, it is
somewhat difficult to give a formalisation that is not plagued by the abundance
of technical details. Various types of interactive computations share the same
general description but differ in many minor details, for example compare the
manuscripts [MR91b, Can00b, PSW00, BPW04]. To make technical details
more tractable, we specify the computational model step by step. First, we define
a basic model of computations that is absolutely minimal. Next, we formalise all
other more complex artefacts, like asynchronous and non-authentic communi-
cation, in terms of this basic model. More precisely, we model these artefacts
by adding extra nodes into the network and by adjusting the description of pro-
tocols and contexts. As a result, we can gradually formalise complex settings
by grouping similar technical details together into separate layers, as illustrated
in Fig. 7.2. Moreover, our task here is to specify only the basic computational
model, since an appropriate formalisation of higher level artefacts is the respon-
sibility of the person who analyses a concrete protocol or a context. Secondly, we
can state and prove many theorems independently from higher level artefacts, as
we can always analyse the basic level description of the protocol.

Basic computational model. The basic model consists of a fixed number of

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 89

participants P1, . . . ,Pm and a fixed number of trusted third parties T1, . . . ,Ts

that have no inputs and no outputs. A trusted third party Ti is active only in
the context, where participants are supposed to execute an ideal implementa-
tion π◦

i . All participants of a context are modelled as interactive Random Access
machines that run simultaneously at the same clock speed. Communication
between participants is synchronous and secure. Moreover, a sender cannot pro-
ceed further until the message has been written on the recipients communica-
tion tape. Hence, the communication tape behaves as an unlimited buffer and
the recipient does not have to process messages at the arrival time. The low-level
message delivery procedure is a deterministic and a fairly low cost operation,
which is described more thoroughly in Section 2.4.

Adversaries and security games. We treat adversaries as external entities and
not as participants of a computational context. There are several important rea-
sons for such a choice. First, our main aim here is to study attacks that utilise
only acquired data and do not employ timings or other side information. Sec-
ond, we formalised a computational context as a real-time system, where par-
ticipants obey many real-time constraints. Hence, putting an adversary into the
computational context would create many implicit limitations on the adversarial
behaviour, which are normally neglected in cryptography. Third, timing-based
attacks can be formalised also in our simplified model.

In our model, the adversary can influence computations by sending oracle
calls to the challenger. Namely, the adversary can either corrupt participants,
send some messages, or give his or her final output za directly to the challenger.
A semi-honest corruption call provides read-only access to the internal state of
the participant. A malicious corruption query gives a complete control over the
participant Pi and stops the local computations, i.e., the adversary must do all
computations instead of Pi. Additionally, we require that the adversary can send
messages only on behalf of maliciously corrupted participants.

The challenger’s primary task in the game is to correctly simulate the execu-
tion of a computational context and to serve the queries of an adversary. For
the faithful execution, the challenger can allocate a separate thread for each par-
ticipant and then simulate the execution in micro-rounds, where each thread
completes only a single basic operation. Additionally, the challenger tests all
queries and halts with ⊥ if the adversarial behaviour is not tolerable. As be-
fore, the security game itself is a ping-pong protocol started by the adversary. To
avoid leakage of temporal information, the adversary is activated only when the
challenger provides a reply or a corrupted participant receives a message.

Computational complexity. As a final detail, we must specify several important
time bounds. Let tπ denote the time complexity of a protocol π, i.e., the number
of the elementary steps needed to complete π. Similarly, let tcnt denote the time
complexity of a computational context ̺〈·〉, i.e., the number of elementary steps
made by all non-adversarial parties in the game Gideal. The latter can be further
decomposed into the online and the offline time complexity:

tcnt = t̺ + tpr , (7.7)

where t̺ counts all elementary steps made by P1, . . . ,Pm,T1, . . . ,Ts for evaluat-
ing ̺〈π◦〉 and tpr is the time complexity of the corresponding security objective

90 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

B(·). As before, let tre and tid denote the running times of real and ideal world
adversaries. Also, note that t̺ may depend on the adversarial behaviour.

Message delivery. Different algorithmic models of message delivery can be
easily specified sending messages through a dedicated courier node Pnw. The
courier node Pnw is an ordinary participant in the basic model, where commu-
nication is synchronous and secure. However, as all other participants send their
messages via Pnw, the effects of insecure, non-reliable, non-instantaneous and
non-authentic communication can be modelled by an appropriate choice of the
message delivery algorithm executed by Pnw. For example, non-authentic com-
munication can be formalised by using maliciously corrupted Pnw. Similarly, a
semi-honest corruption of Pnw represents the ability to eavesdrop all communi-
cation channels without the possibility to alter messages.

Most importantly, the courier node Pnw is an ordinary protocol participant
and thus the accuracy and correctness of all these message delivery models is
not our responsibility. Of course, the delivery model has to be specified, but
such non-essential technical details do not clutter the basic formalism.

Dynamic networks. Dynamic evolution of computational contexts is another
technical detail, which is emphasised a lot in Canetti’s manuscript [Can00b].
Again, such behaviour can be modelled by a dedicated administrator node Pna

that creates and deletes network nodes. More formally, only few nodes are ini-
tially active in the context and the remaining nodes are waiting for start-up mes-
sages from Pna. Now any active node Pi can send a special message with a
program code to Pna to activate a participant. The administrator Pna loads the
code into first free node Pj and sends the node label j back to Pi. Analogously,
we can give nodes the ability to halt other nodes. Note that the bound on the
total running time also limits the maximal number of activated nodes and thus
Pna never runs out of free nodes if the context has enough participants.

Message scheduling. Recall that a computational context ̺〈π〉 specifies only
a black-box usage of π. Such a specification is sufficient for the ideal imple-
mentation π◦, since the protocol execution is determined by a black-box usage
pattern. However, normal protocols usually have a more complex structure and
thus the message scheduling is not uniquely fixed. There are two principal ways
to solve this ambiguity. First, we might fix the explicit scheduling for ̺〈π〉 and
consider the corresponding game pairs. However, such a choice is often un-
suitable for practical applications, where messages are scheduled dynamically
in order to minimise network delays. Similarly, a rigid scheduling is unsuitable
for adaptive computations, where the execution itself depends dynamically on
the non-deterministic choices made by the participants. As a way out, we allow
flexible schedulings as long as they are completely deterministic. More formally,
if we fix random coins of all participants and the adversary, then the message
scheduling should be uniquely fixed for the protocol ̺〈π〉. We remind here that
all artefacts are defined in the basic model and thus these random coins uniquely
fix the networking behaviour and message delays.

Other relevant artefacts. Many other factors can influence the outcome of
interactive computations starting from different clock speeds and ending with
power consumption and sound made by the computational device. Neverthe-
less, all these artefacts can be implemented as dedicated nodes with a prescribed
corruption level, or as extra messages in protocols. Nevertheless, the layered de-

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 91

scription of computational contexts is not a silver bullet. It just provides a more
modular way to specify features and at the end of the day the overall complexity
is comparable to Canetti’s formalism [Can00b]. In fact, Canetti’s model can be
viewed as a canonical formalisation of interactive computations.

7.3 TWO FLAVOURS OF STAND-ALONE SECURITY

Although the stand-alone security model is a quite restrictive computational con-
text, it is still a good starting point for illustrating many intricate concepts. In fact,
simplicity is the main virtue of the stand-alone model, since the corresponding
security proofs are quite straightforward and without subtle details. Hence, com-
plex security notions have often alternative description in the stand-alone model
to escape tedious technical details. In particular, it is important to characterise
computational contexts that preserve stand-alone security.

First, note that participants P1, . . . ,Pn may possess more information than
is actually used in the protocol. That is, let x = (x1, . . . , xn) denote partial
inputs used by the protocol and let φ = (φ1, . . . , φn) denote the corresponding
complete inputs. We emphasise here that such a distinction is purely syntactic
and not a redefinition of the stand-alone security model. Namely, we can always
investigate protocols that first extract sub-inputs x from the true inputs φ and
then use x in later computations. Similarly, we use ψ = (ψ1, . . . , ψn, ψa) to
denote the final output states of all participants and the adversary.

Second, note that our and the classical formalisation of stand-alone security
are qualitatively equivalent for static adversaries. Recall that a correspondence
between the real and the ideal world adversaries (B,A) 7→ A◦ may depend
on the security goal B(·) in our formalism, whereas the classical formalism re-
quires a mapping A 7→ A◦ that is independent of B(·), see Section 5.3. Now
assume that Pi is a non-corruptible node with an input φi = (βi, xi) and let
ψi = (βi, xi, yi) be the corresponding output. Then we can consider a universal
security goal Bi

u(·) that interprets βi as a formal description of B(·) and outputs
B(ψ1, . . . , ψn, ψa). Due to the properties of RAM machines, there exists a con-
stant c > 0 such that any tpr-time predicate B(·) can be interpreted in time c·tpr.
Hence, if for any input distribution D and c · tpr-time predicate Bi

u(·)

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε , (7.8)

then the mapping (Bi
u,A) 7→ A◦ produces ideal world adversaries such that

cdtpr

⋆ (GA

re-atk,GA◦

id-atk) ≤ ε (7.9)

whenever Pi remains uncorrupted. Consequently, there also exists a universal
mapping A 7→ A◦ for all adversaries that corrupt a fixed set of nodes, as always
assumed in the classical formalisations [Can00a, Gol04]. We emphasise that the
equivalence does not hold for input-privacy in the malicious model.

Third, note that it is irrelevant whether a predicate B(·) is computed in cen-
tralised or distributed manner. Hence, stand-alone security is sufficient for all
computational contexts ̺〈·〉, where all participants first execute a protocol and
then interactively post-process the outputs ψ. However, the models are equiv-
alent only if we can embed the post-processing phase into B(·). For obvious

92 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

Pn
· · ·P1

· · ·

P2

za

P3

ψ1

ψ2

ψ3

ψn

π

̺〈·〉

z1 z2 z3 zn

A

ψa

Pn
· · ·P1

· · ·

P2

za

P3

ψ1

ψ2

ψ3

ψn

π

̺〈·〉

z1 z2 z3 zn

A

ψa

Figure 7.3: Synchronisation errors that break the equivalence with the stand-
alone setting. Escaping messages are on the left and invading messages on the
right. The execution time goes from top to bottom.

reasons, such an embedding does not exist for input-privacy but there are other
more surprising exceptions. Namely, the adversarial behaviour might cause syn-
chronisation errors, where protocol messages are mixed together with the post-
processing phase, see Fig. 7.3. The grey area in the figure represents the time
when the participants execute the protocol, the white area represents the post-
processing phase and the arrows represent misinterpreted messages.

In short, messages can either escape or invade the stand-alone setting. A mes-
sage escapes from the stand-alone setting if it is sent to a participant that has
already completed the protocol. A message invades the stand-alone setting if it
is sent by a node that has already completed the protocol. To avoid ambigu-
ity, we say that all maliciously corrupted nodes finish the protocol together with
the last (semi-)honest node. Escaping messages have no influence on outputs ψ
in the stand-alone model, since the low level message delivery just writes them
on the communication tapes of halted participants. Therefore, we cannot con-
struct the corresponding predicate, since the post-processing phase may actually
use these messages. Invading messages cause a similar incompatibility with the
stand-alone model. Moreover, it is straightforward to construct examples, where
such synchronisation errors cause the complete failure of a protocol that is secure
in the stand-alone model. We leave this as an exercise to the reader.

We emphasise here that it is relatively easy to eliminate problems caused by
escaping messages. For example, we can use special tags to denote the proto-
col messages and drop all these messages in the post-processing stage. Invading
messages, on the other hand, cause more severe problems, since they bring extra
information to the stand-alone setting. In particular, a post-processing context
̺〈·〉 may force a participant Pi to publish the state ψi after completion of the
protocol and such synchronisation errors are extremely dangerous.

As an illustrative example consider a lottery protocol πsl depicted in Fig. 7.4,
where P2 tries to guess a random number s1 generated by P1 and the number
s1 is sent to the arbiter P3 to prevent P1 from cheating. In the ideal implemen-
tation, the trusted third party does all computations by herself and sends the
results back to the participants. Now assume that only P2 can be corrupted and
that all communication channels are secure. Then the protocol is 2−k+1-secure
in the malicious model. The corresponding simulator Sim just ignores the mes-
sages sent by T and P2 and outputs whatever A does. However, the protocol πsl

is clearly insecure in the post-processing context, where P2 queries s1 from P3.

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 93

P1

Send s1 ← {0, 1}k to P3

return s1
?
= s2

P2

Send s2 ← {0, 1}k to P1

return s2

P3

Receive s1 from P1

return s1

Figure 7.4: Protocol πsl that models a simple lottery with an arbiter P3.

Namely, P2 can first pretend that πsl is completed to get the invading message s1

from P3 and then forward s1 to P1 and thus always win the lottery. At the same
time, the ideal implementation remains secure in this context. Moreover, the
underlying problem cannot be solved with message tagging.

Such protocol failures are extremely dangerous and should be avoided by
design. A protocol π has a robust message scheduling if no tolerable attack
can force (semi-)honest nodes to make synchronisation errors. In particular,
honest participants can always detect when all other honest participants have
finished the protocol. A robust scheduling is always achievable in the presence
of an authentic broadcast channel, as each participant can broadcast a specific
message when he or she completes the protocol. Of course, there are other
alternatives, such as fixed round protocols or limits on the duration of π.

Strong stand-alone security model. The example above clearly shows that
a protocol π must have a robust scheduling, or otherwise it might lose security
in post-processing contexts. However, the latter is not always sufficient when a
context has a pre-processing phase. In particular, note that the adversary might
gain some knowledge φa in the pre-computation phase that helps to attack the
protocol afterwards. In the following, we describe a strong stand-alone security
model that together with robust messaging assures security in all contexts ̺〈·〉,
where the protocol π is executed without any side-computations.

The ideal attack phase Gid-atk coincides with the standard formalisation de-
scribed in Section 5.3 but there is a minor change in the real attack phase Gre-atk.
Namely, the challenger must always notify the adversary when some participant
halts. Secondly, we consider the extended inputs φe = (φ1, . . . , φn, φa) instead
of normal inputs φ = (φ1, . . . , φn) but otherwise there are no other differences
with Section 5.3. In particular, a real and an ideal world model are (tre, tid, ε)-
close w.r.t. a set of relevant predicates B in the strong stand-alone model if for
any security objective B(·) ∈ B and for any tre-time real world adversary A

there exists a tid-time ideal world adversary A◦ such that for any extended input
distribution φe ← De:

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (7.10)

As a result, we get a slightly stronger reduction schema

GA

real

MPC-SEC+

=====⇒
ε
GA◦

ideal
. (7.11)

Note that we can always pack an extended distribution De into a standard in-
put distribution D by treating the input of Pi as a pair (φ′

i, φ
′
a) and the other way

around. As a result, it is straightforward to show that the additional knowledge φa

obtained in the pre-computation stage does not increase the adversary’s ability to
attack a protocol in the case of static corruption. Consequently, the extra input

94 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

φa is essential only if an adaptive or mobile adversary uses it to find “optimal”
candidates for further corruption, see [Can00a, p.179].

Secondly, we can make a mapping (B,A) 7→ A◦ algorithmic for any fixed
security goal B(·). Let Au be a universal adversary that interprets φa as a formal
description of an adversarial strategy A. Then the corresponding ideal adversary
A◦

u can be viewed as a compiler that devises an appropriate attack strategy for
the code φa. However, the algorithmic correspondence is not for free, since the
adversaries A◦

u(φa) and A◦ have different running times tid(c · tre) and tid(tre)
where the constant c > 0 is the interpreting overhead.

For static adversaries, we can combine two results by considering the univer-
sal security goal Bi

u(·) and the universal adversary Au. The corresponding com-
piler Ai

u(·) assures also the computational indistinguishability of outputs when
node Pi is not corrupted. Hence, our and classical formulation of stand-alone
security coincide even if the set of corrupted parties is randomly fixed by the
adversary. For the proof, consider a super-compiler A∗

u(·) that first fixes random
coins ω for the adversary A and obtains the list of corrupted participants C. Next,
A∗

u(·) chooses i such that Pi /∈ C and uses the compiler Ai
u(·) to transform the

deterministic algorithm A(ω) and executes the end result.
Finally, we want to emphasise that the existence of efficient compiler con-

structions is not formally sufficient for the constructive proofs needed for sub-
jective security. Although such claim seems to be contradictory at first sight, it
has a straightforward explanation. The classical security proof might prove non-
constructively that the correspondence (B,A) 7→ A◦ exists. The latter proves
also the existence of the universal compiler A◦

u(·) but does not provide an ex-
plicit code for it. Consequently, the subjective security proof is still incomplete
as we cannot explicitly write down the code of a universal compiler A◦

u(·). The
latter is not a mere theoretical discussion, as some cryptographic proofs actually
use inefficient counting arguments, e.g. [BL07].

Also, the existence of such compilers A◦
u(·) does not contradict classical im-

possibility results for program analysis, since the compiler handles only programs
with a fixed size. As a result, the compiler A◦

u(·) may use an ultra-compact ad-
vice string—Philosopher’s Stone—to speed up the online code analysis phase.
Buldas and Laur [BL07] showed that such a Philosopher’s Stone must exist for
a very specific problem, but the corresponding counting argument itself is quite
universal. In a nutshell, white-box proofs exist even for cryptographic primitives
that satisfy only abstract security properties.

7.4 CANONICAL DECOMPOSITION TECHNIQUES

High-level security proofs often split interactive computations into isolated sub-
phases to simplify the security analysis. For example, stand-alone security guar-
antees are sufficient for all interactive post-processing phases that can be embed-
ded into the predicate B(·). Although this claim seems trivial, the corresponding
formal proof must separate post-processing phase from the protocol execution
and formalise it as a sub-formula in the predicate B(·). However, the robust
scheduling only assures that the computational process is logically separable,
i.e., messages are always sent and received in the same computational phase and
we can view internal states ψ = (ψ1, . . . , ψm, ψa) at the end of the phase as

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 95

ψ1

ψ2 ψa

ψm

ψ1

ψ2 ψa

ψm

ψ1 ψ2 ψaψm
· · ·

Figure 7.5: Three basic ways to decompose interactive computations into two
sub-phases without altering the final output vector zobs.

inputs φ = (φ1, . . . , φm, φa) in the next phase. However, different participants
can finish the same phase in different time moments, as depicted in Fig. 7.5.
Therefore, the knowledge of the internal states ψ alone might be insufficient to
reconstruct the computations in the following phase. Only a slight change in
timings may influence the ordering of messages and thus have an effect on the
final outputs zobs even if the protocol and the context are specified in terms of
received messages and their order, and not on their arrival times.

There are three principal solutions for this problem. First, we can guarantee
that all participants always finish sub-phases simultaneously and thus the timing
issues become irrelevant. In the corresponding synchronised communication
model, messages are sent in only during short rounds that occur in fixed time
intervals, and the exact order of messages in a round is discarded. Such a sim-
ple model for message delivery is used in many classical works, see for exam-
ple [GMW87, BOGW88, CCD88, Bea91b, MR91b, DM00, Can00a].

As a second alternative, we can include timing effects directly to our compu-
tational model. More formally, we assume that the challenger is equipped with
a clock1 that is set to zero at the beginning of computations. In this model, ob-
servable outputs are pairs (zi, τi), where zi is a classical output and τi is the exact
halting time. As a result, we can talk about time-preserving correspondences
between real and ideal world models, since a security goal B(·) now depends
on exact halting times τ1, . . . , τm. Naturally, such a correspondence is possible
only if the adversary has some control over timings. In the corresponding for-
mal model, the challenger always adds timing information to his or her replies
and the adversary can specify the exact time when the challenger must carry out
the corresponding oracle queries. However, the corresponding real-time model
of computations is quite technical and takes us away from our main goal—the
study of time-invariant protocols and contexts. Hence, we do not discuss this
model further, although the following proofs can be directly generalised to han-
dle exact timing in computations.

A third alternative is to eliminate all timing artefacts from the model so that
knowledge of internal states ψ alone is sufficient to reconstruct the proceeding
computations. For example, we can postulate that the order of messages is in-
dependent of the inputs and the adversarial behaviour. Then the knowledge of
ψ uniquely determines the output, since the order of messages is fixed but un-
known. However, adversarial forces can often influence message delivery and

1The clock models a global physical time in the actual computations.

96 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

thus such models with fixed message schedulings are overly optimistic. Evi-
dently, we can route messages through special courier nodes P1

nw, . . . ,P
v
nw in

order to model network delays. However, slight changes in timings can change
the order of messages received by courier nodes Pu

nw and the correct decompo-
sition is still impossible without the exact timing information τ .

In more formal terms, a computational process with several parallel threads
is often time-sensitive even if the individual threads are time-invariant. There-
fore, we cannot escape timing artefacts, unless we consider pseudo-parallel ex-
ecutions, where only a single participant is active at the same time moment.
Let Psc be a special malicious scheduler node that can activate other partici-
pants in any order as long as no two nodes are simultaneously active. That is,
all other participants are initially waiting for a special activation messages from
Psc. When a semi-honest node receives an activation message, the node does
some computations and gives control back to Psc. If the activated node is ma-
licious, the control goes back to the adversary. As a result, the adversary has
full control over the scheduling and the knowledge of internal states ψ is suf-
ficient for correct decompositions as desired. The corresponding asynchronous
model of computations has many variations, since there are many reasonable
alternatives for scheduling and network behaviour. Still, some formalisations are
more fundamental than the others. In particular, all classical computational
models [BOCG93, Can00b] require that an activated node stops when it starts
to read the next incoming message. Such a scheduling has optimal granularity,
since the adversary can dynamically choose any valid message ordering, but the
scheduling is coarse enough to hide exact timing.

7.5 CHARACTERISATION OF SEQUENTIAL COMPOSABILITY

In the following section, we study the limitations of strong stand-alone security.
In particular, we formally prove that strong stand-alone security is sufficient for
all computational contexts, where honest participants stop all other computa-
tions during the protocol. Although such an isolated execution policy is quite
restrictive, it is still adequate for many practical settings. In a sense, this result for-
mally validates the strong stand-alone security model, as it shows that the model
provides practically meaningful security guarantees.

For clarity, we divide the corresponding security analysis into two phases.
First, we formally prove that any post-processing phase can be embedded into
the security goal B(·) if a protocol has a robust message scheduling. Second,
we show that the effects of pre-computation phase can always be modelled as an
extended input distribution De. As a result, the security of an isolated protocol
execution follows from the strong stand-alone security. In particular, a com-
pound protocol that executes sub-protocols one by one remains secure in the
strong stand-alone model as long as sub-protocols are also secure in the strong
stand-alone model, i.e., strong stand-alone security is sequentially composable.
We emphasise here that these claims hold only for the computational models
that support errorless decompositions, i.e., the knowledge of internal state ψ is
sufficient to determine the final outputs zobs.

Lemma 1. If a protocol has a robust message scheduling, then any post-proces-
sing phase can be embedded into the security goal. The corresponding overhead

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 97

is linear in the total complexity of the post-processing phase.

Proof sketch. For the proof, we split a pair (Greal,Gideal) of corresponding security
games into two sub-phases. In the first phase, (semi-) honest participants execute
the original context until the real protocol π or the ideal protocol π◦ is com-
pleted and output their internal states ψi. After all participants have finished,
the corresponding output vector ψ = (ψ1, . . . , ψm, ψa) is used as an input vec-
tor for the second phase, where (semi-)honest participants restore their internal
states and continue with the execution. The vector of final outputs zobs is used
as an input to the original security goal B(·). Let us denote the corresponding
two-phase security games by G∗

real
, G∗

ideal
and the corresponding sub-adversaries by

A1, A2 and A◦
1, A◦

2. Next, we define constructive mappings A 7→ (A1,A2) and
(A◦

1,A
◦
2) 7→ A◦ that achieve perfect correspondence

GA

real
≡ (G∗

real
)A1, A2 and (G∗

ideal
)A◦

1, A◦
2 ≡ GA◦

ideal
. (7.12)

More precisely, if we additionally assume that the challenger notifies A1 in
the game G∗

real
when a (semi-)honest participant halts, then the correspondence

A 7→ (A1,A2) is evident. Namely, the sub-adversary A1 can run A until all
(semi-)honest nodes are halted2 and output the corresponding internal state as
ψa. In the second phase, the sub-adversary A2 restores the internal state of A

and continues the execution of A. For the second mapping (A◦
1,A

◦
2) 7→ A◦,

note that the adversary A◦ can always detect the change of phases in the ideal
world and thus the adversary A◦ can sequentially run A◦

1 and A◦
2.

Now it is straightforward to prove that all decompositions are well defined
and the equivalences (7.12) indeed hold if π has a robust scheduling and the
computational model facilitates errorless decomposition. Also, the difference
in running times is linear. Thus, we can analyse game pairs (G∗

real
,G∗

ideal
) and

mappings (A1,A2) 7→ (A◦
1,A

◦
2) instead of (Greal,Gideal) and A 7→ A◦. As the

real and ideal world are identical after the first phase, we can always choose
A◦

2 = A2. Consequently, the second phase together with B(·) can be viewed as
a new security objective B′(·) and the claim follows.

Lemma 2. Any pre-processing phase with robust scheduling can be replaced
with an extended input distribution De. The corresponding overhead in running
times is linear for the context and for the adversary.

Proof sketch. Again, we can split a pair (Greal,Gideal) of corresponding security
games into two sub-phases so that the first phase captures the pre-processing
phase and the second phase captures the succeeding computations. Let us de-
note the corresponding two-phase game pair by (G∗

real
,G∗

ideal
) and the vector of

internal states between the sub-phases by φ = (φ1, . . . , φm, φa). Similarly, to
the proof of Lemma 1, we can analyse game pairs (G∗

real
,G∗

ideal
) and mappings

(A1,A2) 7→ (A◦
1,A

◦
2) instead of (Greal,Gideal) and A 7→ A◦. We omit the corre-

sponding argumentation, since it is completely analogous to the previous proof.
Finally, note that the first phase can be replaced with sampling φe ← De in the
games G∗

real
and G∗

ideal
, if we consider only mappings with A◦

1 = A1. Again such a
choice is natural, since the ideal and real world coincide in the first phase.

2The escaping messages produced by the first stage of the adversary should be re-sent in the
second stage to assure equivalence.

98 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

These decomposition lemmas alone are sufficient to prove several sequential
composability results, provided that the computational context ̺〈·〉 and the pro-
tocol π share the same set of participants. However, this assumption is rarely
valid in practical applications, where only a few participants Pi1 , . . . ,Pin of the
global context ̺〈·〉 take part in the protocol π. In fact, participants Pi1 , . . . ,Pin

usually have little, if any, knowledge about the global context ̺〈·〉. Also, it is
unlikely that participants Pi1 , . . . ,Pin can force some global restrictions on the
other participants. However, local restrictions concerning only the participants
of the protocol π are enforceable. In particular, participants can always run the
protocol π in isolation by forcing the following local restrictions:

(S1) The context ̺〈·〉 uses the protocol π in black-box manner.

(S2) The protocol π and pre-processing phase have robust message scheduling
when we consider only the participants of the protocol π.

(S3) The participants of the protocol π send out only the messages of π and
delete all non-protocol messages during the execution of the protocol π.

Note that there are several ways how the participants of the protocol π can relate
to other participants. If the protocol π provides an end-to-end solution, then it is
also reasonable to assume that all non-participants are corrupted, as these exter-
nal entities are out of our control. For example, all those millions and millions
of computational devices that are connected to Internet, but do not participate
in our protocol, are potentially hostile non-participants that we cannot control.

In the two-party setting, it is natural to assume that non-participants are cor-
rupted, since each party trusts only him- or herself. The same is true for multi-
party protocols, where one controls a fixed set of nodes and thus the adversary
can potentially abuse all signals that are sent out of this group. On the other
hand, the group of semi-controllable nodes that follow the restrictions (S1)–(S3)
might change in time. For example, some new members that are believed to
be honest can join the group. Therefore, it makes sense to slightly relax the
assumption and postulate the following:

(A1) All nodes that do not participate in the protocol π are compromised during
the execution of π, afterwards the adversary might retreat from them.

(A2) All trusted third parties that are guaranteed to finish before or start after
the execution of π can be considered as participants of the protocol π.

Now it is straightforward to establish a correspondence between the isolated pro-
tocol execution and the strong stand-alone security model, i.e., the strong stand-
alone security is sufficient for all security levels except for input-privacy. For
clarity, we state only the qualitative results. The exact quantitative relations be-
tween the time bounds can be extracted from the proofs if necessary.

Theorem 1. A context ̺〈·〉 and a protocol π that satisfy restrictions (S1)–(S3) and
(A1)–(A2) preserve strong stand-alone security. The corresponding overhead is
linear for the running times and the bound on the advantage does not change.

Proof sketch. Let us first consider the simplified case, where the participants of
the context ̺〈·〉 and the protocol π coincide. Since the assumptions of Lem-
mata 1 and 2 are satisfied, we can split the respective game pair (Greal,Gideal) into

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 99

three sub-phases, where the first phase corresponds to the pre-processing phase
and the third one to the post-processing phase. Moreover, there are constructive
mappings A 7→ (A1,A2,A3) and (A◦

1,A
◦
2,A

◦
3) 7→ A◦ such that

GA

real
≡ (G∗

real
)A1, A2, A3 and (G∗

ideal
)A◦

1, A◦
2, A◦

3 ≡ GA◦

ideal
. (7.13)

To conclude the proof, we must construct a mapping A2 7→ A◦
2 such that

∣
∣Pr
[
(G∗

real
)A1, A2, A3 = 1

]
− Pr

[
(G∗

ideal
)A1, A◦

2, A3 = 1
]∣
∣ ≤ ε . (7.14)

Lemma 1 assures that the third phase can be embedded into the security goal
with a linear overhead. Lemma 2 assures that the first phase can be replaced
with an appropriate extended distribution De. As the second phase corresponds
to the strong stand-alone security model, the existence of a mapping A2 7→ A◦

2

is implied by the assumptions of the theorem. The claim holds even if the exact
roles in the protocol are determined dynamically by the context, since we can
always assume that the internal states φ and ψ also contain the formal specifica-
tion (code) of the computational context.

For the general case, consider a new extended protocol π̂, where the non-
participants of the protocol π just output their initial states and halt. Then the
original security game Greal can be viewed as an execution of π̂, where the ad-
versary corrupts the non-participants during the execution to do some malicious
side-computations. Note that the protocol π̂ and the pre-processing phase for-
mally have a robust scheduling, since all trusted third parties are guaranteed to
be inactive and other non-participants are assumed to be corrupted during the
execution of the protocol π̂. Thus, we have reached the simplified case.

To conclude, note that the modified protocol π̂ preserves strong stand-alone
security possibly with linear overhead. First, the presence of inactive trusted
third parties is irrelevant, since their inputs and outputs are empty. Second,
there is one-to-one correspondence between the security games for the protocols
π and π̂. Namely, the inputs of other non-participants can be embedded into the
adversarial input φa and the outputs can be embedded into the output ψa. Sim-
ilarly, any security goal B(·) for the protocol π̂ can be translated to a predicate
B′(·) that first extracts all embedded outputs from ψa and then evaluates B(·).
Hence, it is straightforward to construct an appropriate mapping (B,A) 7→ A◦

for the protocol π̂ given only a mapping (B′,A) 7→ A◦ for the protocol π. The
corresponding overhead is linear, as needed.

Corollary 1. Security in the strong stand-alone security model is sequentially
composable, provided that all sub-protocols have robust scheduling.

Proof. Let a protocol π be a sequential application of protocols π1, . . . , πs that
share the same set of participants. Then Theorem 1 assures that we can substi-
tute all protocols πi step by step with the corresponding ideal implementations
π◦

i . Although each substitution step introduces a new trusted third party, the as-
sumption (A2) still holds and we can continue. The corresponding game chain
completes the proof and provides necessary bounds on the advantage.

Further discussion. The correspondence between the stand-alone security and
the isolated protocol execution implies that the strong stand-alone security is a

100 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

sufficient and necessary security objective for end-to-end solutions. Also, note
that protocol designers control only a tiny part of the whole world and the dis-
tinction between internal and external entities is unavoidable. The assump-
tion (A1) captures the obvious judgement that external entities do not have to
follow any restrictions. In that light, Theorem 1 is just a description that explains
how and what kind of protocols one should execute in unknown hostile envi-
ronments. We emphasise that the global computational context itself can reveal
much more information than the ideal implementation of the protocol. Never-
theless, we cannot relax security requirements further to optimise the protocol
performance, since we do not know how much extra information is revealed by
the computational context. Consequently, the equivalence between ideal and
real world implementations is the best we can achieve.

Historically, cryptographers have always taken the stand-alone security model
for granted and have seldom explored its limitations in practical applications.
The latter is the main reason why Theorem 1 or its analogues have never been
proved in the mainstream cryptographic literature, although the result has been
implicitly known for decades. In that sense, various composability results that
simplify the design and analysis of protocols are more important. Thus, classical
treatments of secure computations, such as [Can00a, Gol04], emphasise only
sequential composability results and the corresponding design methodology.

Also, note that the equivalence result holds only if we assume that all external
parties are corrupted. This assumption is often too conservative and can signifi-
cantly weaken the corresponding security guarantees. The latter is another rea-
son why the equivalence result has remained unnoticed, as other more stringent
security notions provide more precise security guarantees.

Secondly, note that the usage restrictions (S1)–(S3) and (A1)–(A2) are op-
timal for the strong stand-alone security. In particular, stand-alone security is
generally insufficient to guarantee parallel composability, see [GK96b, Lin04].
Hence, the assumption (A1) is essential and cannot be relaxed, since the re-
strictions (S1)–(S3) do not eliminate the possibility of parallel execution. For
example, consider a context where P1,P2 execute a protocol π1 and P3,P4 exe-
cute a protocol π2 at the same time. Then the restrictions (S1)–(S3) and (A2) are
formally satisfied, although the real implementation cannot be replaced with the
ideal protocol. A concrete counterexample is given in [GK96b] as Theorem 5.1.
The same counterexample can be modified to show that all trusted third parties
must be inactive during the execution of the protocol.

Although the usage restrictions are optimal, we can still do some cosmetic
relaxations. In particular, we can bypass the restriction (A1) by artificially in-
creasing the number of participants. Let π̂ be an extended protocol where all
non-participants are inactive during the execution of π. Then it is straightfor-
ward to prove that the protocol π̂ preserves strong stand-alone security if and
only if the correspondence (B,A) 7→ A◦ is independent of the security goal B.
Consequently, if the protocol π is secure according to classical definitions, there
is no need to corrupt honest participants that remain inactive during the execu-
tion of π. However, this relaxation holds only for those honest participants that
are guaranteed to be inactive, since the pre-processing phase and the protocol π̂
must have a robust message scheduling.

Centralised task scheduling. Note that strong stand-alone security is sufficient
for modular protocol design, since sub-tasks can always be executed one by one.

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 101

As an advantage, we do not have to strengthen the security requirements for
sub-protocols but there are also many important drawbacks.

Firstly, we must implement a global synchronisation service that reserves time
slots for individual sub-tasks. As a result, all nodes must either participate in a
protocol or wait until the protocol is completed. Thus, the whole network acts as
a single virtual processor and load balancing is impossible. Moreover, the overall
performance is determined by the slowest node in the network.

Secondly, note that modern computing devices do millions of operations in
few milliseconds. Consequently, network delays can cause significant perfor-
mance penalties. Moreover, the relative impact of network delays only increases
in the future, as these delays are likely to remain constant, whereas the compu-
tational throughput is likely to grow in the future.

Thirdly, secure function evaluation is not the only practical design goal. In
many cases, we need to implement secure services that have several rounds or
are non-terminating. For example, access control and secure storage systems
must function continuously. Centralised task scheduling makes it impossible to
run two or more continuous services in parallel. Instead, we must divide the
corresponding ideal functionalities into micro-rounds and use some kind of fair
interleaving mechanism to assure the availability of all services. However, such
a solution is artificial and inherently decreases the responsiveness.

7.6 CHARACTERISATION OF UNIVERSAL COMPOSABILITY

In many cases, it is impossible to guarantee that sub-protocols are not executed
simultaneously or the corresponding performance penalty is prohibitively large.
Hence, it is advantageous to consider more liberal task schedulings. The latter
again requires more strict security definitions, since the stand-alone security does
not assure the security of parallel executions [GK96b, Lin04]. Evidently, various
restrictions on computational contexts lead to different security requirements
and feasibility results, for example, compare the results of [Pas04] and [Lin04].
However, the fundamental limitations obtained in [Lin03a, Lin04] indicate that
additional usage restrictions do not make it easier to design protocols, unless
these restrictions are really specific. Hence, it makes sense to consider protocols
that preserve the security in all time-bounded computational contexts.

Formally, we must first fix all lower level artefacts, such as message delivery
and timing models. In particular, we can study synchronised, asynchronous or
real-time model of computations. As usual let π be a protocol and π◦ denote
the corresponding ideal implementation. Let Gu be the set of all game pairs
(Greal,Gideal) that are induced by all computational contexts ̺〈·〉 and by all secu-
rity objectives B(·). Finally, fix an adversarial structure Aloc that specifies the
tolerable adversarial behaviour in local terms. The latter is necessary as contexts
may assign different roles in the protocol π to different participants. Now the
protocol π is (tre, tpr, tcnt, ε)-universally composable w.r.t. the adversarial struc-
tureAloc if for any tcnt-time game pair (Gideal,Greal) ∈ Gu and for any tre-time real
world adversary A that respects Aloc, there exist a tid-time ideal world adversary
A◦ such that for any extended input distribution De, we have

|Pr [GA

real
= 1]− Pr [GA◦

ideal
= 1]| ≤ ε . (7.15)

102 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

The corresponding reduction schema is denoted as

GA

real

UC-SEC
====⇒

ε
GA◦

ideal
. (7.16)

We remark that the original definition of universal composability [Can01] was
given in different technical terms. The computational context ̺〈·〉 is substituted
with an autonomous malicious entity Z that has black-box access to the protocol
π and interacts with the adversary. However, the difference is purely syntactical,
as the environment Z can always simulate the computational context ̺〈·〉 and
vice versa, see also [Lin03b]. We prefer the notion of computational context,
since it is conceptually simpler and closer to reality.

Also, note that our definition is based on a mapping (Greal,Gideal,A) 7→ A◦,
whereas the original definition [Can01] requires universality A 7→ A◦ for all
tcnt-time game pairs (Greal,Gideal) ∈ Gu. As a result, the original definition also
violates the external consistency restrictions (C1)–(C2), whereas our definition
is externally consistent. Still, these definitions are qualitatively equivalent. More
formally, consider a universal context ̺u〈·〉, where all participants interpret their
inputs as a code. Then the corresponding ideal world adversary A◦

u is universal
for all game pairs (Greal,Gideal) ∈ Gu and the quantitative changes in the time
bounds are linear. However, this equivalence result was first rejected in the
asymptotic security model, since the initial definition of contexts with polyno-
mial running times3 was too strict, see [Can00b, p. 49–50].

Finally, note that universal composability is closed under concurrent com-
position. More formally, if a compound protocol ̺0〈π◦

1〉 is a universally com-
posable implementation of a functionality π◦

0 and a protocol π1 is a universally
composable implementation of a functionality π◦

1 , then the protocol ̺0〈π1〉 is
also a universally composable implementation of the functionality π◦

0 regardless
of the message scheduling. Indeed, fix a computational context ̺〈·〉 and con-
sider the corresponding chain of compound protocols

̺〈π◦〉 π◦
0==⇒̺〈̺0〈π◦

1〉〉 ≡ ̺1〈π◦
1〉

π1==⇒̺1〈π1〉 , (7.17)

where ̺1〈·〉 = ̺〈̺0〈·〉〉 is a shorthand for another computational context. Note
that we can still complete the corresponding reversed game chain

GA

real
≡ GA3

3
UC-SEC

====⇒GA2

2 ≡ GA1

1
UC-SEC

====⇒GA0

0 ≡ GA◦

ideal
, (7.18)

where the security games G0, G1, G2, G3 correspond to the protocols and contexts
from left to right in the chain (7.17) and A1 = A2 and G1 = G2. To be precise,
the game chain exists only if the adversarial structures for both protocols π0 and
π1 are compatible. Evidently, the result holds also for longer chains of hybrid
protocols, provided that all necessary quantitative bounds are compatible.

Criterion for universal composability. Although Canetti was the first to de-
fine the universal composability for the asynchronous model of computations,
the concept itself was known already in the early 1990s. Micali and Rogaway
defined and studied the corresponding security objective as reducibility in the
synchronised model of computations, see articles [MR91a, MR91b] for further
discussion. Also, the description of universally composable protocols has been

3The latter is another example that illustrates how dangerous it is to define asymptotic security
models directly without first considering the exact formalisation.

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 103

φa

π σA

φ1 φ2 · · ·

ψ1 ψ2 · · · ψn+1

φn+1

ψmψa

B

· · ·

· · ·

π
◦

φa φm

σ

φ1 φn
φ2 · · ·

ψnψ1 ψ2 · · · ψn+1

φn+1

ψmψa

B

· · ·

· · ·

A
◦

φm

ψn

φn

Figure 7.6: Correspondence between parallel execution and stand-alone model.
The dashed box represents the compound adversary in the stand-alone model.

implicitly known for decades, starting from the early works [MR91b, Bea91b].
All subsequent works, such as [DM00, PW00, Can01, Lin03b], have just refined
technical details. Nevertheless, we provide the characterisation together with a
proof sketch, since the latter underlines some intricate connections with sequen-
tial composability and emphasises some unexpected details.

Again, we restrict ourselves to the computational models that support error-
less decomposition. Consequently, we can ignore the pre- and post-processing
phase and concentrate on the interactions between the protocol π and the side-
computations σ, see Fig. 7.6. Observe that a real world adversary A can always
break the conceptual separation between π and σ by selectively transferring data
from one process to another. Such behaviour is impossible in the ideal world,
where the idealised protocol π◦ itself is shielded from the adversary A◦. Note
that the proof of Theorem 1 uses just some obvious although very crude bounds
on the information flow between these processes. Let Iσ denote the set of nodes
that participate in the side computations. Then the information leakage from
the process σ is bounded by the corresponding inputs (φi)i∈Iσ

. Similarly, we
can overestimate the reverse flow of information from π to σ by giving the con-
trol over the output states (ψi)i∈Iσ

to the adversary A◦.
Of course, the resulting security estimate is very crude, as real world adver-

saries normally have only partial control over the states (φi)i∈Iσ
and (ψi)i∈Iσ

.
More precisely, the stand-alone adversary As = (A,Pi)i∈Iσ

can be viewed as a
tuple, where A has no direct control over non-corrupted participants. Hence,
we must place structural restrictions to the correspondence (B,As) 7→ A◦

s in
the stand-alone model, or otherwise the adversarial structures differ in the real
and the ideal world. One possible solution was put forward by Beaver [Bea91b].
Namely, consider a non-rewinding interface I between the ideal implementa-
tion π◦ and the real world adversary A that translates the corresponding com-
munication. Briefly, the interface I must simulate all protocol messages for the
adversary A given only access to the ideal implementation π◦. As a result, we
can view the interface as a computational context I〈·〉 that uses the real world
adversary As in a black-box manner to define the corresponding ideal world ad-
versary4 A◦

s = I〈As〉 = I〈A,Pi〉i∈Iσ
. More formally, we say that a protocol π is

(tre, tid, ε)-close w.r.t. the predicate set B and interface I〈·〉 in the strong stand-
alone model, if for any tre-time adversary As and for any predicate B(·) ∈ B, the

4Canetti uses a term shell simulator to denote the compound adversary I〈As〉 in [Can00b].

104 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

ideal tid-time adversary A◦
s = I〈As〉 achieves

∣
∣Pr [GAs

real
= 1]− Pr [GI〈As〉

real = 1]
∣
∣ ≤ ε (7.19)

for any extended input distribution De. As the interface I〈·〉 preserves the adver-
sarial structure, it is straightforward to relax requirements in Theorem 1. How-
ever, the proof holds only if the communication of the protocol π is separable
from the remaining messages. Here, we assume that all messages of π are routed
via a dedicated courier node Pπ

nw but there are many alternatives. For example,
the standard formalisation given by Canetti requires that each message contains
a special identifier that uniquely determines its purpose [Can00b, p. 21–32].

Theorem 2. A context ̺〈·〉 and a protocol π that satisfy restrictions (S1)–(S2)
preserve strong stand-alone security w.r.t. the interface I〈·〉. The corresponding
overhead is linear for running times and the advantage does not change.

Proof sketch. For clarity, we first consider a context ̺〈·〉, where participants of π
do no side-computations. As the restrictions (S1)–(S2) still hold, we can follow
the proof of Theorem 1 and split the execution into three phases. In particular,
constructive mappings A 7→ (A1,A2,A3) and (A◦

1,A
◦
2,A

◦
3) 7→ A◦ such that

GA

real
≡ (G∗

real
)A1, A2, A3 and (G∗

ideal
)A◦

1, A◦
2, A◦

3 ≡ GA◦

ideal
(7.20)

are still the same as in the proof of Theorem 1. Thus, the mapping A2 7→ I〈A2〉
defines the correspondence used in the proof of Theorem 1 and we obtain

∣
∣Pr
[
(G∗

real
)A1, A2, A3 = 1

]
− Pr

[
(G∗

ideal
)A1, I〈A2〉, A3 = 1

]∣
∣ ≤ ε . (7.21)

Recall that A2 is actually a compound adversary that captures the behaviour of
A and non-participants (Pi)i∈Iσ

during the execution of the protocol π. Since
I〈A2〉 does not change the interaction patterns between A and non-participants
(Pi)i∈Iσ

, the resulting correspondence A 7→ A◦ also preserves the adversarial
structure and the claim follows from the proof of Theorem 1.

The general case is slightly more complex, as nodes can concurrently partic-
ipate in π and σ. Since all protocol messages are routed via the node Pπ

nw, the
correspondence (A1,A2,A3) 7→ (A1, I〈A2〉,A3) described above is formally
valid and the bound (7.21) still holds. For the formal proof, we split each node
into two virtual sub-nodes (Pi,P

∗
i) with a shared5 internal state, where Pi does all

the computations except for π and P∗
i is reserved for the protocol π. That is, all

messages transferred by the dedicated courier node Pπ
nw are sent out and received

by sub-nodes P∗
i . All other messages are sent and received by normal nodes Pi.

Also, the adversary A can corrupt the node pair (Pi,P
∗
i) only simultaneously, as

labels Pi are P∗
i refer to the same node.

As a result, we have reached the simplified case, where participants of π do
not engage in any side-computations σ. The claim follows, as the corresponding
adversary I〈A,P1, . . . ,Pn,P

∗
1, . . . ,P

∗
n〉 behaves exactly as I〈A2〉.

5It is just a mind experiment that gives two labels for the same node to simplify the reasoning
in the proof.

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 105

Further relaxations. First, note that there is no difference between the normal
non-corruptible participant Pi and a trusted third party Tj . Hence, the proof also
holds if there are many trusted third parties in the context.

Secondly, we emphasise that the restriction (S2) is essential or otherwise the
decomposition can be ill-defined and the reasoning may fail. For example, the
lottery protocol πsl in Fig. 7.4 has a non-rewinding interface I〈·〉 in the strong
stand-alone model although it does not preserve the security even in the sim-
ple post-processing context described in Section 7.3. Nevertheless, we can use
Theorem 2 to construct universally composable protocols that remain secure in
all contexts, where the restriction (S1) is satisfied. More precisely, let ̺0〈·〉 be
a wrapper context that eliminates the possibility of synchronisation errors. For
example, a participant in the context ̺0〈·〉 starts with π when all participants
of π have sent a message “I am ready to start π” and waits until all participants
of π send “I have finished π” after the completion. Then a modified protocol
π̂ = ̺0〈π〉 is universally composable, as ̺〈π̂〉 = ̺〈̺0〈π〉〉 = ̺1〈π〉 and thus the
protocol π in the context ̺1〈·〉 satisfies the restrictions (S1)–(S2) by the construc-
tion. To be precise, the adversary learns when a participant starts and ends the
protocol, but this is usually irrelevant in practice.

Although external synchronisation is always possible, the resulting network
delays can cause significant performance penalties. Hence, it makes sense to
consider protocols with built-in synchronisation. Such protocols must remain
secure even if some protocol messages are received before the protocol execu-
tion and assure that final outputs are not released back to the context too early.
Note that the proof of Theorem 2 generalises and we can show that a protocol is
universally composable if there exists a non-rewinding interface I〈·〉 such that

∣
∣Pr [GA

real
= 1]− Pr [GI〈A〉

real = 1]
∣
∣ ≤ ε (7.22)

for any context ̺〈·〉 without side-computations. In other words, we must first
prove that there exists an interface I〈·〉 for the stand-alone model and then show
that the interface also works for other contexts or alternatively provide some ex-
tension to I〈·〉 that handles the corresponding synchronisation errors.

Optimality of assumptions. Obviously, we cannot relax the restriction (S1)
without losing all security guarantees. Similarly, a protocol π is universally com-
posable only if there exists a non-rewinding interface I〈·〉 such that the protocol
is secure in the strong stand-alone model w.r.t. this interface I〈·〉. For proof,
consider a strong stand-alone setting, where the participants P1, . . . ,Pn execute
the protocol π and a non-corruptible bystander Pn+1 that interprets the input
φn+1 as a code and assists the universal adversary Au. More precisely, the ad-
versary Au acts as a wire between the challenger and Pn+1, i.e., Au forwards all
messages sent by the challenger to Pn+1 and all commands sent by Pn+1 to the
challenger. Since the strong stand-alone setting itself is a computational con-
text, there must exist a universal ideal world adversary A◦

u. Note that A◦
u is a

non-rewinding interface I〈·〉 that translates communication between Pn+1 and
the ideal world challenger. Since Pn+1 can interpret the code of any stand-alone
adversary A with a linear slowdown, the requirement is optimal up to a constant
factor overhead in running times. To be precise, the claim holds only for the syn-
chronised and asynchronous model of computations, since the participant Pn+1

cannot stop the clock for his computations.

106 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

7.7 TRUSTED SETUP AND UNIVERSAL COMPOSABILITY

The design of universally composable protocols is a challenging task, since the
corresponding protocols must have a black-box non-rewinding interface I〈·〉.
Such requirements diminish possible differences between the adversary and the
interface. In fact, the interface I〈·〉 can be viewed as an attack strategy that allows
input extraction and gives partial control over the outputs. Hence, the asymme-
try of powers between the adversary and the interface exists only if the adversarial
structure itself is asymmetric or there is a significant discrepancy in the running
times. In particular, note that classical multi-party protocols with honest ma-
jority indeed have non-rewinding interfaces, see for example [Bea91b]. Hence,
it is straightforward to show that these protocols are indeed universally compos-
able [Can01, Can00b]. On the other hand, no non-trivial protocol with honest
minority can be universally composable unless the interface has a significantly
higher computational demands than the adversary [CKL03].

There are two alternatives how to achieve universal composability in the case
of honest minority. First, we can allow a significant discrepancy tre ≪ tid be-
tween the running times of the real and the ideal world adversaries. However,
such a choice has several important drawbacks. As the correspondence between
real and ideal time-success profiles is less tight, the protocol might provide a way
to speed up some computations. Consequently, such protocols are guaranteed to
preserve only information-theoretical properties of the corresponding ideal im-
plementations. The large discrepancy tre ≪ tid also introduces complications in
the security proofs. As a substitution π 7→ π◦ in a security proof yields a tid-time
adversary A◦, a protocol that uses π as a sub-protocol must be secure against tid-
time adversaries. In particular, we cannot use repetitive substitutions to analyse
a context with many instances of the protocol π.

The latter is a serious drawback, since useful sub-protocols are commonly
used in many places. Therefore, one needs a stronger version of universal com-
posability that allows to replace many instances of a protocol by a single reduc-
tion step, i.e., we must analyse concurrent executions directly. For example,
many authors first prove the security of a protocol in the world, where a trusted
third party carries out zero-knowledge proofs, and later replace all ideal imple-
mentations with a protocol that is known to be secure in such concurrent set-
tings [PR03, Pas04, BS05]. Another more modular alternative was proposed
in [PS04] where authors assumed that the interface I〈·〉 is generally efficient
except for few well-described functions O1, . . . ,Os. Hence, a running time can
be viewed as a vector t = (t0, t1, . . . , ts), where t0 is the number of elemen-
tary steps without oracle calls and ti is the number of calls to the oracle Oi. As
the corresponding time bounds tre and tid are more structured than before, the
corresponding reduction scheme might withstand many iterations.

A trusted setup is another and often a more practical way to achieve universal
composability in the case of honest minority. Such a setup phase naturally intro-
duces necessary asymmetry into the adversarial structure. The trusted dealer Pts

is non-corruptible in the real world, whereas the interface I〈·〉 always corrupts Pts

in the ideal world. To be precise, the dealer Pts is not present in the ideal world
at all and thus the interface I〈·〉 must simulate its presence, i.e., the interface
I〈·〉 has full control over Pts by the construction. Such an asymmetry makes the
design of universally composable protocols pretty straightforward. Moreover, the

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 107

P
r
o
t
o
c
o
ls

Timeline

π1

π2

π3

π4

π5

π6

π7

π8

No restrictions No restrictions

Figure 7.7: Scheduling restrictions posed by modular design. Sub-protocols π3

and π6 are run in isolation, since they implement trusted setup procedures.

corresponding computational overhead compared to stand-alone setting is min-
imal compared to the protocols with semi-inefficient simulators. Thus, we can
systematically use protocols with trusted setup to achieve modularity in security
proofs without losing efficiency and round complexity.

The corresponding methodology consists of three steps. First, we must design
universally composable protocols for all necessary sub-tasks. At this stage our
main design goal is to achieve universal composability with minimal overhead.
The corresponding trusted setup phase can be as complicated as needed and the
question whether such setup scenario is plausible in practice is irrelevant. In
the second step, we use these sub-protocols to construct a round optimal solu-
tion. The corresponding security proof is straightforward, since all protocols are
universally composable. As a final design step, we replace all trusted setup pro-
cedures with standard protocols that are secure only in the strong stand-alone
security model. The resulting protocol is both efficient and secure in the strong
stand-alone model and has a modular security proof.

To be precise, security in the strong stand-alone model is an understatement,
as we can apply Theorem 1 in any computational context. Consequently, the
compound protocol remains secure in all computational contexts, where the
restrictions (S1)–(S3) and (A1)–(A2) are satisfied during the execution of sub-
protocols that implement trusted setup phases, see Fig. 7.7.

However, note that a naive application of these design principles can lead
to sub-optimal solutions. As all non-trivial protocols require trusted setup, the
resulting protocol can contain an enormous pre-processing phase, i.e., we must
still run a large portion of the protocol in isolation. Hence, it is advantageous to
reduce the number of setup phases either with bootstrapping or sharing a single
setup phase between many protocols. The idea behind bootstrapping is obvi-
ous. Imagine that there exists a universally composable protocol π∗

ts with a setup
phase π◦

ts that implements more than one setup phase. Then we can iteratively
run π∗

ts to create enough implementations of the setup phase π◦
ts as needed. In

particular, Canetti and Rabin have shown that common reference string model
can be bootstrapped [CR03]. As any functionality can be implemented in the

common reference string model [CLOS02], we can always construct a protocol
with a short pre-processing stage that creates an initial common reference string.
On the other hand, these results show only the feasibility in the polynomial
model and may be completely sub-optimal in practice.

Moreover, note that bootstrapping is inherently less efficient than sharing a

108 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

P1

Receive (pk, sk) from Pts

Execute π1:
Send c1 ← Encpk(x1) to P2

Execute π2:
Receive c2 from P2

return Decsk(c2)⊕ x1

P2

Receive pk from Pts

Execute π1:
Receive c1 from P1

Execute π2:
Send c2 ← Encpk(x2) to P1

return 0

Figure 7.8: Protocols π1 and π2 share a single setup phase and thus fail.

single setup phase π◦
ts between different protocols π1, . . . , πs. However, the gain

in efficiency does not come without additional hassle. Namely, we must show
that a corresponding compound protocol ̺〈π1, . . . , πs〉 remains universally com-
posable even if they share the same setup phase π◦

ts. Finding such proofs can be
a quite complicated and error-prone task, since the messages from different pro-
tocols are now correlated and the latter increases the amount of possible attack
patterns. As a trivial example, note that one-time pad is a universally compos-
able implementation of encryption functionality as long as the encryption key
is chosen uniformly. On the other hand, two-time pad (as a double execution
of one-time pad with the same setup phase) is known to be insecure. In other
words, universally composable protocols may become insecure if we share the
same setup phase between many protocols.

Before going into the technical details, let us first clarify how one should in-
terpret security guarantees in the presence of trusted setup. The latter is not so
obvious as it seems. We use a sub-protocol π2 in Fig. 7.8 as an illustrative exam-
ple. First, note that the protocol π2 uses asymmetric encryption and the trusted
dealer Pts establishes an appropriate key pair (pk, sk) ← Gen. Second, fix an
ideal implementation π◦

2 , where a trusted third party T uses the inputs x1 and
x2 to compute the outputs y1 = x1 ⊕ x2 and y2 = 0. Then it is straightfor-
ward to show that π2 is universally composable against static adversaries. The
corresponding interfaces for malicious participants P1 and P2 given below

I1〈P1〉
(pk, sk)← Gen

Send x1 to T.
Receive y1 from T.
Send c2 ← Encpk(y1 ⊕ x1) to P1.
Output whatever P1 outputs.

I2〈P2〉
(pk, sk)← Gen

Send pk to P2.
Receive c2 from P2.
Send x̂2 ← Decsk(c2) to T.
Output whatever P2 outputs.

provide a perfect correspondence between the real and ideal world outputs. Note
that we can easily find an adversarial strategy A such that P2 does not know the
submitted input x̂2 ← Decsk(c2). Still, we can construct the corresponding
generic attack, where P2 first runs I2〈A〉 in order to extract x̂2 and then sends
ĉ2 ← Encpk(x̂2) to P1 and continues the execution of I2〈A〉. If we consider the
averaged performance over all runs of the setup procedure, then both attacks
induce the same output distribution. However, if we consider a fixed public key
pk, then the distributions can have significant differences.

More formally, let ωts denote the randomness of Pts and let Adv(A|ωts) be
the corresponding success profile. Then the correspondence A 7→ I〈A〉 pro-

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 109

vides estimates only on the average-case success Adv(A). As the success profiles
may have large variance, the average-case bounds are insufficient for estimating
Adv(A|ωts). Note that security guarantees w.r.t. a fixed setup run are often more
natural in practice. For example, most applications use a single instance of an
hash function, such as SHA-1 or WHIRLPOOL, and the security of a public-key
infrastructure depends on a single fixed master key. Hence, it makes sense to also
consider the universal composability w.r.t. a fixed setup run. Of course, such a
setting is meaningful only in the framework of subjective security discussed in
Section 6.5. In this setting, the interface I〈·〉 cannot maliciously corrupt Pts, or
otherwise the correspondence A 7→ I〈A〉 does not preserve closeness between
Adv(A|ωts) and Adv(A◦|ωts). Consequently, the interface I〈·〉 can use only the
same set of parameters that A obtains from Pts, i.e., the trusted setup assures
only the correctness and availability of setup parameters.

In the following, we consider only the classical objective setting although the
same holds also for the subjective setting. First, it is straightforward to verify that
the protocol π1 in Fig. 7.8 is also a universally composable implementation of
“do nothing” functionality π◦

1 ≡ ⊥. However, the compound protocol of π1 and
π2 with shared setup in Fig. 7.8 is insecure, since a malicious P2 can send c1
back to P2 and thus always force the output y1 = x1 ⊕ x1 = 0. Nevertheless,
it is easy to prove that concurrent composition ̺〈π1, π1〉 with the shared setup
π◦

ts is universally composable and the same is also true for ̺〈π2, π2〉. Hence, no
simulation strategy I〈·〉 for itself makes sharing the setup π◦

ts impossible and the
failure of ̺〈π1, π2〉 must be caused by more subtle reasons.

More formally, assume that the protocols π1, . . . , πv share the same trusted
setup phase π◦

ts. Then any computational context implicitly defines an inner
context ̺ts〈π1, . . . , πv〉 that executes only π1, . . . , πv with the inputs provided
by the outer context ̺〈·〉. Since the inner context ̺ts〈π1, . . . , πv〉 itself can be
viewed as a compound protocol,6 we must just prove that ̺ts〈π1, . . . , πv〉 is uni-
versally composable. In particular, note that the final interface I〈·〉 for the com-
pound protocol ̺ts〈π1, . . . , πv〉 may use a modified setup procedure πts in the
ideal world and thus the corresponding security proof has three phases. First, we
must prove that substituting π◦

ts with πts does not change the outcome in the real
world. In other words, for any valid outer context ̺〈·〉

|Pr [GA

real
= 1]− Pr [(G∗

real
)A = 1]| ≤ ε1 , (7.23)

where Greal and G∗
real

are the corresponding security games. Secondly, note that
direct access to the process πts may reveal secret information and thus it may
be easier to carry out some computational operations O1, . . . ,Os. Hence, we
should again view time bounds as vectors t = (t0, . . . , ts). In the simplest case,
all parameters sent out by π◦

ts and πts are public and no honest participant can
carry out these expensive operations O1, . . . ,Os. In more complicated cases, the
setup procedure sends out some private information and the honest participants
can also carry out some of these operations O1, . . . ,Os. As a result, a protocol
πi may become insecure in contexts ̺ts〈·〉, where such private information is
transferred from one node to another. Moreover, the adversary may use honest
parties with extra abilities to carry out such operations.

6So far we have always assumed that all arguments must be specified in the beginning of the
protocol but nothing changes if we allow a gradual demand-based release of arguments.

110 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

We can safely and systematically model these aspects by rewriting all proto-
cols π1, . . . , πv in terms of oracle calls. As a result, we obtain an equivalent
computational model, where the protocol πts broadcasts only public parameters
and all running times are expressed as vectors. Since the corresponding reduc-
tion schemata quantify time complexity more precisely, it is possible to replace
protocols in the inner context ̺ts〈π1, . . . , πv〉 one by one. Finally, when there
are no protocols left, we can complete the proof by removing πts.

Let us return to the protocol depicted in Fig. 7.8. In this example, we have to
count decryption operations as well. Observe that the protocol π1 is universally
composable only if the context and the real world adversary do not use decryp-
tion operations. As the context contains a single decryption operation, we cannot
replace π1 with the ideal implementation π◦

1 . Although we can replace π2 with
the ideal implementation π◦

2 , the resulting adversary does an extra decryption
operation and thus we still cannot replace π1 with π◦

1 .
Finally, we note that the corresponding security proofs are quite streamlined

in all settings, where trusted setup is used to create only public parameters psp.
These security proofs do not use vectors as time bounds, but we still have to take
into account the fact that the context can choose the inputs x of the protocol
based on psp. Another particularly useful shared setup model is the public-key
infrastructure model. However, the latter generally requires precise vectorised
time bounds for the reasons shown above. In fact, the presented methodology
was largely motivated by the author’s own research [GLLM04, LLM05, LLM06,
LL07]. These articles study a certain restricted class of protocols that utilise ho-
momorphic encryption. In the final article [LL07], we used a slightly simplified
methodology to prove that all these protocols can be constructed by carefully
combining three elementary protocols that are universally composable even if
they share the corresponding setup phase. Such results are important, as they
can significantly simplify practical protocol design and can show what kind of
open problems may have significant practical consequences.

7.8 PUBLIC INPUTS AND UNIVERSAL COMPOSABILITY

Recall that no protocol without trusted setup can remain universally compos-
able and preserve privacy of inputs in the presence of honest minority [CKL03].
Superficially, it seems to imply that no useful protocol with honest minority can
be universally composable in the standard model. However, such an impression
is misleading, since some important practical functionalities indeed reveal all
inputs. For example, common primitives for authentication, such as message
authentication, tamper-resist storage and public broadcast, do reveal all inputs.
Consequently, a study of universally composable protocols with public inputs is
not a mere theoretical exercise, but also has practical consequences.

More formally, we say that the inputs of a protocol π are public if all partic-
ipants first submit their inputs to the ideal world adversary and then continue
interaction with the trusted third party as usual. A closer inspection reveals that
all universally composable protocols with honest minority must have public in-
puts and thus the definition is optimal, see the results in [CKL03]. Moreover,
protocols with public inputs cannot generally preserve universal composability
and implement a non-deterministic functionality, see again [CKL03] for precise

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 111

reasoning. For less technical argumentation, recall that any functionality can be
implemented in the trusted setup model [CLOS02]. Hence, a trusted setup pro-
cedure itself cannot have universally composable implementation in the pres-
ence of honest minority, otherwise every function would have a universally com-
posable implementation. The claim follows, as trusted setup procedures have
no inputs and are thus protocols with public inputs.

Obviously, a protocol π with public inputs reveals all outputs when the ideal
functionality is deterministic. As a result, we can guarantee only the correctness
of outputs. Secondly, note that an interface Isim〈·〉 can straightforwardly simu-
late the execution of the protocol π to the real world adversary A, as all inputs
of honest nodes are available to Isim〈·〉 in the ideal world.7 Now the correspon-
dence between real and ideal world is complete as soon as we can extract the
inputs of corrupted nodes from the traffic between A and Isim〈·〉.

More formally, let Extr(·) be a tex-time function that takes in the traffic be-
tween A and Isim〈·〉 and let x̂ = (x̂1, . . . , x̂n) be the corresponding guessed
input. Then the input extraction fails for a single round functionality if xi 6= x̂i

or yi = fi(x̂) for uncorrupted participants Pi. For a multi-round functionality,
Extr(·) must produce guesses for each round and Extr(·) fails if it fails for any
round. A protocol π is (tre, tex, tcnt, ε)-extractable if the input extraction fails
with the probability at most ε. The following theorem describes when a protocol
with honest minority is universally composable.

Theorem 3. There exists a constant c > 0 such that a (tre, tex, tcnt, ε)-extractable
protocol π with public inputs is (tre, c · tre, tcnt, ε)-universally composable.

Proof sketch. Clearly, the simulating interface Isim〈·〉 together with extraction
function Extr(·) is the necessary interface I〈·〉. The claim follows, as the outputs
of π and π◦ differ only if the extraction fails.

Further comments. There is a strange duality between Theorem 1 and 3.
Namely, the proofs of these theorems handle the information flow between a
protocol π and side-computations σ in a similar fashion. In the proof of The-
orem 1, we corrupt all non-participants of the protocol π and thus manage to
reduce the security to the stand-alone setting. More precisely, we first learn
the inputs of non-participants to incorporate the process σ into the ideal world
adversary and finally replace the outputs of non-participants to assure the cor-
respondence between the real and the ideal world. In the proof of Theorem 3,
we do exactly the opposite. That is, we first learn inputs of honest participants
to simulate π in the ideal world, and then use the input extraction to assure
correspondence between the real and the ideal world. The resulting security
guarantees are stronger only because Extr(·) is a non-rewinding algorithm.

Message authentication. Message authentication protocols form the most
prominent class of protocols with public inputs. Recall that the main aim of
these protocols is to transfer inputs between the nodes P1, . . . ,Pn by sending
messages through a malicious courier node Pnw. Consequently, the input extrac-
tion itself is trivial, we just have to follow the protocol instructions. Moreover,
the input extraction fails only if the adversary succeeds in deception. As a result,

7To be precise, this claim does not hold for exotic computational models, where missing real
world messages alter the message order in the ideal world.

112 7. MODULAR DESIGN OF COMPLEX PROTOCOLS

most of the authentication protocols are automatically universally composable,
as soon as they satisfy classical security requirements. As an example, consider
unilateral and cross-authentication protocols between honest P1 and P2. Let x1

and x2 be the corresponding inputs, then both participants should learn x1 in
the unilateral and (x1, x2) in the cross-authentication protocol. Commonly, the
security of a protocol is defined through a game in the asynchronous model of
computation, where the adversary provides inputs to both parties and succeeds
in deception if the outputs differ from ideal implementation. For unilateral au-
thentication protocols, the adversary succeeds if P2 reaches accepting state and
outputs x̂1 6= x1. For cross-authentication protocols, the adversary succeeds if
either P1 or P2 reaches accepting state and outputs (x̂1, x̂2) 6= (x1, x2).

Any computational context ̺〈·〉 together with an adversary A gives a rise to
a new compound adversary A∗ that plays the original security game. Moreover,
the extraction function indeed fails only if the compound adversary A∗ succeeds
in deception. Hence, classical message authentication protocols are automati-
cally universally composable. The result holds even if we allow the adversary
to corrupt participants, but then we have to redefine what a deception failure
means. Analogous results hold also for group authentication protocols.

Note that authentication protocols also have a trusted setup phase, where the
secret keys are created and transferred to all participants. Thus, a parallel ex-
ecution of several message authentication protocols that share the same setup
phase may be completely insecure. One possible solution is to use bootstrap-
ping. For example, it is straightforward to use pseudorandom functions to gen-
erate many computationally independent session keys from a single master key.
Secondly, we can study the extractability of a compound protocol ̺ts〈π1, . . . , πs〉
with shared setup π◦

ts directly. This approach is commonly known as a Bellare-
Rogaway model for message authentication, see [BR93a, BR95]. In the corre-
sponding model, deception is again defined so that adversary succeeds in decep-
tion if the corresponding input extraction procedure fails. As a result, a concur-
rent composition of authentication protocols is universally composable as soon
as it is secure in the Bellare-Rogaway model.

In recent years, cryptographers have also investigated manual authentication
protocols [Vau05, PV06a, PV06b, LN06, LP08]. These protocols do not have
a complex trusted setup phase. All of them can be implemented either in the
standard or in the common reference string model. The authenticity of mes-
sages is achieved by sending short authenticated strings. As a result, one can
easily show that a concurrent execution of these protocols is still universally
composable even if they share the setup phase. However, the latter is still in-
sufficient for security, since short authenticated strings are sent without tags that
identify the corresponding protocol instances. Consequently, we must addition-
ally assure that the adversary cannot switch short authenticated strings between
the protocols, otherwise the corresponding synchronisation errors may invalidate
the composability guarantees. Thus, we must either use further analysis to de-
termine the maximal achievable damage caused by clever message switching as
in [Vau05, PV06a, PV06b], or alternatively add further usage restrictions that
eliminate the possibility of such attacks as in [LN06, LP08].

7. MODULAR DESIGN OF COMPLEX PROTOCOLS 113

BIBLIOGRAPHY

[AD97] Miklós Ajtai and Cynthia Dwork. A Public-Key Cryptosystem with
Worst-Case/Average-Case Equivalence. In Proceedings of STOC
1997, pages 284–293. ACM Press, 1997.

[AFK+07] Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen Lenstra,
and Dag Arne Osvik. A kilobit special number field sieve factoriza-
tion. Cryptology ePrint Archive, Report 2007/205, 2007. Available
from http://eprint.iar.org/.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious
Transfer: How to Sell Digital Goods. In Birgit Pfitzmann, editor,
Proceedings of EUROCRYPT 2001, volume 2045 of Lecture Notes
in Computer Science, pages 119–135. Springer, 2001.

[AL07] Yonatan Aumann and Yehuda Lindell. Security Against Covert
Adversaries: Efficient Protocols for Realistic Adversaries. In Salil P.
Vadhan, editor, Proceedings of TCC 2007, volume 4392 of Lecture
Notes in Computer Science, pages 137–156. Springer, 2007.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair
Exchange of Digital Signatures (Extended Abstract). In Kaisa Ny-
berg, editor, Proceedings of EUROCRYPT 1998, volume 1403 of
Lecture Notes in Computer Science, pages 591–606. Springer,
1998.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An
Uninstantiable Random-Oracle-Model Scheme for a Hybrid-
Encryption Problem. In Christian Cachin and Jan Camenisch,
editors, Proceeding of EUROCRYPT 2004, volume 3027 of Lec-
ture Notes in Computer Science, pages 171–188. Springer, 2004.

[BC86] Gilles Brassard and Claude Crépeau. Non-Transitive Transfer of
Confidence: A Perfect Zero-Knowledge Interactive Protocol for
SAT and Beyond. In Proceedings of FOCS 1986, pages 188–195.
IEEE Computer Society, 1986.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway.
A Concrete Security Treatment of Symmetric Encryption. In
Proceedings of FOCS 1997, pages 394–403. IEEE Computer
Society, 1997. The extended version of the article is available formhttp://www-se.usd.edu/users/mihir/papers/sym-en.html.

[Bea91a] Donald Beaver. Foundations of Secure Interactive Computing.
In Joan Feigenbaum, editor, Proceedings of CRYPTO 1991, vol-
ume 576 of Lecture Notes in Computer Science, pages 377–391.
Springer, 1991.

[Bea91b] Donald Beaver. Secure Multiparty Protocols and Zero-Knowledge
Proof Systems Tolerating a Faulty Minority. Journal of Cryptology,
4(2):75–122, 1991.

114 BIBLIOGRAPHY

http://eprint.iacr.org/
 http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html

[BG89] Donald Beaver and Shafi Goldwasser. Multiparty Computation
with Faulty Majority. In Gilles Brassard, editor, Proceedings of
CRYPTO 1989, volume 435 of Lecture Notes in Computer Sci-
ence, pages 589–590. Springer, 1989.

[BG92] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowl-
edge. In Ernest F. Brickell, editor, Proceeding of CRYPTO 1992,
volume 740 of Lecture Notes in Computer Science, pages 390–
420. Springer, 1992.

[Bil95] Patrick Billingsley. Probability and Measure. Probability and Math-
ematical Statistics. Wiley, third edition edition, 1995.

[Bin00] N. H. Bingham. Studies in the history of probability and statistics
XLVI. Measure into probability: From Lebesgue to Kolmogorov.
Biometrika, 87(1):145–156, 2000.

[BK04] Ian F. Blake and Vladimir Kolesnikov. Strong Conditional Oblivi-
ous Transfer and Computing on Intervals. In Pil Joong Lee, editor,
Proceedings of ASIACRYPT 2004, volume 3329 of Lecture Notes
in Computer Science, pages 515–529. Springer, 2004.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of
Cipher Block Chaining. In Yvo Desmedt, editor, Proceedings of
CRYPTO 1994, volume 839 of Lecture Notes in Computer Sci-
ence, pages 341–358. Springer, 1994.

[BL04] Boaz Barak and Yehuda Lindell. Strict Polynomial-Time in Sim-
ulation and Extraction. SIAM Journal on Computing, 33(4):738–
818, 2004.

[BL06] Ahto Buldas and Sven Laur. Do Broken Hash Functions Affect the
Security of Time-Stamping Schemes? In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Proceedings of ACNS 2006, vol-
ume 3989 of Lecture Notes in Computer Science, pages 50–65.
Springer, 2006.

[BL07] Ahto Buldas and Sven Laur. Knowledge-Binding Commitments
with Applications in Time-Stamping. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, Proceedings of PKC 2007, volume 4450
of Lecture Notes in Computer Science, pages 150–165. Springer,
2007.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. In Proceedings of CSFW 2001, pages 82–
96. IEEE Computer Society, 2001.

[Bla06a] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable
Blockcipher-Based Hash Function. In Matthew J. B. Robshaw, ed-
itor, Proceedings of FSE 2006, volume 4047 of Lecture Notes in
Computer Science, pages 328–340. Springer, 2006.

BIBLIOGRAPHY 115

[Bla06b] Bruno Blanchet. A Computationally Sound Mechanized Prover
for Security Protocols. In Proceedings of IEEE Symposium on Se-
curity and Privacy, pages 140–154. IEEE Computer Society, 2006.

[Bla07] Bruno Blanchet. Computationally Sound Mechanized Proofs of
Correspondence Assertions. In 20th IEEE Computer Security
Foundations Symposium, 2007. To appear.

[BM89] Mihir Bellare and Silvio Micali. Non-Interactive Oblivious Trans-
fer and Applications. In Gilles Brassard, editor, Proceedings of
CRYPTO 1989, volume 435 of Lecture Notes in Computer Sci-
ence, pages 547–557. Springer, 1989.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The Round
Complexity of Secure Protocols (Extended Abstract). In Proceed-
ings of STOC 1990, pages 503–513. ACM Press, 1990.

[BOCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asyn-
chronous secure computation. In Proceedings of STOC 1993,
pages 52–61. ACM Press, 1993.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract). In Proceedings of STOC 1988,
pages 1–10. ACM Press, 1988.

[Bor62] Emile Borel. Probabilities and life. Dover Publications, 1962.
Translated from the French by Maurice Baudin.

[BP06] Bruno Blanchet and David Pointcheval. Automated Security Proofs
with Sequences of Games. In Cynthia Dwork, editor, Proceedings
of CRYPTO 2006, volume 4117 of Lecture Notes in Computer
Science, pages 537–554. Springer, 2006.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The
Reactive Simulatability (RSIM) Framework for Asynchronous Sys-
tems. Cryptology ePrint Archive, Report 2004/082, 2004. Available
from http://eprint.iar.org/.

[BR93a] Mihir Bellare and Phillip Rogaway. Entity Authentication and
Key Distribution. In Douglas R. Stinson, editor, Proceedings of
CRYPTO 1993, volume 773 of Lecture Notes in Computer Sci-
ence, pages 232–249. Springer, 1993.

[BR93b] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols. In Proceedings of
ACM CCS 1993, pages 62–73. ACM Press, 1993.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key
distribution: the three party case. In Proceedings of STOC 1995,
pages 57–66. ACM Press, 1995.

116 BIBLIOGRAPHY

http://eprint.iacr.org/

[BR04] Mihir Bellare and Phillip Rogaway. Code-Based Game-
Playing Proofs and the Security of Triple Encryption. Cryp-
tology ePrint Archive, Report 2004/331, 2004. Available formhttp://eprint.iar.org/.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryp-
tion and a Framework for Code-Based Game-Playing Proofs. In
Serge Vaudenay, editor, Proceedings of EUROCRYPT 2006, vol-
ume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer, 2006.

[BS04] Ahto Buldas and Märt Saarepera. On Provably Secure Time-
Stamping Schemes. In Proceedings of ASIACRYPT 2004, vol-
ume 3329 of Lecture Notes in Computer Science, pages 500–514.
Springer, 2004.

[BS05] Boaz Barak and Amit Sahai. How To Play Almost Any Men-
tal Game Over The Net - Concurrent Composition via Super-
Polynomial Simulation. In Proceedings of FOCS 2005, pages 543–
552. IEEE Computer Society, 2005.

[BT92] George Edward Pelham Box and George C. Tiao. Bayesian Infer-
ence in Statistical Analysis. Wiley Classics Library. Wiley, 1992.

[Can00a] Ran Canetti. Security and Composition of Multiparty Crypto-
graphic Protocols. Journal of Cryptology, 13(1):143–202, 2000.

[Can00b] Ran Canetti. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. Cryptology ePrint Archive, Report
2000/067, 2000. Available form http://eprint.iar.org/.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. In Proceedings of FOCS 2001, pages
136–145. IEEE Computer Society, 2001.

[CB02] George Casella and Roger L. Berger. Statistical Inference. Ad-
vanced series. Duxbury Press, second edition edition, 2002.

[CC00] Christian Cachin and Jan Camenisch. Optimistic Fair Secure
Computation. In Mihir Bellare, editor, Proceedings of CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages
93–111. Springer, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty
Unconditionally Secure Protocols (Extended Abstract). In Pro-
ceedings of STOC 1988, pages 11–19. ACM Press, 1988.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adap-
tively Secure Multi-Party Computation. In Proceedings of STOC
1996, pages 639–648. ACM Press, 1996.

BIBLIOGRAPHY 117

http://eprint.iacr.org/
http://eprint.iacr.org/

[CGH04a] Ran Canetti, Oded Goldreich, and Shai Halevi. On the Random-
Oracle Methodology as Applied to Length-Restricted Signature
Schemes. In Moni Naor, editor, Proceedings of TCC 2004, vol-
ume 2951 of Lecture Notes in Computer Science, pages 40–57.
Springer, 2004.

[CGH04b] Ran Canetti, Oded Goldreich, and Shai Halevi. The random or-
acle methodology, revisited. Journal of the ACM, 51(4):557–594,
2004.

[Cha86] David Chaum. Demonstrating That a Public Predicate Can Be
Satisfied Without Revealing Any Information About How. In
Andrew M. Odlyzko, editor, Proceedings of CRYPTO 1986, vol-
ume 263 of Lecture Notes in Computer Science, pages 195–199.
Springer, 1986.

[Chu36] Alonzo Church. An Unsolvable Problem of Elementary Number
Theory. American Journal of Mathematics, 58(2):345–363, April
1936.

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for Boolean pri-
vacy. In Proceedings of STOC 1989, pages 62–72, New York, NY,
USA, 1989. ACM Press.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the Limita-
tions of Universally Composable Two-Party Computation without
Set-up Assumptions. In Eli Biham, editor, Proceedings of EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 68–86. Springer, 2003.

[Cle86] Richard Cleve. Limits on the Security of Coin Flips when Half
the Processors Are Faulty (Extended Abstract). In Proceedings of
STOC 1986, pages 364–369. ACM Press, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally composable two-party and multi-party secure compu-
tation. In Proceedings of STOC 2002, pages 494–503. ACM Press,
2002.

[CO99] Ran Canetti and Rafail Ostrovsky. Secure Computation with
Honest-Looking Parties: What If Nobody Is Truly Honest? (Ex-
tended Abstract). In Proceedings of STOC 1999, pages 255–264.
ACM Press, 1999.

[Cob64] Alan Cobham. The intrinsic computational difficulty of functious.
In Yehoshua Bar-Hillel, editor, Proceedings of 1964 International
Congress for Logic, Methodology, and Philosophy of Sciences,
pages 24–30, Amsterdam, 1964. North-Holland Publishing Com-
pany.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random
access machines. In Proceedings of STOC 1972, pages 73–80,
New York, NY, USA, 1972. ACM Press.

118 BIBLIOGRAPHY

[CR03] Ran Canetti and Tal Rabin. Universal Composition with Joint
State. In Dan Boneh, editor, Proceedings of CRYPTO 2003, vol-
ume 2729 of Lecture Notes in Computer Science, pages 265–281.
Springer, 2003.

[CV01] Yannick Chevalier and Laurent Vigneron. A Tool for Lazy Verifi-
cation of Security Protocols. In Proceedings of ASE 2001, pages
373–376. IEEE Computer Society, 2001.

[Den02] Alexander W. Dent. Adapting the Weaknesses of the Random Ora-
cle Model to the Generic Group Model. In Yuliang Zheng, editor,
Proceedings of ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 100–109. Springer, 2002.

[Den06] Alexander W. Dent. A Note On Game-Hopping Proofs. Cryp-
tology ePrint Archive, Report 2006/260, 2006. Available fromhttp://eprint.iar.org/.

[DK02] Ivan Damgård and Maciej Koprowski. Generic Lower Bounds for
Root Extraction and Signature Schemes in General Groups. In
Lars R. Knudsen, editor, Proceedings of EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 256–271.
Springer, 2002.

[DKMR05] Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ra-
manathan. On the Relationships Between Notions of Simulation-
Based Security. In Joe Kilian, editor, Proceedings of TCC 2005,
volume 3378 of Lecture Notes in Computer Science, pages 476–
494. Springer, 2005.

[DM00] Yevgeniy Dodis and Silvio Micali. Parallel Reducibility for
Information-Theoretically Secure Computation. In Mihir Bellare,
editor, Proceedings of CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 74–92. Springer, 2000.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-
knowledge. Journal of the ACM, 51(6):851–898, 2004.

[Edm65] Jack Edmonds. Paths, trees and flowers. Canadian Journal of Math-
ematics, 17:449–467, 1965.

[FFS87] Uriel Fiege, Amos Fiat, and Adi Shamir. Zero knowledge proofs of
identity. In Proceedings of STOC 1987, pages 210–217, New York,
NY, USA, 1987. ACM Press.

[Fie92] Stephen E. Fienberg. A brief history of statistics in three and one-
half chapters: A review essay. Statistical Science, 7(2):208–225,
1992.

[Fie05] Stephen A. Fienberg. When did Bayesian Inference become
"Bayesian"? Bayesian Analysis, 1(1):1–40, July 2005.

BIBLIOGRAPHY 119

http://eprint.iacr.org/

[FIM+06] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J.
Strauss, and Rebecca N. Wright. Secure multiparty computation of
approximations. ACM Transactions on Algorithms, 2(3):435–472,
2006.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Rein-
gold. Keyword Search and Oblivious Pseudorandom Functions. In
Joe Kilian, editor, Proceedings of TCC 2005, volume 3378 of Lec-
ture Notes in Computer Science, pages 303–324. Springer, 2005.

[Fis01] Marc Fischlin. A Cost-Effective Pay-Per-Multiplication Compari-
son Method for Millionaires. In David Naccache, editor, Proceed-
ings of CT-RSA 2001, volume 2020 of Lecture Notes in Computer
Science, pages 457–472. Springer, 2001.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient
Private Matching and Set Intersection. In Christian Cachin and
Jan Camenisch, editors, Proceedings of EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2004.

[For87] Lance Fortnow. The Complexity of Perfect Zero-Knowledge (Ex-
tended Abstract). In Proceedings of STOC 1987, pages 204–209.
ACM Press, 1987.

[FS89] Uriel Feige and Adi Shamir. Zero Knowledge Proofs of Knowl-
edge in Two Rounds. In Gilles Brassard, editor, Proceedings of
CRYPTO 1989, volume 435 of Lecture Notes in Computer Sci-
ence, pages 526–544. Springer, 1989.

[FY92] Matthew K. Franklin and Moti Yung. Communication Complexity
of Secure Computation (Extended Abstract). In Proceedings of
STOC 1992, pages 699–710. ACM Press, 1992.

[GK96a] Oded Goldreich and Ariel Kahan. How to Construct Constant-
Round Zero-Knowledge Proof Systems for NP. Journal of Cryptol-
ogy, 9(3):167–190, 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the Composition of
Zero-Knowledge Proof Systems. SIAM Journal on Computing,
25(1):169–192, 1996.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (In)security of
the Fiat-Shamir Paradigm. In Proceedings of FOCS 2003, pages
102–113. IEEE Computer Society, 2003.

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair Computation of
General Functions in Presence of Immoral Majority. In Alfred
Menezes and Scott A. Vanstone, editors, Proceedings of CRYPTO
1990, volume 537 of Lecture Notes in Computer Science, pages
77–93. Springer, 1990.

120 BIBLIOGRAPHY

[GLLM04] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen.
On Private Scalar Product Computation for Privacy-Preserving
Data Mining. In Choonsik Park and Seongtaek Chee, editors, Pro-
ceedings of ICISC 2004, volume 3506 of Lecture Notes in Com-
puter Science, pages 104–120. Springer, 2004.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and
How to Play Mental Poker Keeping Secret All Partial Information.
In Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing (STOC), pages 365–377. ACM Press, 1982.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Jour-
nal of Computer and System Sciences, 28(2):270–299, 1984.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems. In Proceedings of
STOC 1985, pages 291–304. ACM Press, 1985.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowl-
edge Complexity of Interactive Proof Systems. SIAM Journal on
Computing, 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play
any Mental Game or A Completeness Theorem for Protocols with
Honest Majority. In Proceedings of STOC 1987, pages 218–229.
ACM Press, 1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM, 38(3):690–728,
1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and Properties of Zero-
Knowledge Proof Systems. Journal of Cryptology, 7(1):1–32, 1994.

[Gol98] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and
Pseudorandomness. Algorithms and Combinatorics. Springer,
1998.

[Gol04] Oded Goldreich. Foundations of Cryptography II: Basic Applica-
tions. Cambridge University Press, 2004.

[Gol07] Oded Goldreich. On Expected Probabilistic Polynomial-Time Ad-
versaries: A Suggestion for Restricted Definitions and Their Ben-
efits. In Salil P. Vadhan, editor, Proceedings of TCC 2007, vol-
ume 4392 of Lecture Notes in Computer Science, pages 174–193.
Springer, 2007. See also the corresponding ECCC report.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified
VSS and Fact-Track Multiparty Computations with Applications
to Threshold Cryptography. In Proceedings of PODC 1998, pages
101–111. ACM Press, 1998.

BIBLIOGRAPHY 121

[Hal05] Shai Halevi. A plausible approach to computer-aided crypto-
graphic proofs. Cryptology ePrint Archive, Report 2005/181, 2005.
Available from http://eprint.iar.org/.

[Hil92] Alain P. Hiltgen. Constructions of Freebly-One-Way Families of
Permutations. In Jennifer Seberry and Yuliang Zheng, editors, Pro-
ceedings of ASIACRYPT 1992, volume 718 of Lecture Notes in
Computer Science, pages 422–434. Springer, 1992.

[HL92] Amir Herzberg and Michael Luby. Pubic Randomness in Cryp-
tography. In Ernest F. Brickell, editor, Proceedings of CRYPTO
1992, volume 740 of Lecture Notes in Computer Science, pages
421–432. Springer, 1992.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation. Addi-
son Wesley, 2000.

[Imp95] Russell Impagliazzo. A Personal View of Average-Case Complexity.
In Structure in Complexity Theory Conference, pages 134–147,
1995.

[IR88] Russell Impagliazzo and Steven Rudich. Limits on the Provable
Consequences of One-way Permutations. In Shafi Goldwasser, ed-
itor, Proceedings of CRYPTO 1988, volume 403 of Lecture Notes
in Computer Science, pages 8–26. Springer, 1988.

[Jay03] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cam-
bridge University Press, 2003.

[Jef04] Richard C. Jeffrey. Subjective Probability the Real Thing. Cam-
bridge University Press, 2004.

[KL05] Jonathan Katz and Yehuda Lindell. Handling Expected
Polynomial-Time Strategies in Simulation-Based Security Proofs.
In Joe Kilian, editor, Proceedings of TCC 2005, volume 3378 of
Lecture Notes in Computer Science, pages 128–149. Springer,
2005.

[Kle43] Stephen. C. Kleene. Recursive Predicates and Quantifiers. Trans-
actions of the American Mathematical Society, 53(1):41–73, Jan-
uary 1943.

[KLL06] Emilia Käsper, Sven Laur, and Helger Lipmaa. Black-Box
Knowledge Extraction Revisited: Universal Approach with Precise
Bounds. Cryptology ePrint Archive, Report 2006/356, 2006. Avail-
able from http://eprint.iar.org/.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-Optimal Secure Two-
Party Computation. In Matthew K. Franklin, editor, Proceedings
of CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 335–354. Springer, 2004.

122 BIBLIOGRAPHY

http://eprint.iacr.org/
http://eprint.iacr.org/

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-Preserving Set Op-
erations. In Victor Shoup, editor, Proceedings of CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 241–
257. Springer, 2005.

[Lan61] Rolf Landauer. Irreversibility and heat generation in the comput-
ing process. IBM Journal of Research and Development, 5:183–
191, 1961.

[Lin03a] Yehuda Lindell. Bounded-concurrent secure two-party computa-
tion without setup assumptions. In Proceedings of STOC 2003,
pages 683–692. ACM Press, 2003.

[Lin03b] Yehuda Lindell. General Composition and Universal Composabil-
ity in Secure Multi-Party Computation. In Proceedings of FOCS
2003, pages 394–403. IEEE Computer Society, 2003.

[Lin04] Yehuda Lindell. Lower Bounds for Concurrent Self Composition.
In Moni Naor, editor, Proceedings of TCC 2004, volume 2951
of Lecture Notes in Computer Science, pages 203–222. Springer,
2004.

[Lip05] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared
Communication. In Jianying Zhou, Javier Lopez, Robert H. Deng,
and Feng Bao, editors, Proceedings of ISC 2005, volume 3650
of Lecture Notes in Computer Science, pages 314–328. Springer,
2005.

[LL06] Sven Laur and Helger Lipmaa. Consistent adaptive two-party
computations. Cryptology ePrint Archive, Report 2006/088, 2006.
Available from http://eprint.iar.org/.

[LL07] Sven Laur and Helger Lipmaa. A New Protocol for Conditional
Disclosure of Secrets and Its Applications. In Jonathan Katz and
Moti Yung, editors, Proceedings of ACNS 2007, volume 4521 of
Lecture Notes in Computer Science, pages 207–225. Springer,
2007.

[LLM05] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Private
Itemset Support Counting. In Sihan Qing, Wenbo Mao, Javier
Lopez, and Guilin Wang, editors, Proceedings of ICICS 2005, vol-
ume 3783 of Lecture Notes in Computer Science, pages 97–111.
Springer, 2005.

[LLM06] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Cryptograph-
ically private support vector machines. In Tina Eliassi-Rad, Lyle H.
Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Proceed-
ings of KDD 2006, pages 618–624. ACM Press, 2006.

[LMMS98] Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Sce-
drov. A probabilistic poly-time framework for protocol analysis. In
Proceedings of ACM CCS 1998, pages 112–121, New York, NY,
USA, 1998. ACM Press.

BIBLIOGRAPHY 123

http://eprint.iacr.org/

[LMR83] Michael Luby, Silvio Micali, and Charles Rackoff. How to Si-
multaneously Exchange a Secret Bit by Flipping a Symmetrically-
Biased Coin. In Proceedings of FOCS 1983, pages 11–21. IEEE
Computer Society, 1983.

[LN06] Sven Laur and Kaisa Nyberg. Efficient Mutual Data Authentica-
tion Using Manually Authenticated Strings. In David Pointceval,
Yi Mu, and Kefei Chen, editors, Proceedings of CANS 2006, vol-
ume 4301 of Lecture Notes in Computer Science, pages 90–107.
Springer, 2006.

[Low97] Gavin Lowe. Casper: A Compiler for the Analysis of Security Pro-
tocols. In Proceedings OF CSFW 1997, pages 18–30. IEEE Com-
puter Society, 1997.

[LP04] Yehuda Lindell and Benny Pinkas. A Proof of Yao’s Protocol for Se-
cure Two-Party Computation. Cryptology ePrint Archive, Report
2004/175, 2004. Available from http://eprint.iar.org/.

[LP07] Yehuda Lindell and Benny Pinkas. An Efficient Protocol for Se-
cure Two-Party Computation in the Presence of Malicious Adver-
saries. In Moni Naor, editor, Proceedings of EUROCRYPT 2007,
volume 4515 of Lecture Notes in Computer Science, pages 52–78.
Springer, 2007.

[LP08] Sven Laur and Sylvain Pasini. SAS-Based Group Authentication
and Key Agreement Protocols. In Proceedings of PKC 2008, vol-
ume 4939 of Lecture Notes in Computer Science, pages 197–213.
Springer, 2008.

[LR06] Gregor Leander and Andy Rupp. On the Equivalence of RSA
and Factoring Regarding Generic Ring Algorithms. In Xuejia Lai
and Kefei Chen, editors, Proceedings of ASIACRYPT 2006, vol-
ume 4284 of Lecture Notes in Computer Science, pages 241–251.
Springer, 2006.

[Lub96] Michael Luby. Pseudorandomness and Cryptographic Applica-
tions. Princeton University Press, 1996.

[LV97] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Com-
plexity and Its Applications. Graduate Texts in Computer Science.
Springer, 2nd edition edition, 1997.

[Mas96] James L. Massey. The difficulty with difficulty. IACR Distinguished
Lecture at Eurocrypt 1996, 1996. Available from IACR webpagehttp://www.iar.org/onferenes/e96/massey.html.

[Mau02] Ueli M. Maurer. Indistinguishability of Random Systems. In
Lars R. Knudsen, editor, Proceedings of EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 110–132.
Springer, 2002.

124 BIBLIOGRAPHY

http://eprint.iacr.org/
http://www.iacr.org/conferences/ec96/massey.html

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21(4):294–299, 1978.

[Mor98] Hans Moravec. Robot: Mere Machine to Transcendent Mind,
chapter Chapter 3: Power and Presence. Oxford University
Press, 1998. Computational power of various computing de-
vices measured in MIPS. Missing data points for years 2000
and 2005 are filled with the data form TOP500 project. Seehttp://www.top500.org/. The conversion from Flops to MIPS
was done by taking 1 MIPS = 3.2MFlops.

[MR91a] Silvio Micali and Phillip Rogaway. Secure Computation (Abstract).
In Joan Feigenbaum, editor, Proceedings of CRYPTO 1991, vol-
ume 576 of Lecture Notes in Computer Science, pages 392–404.
Springer, 1991.

[MR91b] Silvio Micali and Phillip Rogaway. Secure Computation (Prelim-
inary Report). Technical Report MIT-LCS-TR-511, Massachusetts
Institute of Technology, 1991.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. In-
differentiability, Impossibility Results on Reductions, and Applica-
tions to the Random Oracle Methodology. In Moni Naor, editor,
Proceedings of TCC 2004, volume 2951 of Lecture Notes in Com-
puter Science, pages 21–39. Springer, 2004.

[MRS88] Silvio Micali, Charles Rackoff, and Bob Sloan. The Notion of
Security for Probabilistic Cryptosystems. SIAM Journal on Com-
puting, 17(2):412–426, 1988.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa
Teague. A probabilistic polynomial-time process calculus for the
analysis of cryptographic protocols. Theoretical Computer Sci-
ence,, 353(1-3):118–164, 2006.

[Nat00] National Institute of Standards and Technology. Dig-
ital Signature Standard. FIPS PUB 186-2, U.S. De-
partment of Commerce, January 2000. Available formhttp://sr.nist.gov/publiations/....../fips/fips186-2/fips186-2-hange1.pdf.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the
discrete logarithm. Mathematical Notes, 55(2):165–172, 1994.
Translated from Matematicheskie Zametki, Vol. 55, No. 2, pp.
91âĂŞ101, February, 1994.

[Net06] Network Working Group. The Transport Layer Secu-
rity (TLS) Protocol Version 1.1. RFC 4346, The Inter-
net Engineering Task Force, April 2006. Available fromhttp://tools.ietf.org/html/rf4346.

BIBLIOGRAPHY 125

http://www.top500.org/
http://csrc.nist.gov/publications/...
.../fips/fips186-2/fips186-2-change1.pdf
http://tools.ietf.org/html/rfc4346

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with ap-
plications: a formal introduction. John Wiley & Sons, Inc., New
York, NY, USA, 1992.

[NP99a] Moni Naor and Benny Pinkas. Oblivious Transfer and Polynomial
Evaluation. In Proceedings of STOC 1999, pages 245–254. ACM
Press, 1999.

[NP99b] Moni Naor and Benny Pinkas. Oblivious Transfer with Adaptive
Queries. In Michael J. Wiener, editor, Proceedings of CRYPTO
1999, volume 1666 of Lecture Notes in Computer Science, pages
573–590. Springer, 1999.

[NS98] Phong Q. Nguyen and Jacques Stern. Cryptanalysis of the Ajtai-
Dwork Cryptosystem. In Hugo Krawczyk, editor, Proceedings of
CRYPTO 1998, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 223–242. Springer, 1998.

[NY90] Moni Naor and Moti Yung. Public-key Cryptosystems Provably
Secure against Chosen Ciphertext Attacks. In Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 427–437. ACM Press, 1990.

[Ore87] Yair Oren. On the Cunning Power of Cheating Verifiers: Some
Observations about Zero Knowledge Proofs (Extended Abstract).
In Proceedings of FOCS 1987, pages 462–471. IEEE Computer
Society, 1987.

[Pap93] Christos H. Papadimitriou. Computational Complexity. Addison
Wesley, 1993.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation
with a dishonest majority. In László Babai, editor, Proceedings of
STOC 2004, pages 232–241. ACM Press, 2004.

[Pin03] Benny Pinkas. Fair Secure Two-Party Computation. In Eli Biham,
editor, Proceedings of EUROCRYPT 2003, volume 2656 of Lec-
ture Notes in Computer Science, pages 87–105. Springer, 2003.

[PR03] Rafael Pass and Alon Rosen. Bounded-Concurrent Secure Two-
Party Computation in a Constant Number of Rounds. In Pro-
ceedings of FOCS 2003, pages 404–411. IEEE Computer Society,
2003.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security:
achieving universal composability without trusted setup. In László
Babai, editor, Proceedings of STOC 2004, pages 242–251. ACM
Press, 2004.

[PSW00] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Se-
cure Reactive Systems. RZ 3206 (#93252), IBM Research Division,
ZÃijrich, May 2000.

126 BIBLIOGRAPHY

[PV06a] Sylvain Pasini and Serge Vaudenay. An Optimal Non-interactive
Message Authentication Protocol. In David Pointcheval, editor,
Proceedings of CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 280–294. Springer, 2006.

[PV06b] Sylvain Pasini and Serge Vaudenay. SAS-Based Authenticated Key
Agreement. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, Proceedings of PKC 2006, volume 3958 of
Lecture Notes in Computer Science, pages 395–409. Springer,
2006.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity
preservation of secure reactive systems. In Proceedings of ACM
CCS 2000, pages 245–254, 2000.

[Rog06] Phillip Rogaway. Formalizing Human Ignorance. In Phong Q.
Nguyen, editor, Proceedings of VIETCRYPT 2006, volume 4341
of Lecture Notes in Computer Science, pages 211–228. Springer,
2006.

[RS91] Charles Rackoff and Daniel R. Simon. Non-Interactive Zero-
Knowledge Proof of Knowledge and Chosen Ciphertext Attack.
In Joan Feigenbaum, editor, Proceedings of CRYPTO 1991, vol-
ume 576 of Lecture Notes in Computer Science, pages 433–444.
Springer, 1991.

[RSA07] RSA Laboratories. The RSA Factoring Challenge RSA-640. Avail-
able from http://www.rsa.om/rsalabs/, 2007.

[Sha49] Claude E. Shannon. Communication Theory of Secrecy Systems.
Bell Systems Technical Journal, 28:656–715, 1949. Available as
reprint fromhttp://netlab.s.ula.edu/wiki/files/shannon1949.pdf.

[Sha79] Adi Shamir. Factoring Numbers in O(log n) Arithmetic Steps. In-
formation Processing Letters, 8(1):28–31, 1979.

[Sho97] Victor Shoup. Lower Bounds for Discrete Logarithms and Related
Problems. In Walter Fumy, editor, Proceedings of EUROCRYPT
1997, volume 1233 of Lecture Notes in Computer Science, pages
256–266. Springer, 1997.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
Available from http://eprint.iar.org/.

[SJ00] Claus-Peter Schnorr and Markus Jakobsson. Security of Signed
ElGamal Encryption. In Tatsuaki Okamoto, editor, Proceedings
of ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer
Science, pages 73–89. Springer, 2000.

[Smi94] Carl H. Smith. A Recursive Introduction to the Theory of Compu-
tation. Springer, 1994.

BIBLIOGRAPHY 127

http://www.rsa.com/rsalabs/
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://eprint.iacr.org/

[Sti86] Stephen M. Stigler. The History of Statistics: The Measurement
of Uncertainty before 1900. Belknap Press of Harvard University
Press, 1986.

[Tur37] Alan. M. Turing. On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, 42(2):230–265, 1937.

[Vau05] Serge Vaudenay. Secure Communications over Insecure Channels
Based on Short Authenticated Strings. In Victor Shoup, editor,
Proceedings of CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 309–326. Springer, 2005.

[vL96] Michiel van Lambalgen. Randomness and Foundations of Proba-
bility: Von Mises’ Axiomatisation of Random Sequences. In T. S.
Ferguson, L. S. Shapley, and J. B. MacQueen, editors, Statistics,
Probability and Game Theory: Papers in Honor of David Black-
well, volume 30 of Lecture Notes - Monograph Series, pages 347–
367, 1996.

[WS04] David P. Woodruff and Jessica Staddon. Private inference control.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick Drew Mc-
Daniel, editors, Proceedings of ACM CCS 2004, pages 188–197.
ACM Press, 2004.

[WW01] K. Wagner and G. Wechsung. Computational Complexity, vol-
ume 21 of Mathematics and its applications. Springer, 2001.

[Yao82] Andrew Chi-Chih Yao. Theory and Applications of Trapdoor Func-
tions (Extended Abstract). In Proceedings of FOCS 1982, pages
80–91. IEEE Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets
(Extended Abstract). In Proceedings of FOCS 1986, pages 162–
167. IEEE Computer Society, 1986.

128 BIBLIOGRAPHY

INDEX

advantages
AdvG(·), 31, 78
Advcr

– (·), 75
Advind

–,– (·), 23, 28, 78
Advrom

G (·), 72
Advstd

G (·), 72
adversarial distribution, 78
adversaries, 28, 48–49, 90

adaptive adversary, 49
black-box adversary, 73
mobile adversary, 49
rational adversary, 34
relevant adversary, 72, 77
static adversary, 49

adversary structure, 48, 102
aggregate error, 23
algorithms, 17–21

interactive algorithm, 19
polynomial-time algorithm, 13,
65

randomised algorithm, 19
t-time algorithm, 20

asymptotic complexity, 13, 64–68
negl(k), 13
poly(k), 13
polylog(k), 13
sub-exponential 2o(k), 70
super-polynomial kω(1), 70

asymptotic security, 66, 68–71
asymptotic security models

strong polynomial security, 68
strong statistical security, 71
weak polynomial security, 70
weak statistical security, 71

asymptotically negligible, 13, 25, 66

Bayesianism, 15
belief, 16, 31, 50, 78–79, 80, 82

fundamental belief, 80, 82
Bellare-Rogaway model, 113
Big Oh notation, 13
bootstrapping, 108, 113

closeness, 53, 54, 83, 88
coherent reasoning, 79–80
collision resistance, 75

common reference string, 74, 108,
113

communication model, 19, 91
computational context, 87
computational devices

Random Access Machine, 18
Turing machine, 17

computational distance, 24, 28, 78
computational models

asynchronous model, 97
basic model, 28, 89
real-time model, 96
synchronous model, 96

concurrent execution, 103, 107
conditional probability, 15, 36–38
construction family, 65
correctness, 56, 58, 60, 112
cryptosystems, 27

IND-CCA security, 27
IND-CPA security, 27, 79

dedicated participants
administrator Pna, 91
courier Pnw, 91
scheduler Psc, 97

distinguishers, see tests
distributions, 12

adversarial distribution, 78
input distribution, 49
uniform distribution, 13

encryption paradox, 75
equivocability, 62
exact security, 31–36, 38–40, 51–60,

87–89, 92–113
external consistency, 46
extractability, 62, 112

fairness, 48
fairness postulate, 77
finite set policy, 7
frequentism, 14

games, 26–30
game chain, 38, 84
game description, 28–29
game tree, 40

INDEX 129

halting machine, 58
hash function, 72, 74
hashing paradox, 75
horizon splitting, 39, 84
hybrid argument, 84
hypothesis testing, 22–26

aggregate error, 23
complex hypothesis, 22, 25
simple hypothesis, 22

idealised functionality, 47–51
independence, 15
indistinguishability, 23, 27, 29, 61
input distribution, 49
input-privacy, 57
interactive algorithm, 19
interactive inference, see games
interface, 104
interpretations of probability, 14–15

objective probability, 14
subjective probability, 14

isolated execution, 97–102

Landau notation, 13

malicious model, 56–60
correctness, 60
input-privacy, 57
output-consistency, 58
security, 59

message authentication, 112

negligible probability, 13, 24

objective security, see exact security
output-consistency, 58
output-privacy, 56

parallel execution, 101, 102
Philosopher’s Stone, 95
privacy, 55
privacy loss, 51
probability, 12–16

conditional probability, 15, 36
negligible probability, 13, 24
overwhelming probability, 13

proof of knowledge, 69, 70
proof system, 41–43
PRP/PRF switching lemma, 37
public inputs, 111

public-key infrastructure, 75, 76,
111

Random Access Machine, 18
random oracle model, 72
random tape model, 16
random variable, 12
randomised algorithm, 19
rational adversary, 34
rational entity, 79
reduction schemata, 33, 83

G-SEC schema, 88
IND-CPA schema, 33
MPC-SEC schema, 53
MPC-SEC+ schema, 94
UC-SEC schema, 103

reductions, 32–36, 80–85
black-box reduction, 32, 61, 69
linear reduction, 35
quadratic reduction, 35
white-box reduction, 32, 61, 69,
85, 95

relative advantage, 78
relative security margin, 65
relativised model, 43
resilience principle, 4
rewinding, 62
risk profile, 50
robust message scheduling, 94

security parameter k, 13, 65
security premise, 80, 82
semantic security, 25, 29, 61
semi-honest model, 55–56

correctness, 56
privacy, 55

separations, 44
black-box separation, 44
oracle separation, 44

sequential composability, 97–102
shared setup, 108–111, 113
simulatability, 60–63

black-box simulator, 61
white-box simulator, 61

stand-alone security, 45–63, 92–95
security w.r.t. interface, 104
strong stand-alone security, 94

statistical closeness, 54
statistical distance, 16, 24, 28

130 INDEX

subjective equivalence assumption,
72

subjective probability, 14, 50, 60, 78
subjective security, 72–85, 110
synchronisation errors, 93, 106, 113

escaping messages, 93
invading messages, 93

tests, 22–24
computational test, 23
likelihood ratio test, 22
statistical test, 22

tightness factor, 35
time complexity, 19–21, 90

time-success profile, 34
time-success ratio, 34
triangle inequality, 16, 24, 28, 39,

40
trusted setup, 63, 74–77, 107–111

CRS model, 74, 108, 113
PKI model, 75, 111

Turing machine, 17

uniform distribution, 13
universal composability, 102–113

zero-knowledge proof, 59, 61, 69,
107

INDEX 131

Publication P1

Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On Private Scalar

Product Computation for Privacy-Preserving Data Mining. Lecture Notes in Com-

puter Science, volume 3506, pages 104–120. c© Springer-Verlag. Reprinted with

permission.

P1

On Private Scalar Product Computation for

Privacy-Preserving Data Mining

Bart Goethals1, Sven Laur2, Helger Lipmaa2, and Taneli Mielikäinen1

1 HIIT Basic Research Unit
Department of Computer Science
University of Helsinki, Finland

{goethals,tmielika}@cs.helsinki.fi
2 Laboratory for Theoretical Computer Science

Department of Computer Science and Engineering
Helsinki University of Technology, Finland

{slaur,helger}@tcs.hut.fi

Abstract. In mining and integrating data from multiple sources, there
are many privacy and security issues. In several different contexts, the
security of the full privacy-preserving data mining protocol depends on
the security of the underlying private scalar product protocol. We show
that two of the private scalar product protocols, one of which was pro-
posed in a leading data mining conference, are insecure. We then describe
a provably private scalar product protocol that is based on homomor-
phic encryption and improve its efficiency so that it can also be used on
massive datasets.

Keywords: Privacy-preserving data mining, private scalar product pro-
tocol, vertically partitioned frequent pattern mining.

1 Introduction

Within the context of privacy-preserving data mining, several private (shared)
scalar product protocols [DA01b,DA01a,DZ02,VC02] have been proposed. The
goal is that one of the participants obtains the scalar product of the private
vectors of all parties. Additionally, it is often required that no information about
the private vectors, except what can be deduced from the scalar product, will be
revealed during the protocol. Moreover, since data mining applications work with
a huge amount of data, it is desirable that the scalar product protocol is also very
efficient. A secure scalar product protocol has various applications in privacy-
preserving data mining, starting with privacy-preserving frequent pattern mining
on vertically distributed database [VC02] and ending with privacy-preserving
cooperative statistical analysis [DA01a].

To give an idea of how such a protocol can be used, let us look at the pro-
tocol by Vaidya and Clifton for computing frequent itemsets from vertically
partitioned transaction database [VC02]. A transaction database is a multi-set
of subsets (transactions) of some finite set (of items). A transaction database

can be seen also as a binary matrix where each row corresponds to a transac-
tion, each column corresponds to an item, and there is one in the entry (i, j)
if and only if the transaction i contains the item j. An itemset is a subset of
items. The frequency of an itemset in a transaction database is the fraction of
transactions containing the itemset as their subset. (The support of an itemset is
its frequency multiplied by the number of transactions in the database.) The σ-
frequent itemsets (i.e., the frequent itemsets with minimum frequency threshold
σ) in a transaction database are the itemsets with frequency at least σ. Thus,
mining the σ-frequent itemsets is equivalent to finding all subsets of columns of
the binary matrix where at least a σ-fraction of rows have only ones in those
columns. In a frequent itemset mining protocol for a vertically partitioned trans-
action database one party, Alice, has the projection of the database onto some
items and another party, Bob, has the projection of database onto the rest of
the items. The frequent itemset mining protocol of Vaidya and Clifton is based
on the property that an itemset can be frequent only if all of its subsets are
frequent. The candidate itemsets are generated and tested level-wise as in the
Apriori algorithm [AMS+96].

If an itemset contains items of only one party, then the party can compute the
frequency privately and share it with the other parties without any additional
privacy problems. The main challenge occurs when the support of a candidate
itemset containing items from both parties needs to be computed. In that case,
each party first computes which of the transactions contain the itemset within
their own part of the database. This kind of information can be conveniently
represented as binary vectors in which the ith entry represents whether or not
the itemset is contained in the ith transaction. The number of transactions
containing the itemset in the combined transaction database amounts to the
scalar product between the corresponding binary vectors of Alice and Bob. A
protocol, given by Vaidya and Clifton [VC02], attempts to compute the scalar
product in a secure manner, by computing the scalar product on scrambled
versions of the binary vectors, such that in the end of the protocol, both parties
obtain the joint support without ever seeing each others vector. Their protocol
reveals the supports of some infrequent itemsets, as not all candidate itemsets
are frequent; this can be avoided by combining private shared scalar product
protocols and Yao’s circuits for frequency testing.

In this paper, we show that the private scalar product protocol of Vaidya
and Clifton [VC02] is not private. Additionally, we are able to break another
private (shared) scalar product protocol which was recently proposed by Du
and Atallah [DA01a]. Our attacks against the Vaidya-Clifton and Du-Atallah
protocols work in the simplest cryptographic model: namely, they enable one of
the two parties to retrieve the private input of another party with probability,
very close to 1, after the two parties have executed the corresponding protocol
once.

While the attacks do not work for all possible private vectors of Alice and
Bob, they show that before applying the Vaidya-Clifton and Du-Atallah pro-
tocols, one must carefully analyse whether it is safe to apply these protocols

in any concrete case. Moreover, the provided attacks can be readily generalised
to work for a much larger fraction of private vectors in a more complex model
where attack’s success probability does not have to be 1 (but just large enough
for practical purposes, say 0.001) and/or when Alice and Bob re-execute the
corresponding scalar product protocols from [DA01a,VC02] with similar private
vectors. (Scalar product protocol from [DA01b] was recently analysed in [LL04].)

As a positive result, we describe a cryptographic protocol for computing
scalar product. We prove that the new scalar product protocol is private—in a
strong cryptographic sense—under standard cryptographic assumptions. More
specifically, no probabilistic polynomial time algorithm substituting Alice (resp.,
Bob) can obtain a non-negligible amount of information about Bob’s (resp., Al-
ice’s) private input, except what can be deduced from the private input and
private output of Alice (resp., Bob). This means, in particular, that this pro-
tocol can be used a polynomial number of times (in the security parameter)
with any private vectors of Alice and Bob in any context. In practice, the latter
means “an arbitrary number of times”. Finally, we show that by using some op-
timisation tricks, the proposed protocol can be made very efficient: we show how
to separately optimise for Alice’s and Bob’s computation, and for the commu-
nication of the new protocol. In particular, the communication-optimal version
is more communication-efficient than either of the Vaidya-Clifton or the Du-
Atallah protocols.

Road-map. In Section 2, we describe the necessary cryptographic preliminar-
ies. In Section 3, we analyse some previous private scalar product protocols.
In Section 4, we propose a new scalar product protocol, prove its security and
propose some important optimisations. We finish with conclusions and acknowl-
edgements.

2 Cryptographic Preliminaries

Secure Multi-Party and Two-Party Computation. To guarantee that a
protocol is secure in as many applications as possible, one should use the secure
multi-party and two-party techniques [Gol04]. Briefly, a two-party protocol be-
tween Alice and Bob is secure when privacy and correctness are guaranteed for
both Alice and Bob. It is said that a protocol protects privacy, when the informa-
tion that is leaked by the distributed computation is limited to the information
that can be learned from the designated output of the computation [Pin02].

There are several different security models where one can prove the security
of a protocol in. The simplest setting is the semi-honest model, where it is
assumed that both Alice and Bob follow the protocol, but they are also curious:
that is, they store all exchanged data and try to deduce information from it.
In the malicious model, no assumption is made about the behaviour of Alice
and Bob, and it is required that the privacy of one party is preserved even in
the case of an arbitrary behaviour of the second party. Most of the papers on
privacy-preserving data mining provide only security in the semi-honest model.

Such a protocol can be made secure in the malicious model when accompanied
with zero-knowledge proofs that both parties follow the protocol. However, such
proofs are usually too inefficient to be used in data mining applications.

Homomorphic public-key cryptosystems. A public-key cryptosystem Π
is a triple (Gen,Enc,Dec) of probabilistic polynomial-time algorithms for key-
generation, encryption and decryption. The security of a public-key cryptosystem
is determined by a security parameter k. For a fixed k, it should take more than
polynomial in k operations to break the cryptosystem. Together with increased
security, larger k means also larger keys and ciphertexts. The key generation
algorithm generates, on input 1k = 1 . . . 1 (k ones) a valid pair (sk, pk) of private
and public keys that corresponds to the security parameter k. For a fixed key pair
(sk, pk), let P (sk) denote the plaintext space of Π. The encryption algorithm Enc

takes as an input a plaintext m ∈ P (sk), a random value r and a public key pk and
outputs the corresponding ciphertext Encpk(m; r). The decryption algorithm Dec

takes as an input a ciphertext c and a private key sk (corresponding to the public
key pk) and outputs a plaintext Decsk(c). It is required that Decsk(Encpk(m; r)) =
m for any m ∈ P (sk), pk and r.

A public-key cryptosystem is semantically secure (IND-CPA secure) when
a probabilistic polynomial-time adversary cannot distinguish between random
encryptions of two elements, chosen by herself. We denote the encryption of
a message m by Encpk(m; r), where pk is the corresponding public key and r
is the used random string. A public-key cryptosystem is homomorphic when
Encpk(m1; r1) ·Encpk(m2; r2) = Encpk(m1 + m2; r1 · r2), where + is a group oper-
ation and · is a groupoid operation. This means that a party can add encrypted
plaintexts by doing simple computations with ciphertexts, without having the
secret key. Usually, P (sk) = Zm for some large m. One of the most efficient cur-
rently known semantically secure homomorphic cryptosystems was proposed by
Paillier cryptosystem [Pai99] and then improved by Damg̊ard and Jurik [DJ01].
In Paillier’s case, P (sk) = Zm with m ≥ 21024. One can effectively assume that
m is as large as say 24096, when using the Damg̊ard-Jurik cryptosystem [DJ01].
We will assume that k is the bit length of the plaintexts, thus k ≥ 1024.

Oblivious transfer. In an
(

n
1

)

-oblivious transfer protocol, Bob has a database
(D1, . . . ,Dn) and Alice has an index i ∈ [n]. The goal is for Alice to retrieve the
element Di without revealing her index i to Bob, and Bob does not want Alice
to get to know anything about the other elements in his database apart from
the element she asks for. Recently, Lipmaa [Lip04] proposed an asymptotically
efficient

(

n
1

)

-oblivious transfer protocol with communication Θ(log2 n)k.

3 Cryptanalysis of Proposed Private SP Protocols

Before cryptanalysing some of the previously proposed private scalar product
and private shared scalar product protocols, we must define what does it mean

to attack one. Next, we will give a somewhat intuitive definition. For simplicity,
we will require that all arithmetic is done in Zm for some m.

We call a protocol between Alice and Bob a scalar product (SP) protocol
when Bob obtains, on Alice’s private input x = (x1, . . . , xN) ∈ ZN

m and on Bob’s

private input y = (y1, . . . , yN) ∈ ZN
m, the scalar product x · y =

∑N
i=1 xiyi. A

protocol is a shared scalar product (SSP) protocol when Alice receives a uniformly
distributed random value sA ∈ Zm and Bob receives a dependent uniformly
distributed random value sB ∈ Zm, such that sA + sB ≡ x · y (mod m). A
scalar product protocol is private when after executing the protocol, Bob obtains
no more knowledge than x · y and Alice obtains no new knowledge at all. In
particular, Alice gets to know nothing new about Bob’s vector and Bob gets to
know nothing about Alice’s vector that is not implied by x and x · y. A private
shared scalar product protocol is defined analogously.

Recently, several researchers from the data mining community have proposed
private SSP and SP protocols [DA01b,DA01a,DZ02,VC02], that were primarily
meant to be used in the context of privacy-preserving data mining. Most of
the proposed solutions try to achieve information-theoretical security—that is,
without relying on any computational assumption—by using additive or linear
noise to mask the values. In almost all such solutions, one can construct a system
of linear equations based on the specification of the protocol, and solve it for
the secret values. We will next demonstrate that explicitly in the case of the
protocols from [DA01a,VC02].

3.1 Vaidya-Clifton Private Scalar Product Protocol

First, we analyse the Vaidya-Clifton private SP protocol [VC02], depicted by
Protocol 1. For the sake of simplicity, we assume that the database size is N = ℓn,
where n is a block size and ℓ is the number of blocks. We represent each N -
dimensional vector z either as z = (z1, . . . , zN) or z = (z[1], . . . ,z[ℓ]), where
z[i] = (z(i−1)n+1, . . . , zin). We denote the n-dimensional vectors (1, . . . , 1) and
(0, . . . , 0) by 1 and 0.

Protocol 1 is a slight modification of the original Vaidya-Clifton protocol.
Namely, in the original protocol all scalars belong to R, while in Protocol 1
they belong to Zm with m > N . Our modifications make the protocol more
applicable and also more secure for the next reasons. First, as computers can
use only limited precision, there will be stability and correctness problems when
computing over real numbers. Second, adding random noise r from R to value x
from R does not perfectly hide x since it is impossible to choose r uniformly at
random from R, or even from N. Therefore, cryptanalysis of the original Vaidya-
Clifton protocol is simpler and attacks against it are more dangerous when we
consider their protocol as working in R.

In the following, we explicitly assume that m is prime. Proposed attacks also
work with composite m, but then one would have to tackle many insubstantial
yet technical details. We will also establish some additional notation. First, for
any I = {i1, . . . , ij} ⊆ [N] with |I| = j, any vector x and any matrix M , let
xI = (xi1 , . . . , xij

) and MI denote the sub-matrix of M that consists of the

Private input of Alice: x ∈ {0, 1}N

Private input of Bob: y ∈ {0, 1}N

Private output of Bob: Scalar product x · y mod m.

1. Alice and Bob jointly do:
Generate a random invertible N ×N matrix C.

2. Alice does:
Generate a random vector p ∈ Z

N
m.

Send u ← x + Cp to Bob.
3. Bob does:

Generate ℓ random values s1, . . . , sℓ ∈ Zm.
Send v ← CTy + r, where r[i]← si1, to Alice.

4. Alice does:
Set t0 := v · p.
For i ∈ {1, . . . , ℓ}, set ti :=

∑n

j=1
p[i]j .

Send (t0, t1, . . . , tℓ) to Bob.
5. Bob does:

Return u · y − t0 +
∑ℓ

i=1
siti.

Protocol 1: Vaidya-Clifton private shared scalar product protocol. (All com-
putations are done modulo a public m.)

rows I = {i1, . . . , ij}. Second, C is invertible and known to both Alice and Bob.
Therefore, define ai := (CT)−1ei mod m, where ei[j] = 1 if i = j and ei[j] =
0, otherwise. Define ω := (CT)−1v. Then (CT)−1r ≡ (CT)−1(s11, . . . , sℓ1) ≡
∑ℓ

i=1 siai (mod m), ω ≡ y +
∑ℓ

i=1 siai (mod m) and ti ≡ ei · p ≡ ai · Cp

(mod m) for i ≥ 1.

First, we show that if the vector y has a low support then Alice is guaranteed
to learn half coefficients yi—and with a high probability the whole vector y—
after just executing Protocol 1 once.

Lemma 1. As previously, let supp(y) := |{y : yi 6= 0}| be the support of y. As-
sume that N ≥ (2 supp(y) + 1)ℓ. After just executing Protocol 1 once, a semi-
honest Alice obtains at least half of the coefficients of y, with probability 1, by
solving 2 supp(y) + 1 systems of linear equations in ℓ variables.

Proof. Let M be the matrix with column vectors a1, . . . ,aℓ. Let s = (s1, . . . , sℓ).
The attack is based on the observation that the equality Ms ≡ ω− y (mod m)
gives Alice a system of N linear equations in ℓ unknowns sj . The values vi and
vectors a1, . . . ,aℓ are known to Alice; the values yi ∈ {0, 1} are unknown. Alice
partitions the set [N] iteratively into ≥ N/ℓ (non-empty) parts Ik as follows:
Denote Jk := [N] \

⋃

i<k Ik. Alice chooses an Ik ⊆ Jk, such that the matrix
MIk

has the maximal possible rank with respect to Jk and Ik is minimal unless
the rank of MJk

is zero. In particular, MJk
= DkMIk

for some matrix Dk.
If rank of MJk

is zero then Alice chooses a random index from Jk. Note that
MJk

= DkMIk
still holds for an appropriate zero matrix Dk.

Now, there are at least N/ℓ ≥ 2 supp(y)+1 parts Ik. For a majority of indices
k (we say that such indices k are “good”), yIk

is a zero vector. Therefore, in the
majority of the cases, Alice obtains the correct values sIk

by solving the equation
MIk

s = ωIk
. Since MJk

s = DkMIk
s, the value of yJk

is uniquely determined
by sIk

. Moreover, the smallest “good” k = k0 satisfies k0 ≤ supp(y) + 1. The
solution s of MIk0

s = (ω)Ik0
is consistent with the solutions that correspond

to other “good” k’s, that is, MIk
· sIk0

= ωIk
for all “good” indices k > k0.

Therefore, Alice can find all “good” indices k by majority voting. She also obtains
all coordinates of yJk0

. ⊓⊔

If |Ik0
| = ℓ then all coordinates of y are revealed, otherwise coefficients are

revealed for all sets |Ik| ≤ |Ik0
|, as any solution to MIk0

s = ωIk0
uniquely

determines yJk0

= ωJk0
− Dk0

ωIk0
. The next result shows that y is revealed

almost certainly.

Lemma 2. Let Ik be defined as in the proof of the previous lemma. Then
Pr [|Ik| = |Ik+1|] =

∏d−1
i=0

(

1 − m−|Jk|+i
)

. Thus, the probability that all coef-

ficients are revealed is approximately (1−m−N/2)supp(y)ℓ ≈ 1− supp(y)ℓm−N/2.

Proof. Consider all possible vector assignments of a1, . . . ,aℓ that are consistent
with the choice of I1, . . . , Ik; that is, such assignments, for which MJk

= D′
kMIk

for some D′
k. The latter is equivalent to the assumption that rows of MJk

are randomly sampled from a vector space of dimension |Ik|. By a standard
result [vLW92, p. 303], the probability that rank(MJk

) = |Ik| is equal to
∏|Ik|−1

i=0 (1 − m−|Jk|+i). Hence, the first claim is proven. Now, y is completely
determined if

∣

∣Isupp(y)+1

∣

∣ = ℓ. As |I1| = ℓ by the protocol construction and for

k < supp(y),
∣

∣Jsupp(y)

∣

∣ > N/2, the second claim follows from a straightforward
calculation. ⊓⊔

If we give more power to Alice, she will be able to do much better. Assume
that Protocol 1 is run twice with the same input vector y; let a1, . . . ,aℓ and
a′

1
, . . . ,a′

ℓ be vectors, computed from the random matrices C and C ′ as pre-

viously. Then, ω − ω′ =
∑ℓ

i=1 siai −
∑ℓ

i=1 s′ia
′

i. With high probability, this
determines s and s′ uniquely. To avoid similar attacks, Bob must never run Pro-
tocol 1 twice with the same input y but different matrices C. The next lemma
shows that also Alice must never run Protocol 1 twice with the same input x

but different matrices C.

Lemma 3. If Protocol 1 is re-executed k > N/ℓ times with the same x, Bob

obtains x with probability higher than
∏N−1

i=0 (1−m−kℓ+i).

Proof. Each execution of Protocol 1 provides ℓ linear equations ai ·u = ai ·x +
ai ·Cp = ai ·x+ ti for i ∈ {1, . . . , ℓ}. As a1, . . . ,aℓ are chosen randomly, similar
argumentation as in Lemma 2 gives the probability estimate. ⊓⊔

Finally, we get another efficient attack when we consider itemsets with almost
the same support. For example, assume that Alice knows that supp(y − y′) <

N/(4ℓ)− 1/2. Then, by using Lemma 1, Alice can determine s and s′ from the

equation ω−ω′ = y−y′+
∑ℓ

i=1 siai−
∑ℓ

i=1 s′ia
′

i; therefore, she obtains y and y′.
This attack works with any choice of C. The condition supp(y−y′)≪ N is not
so rare in the context of frequent itemset mining. Moreover, several optimisations
of Apriori are devised to exploit such shortcuts. To analyse the applicability
of low support attacks, we need additional notations. Let supp(I) denote the
support of the itemset I and yI the corresponding vector, i.e. yI,k = 1 iff the
kth row contains items I. We say that I is a closed frequent itemset, iff supp(I) is
over frequency threshold and for any proper superset J) I, supp(I) > supp(J).
Now, if the frequent itemset I is not closed, then the Apriori algorithm discovers
J ⊃ I such that supp(yI − yJ) = 0 and Alice can apply the attack. The ratio
ρ between frequent and frequent closed sets describes the average number of
vectors revealed by a single closed set. Empirical results [PHM00] on standard
data mining benchmarks indicate that ρ can range from 2 to 100 depending
on the frequency threshold, when the database contains some highly correlated
items.

The analysis can be extended further by using notion of frequent δ-free sets. A
itemset I is δ-free if and only if for any proper subset J of I, supp(yJ −yI) > δ.
In other words, an itemset I is not δ-free if and only if there is J (I with
supp(yJ − yI) ≤ δ. Again, empirical results [BBR03,BB00] on standard data
mining benchmarks show that the number of frequent δ-free sets with δ ∈ [0, 20]
is several magnitudes smaller than the number of frequent sets, when database
contain highly correlated items. To conclude, low support differences are quite
common for many practical data sets and thus the Vaidya-Clifton scalar product
protocol is insecure for frequent itemset mining.

Remark on [VC02, Section 5.2]. In [VC02, Section 5.2], Vaidya and Clifton
note that the fact that xi and yi belong to {0, 1} can create a disclosure risk.
They propose two solutions. The first consists of “cleverly” selecting the matrix
C so that it is not evident which of the values of xi and yi are 1’s. Lemma 1
states that such a “clever” choice is impossible in general since at least a half
of y’s coordinates is revealed for every matrix C. Besides, the solution is not
fully spelled out and no security proofs are given. Another solution from [VC02,
Section 5.2] is said to increase the security of Bob but decrease the security of
Alice, but again, no security proofs are given. Thus, it is difficult to estimate the
exact security of the proposed solutions. It seems that neither of these mentioned
solutions is secure against our attacks.

Communication and computation of Vaidya-Clifton protocol. Alice and
Bob must both know C, thus the communication of the Vaidya-Clifton protocol
is approximately N2 log m bits. In the version of the scalar product protocol
where no privacy is guaranteed, Alice just sends her vector (N bits) to Bob, who
returns the scalar product (⌈log2 N⌉ bits). Define the communication overhead
of a private scalar protocol P to be equal to C(P)/N , where C(P) is the number
of bits communicated in the protocol P . Thus, the communication overhead of

Private inputs: Vectors x ∈ {0, 1}N and y ∈ {0, 1}N .
Private outputs: Shares sA + sB ≡ x · y mod m.

1. Alice does:
Generate random v1, . . . , vd−1 ← Z

N
m.

Set vd := x −
∑d−1

i=1
vi and sA := 0.

2. For i = 1 to d do
(a) Alice does:

Generate random ℓi ∈ {1, . . . , p}.
Set hiℓi

:= vi .
For j ∈ {1, . . . , ℓi − 1, ℓi + 1, . . . , p}: Generate random hij ∈ Z

n
m.

Send (hi1, . . . , hip) to Bob.
(b) Bob does:

Generate random ri ∈ Zm.
For j ∈ {1, . . . , p}: Set zij := hij · y + ri.

(c) Alice does:
Use

(

p

1

)

-oblivious transfer to retrieve ziℓi
from (zi1, . . . , zip).

Set sA := sA + ziℓi
.

3. Alice outputs sA, Bob outputs sB = −
∑d

i=1
ri.

Protocol 2: Du-Atallah private SSP protocol. Here, m > N is a public modulus

the Vaidya-Clifton private SP protocol is Nm. Computation is dominated by
Θ(N2) multiplications and additions in Zm. The new scalar product protocol,
that we will propose in this paper, is both more secure and more efficient.

3.2 Du-Atallah Private Scalar Product Protocol

Du and Atallah proposed another private SSP protocol [DA01a], depicted by
Protocol 2. We show that also this protocol cannot handle binary vectors with
low support.

Since Protocol 2 chooses the values ri randomly, sA is a random value and
therefore Alice does not learn anything about y. To learn x, Bob must guess
correctly the values ℓi for all i. Since the probability of a random guess is p−d,
Du and Atallah argue that this protocol is secure when pd > 280. Bob can do
much better, however.

Lemma 4. Assume N ≥ (2 supp(x) + 1)pd. Then, with probability 1, Bob finds
at least N/2 coordinates of x by solving supp(x)+1 systems of linear equations,
each having dimension pd−1. With high probability ≈ (1−m−N/2)supp(x)(pd−1) ≈
1− supp(x)(pd− 1)m−N/2, Bob obtains the whole vector x.

Proof. Bob knows that
∑d

i=1 hiji
= x for some values ji. Equivalently,

d
∑

i=1

p
∑

j=1

cijhij = x ,

where cij = 1 if j = ji and cij = 0, otherwise. Exactly as Alice did in the
proof of Lemma 1, Bob iteratively partitions [N] into subsets Ik with maximal
possible rank. Hence, a solution to

∑

i,j cij(hij)Ik0
= 0 uniquely determines

xIk
=

∑

i,j cij(hij)Ik
for k > k0. On the other hand, Bob creates at least

2 supp(x) + 1 partitions Ik. Thus, there exists a k ≤ supp(x) + 1, such that
xIk

= 0. As in the proof of Lemma 1, we can determine the first “good” k0 ≤
supp(x) + 1 by using majority voting.

To reduce the amount of computations, Bob can ignore all sets |Ik| = pd.
For any “good” k, |Ik| ≤ pd − 1, as xIk

= 0 and the homogeneous system
∑

i,j cij(hij)Ik
= 0 has a nontrivial solution.

The proof of the second claim is similar to the proof of Lemma 2, since it is
sufficient that pd− 1 random vectors are linearly independent, and |I1| ≥ pd− 1
by construction. ⊓⊔

This protocol has another serious weakness, since with high probability
slightly more than pd coordinates of x allow to determine correct cij and thus
also reveal other coordinates. Therefore, a leakage of pd database entries, can
reveal the whole vector (database) and thus pd must be large, say more than
200. On the other hand, this protocol is very inefficient when pd is large.

Communication and computation complexity. Assume pd > 280. Then
the communication of the Du-Atallah private SSP protocol is dpN + dtp, where
tp is the communication complexity of the

(

p
1

)

-oblivious transfer protocol. This is

minimal when d is maximised, i.e., when p = 2. Taking the efficient
(

p
1

)

-oblivious
transfer protocol from [AIR01], one has t2 = 3k, where k ≈ 1024 is the security
parameter. Then the communication is 2dN + 3dk bits for d ≥ 80 and k ≥
1024. Taking d = 80 and k = 1024, we get communication 160N + 245760 bits.
However, Lemma 4 indicates that for the security of the Du-Atallah protocol, one
should pick p and d such that pd is quite large. For example, picking p = 211 and
d = 8 might result in an acceptable security level, but then the communication
of the protocol will be 214 ·N + dtp bits.

4 Cryptographic Private SSP Protocol

In this section we describe a private SSP protocol (Protocol 3) that is based on
homomorphic encryption. Note that a private SP protocol can be obtained from
it by defining sB ← 0.

Theorem 1. Assume that Π = (Gen,Enc,Dec) is a semantically secure ho-
momorphic public-key cryptosystem with P (sk) = Zm for some large m. Set
µ := ⌊

√

m/N⌋. Protocol 3 is a secure SSP protocol in the semi-honest model,
assuming that x,y ∈ ZN

µ . Alice’s privacy is guaranteed when Bob is a probabilis-
tic polynomial-time machine. Bob’s privacy is information-theoretical.

Proof. Clearly, the protocol is correct if the participants are honest. Since the
cryptosystem is semantically secure, Bob only sees N random ciphertexts, for

Private inputs: Private vectors x, y ∈ Z
N
µ .

Private outputs: Shares sA + sB ≡ x · y mod m

1. Setup phase. Alice does:
Generate a private and public key pair (sk, pk).
Send pk to Bob.

2. Alice does for i ∈ {1, . . . , N}:
Generate a random new string ri.
Send ci = Encpk(xi; ri) to Bob.

3. Bob does:
Set w ←

∏N

i=1
c

yi
i .

Generate a random plaintext sB and a random nonce r′.
Send w′ = w · Encpk(−sB ; r′) to Alice.

4. Alice does: Compute sA = Decsk(w
′) = x · y − sB .

Protocol 3: Private homomorphic SSP protocol

which he cannot guess the plaintexts. In particular, this holds even when Bob has
given two candidate vectors x1 and x2 to Alice and Alice has randomly chosen
one of them, x := xb. Even after a polynomial number of protocol executions
with Alice’s input, Bob will gain only an insignificant amount of information
about xb that will not help him in guessing the value of b. (This roughly corre-
sponds to the standard notion of semantic security.) On the other hand, Alice
only sees a random encryption of sA = x ·y−sB , where sB is random. But Alice
has the key anyways, so she can decrypt this message. Thus, Alice obtains no
information at all. ⊓⊔

(Note that if m > 21024 and N ≈ 216 then µ ≥ 2504.) In Appendix A, we describe
an extension of this protocol to more than two parties.

Practical considerations. Note that when Alice and Bob need to execute this
protocol several times, they can reuse public and private keys and thus the setup
phase can be executed only once. Public key cryptography is computationally
demanding. To estimate the computational cost of the new scalar product proto-
col, we must count encryptions, decryptions and multiplications of ciphertexts.
Bob must perform N exponentiations and 1 encryption. Alice has to perform N
encryptions and 1 decryption.

In the specifically interesting case when xi, yi ∈ {0, 1} (e.g., when x and y

correspond to characteristic functions of two sets X and Y ; then x·y = |X ∩ Y |),
this protocol can be further optimised. Namely, Alice can pre-compute and then
store a large table of random encryptions of 0’s and 1’s. Then every “encryption”
just corresponds of fetching a new element from the correct table; this can be
done very quickly. Bob has to perform 1 encryption and supp(y) multiplications,
since the exponents yi are all Boolean. (When yi = 0 then cyi

i = 1 and otherwise
cyi

i = ci.)

The current hardware allows to do approximately 105 multiplications per sec-
onds and thus the computational complexity of both Alice and Bob is tolerable.
A similar analysis applies for Protocol 4. Here, Alice and Bob must pre-compute
N encryptions. Hence, we can conclude that the computational complexity is not
a serious downside of the proposed protocols. Similar, although not as efficient,
optimisation tricks can also be used to speed up Protocol 3 when x and y are
not binary.

Estimated communication complexity. The only serious drawback of the
new protocols is the communication overhead: since Alice sends N ciphertexts
ci, the overhead is k′/µ, where k′ is just the size of each ciphertext in bits. When
using any of the currently known most efficient semantically secure homomorphic
cryptosystems (e.g., the one from [Pai99]), k′ ≈ 2048. For x,y ∈ Zm′ with very
small m′—say, m′ ≤ 13, this compares non-favourably with the overhead of
the (insecure) Du-Atallah protocol which has the overhead of approximately 160
times with d = 80 and k = 1024. For a large m′, the described protocol is already
more communication-efficient than the Du-Atallah protocol.

Comparison with Freedman-Nissim-Pinkas protocol. Recently, Freed-
man, Nissim and Pinkas proposed a related cryptographically secure protocol
for computing the set intersection cardinality [FNP04], a task that is equiva-
lent to privately computing the scalar product of two binary vectors. In the
non-shared case, the Freedman-Nissim-Pinkas protocol is more efficient than the
new one, but then the participants also learn the values supp(x) and supp(y).
However, recall that in the data mining applications it is preferable that both
parties will get only shares sA + sB = x · y mod m of the scalar product, oth-
erwise frequency of some infrequent sets is revealed. Moreover, sometimes only
a list of frequent sets without frequencies is required.

Freedman, Nissim and Pinkas proposed also a solution for shared version,
but their protocol requires a secure circuit evaluation. Briefly, secure evaluation
means that first Alice and Bob obtain supp(x) different shares

si + ti =

{

0, if xi = 1, yi = 1

ri, if xi = 1, yi = 0

}

mod m

where ri ∈ Zm is a random value and m is (say) a 1024-bit number. To securely
compute x · y by secure circuit evaluation, one therefore needs to execute obliv-
ious transfer for each 1024 · supp(x) input bit pairs (si, ti). Since a

(

2
1

)

-oblivious
transfer protocol requires sending at least three encryptions, the communication
overhead of the Freedman-Nissim-Pinkas protocol is lower than the communica-
tion overhead of Protocol 3 only if supp(x) ≤ N/(3 · 1024), i.e., if the candidate
set is very infrequent.

Reducing communication overhead. We shall now discuss how to reduce
the overhead if it is known that x and y are Boolean. Again, similar optimi-
sation techniques can be used when x,y ∈ Zµ′ for some 2 < µ′ ≪ µ. In the

following we assume that the plaintext space of the cryptosystem Π is a residue
ring Zm such that log m ≥ 1024. This is the case for all widely known homo-
morphic cryptosystems. When we assume that xi, yi ∈ {0, 1}, every ciphertext
ci in Protocol 3 only transfers a single bit xi, which results in communication
overhead.

The next technique for packing several bits into one plaintext is fairly stan-
dard in cryptography (it has been used at least in the context of electronic vot-
ing [CGS97,DJ01], electronic auctions [LAN02] and oblivious transfer [Lip04]).
To pack k entries into a single message—recall that the plaintext length is k
bits—, we fix a radix B > N , such that Bk < m, and work implicitly with B-
ary numbers. Let [vk, . . . , v2, v1] = v1 + v2B + · · ·+ vkBk−1. Our method works
only in the case when Alice and Bob do batch computation of scalar products,
more precisely, when Alice and Bob need to compute xi · y for several vectors
xi, i ∈ {1, . . . , k}, owned by Alice. (This is exactly what happens in the context
of frequent itemset mining.)

The new batch scalar product protocol looks exactly like Protocol 3, except
that Alice computes ci as

ci =Encpk([xki, . . . , x2i, x1i]; ri)

=Encpk(1; 0)x1iEncpk(B; 0)x2i · · · · · Encpk(B
k−1; 0)xikEncpk(0; ri) .

It takes at most k multiplications to compute ci. Again, the encryptions
Encpk(B

j ; 0) can be computed in the setup phase. Hence, during the first step,
Alice’s computation is N encryptions and O(kN) multiplications.

At the second step of the protocol, Bob computes

w =
N
∏

i=1

Encpk(yi[xki, . . . , x2i, x1i]; ri)Encpk(−sB , r′)

= Encpk ([xk · y, . . . ,x1 · y]− sB ; r′′) .

Hence, if Bob reveals sB , Alice can restore all scalar products xj ·y. Sometimes
it is also needed that Alice be able only to compute xj · y for j ∈ I, where I
is a proper subset of {1, . . . , k}. One can do this efficiently by using standard
cryptographic techniques.

Therefore, when using the Paillier cryptosystem, the resulting protocol for
privately computing the scalar product of two binary vectors has almost opti-
mal communication overhead of ⌈log N⌉ times. (When using the Damg̊ard-Jurik
cryptosystem, the communication overhead might even be smaller.) This should
be compared to the 160 times overhead of the insecure Du-Atallah protocol.

Related work. After the preproceedings version of the current paper was pub-
lished, we were acknowledged by Rebecca Wright of some previous work. In
particular, in [WY04], Wright and Yang proposed essentially the same SSP pro-
tocol as Protocol 3, optimised for the case of binary data as in our paper. How-
ever, they did not consider the batch SSP case. (See [WY04] and the references
therein.)

Security in malicious model. Protocol 3 can be made secure in the malicious
model by letting Alice to prove in zero-knowledge, for every i, that ci encrypts
a value from Zµ. This can be done efficiently in the random oracle (or common
reference string) model [Lip03]. An alternative is to use conditional disclosure
of secrets [AIR01] modified recently to the setting of Paillier’s cryptosystem
in [LL05]. Both methods guarantee that at the end of a protocol run, Alice is
no better of than mounting the next probing attack : Alice creates a suitable
valid input vector x′, executes the protocol with Bob, and obtains x′ · y. If x′

is suitably chosen (e.g., x′
i = 1 and x′

j = 0 for j 6= i), this may result in privacy
leakage. However, this probing attack is unavoidable, no matter what private
scalar product protocol is used instead of Protocol 3. The only way to tackle this
attack is to let Alice to prove that her input x is “correctly” computed, whatever
“correctly” means in the concrete application (e.g., in frequent itemset mining
on vertically distributed databases). While such a functionality can be added to
Protocol 3, it is not a part of the definition of a “private scalar product” protocol,
but highly application-dependent (and thus should be left to be specified on a
higher level), and very often, highly costly.

5 Conclusions

The secure computation of a scalar product is an important task within many
data mining algorithms that require the preservation of privacy. Recently, several
protocols have been proposed to solve this task. We have shown, however, that
they are insecure. Moreover, we presented a private scalar product protocol based
on standard cryptographic techniques and proved that it is secure. Furthermore,
we described several optimisations in order to make it very efficient in practice.

Acknowledgements. We would like to thank Benny Pinkas for useful com-
ments. The second and the third author were partially supported by the Esto-
nian Information Technology Foundation, the Finnish Defence Forces Institute
for Technological Research and by the Finnish Academy of Sciences.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer:
How to Sell Digital Goods. In Birgit Pfitzmann, editor, Advances in Cryptol-
ogy — EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Sci-
ence, pages 119–135, Innsbruck, Austria, 6–10 May 2001. Springer-Verlag.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
and A. Inkeri Verkamo. Fast Discovery of Association Rules. In Usama M.
Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI/MIT Press, 1996.

[BB00] Jean-Franois Boulicaut and Artur Bykowski. Frequent Closures as a Concise
Representation for Binary Data Mining. In PAKDD 2000, volume 1805 of
Lecture Notes in Computer Science, pages 62–73. Springer, 2000.

[BBR03] Jean-Franois Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-Sets:
A Condensed Representation of Boolean Data for the Approximation of
Frequency Queries. Data Mining and Knowledge Discovery, 7(1):5–22, 2003.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and
Optimally Efficient Multi-Authority Election Scheme. In Walter Fumy, ed-
itor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pages 103–118, Konstanz, Germany, 11–15 May
1997. Springer-Verlag.

[DA01a] Wenliang Du and Mikhail J. Atallah. Privacy-Preserving Statistical Anal-
ysis. In Proceedings of the 17th Annual Computer Security Applications
Conference, pages 102–110, New Orleans, Louisiana, USA, December 10–14
2001.

[DA01b] Wenliang Du and Mikhail J. Atallah. Protocols for Secure Remote Database
Access with Approximate Matching, volume 2 of Advances in Informa-
tion Security, page 192. Kluwer Academic Publishers, Boston, 2001.
http://www.wkap.nl/prod/b/0-7923-7399-5.

[DJ01] Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System. In Kwangjo
Kim, editor, Public Key Cryptography 2001, volume 1992 of Lecture Notes
in Computer Science, pages 119–136, Cheju Island, Korea, 13–15 February
2001. Springer-Verlag.

[DZ02] Wenliang Du and Zhijun Zhan. A Practical Approach to Solve Secure Multi-
party Computation Problems. In Carla Marceau and Simon Foley, editors,
Proceedings of New Security Paradigms Workshop, pages 127–135, Virginia
Beach, virginia, USA, September 23–26 2002. ACM Press.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private
Matching and Set Intersection. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology — EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 1–19, Interlaken, Switzerland,
2–6 May 2004. Springer-Verlag.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions
without Threshold Trust. In Matt Blaze, editor, Financial Cryptography —
Sixth International Conference, volume 2357 of Lecture Notes in Computer
Science, pages 87–101, Southhampton Beach, Bermuda, 11–14 March 2002.
Springer-Verlag.

[Lip03] Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge
Arguments. In Chi Sung Laih, editor, Advances on Cryptology — ASI-
ACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages
398–415, Taipei, Taiwan, 30 November–4 December 2003. Springer-Verlag.

[Lip04] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Total
Communication. Technical Report 2004/063, International Association for
Cryptologic Research, February 25 2004.

[LL04] Sven Laur and Helger Lipmaa. On Private Similarity Search Protocols. In
Sanna Liimatainen and Teemupekka Virtanen, editors, Proceedings of the
Ninth Nordic Workshop on Secure IT Systems (NordSec 2004), pages 73–
77, Espoo, Finland, November 4–5, 2004.

[LL05] Sven Laur and Helger Lipmaa. Additive Conditional Disclosure of Secrets.
Manuscript, January 2005.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Jacques Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 223–238, Prague, Czech Republic, 2–6 May 1999. Springer-Verlag.

[PHM00] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining
frequent closed itemsets. In 2000 ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 2000.

[Pin02] Benny Pinkas. Cryptographic Techniques for Privacy-Preserving Data Min-
ing. KDD Explorations, 4(2):12–19, 2002.

[VC02] Jaideep Vaidya and Chris Clifton. Privacy Preserving Association Rule Min-
ing in Vertically Partitioned Data. In Proceedings of The 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
639–644, Edmonton, Alberta, Canada, July 23–26 2002. ACM.

[vLW92] Jacobus H. van Lint and Richard M. Wilson. A Cource in Combinatorics.
Cambridge University Press, 1992.

[WY04] Rebecca N. Wright and Zhiqiang Yang. Privacy-Preserving Bayesian Net-
work Structure Computation on Distributed Heterogeneous Data. In Pro-
ceedings of The Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 713–718, Seattle, Washington, USA,
August 22–25 2004. ACM.

A Private Generalised Scalar Product Protocol

Next, we propose a secure generalised scalar product protocol (Protocol 4) for

〈x1,x2, . . . ,xk〉 =
N

∑

i=1

x1i · · ·xki .

For the sake of simplicity, we consider only the three-party case but the protocol
can be easily generalised. Again, Alice has a private key; Bob and Carol know
only the corresponding public key. The security of the generalised scalar product
protocol depends on Alice. Namely, when Alice colludes with other parties then
privacy can be compromised. For example, colluding Alice and Carol can reveal
yi, unless xi = 0, since Decsk(di) = xiyi. Thus, we get the following result.

Theorem 2. Assume that Π = (Gen,Enc,Dec) is a semantically secure homo-
morphic public-key cryptosystem with P (sk) = Zm for some large m. Protocol 4
is a secure generalised scalar product protocol. In particular, it is secure against
all possible coalitions provided that Alice does collude with other parties.

The proof is a simple generalisation of the previous proof. Bob must re-
randomise ci’s as di = ci · Encpk(0; r′i), since otherwise the values of yi’s can be
detected only by comparing the ciphertext that he receives from Alice with the
one he sends to Carol. The sharing step 4 allows combine the outcome with other
cryptographic protocols.

The assumption that Alice does not collude with other parties is quite strong.
When we modify the protocol so that (sk, pk) is generated jointly by Alice, Bob
and Carol and that on the step 4, they do threshold decryption of w, we get a
private SP protocol with the next security result:

Private inputs: Private vectors x, y, z ∈ Z
N
µ .

Private outputs: Shares sA + sB + sC ≡ 〈x, y, z〉 mod m

1. Alice does:
Generate a key-pair (sk, pk).
Send the public key pk to Bob and Carol.

2. Alice does for i ∈ {1, . . . , N}:
Send ci = Encpk(xi; ri) to Bob.

3. Bob does for i ∈ {1, . . . , N}:
Set di = c

yi
i Encpk(0; r′i).

Send di to Carol.
4. Carol does:

Set w ←
∏N

i=1
c

zi
i .

Generate a random plaintext sC and a random nonce r′.
Send w′ ← w · Encpk(−sC ; r′) to Bob.

5. Bob does:
Generate a random plaintext sB and a random nonce r′′.
Send w′′ ← w′ · Encpk(−sB ; r′′) to Alice.

6. Alice computes sA ← Decsk(w
′′) = x · y − sB − sC .

Protocol 4: Private generalised homomorphic SSP protocol

Theorem 3. Assume Π = (Gen,Enc,Dec) is a semantically secure homomor-
phic threshold public-key cryptosystem. Then Protocol 4, generalised to κ parties,
is secure against coalitions by < κ/2 parties.

Publication P2

Sven Laur and Helger Lipmaa. A New Protocol for Conditional Disclosure of Secrets

and Its Applications. Lecture Notes in Computer Science, volume 4521, pages 207–

225. c© Springer-Verlag. Reprinted with permission.

P2

A New Protocol for Conditional Disclosure of Secrets

And Its Applications

Sven Laur1 and Helger Lipmaa2

1 Helsinki University of Technology, Finland
2 University College London, UK

Abstract. Many protocols that are based on homomorphic encryption are private

only if a client submits inputs from a limited range S . Conditional disclosure of

secrets (CDS) helps to overcome this restriction. In a CDS protocol for a set S , the

client obtains server’s secret if and only if the client’s inputs belong to S and thus

the server can guard itself against malformed queries. We extend the existing CDS

protocols to work over additively homomorphic cryptosystems for every set from

NP/poly. The new construction is modular and easy to apply. As an example,

we derive a new oblivious transfer protocol with log-squared communication and

a millionaire’s protocol with logarithmic communication. We also implement pri-

vate, universally verifiable and robust multi-candidate electronic voting so that all

voters only transmit an encryption of their vote. The only hardness assumption

in all these protocols is that the underlying public-key cryptosystem is IND-CPA

secure and the plaintext order does not have small factors.

Keywords. Conditional disclosure of secrets, crypto-computing, homomorphic

encryption, oblivious transfer, two-party computation.

1 Introduction

Homomorphic encryption is a powerful tool that provides efficient private implemen-

tations for many basic operations such as scalar product, oblivious transfer and oblivi-

ous polynomial evaluation. However, basic versions of these protocols without zero-

knowledge proofs of correctness are secure only in a semihonest model, where all

parties submit inputs from a limited range, and are not protected against malicious

behaviour. Consequently, a malicious adversary can completely or partially learn the

secret inputs. Conditional disclosure of secrets [GIKM00,AIR01], also known as input

verification gadget [BGN05], is a protection mechanism against such attacks. Unfortu-

nately, current solutions [AIR01,BGN05] are secure only if the plaintext space has a

prime order, whereas most additively homomorphic encryption schemes have a com-

posite plaintext order. We provide the first conditional disclosure of secrets protocol

that works in conjunction with all currently known additively homomorphic encryption

schemes. Hence, we can efficiently and more securely solve many practical problems.

Formally, we consider only two-party protocols between a client and a server, though

our results can be extended to the multiparty setting. At the end of such a protocol the

client should learn the desired value whereas the server should learn nothing. Our main

goal is to achieve relaxed-security; that is, the protocol must be secure against malicious

clients and semihonest servers. Such a model is widely used in current cryptographic

2 Sven Laur and Helger Lipmaa

literature [NP99,AIR01] and is well-justified in practical applications: as the number of

possible service providers is relatively small compared to the clients, it is possible to

force semihonest behaviour with auditing. Moreover, service providers must preserve

their reputation and thus they are less likely to act maliciously.

For clarity and brevity, we state our main results in the public key model, where the

client is guaranteed to know a valid secret key and the server knows the corresponding

public key. The choice of the model is not too restrictive: with a proper initialisation

phase all our protocols can be implemented in the standard model, see Sect. 7. On the

other hand, such a model enables to prove security of parallel compositions. Compos-

ability together with our new basic construction leads to a simpler and more modular

way to construct complex protocols. Shortly put, relaxed-security follows directly from

the protocol design and there is no need to handcraft the proof. More precisely, we

show how to decompose a protocol into elementary tasks that can be efficiently im-

plemented with any additively homomorphic IND-CPA secure cryptosystem, provided

that the plaintext order does not have unknown small factors.

In Sect. 3, we establish basic security notions and derive a necessary machinery to

analyse parallel compositions. The core results of our papers are presented in Sect. 4.

We note that most existing additively homomorphic protocols are based on the possibil-

ity of computing the next three basic primitives on ciphertexts: addition of ciphertexts,

multiplication with a constant, and disclose-if-equal (DIE). In a disclose-if-equal proto-

col, the server obliviously releases secret β only if the client sends a valid encryption of

x, where the coefficient x can be freely chosen by the server. The current cryptographic

literature is full of many useful and efficient two-message protocols that are based on

these three primitives. Unfortunately, the standard DIE protocol defined say in [AIR01],

and then used in many subsequent papers, is secure only if the plaintext space has a

prime order and thus can only be used in conjunction with the lifted ElGamal cryptosys-

tem where one has to compute discrete logarithms to decrypt. We provide a new DIE

protocol that works in conjunction with all currently known additively homomorphic

encryption schemes. As a result, we can naturally simplify or extend many protocols

that utilise the DIE functionality, e.g. [AIR01,Ste98,Lip05,BK04,FNP04,LLM05].

The rest of the paper provides many useful applications of these generic building

blocks. In Sect. 5, we present a two-message protocol for conditional disclosure of se-

crets (CDS), where the client learns a secret β only if his message q is a valid encryption

of x ∈ S, where S is a publicly known set. Hence, the server can use β as a one-time

pad to protect the protocol output, i.e., the client learns nothing unless Decsk(q) ∈ S.

The latter forms a basis of the CDS transformation that can guard any two-message

protocol, where the first message is a vector of ciphertexts, against malicious clients.

A slightly extended CDS construction provides an efficient solution to the millionaire

problem and conditional oblivious transfer. Another extension of CDS provides a way

to implement electronic voting and auctions without non-interactive zero-knowledge

proofs in the multi-party setting using threshold-decryption. Finally, we compare our

results with conventional cryptographic methods to provide some interesting insights

and show the theoretical significance of our results, see Sect. 7.

History. The new DIE protocol, together with the CDS protocol and the CDS transfor-

mation date from August 2004 and has been available on eprint since 2005.

A New Protocol for Conditional Disclosure of Secrets And Its Applications 3

2 Cryptographic Preliminaries

Distributions. For a a finite set X , let U(X) denote the uniform distribution over

X and x ← X denote a uniform draw from X . Two distributions D1 and D2 over

a discrete support X are statistically ε-close, D1
ε∼ D2, if their statistical difference

maxS⊆X |Pr [D1 ∈ S]− Pr [D2 ∈ S]| ≤ ε. A shorthand D1 ≡ D2 denotesD1
0∼ D2.

Homomorphic encryption. A public-key cryptosystem π is defined by three algo-

rithms. A key generation algorithm Gen returns a secret and public key pair (sk, pk).
Corresponding Encpk(·) and Decsk(·) algorithms are used to encrypt and decrypt mes-

sages. LetM and C denote the corresponding message and ciphertext spaces. Then we

require Decsk(Encpk(x)) = x for every x ∈ M and assume that there exists efficient

membership test for the ciphertext space C. Privacy of encrypted messages is guaran-

teed by IND-CPA security. For any stateful probabilistic algorithm A, its IND-CPA

advantage quantifies the ability to distinguish ciphertexts:

AdvIND-CPA

π (A) = 2 ·
∣

∣

∣

∣

∣

Pr

[

(sk, pk)←Gen, (x0, x1)←A(pk), i← {0, 1}
c← Encpk(xi) : A(x0, x1, c) = i

]

− 1

2

∣

∣

∣

∣

∣

,

where the probability is taken over coin tosses of all relevant algorithms. A cryptosys-

tem π is (ε, τ)-IND-CPA-secure if AdvIND-CPA

π (A) ≤ ε for any τ -time adversaryA.

A cryptosystem π is additively homomorphic, ifM = ZN for some N , and for any

(sk, pk)← Gen and valid messages x1, x2 ∈M the distribution of products Encpk(x1)·
Encpk(x2) coincides with the distribution of ciphertexts Encpk(x1 + x2). To be precise,

the equivalence

Encpk(x1) · Encpk(x2) ≡ Encpk(x1 + x2)

must hold for any fixed ciphertext Encpk(x1). That is, given Encpk(x1)·Encpk(x2), even

an unbounded adversary learns nothing beyond x1+x2. A cryptosystem π is multiplica-

tively homomorphic, if Encpk(x1) ·Encpk(x2) ≡ Encpk(x1 ·x2) for any (sk, pk)← Gen

and x1, x2 ∈ M, where M is a multiplicative group where computing the discrete

logarithm is hard. In many practical applications, multiplicatively homomorphic cryp-

tosystems Enc are converted to additively homomorphic cryptosystems Enc by using

the lifted encryption rule Encpk(x) := Encpk(g
x). Such lifted cryptosystems have re-

duced utility, as the new decryption rule requires computation of discrete logarithms

and one can successfully decrypt only a small fraction of ciphertexts.

Many well-known homomorphic cryptosystems are IND-CPA secure under rea-

sonable complexity assumptions, e.g. [Elg85,Pai99,DJ01]. Existing additively homo-

morphic cryptosystems have a composite plaintext order with large factors. For exam-

ple, the plaintext order of the Paillier cryptosystem [Pai99] is an RSA modulus and

thus its smallest prime factor is approximately
√
N . The Goldwasser-Micali cryptosys-

tem [GM82] is the only known exception, as it is additively homomorphic over Z2.

Such plaintext space is too small for many applications. All known cryptosystems with

a large prime plaintext order are multiplicative, e.g., the ElGamal cryptosystem [Elg85].

4 Sven Laur and Helger Lipmaa

3 Basic Properties of Two-Message Protocols

Throughout the paper, we consider two-message protocols where a client sends a query

q to a server that replies with a, and then the client computes a desired output from

a. The server should learn nothing about the query. The client should learn f(α,β),
where α denotes client’s private input vector and β denotes server’s private input vector.

Mostly, we consider the relaxed-security against unbounded clients and computation-

ally bounded servers, but sometimes we consider also the setting where both parties are

computationally bounded. A protocol is correct if the client always recovers f(α,β)
when both parties are honest. A priori we do not assume correctness from all protocols,

as sometimes it is sufficient to know that a client cannot learn anything beyond f(α,β).
In the simplest case, the query q consists of encrypted inputs (α1, . . . , αm) and the

server uses properties of additively homomorphic encryption to compose an appropri-

ate reply. We call such protocols additively homomorphic two-message protocols. Here,

we explicitly assume that the server knows public key pk and thus can efficiently ver-

ify that the query consists of valid ciphertexts and ignore malformed queries. Notably,

many interesting tasks can be solved with additively homomorphic two-message proto-

cols. Computationally-private information retrieval [AIR01,Ste98,Lip05], solutions to

millionaire’s problem [BK04,Fis01], and various protocols for privacy-preserving data

mining tasks [FNP04,WY04,GLLM04] form only a small set of such protocols.

Relaxed-security in the PKI model. As usual, we define security by comparing the

real and ideal model. However, we explicitly assume that the client knows the secret

key, the server knows the corresponding public key and only the client can deviate

from the protocol specification. Formally, a trusted key generator initially runs the key

generation algorithm Gen for a cryptosystem π, and then privately sends (sk, pk) to the

client and pk to the server. In particular, the server knows that pk corresponds to this

fixed client. This key pair is then possibly used in many different protocol runs.

Note that the PKI model is normal and even desirable in many applications, e.g.

e-voting. Still, we stress that we use the PKI model only for the sake of simplicity of

security proofs. In Sect. 7, we show how to replace the trusted key generator by a key

transfer protocol with a marginal degradation of security.

Since the server obtains no output and is always semihonest, we can decompose

the standard security definition into two orthogonal requirements: client-privacy and

server-privacy. A two-message protocol is (ε, τ)-client-private, if for any τ -time state-

ful adversaryA, the next inequality holds:

2 ·
∣

∣

∣

∣

∣

Pr

[

(sk, pk)←Gen, (α0,α1)←A(pk),

i← {0, 1} , q← qpk(αi) : A(α0,α1, q) = i

]

− 1

2

∣

∣

∣

∣

∣

≤ ε ,

where qpk(αi) denotes the first message computed by the honest client. Server-privacy

has a slightly more complicated definition, since we must transform any efficient ad-

versary from the real world to an efficient adversary in the ideal model, where a trusted

third party (TTP) computes f(α,β). Hence, the definition incorporates a simulator Sim

and a distinguisher B and we need to explicitly quantify their efficiency. The simulator

A New Protocol for Conditional Disclosure of Secrets And Its Applications 5

Sim gets (sk, q) as an input and can send α∗ once to the TTP. Then Sim obtains the

value of f∗ = f(α∗,β) and can proceed with the simulation. For brevity, let us define

pr = Pr [(sk, pk)←Gen, (β, q)←A(sk), a← apk(q,β) : B(β, q, a) = 1] ,

pi = Pr [(sk, pk)←Gen, (β, q)←A(sk), â← Simsk(q, f
∗) : B(β, q, â) = 1] ,

where a(q,β) denotes the answer of the honest server with the input β to the query

q. A protocol implements (τ, δ, t, ε)-server-privately a function f , if for any τ -time

adversary A there exists a (t + δ)-time simulator Sim such that |pr − pi| ≤ ε for any

t-time distinguisher B. In the information-theoretical setting, algorithms A, Sim and

B are unbounded. A protocol is ε-server-private if for any adversary A there exists a

simulator Sim such that their output distributions are statistically ε-close. We say that a

protocol is (ε1, τ ; ε2)-relaxed-secure if it is (ε1, τ)-client-private and ε2-server-private.

Relaxed-security is widely used standard security assumption, see [NP99,AIR01].

Extractability and simulatability. Usually, the client-privacy follows directly from se-

curity assumptions. For example, additively homomorphic protocols are client-private

by the construction, provided that the cryptosystem is IND-CPA secure. Proofs of

server-privacy can be significantly simplified by considering the following notions of

extractability and simulatability. As client can be malicious, the simulator Sim must

somehow deduce the intended input α∗. In the PKI model, the simulator can use sk to

determine the input α∗ directly from q. A two-message protocol is extractable if there

exists an efficient algorithm Extsk(·) such that Extsk(qpk(α)) = α for all valid inputs

and Extsk(q) = ⊥ for all invalid queries q that do not correspond to any input.

In many protocols, the server’s reply can be perfectly or almost perfectly simulated

knowing only the corresponding client’s output f∗ and a secret key sk. We formalise

this as simulatability. Consider a protocol transcript (q, a) between the honest client

and server. Let f∗ = f(α,β) be the corresponding client’s output. Then the server’s

reply is ε2-simulatable if there exists an efficient algorithm Sim∗
sk such that the output

distributions (q, a) and (q, â) are statistically ε2-close even for a fixed q, where â ←
Sim∗

sk(q, f
∗). The notion of (t, ε2)-simulatability is defined analogously. Extractability

together with simulatability implies server-privacy:

Theorem 1. If a two-message protocol is extractable, ε2-simulatable and the server

ignores malformed queries, then the protocol is also ε2-server-private in the PKI model.

Proof. We construct a universal simulator Sim as follows. If the query q is malformed

then the simulator ignores it. Otherwise, Sim extracts the intended input α∗ ← Extsk(q)
and sends α∗ to the TTP. Given the reply f∗ = f(α∗,β) from the TTP, the simulator

uses Sim∗
sk(q, f

∗) to simulate the reply â. Since malformed queries are discarded in

both worlds, the distributions (β, q, a) and (β, q, â) are statistically ε2-close. ⊓⊔

Forked composition. We can use Thm. 1 to prove that a parallel composition of ex-

tractable and simulatable protocols preserves server-privacy. It makes sense to consider

protocols that share the query phase as we can always merge different queries into a

single query. Let two-message protocols Π1, . . . ,Πs share the first message q. Then the

forked composition Forked[Π1, . . . ,Πs] is defined as follows:

6 Sven Laur and Helger Lipmaa

1. The client computes the query q and sends it to the server.

2. The server uses q to compute replies a1, . . . , as according to Π1, . . . ,Πs.

3. The server sends a1, . . . , as to the client.

4. The client computes the private output (f1, . . . , fs) according to Π1, . . . ,Πs.

It is easy to prove that a client can learn nothing beyond f1(α,β), . . . , fs(α,β).

Theorem 2. Let Π1, . . . ,Πs be extractable and respectively εi-simulatable implemen-

tations of functionalities fi. Then the composition Forked[Π1, . . . ,Πs] is an extractable

and (ε1 + · · ·+ εs)-simulatable implementation of the functionality f = (f1, . . . , fs).

Proof. Extractability is clear. By the definition of simulatability, there exist simula-

tors Sim∗
sk,i that output simulated replies âi such that (q, ai) and (q, âi) are statisti-

cally εi-close even for fixed q. Now, define a simulator Sim∗
sk that given q and f∗ =

(f1(α
∗,β), . . . , fs(α

∗,β)) runs Sim∗
sk,i(q, f

∗
i) for i ∈ {1, . . . , s} and outputs â1, . . . ,

âs. By the construction, the distributions (q, a1, . . . , as) and (q, â1, . . . , âs) are statisti-

cally (ε1 + · · ·+ εs)-close even for a fixed q and the simulatability follows. ⊓⊔

Reducing communication further with CPIR. In many two-message protocols, the

client must access only a short part of the reply a to recover the output f(α,β) whereas

the rest of a consists of random noise. Hence, we can significantly decrease the total

communication |q| + |a|, if the client could fetch only useful parts of a. The latter

can be done using computationally private information retrieval (CPIR). In a 1-out-

of-n CPIR protocol, the server maintains a database β = (β1, . . . , βn) of ℓ-bit strings

and the client can fetch βi so that a computationally bounded server learns nothing.

The basic properties of CPIR protocols are determined by parameters n and ℓ. It is

trivial to achieve communication complexityΘ(nℓ) just by sending the whole database

so one considers only CPIR protocols with sublinear communication. There is a wide

range of such protocols. Recent protocols achieve communication that is low-degree

polylogarithmic in the database size, see [Lip05,GR05] for further references.

Now, assume that the server’s reply has a structure a = (a1, . . . , an) and the client

needs to recover at most t elements. Then the client can use t parallel CPIR queries to

fetch desired parts ai1 , . . . , ait . Note that the CPIR queries can be sent together with

the protocol Π messages, provided that the CPIR instance is run independently from Π
or joining queries does not decrease client-privacy. Server-privacy cannot decrease, as

the replies of CPIR queries are computed from the original reply a.

4 Three Basic Crypto-Computing Primitives

“Crypto-computing” is often used to describe two-message protocols, where a server

uses some basic operations on client’s garbled inputs to compute reply that reveals

only f(α,β). The first comparative study [SYY99] showed how to crypto-compute

predicates with logarithmic circuit depth using the Goldwasser-Micali cryptosystem.

Later, this construction was somewhat generalised to compute the greater-than predi-

cate [Fis01]. Here, we provide three basic crypto-computing primitives for additively

homomorphic cryptosystems with large factors of the plaintext space. Note that the

A New Protocol for Conditional Disclosure of Secrets And Its Applications 7

server can crypto-compute ciphertexts of sums and products with one public factor

obliviously from ciphertexts, as

Encpk(x1 + x2) ≡ Encpk(x1) · Encpk(x2) · Encpk(0) (1)

Encpk(x · y) ≡ Encpk(y)
x · Encpk(0) (2)

hold by the definition of additively homomorphic cryptosystems. Here the multiplica-

tion by Encpk(0) is necessary to re-randomise the replies.

But there is also a third generic operation that implicitly “tests” whether a ciphertext

c is an encryption of x. The existence of this operation depends additionally on the

order of the plaintext group. More precisely, a disclose-if-equal (DIE) protocol allows

releasing of a secret β only if Decsk(c) = x where the server can freely choose x. The

idealised functionality of DIE protocol is defined as follows

f(α, β) =

{

β, if α = x ,

⊥, if α 6= x .

The simplest implementation of DIE protocol was given in the paper [AIR01]:

1. The client sends c← Encpk(α) to the server.

2. If c ∈ C then the server sends a reply a← (c ·Encpk(−x))r ·Encpk(β) for r←M.

3. The client outputs Decsk(a) = (α− x)r + β.

If the plaintext space has a prime order, then (α − x)r has uniform distribution over

M when x 6= α. Consequently, the protocol is perfectly simulatable: if f(α, β) = ⊥
a simulator should output a random encryption Encpk(m) for m ← M and Encpk(β)
otherwise. Therefore, the basic DIE protocol is also relaxed-secure.

On the other hand, the protocol is not correct, since the client obtains a random

output when Decsk(c) 6= x. If x is public then the correctness is not an issue, as the

client knows whether Decsk(c) = x or not. Otherwise, the construction guarantees only

that the client learns nothing about β when Decsk(c) 6= x. Moreover, if the server sets

the first k-bits of β to 0, then the honest client can detect α 6= x with failure probability

2−k, i.e., there is a trade-off between reliability and throughput.

Unfortunately, the basic DIE protocol is not secure if the message space has a com-

posite order. As an example, consider the Paillier cryptosystem, where N = pq is an

RSA modulus. If a malicious client sends c ← Encpk(p + x) then Decsk(a) = β + rp
mod N and the client can recover β mod p although Decsk(c) 6= x. Since the DIE

protocol is a building block in many existing protocols, then such leakage might cause

a domino effect that can completely reveal server’s input. For example, the circuit

CDS protocol in Sect. 5 is extremely vulnerable against such attacks. Therefore, we

devise a new DIE protocol that works in conjunction with all currently known addi-

tively homomorphic cryptosystems. As a result, we can naturally simplify many proto-

cols [AIR01,Ste98,Lip05,BK04,FNP04,LLM05] that use the lifted ElGamal cryptosys-

tem or zero-knowledge correctness proofs to guarantee security of the DIE protocol.

New general construction for DIE. Server-privacy of the basic DIE protocol hinges

on the fact that αZN = {αr : r ∈ ZN} = ZN for any α 6= 0. If the message space

8 Sven Laur and Helger Lipmaa

Query phase:

The client sends q← Encpk(α) to the server.

Transfer phase:

If the ciphertext is invalid q /∈ C then the server returns ⊥.

Otherwise, the server returns a← (c · Encpk(−x))r · Encpk(encode(β)) for r ←M.

Post-processing:

The client computes y = Decsk(a) and returns decode(y).

Protocol 1: Disclose-if-equal protocol of ℓ-bit secrets for the constraint Decsk(q) = x

contains non-trivial additive subgroups (ideals) {0} 6= G (ZN then the client can

choose a ciphertext c so that the reply a enables to restore the coset β+G. Consequently,

a malicious client can learn up to log2N − log2 Φ bits of information, where Φ is

the minimal size of the non-trivial subgroup G. To seal the leakage, we must use a

probabilistic encoding for β such that the total entropy of G together with the encoding

encode(β) is roughly log2N . Let us define an encoding for ℓ-bit strings

encode(β) = β + 2ℓ · t mod N for t← ZT ,

decode(y) = (y mod N) mod 2ℓ ,

where T = ⌊2−ℓ · N⌋ and ℓ < ⌊log2N⌋. As there are no modular wrappings, the

decoding is always correct. More importantly, Prot. 1 is now secure for small enough ℓ.

Theorem 3. Let π be an additively homomorphic cryptosystem such that the smallest

factor of the plaintext order is larger than γ > 2. Then Protocol 1 for transferring ℓ-bit

strings is extractable and (2ℓ−1/γ)-simulatable.

Proof. Extractability is clear and thus we consider only simulatability. If α 6= x, then

by construction y = encode(β) + g where g is chosen uniformly from a non-zero

subgroup G ⊆ ZN . If G = ZN then y is uniformly distributed over ZN . Otherwise

G can be represented as pZN , where p is a non-trivial factor of N , and y mod p ≡
β + 2ℓ · t mod p, where t ← ZT and T = ⌊2−ℓ · N⌋. Since 2 and p are relatively

prime,
{

2ℓ · t : t ∈ Zp
}

= Zp and the term 2ℓ · t mod p covers all elements of Zp
almost uniformly. More precisely, the elements of Zp can be divided into two sets:

T0 =
{

c ∈ Zp : Pr[β + 2ℓ · t mod p = c] = a
T

}

with |T0| = p− b ,
T1 =

{

c ∈ Zp : Pr[β + 2ℓ · t mod p = c] = a+1
T

}

with |T1| = b ,

where a =
⌊

T
p

⌋

and b = T − ap. Consequently, the statistical difference between y

mod p and the uniform distribution U(Zp) can be expressed as

ε =
|T0|
2
·
(

1

p
− a

T

)

+
|T1|
2
·
(

a+ 1

T
− 1

p

)

=
b(p− b)
Tp

≤ p

4T
≤ N

4γT
,

as p(p − b) ≤ p2/4 and p ≤ N/γ. Since 2ℓ+1 ≤ N we get T = ⌊2−ℓN⌋ ≥ N/2ℓ+1

and thus ε ≤ 2ℓ−1/γ. Now note that the distributions encode(β)+U(pZN) and U(ZN)

A New Protocol for Conditional Disclosure of Secrets And Its Applications 9

are still ε-close, as we can express

Pr [encode(β) + U(pZN) = c mod N] =
p

N
· Pr [encode(β) = c mod p] .

Hence, we can use a simulator Sim∗
sk(q, f

∗) that outputs Encpk(encode(β)) if f∗ = β
and Encpk(m) for m← ZN otherwise. ⊓⊔

Corollary 1. Let π be an (τ, ε1)-IND-CPA-secure additively homomorphic cryptosys-

tem such that the smallest factor of the plaintext order is larger than γ > 2. Then

Protocol 1 for transferring ℓ-bit strings is (τ, ε1; ε2)-relaxed-secure for ε2 = 2ℓ−1/γ.

The Maximal Throughput of DIE Protocol. First, note that if we want to achieve

ε-server-privacy then we must choose ℓ = ⌊log2(2εγ)⌋, where γ is the lower bound to

non-trivial factors of N . Usually, it is sufficient to take ε = 2−80 and thus N cannot

have smaller factors than 280 if the server wants to release Boolean secrets. For the

Paillier cryptosystem the smallest factor ofN is approximately
√
N , and consequently,

one can transfer ℓ = ⌊log2(2
√
Nε)⌋ ≈ 0.5 log2N + log2 ε bits. For standard 1024-bit

RSA modulus and ε = 2−80, one can take ℓ = 433.

As our DIE protocol is extractable and simulatable, a forked composition of t pro-

tocols enables transfer of a tℓ-bit secret, where the achieved server-privacy is
|β|
ℓγ · 2ℓ−1.

Smaller values of ℓ increase the maximal length of β but also decrease the ratio between

the desired communication |β| and the total communication |q|+ |a| and make the pro-

tocol less efficient. In other words, a bad encoding encode(β) with a small capacity can

significantly decrease efficiency. As our target distribution is U(ZN) then it is straight-

forward to derive entropy bounds for the capacity:H(ZN) ≈ H(encode(β)+ pZN) ≤
H(encode(β))+H(pZN) ≤ log2 |encode(β)|+H(pZN), where |encode(β)| denotes

the size of the support. As the encoding must be uniquely decodable, the capacity of

a single reply ℓ ≤ log2
N

|encode(β)| . minpH(pZn) = log2 Φ, where Φ is the smallest

prime factor of N . Thus, the encoding is optimal up to a constant additive term log2 ε.
The result can be generalised for any target distribution using a more detailed analysis.

5 Generic Construction for Conditional Disclosure of Secrets

Many protocols are secure only if client submits inputs α from a limited range S.

Cleverly chosen α /∈ S can either partially or completely reveal the server’s input β.

Therefore, the server must somehow verify that α ∈ S. Classically, this is done by

a zero-knowledge proof that Decsk(c) ∈ S. However, this either increases the num-

ber of messages or requires a security model with a common reference string or ran-

dom oracles. A conditional disclosure of secrets (CDS) reaches the same goal with-

out extra messages and exotic assumptions. In a CDS protocol, the client should learn

a secret β only if Decsk(q) ∈ S, where the query vector q consists of ciphertexts

Encpk(α1), . . . ,Encpk(αm) and the set S is public. Since the server can use β as a

one-time pad to encrypt the original reply a, the client learns nothing about the outputs

of the original protocol if α /∈ S and the modified protocol becomes server-private.

10 Sven Laur and Helger Lipmaa

A CDS protocol can be straightforwardly constructed as a forked composition of

individual DIE protocols for {Decsk(c) = x}x∈S that share the same secret β but such

composition is inefficient. Therefore, we show how to use Benaloh-Leichter secret shar-

ing scheme [BL88] together with slightly extended DIE protocols to achieve a more

computation and communication efficient CDS protocol (circuit CDS).

Conjunctive affine zero tests. First, we present an optimisation for specific sets. Re-

call that our DIE protocol is secure since encode(β) + U(G)
ε∼ U(ZN) if G 6= {0}.

Similarly, we can construct CDS protocols for conjunctive affine zero tests Ψ0(α) =
∧v
j=1[

∑m
i=1 sijαi

?

=xj], where {xi} and {sij} are public constants:

1. The client sends q = (c1, . . . , cm) where ci = Encpk(αi).

2. The server halts if some c1, . . . , cn is not a valid ciphertext, otherwise it replies

a =
∏v
j=1

(
∏m
i=1 c

sij

i · Encpk(−xj)
)rj · Encpk(encode(β)) for r1, . . . , rv ← ZN .

3. The client restores y = Decsk(a) and outputs decode(y).

As y =
∑v
j=1 (

∑m
i=1 αisij − xi) rj + encode(β) = encode(β) + G1 + · · · + Gv,

then y = encode(β) + U(G) for a non-zero sub-group G if some zero-tests do not

hold. The latter follows from the fact that r1, . . . , rv are independently chosen. Hence,

the claims of Thm. 3 hold also for the CDS protocol given above. Of course, when the

plaintext order is prime then there is no need to use probabilistic encoding and we can

use the construction given in [AIR01]. Notably, such simplified construction has been

used in [BGN05] together with a cryptosystem that has a composite plaintext order.

Paradoxically, the latter construction is still computationally secure, as the client must

compute arbitrary discrete logarithms to recover a coset β + G.

Circuit CDS protocol. For any set S, we can write the predicate ΨS(α) := [α ∈ S]
as a monotonous combination of affine zero tests, i.e., the formula consists of Boolean

operations ∧ and ∨ together with atomic terms Ψ0(α) =
∧v
j=1[

∑m
i=1 sijαi

?

=xj]. For

efficiency reasons, we might express the input α as a bit-vector. The server can later

use properties of additively homomorphic encryption to restore the original ciphertexts.

First, the server uses the Benaloh-Leichter secret sharing scheme to assign sub-

secrets βi to each leaf test Ψ0(α) so that the client can reconstruct the secret β ∈ {0, 1}ℓ
if Ψ(α) holds and the secrets of true leaves are revealed. Fig. 1 illustrates how secret

β is propagated through the circuit of Ψ(α) = [α > x] without optimisation. Namely,

the master secret β is assigned to the topmost gate of the circuit. For every ∨-gate,

the output secret is just pushed downwards. For every ∧-gate ψ with u children and

a secret βψ assigned to it, sub-secrets β1, . . . , βu−1 ← {0, 1}ℓ and βu ← βψ − β1 −
· · ·−βu−1 mod 2ℓ are assigned to the children. One can also use threshold operations:

THRv(x1, . . . , xs) = 0 if and only if at least v values xj are equal to 1. For a THRv gate,

generate a random (v−1)-degree polynomial fψ with fψ(0) = βψ and assign the secret

fψ(i) to its ith child. Finally, the server uses a forked composition of CDS protocols

for leaf tests Ψ0 to release sub-secrets associated to each leaf. The client recomputes the

secret from leaf values by inversely following the secret generation.

A New Protocol for Conditional Disclosure of Secrets And Its Applications 11

∧

[α2

?

=x2]

[α1

?

=x1]

[α0

?

=1]

[x1

?

=0]

β1
β 2 β

3

β
4

∧

[α2

?

=x2]

[α1

?

=1]

[x1

?

=0]

β5

β
6

β
7

∧

[α2

?

=1]
[x2

?

=0]

β 8

β
9

∨
β

β

β

β β = β1 + β2 + β3 + β4

β = β5 + β6 + β7

β = β8 + β9

Fig. 1. An unoptimised circuit for Ψ(α) = [α > x] where secrets are pushed down to DIE leafs.

The circuit can be further optimised by replacing ∧-gates with conjunctive affine equality tests

Theorem 4. If the leaf CDS protocol is extractable and ε2-simulatable, then the circuit

CDS protocol for ΨS is extractable and L(ΨS) · ε2-simulatable, where L(ΨS) is the

number of leaves. If the cryptosystem is (τ, ε1)-IND-CPA secure and q consists of m
ciphertexts, then the protocol is (τ −O(1),mε1;L(ΨS) · ε2)-relaxed-secure.

Proof. Given the main secret β it is straightforward to reconstruct the leaf-level se-

crets. Otherwise, if ΨS(α) = 0 then the sub-secrets βi that are assigned to true atoms

Ψ0(α) = 1 are independent and are uniformly distributed. Hence, a world with L(ΨS)
ideally implemented leaf CDS protocols can be perfectly simulated in the world where

β is released only if α ∈ S. Now, the simulatability follows directly from Thm. 2. The

second claim follows from Thm. 1 and the basic properties of IND-CPA encryption.

⊓⊔

If the CDS protocol is based on the new DIE protocol, then we can estimate how

many bits are needed to transfer ℓ-bit secrets. For the 1024-bit Paillier cryptosystem and

2−80-sever-privacy, a single ciphertext can fit 393 bits provided that the corresponding

circuit has less than 240 leaves; the message expansion is roughly |a| /ℓ ≈ 5.2 · L(Ψ).
As negations can be expressed by conjunctive affine zero tests, then they can appear

only in the leaf level, i.e., the formula Ψ(α) must be in a negation normal form (NNF).

Many practically interesting sets have compact NNF-s, but for some circuits Ψ such

normal form is exponentially larger. We can circumvent the problem by using auxiliary

inputs w. Consider the circuit representation of Ψ that consists of unary ¬-gates and

binary ∧- and ∨-gates. Denote all output wires of logical gates by auxiliary labels wi.
Now, we can represent assignmentswu ← ws∧wt andwu ← ws∨wt with the formulae

[wu
?

=1] ∧ [ws
?

=1] ∧ [wt
?

=1] ∨ [wu
?

=0] ∧ [ws
?

=0] ∨ [wu
?

=0] ∧ [ws
?

=0] .

[wu
?

=0] ∧ [ws
?

=0] ∧ [wt
?

=0] ∨ [wu
?

=1] ∧ [ws
?

=1] ∨ [wu
?

=1] ∧ [ws
?

=1] ,

andwu ← ¬ws as [wu
?

=0]∧ [ws
?

=1]∨ [wu
?

=1]∧ [ws
?

=0]. Therefore, we can in principle

construct a new formula Ψ(α,w) in NNF such that Ψ(α) = 1⇐⇒ ∃w : Ψ(α,w) = 1
and the size of Ψ(α,w) is proportional to the gate count of Ψ(α). Consequently, we

can always construct efficient circuit CDS protocols for efficiently recognisable sets.

12 Sven Laur and Helger Lipmaa

Query phase:

The client sends q = (c1, . . . , cm) to the server, where ci ← Encpk(αi) for i ∈ {1, . . . , m}.

Transfer phase:

The server computes the reply a = (d1, . . . , dn) according to the original protocol Π
The server applies one-time pad ei ← di · Encpk(ti) for ti ← ZN and i ∈ {1, . . . , m}.
The server computes the CDS reply acds for Decsk(q) ∈ S with secret a β = t1‖ . . . ‖tm.

The server replies (e1, . . . , en) and acds.

Post-processing:

The client recovers the secrets ti from acds and computes d̂i ← ei · Encpk(−ti).

Next, the client proceeds with the original protocol Π.

Protocol 2: CDS transformation for additively homomorphic two-message protocols

CDS Transformation. It is straightforward to use a CDS protocol to transform any

additively homomorphic two-message protocol that is secure in the semihonest model

to a modified two-message protocol that is relaxed-secure. Let the query q consist of

m ciphertexts (c1, . . . , cm). Protocol Π is secure in the semihonest model, when there

exist a set of valid inputs S such that the client learns only f(α,β), provided that

Decsk(q) = (α1, . . . , αm) ∈ S. Let us use a sufficiently long secret β as a one-time

pad to decrypt the original reply a and release the secret only if Decsk(q) ∈ S. Then the

corresponding protocol is clearly relaxed-secure. In many cases, the reply a consists of

re-randomised ciphertexts and we can reduce the length of the secret β, see Prot. 2.

Theorem 5. If the two-message additively homomorphic protocol Π is correct, (τ, ε1)-
client-private and ε2-simulatable for α ∈ S and the CDS protocol for the set S is

ε3-simulatable, then Protocol 2 is correct and (τ, ε1; max {ε2, ε3})-relaxed-secure.

Proof. Due to the re-randomisation, the recovered replies d̂i have the same distribution

as di, thus correctness is evident. Client-privacy is evident as both protocols share the

query q. For server-privacy, note that if α ∈ S, we can first use the original simulator

to simulate di and then apply the CDS transformation to the simulation output. The

corresponding simulation is ε2-close to the real run, since the original reply is not more

than ε2 away from the simulated one. Otherwise, (e1, . . . , en) are random ciphertexts

and thus perfectly simulatable. Now if we add a simulated CDS reply âcds, then the

aggregated reply âcds, e1, . . . , en is ε3-close to the real protocol transcript, as the CDS

is ε3-simulatable. The claim follows, as Decsk(q) is either in S or not. ⊓⊔

Optimisations. If all replied ciphertexts of the original protocol are in the fixed range,

i.e., Decsk(di) ∈ {0, 1}ℓ then full recovery of ti is not necessary. It is sufficient to send

ti mod 2ℓ together with a extra bit needed to indicate a possible wrapping ti ≥ N−2ℓ

and the message expansion rate can be less than L(Ψ). Secondly, note that the commu-

nication overhead of the CDS transformation is linear in |a|. Therefore, the transfor-

mation is quite inefficient when |a| is long. To get better performance, the server can

use symmetric encryption to garble the original reply and a CDS protocol to release the

corresponding key. The output is still computationally simulatable and thus we achieve

A New Protocol for Conditional Disclosure of Secrets And Its Applications 13

computational server-privacy. A block cipher in counter mode is the best encryption

method, as then the client can efficiently decrypt only necessary parts of a.

6 Practical Applications of Crypto-Computing Techniques

In this section, we show how to use additively homomorphic two-message protocols

to solve several important cryptographic tasks. Here, the query q is a vector of cipher-

texts, and the reply is computed by combining the identities (1) and (2) with Prot. 1.

Note that the outputs of crypto-computed sums and products are perfectly simulat-

able provided that the end result is re-randomised. Consequently, client-privacy fol-

lows form (τ, ε1)-IND-CPA security and server-privacy follows from the basic proper-

ties of forked composition, see Thm. 1 and 2. Shortly put, the resulting protocols are

(τ − O(1),mε1;nε2)-relaxed-secure, where m is the number of ciphertexts and n is

the number of DIE instances, provided that the basic DIE protocol is ε2-simulatable.

Sometimes we must also prove that knowledge of f(α,β) is equivalent to the

knowledge of f1(α,β), . . . , fs(α,β), i.e., design a protocol for f based on generic

operations. As for 1024-bit Paillier and 2−80-server-privacy, we can transfer 393 bits

in the individual DIE reply whenever the number of DIE instances is less than 240, the

resulting protocols are really efficient.

Oblivious Transfer. Recall that a 1-out-of-n oblivious transfer (OT) protocol imple-

ments an ideal functionality f(α;β1, . . . , βn) = βα if α ∈ {1, . . . , n} and ⊥ other-

wise. Already in [AIR01], the authors showed that such a protocol can be expressed as

a forked composition of n individual DIE protocols:

– release β1 if α = 1,
...

– release βn if α = n.

Therefore, we get a relaxed-secure implementation of oblivious transfer by using Prot. 1

to implement all instances of DIE protocols. Moreover, a client can use any CPIR pro-

tocol to obliviously choose the αth reply of the DIE. Hence, we have just described a

generic transformation from any CPIR to a relaxed-secure oblivious transfer.

An alternative approach was taken by Chang [Cha04] who proved that the basic

DIE protocol from [AIR01] leaks at most βα1
mod p1 and βα2

mod p2 whenever

the plaintext order is a product of two primes p1 and p2. In the corresponding 1-out-of-

n OT protocol an honest client has to encrypt values that depend on the secret key and

thus the client-privacy does not follow directly from IND-CPA security.

Millionaire’s protocol with logarithmic communication. The millionaire’s problem

is: given client’s private input α and server’s private input x, decide whether α > x.

Although numerous solutions have been proposed for this problem, none of the pro-

posals is completely satisfactory. For example, the two-message protocol of Blake and

Kolesnikov [BK04] is server-secure only in the semihonest model since encrypted in-

puts must be in correct range, it can leak information otherwise. To solve that type of

14 Sven Laur and Helger Lipmaa

problems, consider a circuit CDS protocol for a public set Sx = {α ∈ {0, 1}m : α > x}.
Writing α bit by bit (αm−1, . . . , α0), we obtain

ΨSx
(α) =([αm−1

?

=1] ∧ [xm−1
?

=0])∨
([αm−1

?

=xm−1] ∧ [αm−2
?

=1] ∧ [xm−2
?

=0])∨
([αm−1

?

=xm−1] ∧ [αm−2
?

=xm−2] ∧ [αm−3
?

=1] ∧ [xm−3
?

=0]) ∨ · · · ∨
([αm−1

?

=xm−1] ∧ [αm−2
?

=xm−2] ∧ · · · ∧ [α1
?

=x1] ∧ [α0
?

=1] ∧ [x0
?

=0]) .

Here, every row corresponds to one conjunctive affine equality test. Fig. 1 depicts the

corresponding unoptimised circuit. Now consider the modified protocol where β0 is

a publicly fixed ℓ-bit secret and the server randomly reorders the leaf CDS replies

a1, . . . , am. Finally, the client outputs 1 if one of the recovered CDS outputs is β0.

As the formula ΨSx
(α) is a disjunction of affine zero tests, then in the ideal world,

the client learns a randomly shuffled set {β0,⊥, . . . ,⊥} if α > x and {⊥,⊥, . . . ,⊥}
otherwise. Hence, the modified protocol is server-private even if x is private and we

have obtained a relaxed-secure solution to the millionaire problem that fails with prob-

ability 2−ℓ. The total communication of our solution is 2m ciphertexts, the client’s

computation is Θ(m) and the server’s computation is Θ(m2), and we only assume that

the underlying additively homomorphic cryptosystem is IND-CPA secure. The server’s

workload can be reducedΘ(m) as in the Blake-Kolesnikov protocol, if we first crypto-

compute a recursion ti = (αi − xi)ri + · · ·+ (αm−1 − xm−1)rm−1 for ri ← ZN and

then re-randomise it by crypto-computing ui = tisi for si ← ZN .

Interestingly enough, one can view our solution as an efficient generalisation of the

Fischlin protocol [Fis01]. The latter can be alternatively described as a CDS protocol

based on additively homomorphic cryptosystem over Z2. Due to the small message

space, the Fischlin’s protocol requires a parallel run of ℓ protocols to achieve the same

reliability as our protocol, i.e., our protocol is ℓ times more efficient.

Conditional OT. In a conditional oblivious transfer protocol for public predicate Ψ ,

the client has a private input α and the server has a private input (x, β0, β1). The client

obtains β1 if Ψ(α, x) = 1 and β0 otherwise. Assume that the master secret β is recon-

structed identically for the circuits without witnesses Ψ and ¬Ψ and the reconstruction

process and the number of true leaves leaks nothing about x except Ψ(α, x). In partic-

ular, assume that the master secret can be reconstructed from randomly shuffled shares.

Let BΨ(α,x) and B¬Ψ(α,x) be the shuffled CDS replies in the ideal world. Then given a

shuffled set of sets {BΨ(α,x),B¬Ψ(α,x)}, one can learn only βΨ(α,x) and nothing more,

provided that the number of leaf tests is equal |BΨ(α,x)| = |B¬Ψ(α,x)|.
This leads to the following COT protocol. First, the server assigns β0 to ¬Ψ and

β1 to Ψ and adds trailing zeroes to leaf secrets of one circuit and trailing ones to the

remaining sub-secrets. Next, the server constructs replies for each leaf CDS and sends

randomly shuffled replies back. Finally, the client restores sets BΨ (α, x) and B¬Ψ(α,x)

and reconstructsβΨ(α,x). The failure probability is bounded by 2−k·L(Ψ) where k is the

number of trailing zeroes and ones. Since [α > x] and [α ≤ x] have such symmetrical

circuits, we can construct a COT protocol for [α > x] and for many other relations.

A New Protocol for Conditional Disclosure of Secrets And Its Applications 15

Electronic voting and auctions without random oracles. E-voting and auction proto-

cols based on homomorphic encryption [CGS97,DJ01,LAN02] are natural extensions

of homomorphic two-message protocols, since the secret key is known by the elec-

tion tallier (or a coalition of talliers) to whom the server forwards the second mes-

sage. In such protocols, conditional disclosure of secrets can be used to guarantee se-

curity of the election authority against malicious voters and a semihonest server. As

in [BGN05], consider an electronic voting protocol where every voter sends an encryp-

tion ci ← Encpk(vi) to talliers. We assume that the protocol is secure if vi ∈ S for some

publicly known set S; this is true in typical e-voting protocols [CGS97,DJ01].

In the existing protocols, it is usually assumed that every voter accompanies his or

her vote with a non-interactive zero-knowledge proof that vi ∈ S. Instead, the talliers

can jointly apply the CDS protocol, with output secret 0, to ci (this can be done very

efficiently if S is the set of powers of a fixed integer) and then threshold-decrypt the

result. If the plaintext is equal to 0, talliers accept the vote as correct. Of course, every

step of the talliers has to be accompanied by a zero-knowledge proof of correctness (to

each other and to every possible outside observer), but since the number of talliers is

significantly smaller than the number of voters, this is doable in practise, see [BGN05].

As the result, we get a voter-private, universally verifiable and robust e-voting scheme

where the voters only have to perform one encryption, assuming only that there exists

an IND-CPA secure additively homomorphic public-key cryptosystem. The same trick

can be used to eliminate the need for random oracles in a similar electronic auction

scheme of [LAN02] and in many other similar protocols. Compared to the protocols

of [BGN05], our protocols are more efficient since they are based on genuine addi-

tive homomorphic cryptosystem whereas [BGN05] uses a lifted version of ElGamal

and thus there one has to compute discrete logarithms. Moreover, their cryptosystem is

secure under less established security assumptions.

Multiplicative relations and polynomial arithmetic Finally, we illustrate the power

of using auxiliary witnesses. It is well known that multiplicative relation [z
?

=xy] does

not have a compact NNF. However, we can still construct efficient circuit CDS protocol

by introducing a suitable witness w. Let x, y ∈ {0, 1}m and z ∈ {0, 1}2m be sent to the

server by individually encrypting each bit of x, y, z and let w0, . . . , wm−1 be auxiliary

variables such that wi = xyi. Then xy = w0 + 2w1 + · · · + 2m−1wm−1 and the

formula Ψ[z=xy] can be expressed as a conjunction of tests: (1) xm−1, . . . , x0 ∈ {0, 1},
(2) [yi

?

=0]∧[wi
?

=0]∨[yi
?

=1]∧[wi
?

=x] for i ∈ {0, . . . ,m− 1} and x is crypto-computed

as x0 + · · ·+ 2m−1xm−1, and (3) [z
?

=w0 + · · ·+ 2m−1wm−1].

Several papers, see e.g. [KS05], use additively homomorphic two-message proto-

cols in a setting where one encrypts the coefficients of some polynomials, where the

important quantity is the set of roots of this polynomial. For example, if F1 is the set

of roots of f1(x) and F2 is the set of roots of f2(x) then F1 ∪ F2 is the set of roots of

f1(x) · f2(x). Consequently, we can also construct a CDS protocol for the set to prove

that g(x) = f1(x) · f2(x), as the ith coefficient gi = f10f2i + · · · + f1if20. Now, we

can also verify that for some sets F1, F2 and G, it holds that F1 ∪ F2 = G.

16 Sven Laur and Helger Lipmaa

7 Theoretical Implications

Although we stated our results in the PKI model, where a trusted key generator gen-

erates a key pair (sk, pk) ← Gen and privately transfers (sk, pk) to the client and pk

to the server, they can be easily implemented in the standard model. Namely, we can

eliminate the PKI assumption if the client executes once, separately and in an isolated

manner (that is, no other messages of different protocols are sent by the client at the

same time), with every server a zero-knowledge proof of knowledge that pk is valid

and that he knows the corresponding secret key. This is followed by the real protocol.

In the security proof, the simulator extracts the secret key by rewinding and thereafter

continues to work as previously. Since we require statistical server-security—and thus

can use an unbounded simulator—then it is actually sufficient to have a zero-knowledge

proof that the key is correct: the simulator just computes the secret key corresponding to

the (correct) public key. It is even irrelevant whether the client computes the public key

with a correct distribution, since for the proof we only need the existence of the secret

key. Therefore, the amortised message complexity is still two-messages in the standard

model, as the verification of a public key must be carried out only once.

It is well known that secure two-party protocols require at least three messages,

therefore, it is impossible to obtain full security of two-message protocols in the ma-

licious model. In fact, one cannot achieve more than relaxed-security in two messages

even in the PKI model. Consequently, the CDS-transformation presented in Sect. 5

is a universal round-optimal transformation from semihonest model to relaxed-secure

model whenever the first message contains only ciphertexts. Moreover, computational

and communication resources are linear in the size of the circuit that is needed to test

a validity of an input. More formally, assume that for sets Sm of m-bit strings exists

a polynomial-size formula Ψ(α,w) such that α ∈ Sm iff ∃w : Ψ(α,w) = 1. Then

there exists also a polynomial-size formula Ψ(α,w) in a negation normal form such

that α ∈ Sm iff ∃w : Ψ(α,w) = 1. Therefore, there exist a family of polynomial-time

CDS protocols for an arbitrary set S in NP/poly. Such protocols can be automatically

generated in polynomial time for every set S that can be described by any NP relation.

Alternative classical round-preserving methods that guard against malicious clients

are based on non-interactive zero-knowledge proofs, i.e., we have to either rely on ran-

dom oracles or use the common reference string (CRS) model. While CRS is a plausible

model for protocol design, constructing efficient non-interactive zero-knowledge proto-

cols for NP in the CRS model has been a long-standing open problem. Thus, our result

is also appealing from the complexity-theoretical viewpoint.

As stated already in Sect. 6, the DIE-based OT protocol leads to a general trans-

formation from CPIR to information-theoretically server-private OT, as the client can

use the CPIR protocol to fetch only the answer of the αth DIE protocol. In particu-

lar, there exists a generic CPIR construction for any IND-CPA secure additively ho-

momorphic cryptosystem [Ste98] with sublinear-but-superpolylogarithmic communi-

cation. Therefore, there exists also an OT protocol with comparable communication

under the sole assumption that IND-CPA secure additively homomorphic cryptosys-

tems exists. Under the assumption that IND-CPA secure length-flexible additively ho-

momorphic cryptosystem exist, one can construct a CPIR protocol [Lip05] with com-

municationΘ(k · log2 n+ℓ · log n) where k is the security parameter. Consequently, we

A New Protocol for Conditional Disclosure of Secrets And Its Applications 17

can construct an OT with communicationΘ(k·log2 n+ℓ ·logn), if an IND-CPA secure

length-flexible additively homomorphic cryptosystem exists. Finally due to the results

of Gentry and Ramzan [GR05], there also exists an OT protocol with optimal commu-

nication Θ(log n + ℓ + k), if we assume that Φ-Hiding is hard and that an IND-CPA

secure additively homomorphic cryptosystem exists.

Another two-message OT protocol was proposed by Kalai [Kal05]. Her protocol is

secure in the standard model, whereas our protocol requires a zero-knowledge proof that

the public key is valid. On the other hand, the query of Kalai’s protocol does not consist

of ciphertexts and thus cannot be used for the CDS protocol. Moreover, Thm. 3 holds

even with incorrectly formed pk provided that the corresponding encryption rule is ad-

ditively homomorphic and it is still possible to detect invalid ciphertexts. Therefore, we

can omit the zero-knowledge proofs for pk provided that we can verify that the plain-

text order does not have too small factors. For small enough γ and public plaintext order

this can be done efficiently by using Lenstra’s Elliptic Curve Method, see App. A for

further details. Hence, it is possible to achieve two messages as non-amortised round-

complexity in the standard model under stronger computational assumptions.

Finally, note that small detectable factors ofN can be effectively eliminated. Namely,

a server can eliminate a known factor p by multiplying a ciphertext Encpk(x) with

Encpk(pr) for r ← ZN . Then the client can learn only a coset x + pZN , i.e., we have

established a new cryptosystem over a new message space ZN/pZn ≃ ZN/p.

Acknowledgements. We would like to thank Phil Carmody, Yuval Ishai and Vladimir

Kolesnikov for useful comments. The work was partially supported by the Finnish

Academy of Sciences and by the Estonian Science Foundation, grant 6848.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How to

Sell Digital Goods. In Advances in Cryptology — EUROCRYPT 2001, volume 2045

of Lecture Notes in Computer Science, 2001. Springer-Verlag.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Cipher-

texts. In The Second Theory of Cryptography Conference, TCC 2005, volume 3378

of Lecture Notes in Computer Science, 2005. Springer Verlag.

[BK04] Ian F. Blake and Vladimir Kolesnikov. Strong Conditional Oblivious Transfer and

Computing on Intervals. In Advances on Cryptology — ASIACRYPT 2004, volume

3329 of Lecture Notes in Computer Science, 2004. Springer-Verlag.

[BL88] Josh Benaloh and Jerry Leichter. Generalized Secret Sharing and Monotone Func-

tions. In Advances in Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in

Computer Science, 1988. Springer-Verlag, 1990.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Opti-

mally Efficient Multi-Authority Election Scheme. In Advances in Cryptology — EU-

ROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, 1997. Springer-

Verlag.

[Cha04] Yan-Cheng Chang. Single Database Private Information Retrieval with Logarithmic

Communication. In The 9th Australasian Conference on Information Security and

Privacy (ACISP 2004), volume 3108 of Lecture Notes in Computer Science, 2004.

Springer-Verlag.

18 Sven Laur and Helger Lipmaa

[DJ01] Ivan Damgård and Mads Jurik. A Generalisation, a Simplification and Some Appli-

cations of Paillier’s Probabilistic Public-Key System. In Public Key Cryptography

2001, volume 1992 of Lecture Notes in Computer Science, 2001. Springer-Verlag.

[Elg85] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31(4), 1985.

[Fis01] Marc Fischlin. A Cost-Effective Pay-Per-Multiplication Comparison Method for

Millionaires. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at

RSA Conference 2001, volume 2020 of Lecture Notes in Computer Science, 2001.

Springer-Verlag.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private Matching

and Set Intersection. In Advances in Cryptology — EUROCRYPT 2004, volume

3027 of Lecture Notes in Computer Science, 2004. Springer-Verlag.

[GIKM00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting Data Pri-

vacy in Private Information Retrieval Schemes. Journal of Computer and System

Sciences, 60(3), June 2000.

[GLLM04] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On Private Scalar

Product Computation for Privacy-Preserving Data Mining. In Information Security

and Cryptology - ICISC 2004, volume 3506 of Lecture Notes in Computer Science,

2004. Springer-Verlag.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and How to Play Men-

tal Poker Keeping Secret All Partial Information. In Proceedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, 1982. ACM.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval

with Constant Communication Rate. In The 32nd International Colloquium on Au-

tomata, Languages and Programming, ICALP 2005, volume 3580 of Lecture Notes

in Computer Science, 2005. Springer-Verlag.

[Kal05] Yael Tauman Kalai. Smooth Projective Hashing and Two-Message Oblivious Trans-

fer. In Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes

in Computer Science, 2005. Springer-Verlag.

[KS05] Lea Kissner and Dawn Song. Privacy-Preserving Set Operations. In Advances in

Cryptology — CRYPTO 2005, 25th Annual International Cryptology Conference,

volume 3621 of Lecture Notes in Computer Science, 2005. Springer-Verlag.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without

Threshold Trust. In Financial Cryptography — Sixth International Conference, vol-

ume 2357 of Lecture Notes in Computer Science, 2002. Springer-Verlag.

[Len87] Hendrik W. Lenstra, Jr. Factoring integers with Elliptic Curves. Annals of Mathe-

matics, 126(2), 1987.

[Lip05] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication.

In The 8th Information Security Conference (ISC’05), volume 3650 of Lecture Notes

in Computer Science, 2005. Springer-Verlag.

[LLM05] Sven Laur, Helger Lipmaa, and Tanel Mielikäinen. Private Itemset Support Count-

ing. In Information and Communications Security, 7th International Conference,

ICICS 2005, volume 3783 of Lecture Notes in Computer Science, 2005. Springer-

Verlag.

[NP99] Moni Naor and Benny Pinkas. Oblivious Transfer and Polynomial Evaluation. In

Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Comput-

ing, 1999. ACM Press.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture

Notes in Computer Science, 1999. Springer-Verlag.

A New Protocol for Conditional Disclosure of Secrets And Its Applications 19

[Ste98] Julien P. Stern. A New and Efficient All or Nothing Disclosure of Secrets Protocol.

In Advances on Cryptology — ASIACRYPT ’98, volume 1514 of Lecture Notes in

Computer Science, 1998. Springer-Verlag.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-Interactive CryptoComputing

For NC1. In 40th Annual Symposium on Foundations of Computer Science, 1999.

IEEE Computer Society.

[WY04] Rebecca N. Wright and Zhiqiang Yang. Privacy-Preserving Bayesian Network

Structure Computation on Distributed Heterogeneous Data. In Proceedings of The

Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2004. ACM.

[ZD06] Paul Zimmermann and Bruce Dodson. 20 Years of ECM. In The Algorithmic Num-

ber Theory Symposium, volume 4076 of Lecture Notes in Computer Science, 2006.

Springer-Verlag.

[Zim06b] Paul Zimmermann. Optimal Parameters for ECM. Available at

http://www.loria.fr/˜zimmerma/records/ecm/params.html, as

of May, 2006.

A Non-interactive Partial Public Key Validation

Next, we propose another technique to transform the proposed protocols to be secure in

the the standard model. It does not need extra messages but needs an extra amount of

computations by an honest server. Namely, Thm. 3 holds even with incorrectly formed

pk provided that the corresponding encryption rule is additively homomorphic and it

is still possible to detect invalid ciphertexts. In particular, the Paillier cryptosystem is

homomorphic even if a public modulus N is incorrectly formed. Thus, the verifica-

tion of pk can just consist of computing a lower bound γ on factors of N . For small

enough γ this can be done efficiently by using Lenstra’s Elliptic Curve Method [Len87]

which works in time exp((
√

2 + o(1))
√

ln p · ln ln p) where p is the smallest factor of

N [ZD06]. If we want the server’s computation to be polynomial in logN then we

have to take a sufficiently small ℓ. To provide some concrete numbers note that ECM

allows “efficient” detection of 88-bit factors. Assume that the desired server-privacy

level is 2−40. Such a choice of ε2 is most probably sufficient in practise. Then, in the

case of the DIE protocol, one has ℓ = 47, which is sufficient for several applications. In

Spring 2006, we verified this approach by using the suggested optimal parameters from

[Zim06b], on an AMD Athlon 64 3000+ processor by using the GMP-ECM software.

As an example, if N = pq, where p is an 88-bit prime and q is an (1024 − 88)-bit

prime then one has to run the ECM algorithm on an expected 206 curves with bounds

B1 = 50 000 and B2 = 5 000 000. Testing on one curve with these parameters takes

approximately 2.5 seconds, and thus testing that the smallest factor is greater than 289

takes 9 minutes on average. On the other hand, if q is an 66-bit prime then it takes an

expected 77 curves with bounds B1 = 11 000 and B2 = 1 100 000. On the same plat-

form, testing one curve with these parameters takes approximately 0.66 seconds and

checking the bound 267 takes 51 seconds on average. Given the advances in the ECM,

we would expect the quoted timings to decrease dramatically over the next few years.

Publication P3

Ahto Buldas and Sven Laur. Knowledge-Binding Commitments with Applications in

Time-Stamping. Lecture Notes in Computer Science, volume 4450, pages 150–165.

c© Springer-Verlag. Reprinted with permission.

P3

Knowledge-Binding Commitments with Applications in

Time-Stamping

Ahto Buldas1,2,3,⋆ and Sven Laur4,⋆⋆

1 Cybernetica AS, Akadeemia tee 21, 12618 Tallinn, Estonia.
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.

3 University of Tartu, Liivi 2, 50409 Tartu, Estonia. Ahto.Buldas@ut.ee
4 Helsinki University of Technology, Laboratory for Theoretical Computer Science,

P.O.Box 5400, FI-02015 TKK, Finland. slaur@tcs.hut.fi

Abstract. We prove in a non-black-box way that every bounded list and set com-

mitment scheme is knowledge-binding. This is a new and rather strong security

condition, which makes the security definitions for time-stamping much more

natural compared to the previous definitions, which assume unpredictability of

adversaries. As a direct consequence, list and set commitment schemes with par-

tial opening property are sufficient for secure time-stamping if the number of

elements has an explicit upper bound N . On the other hand, white-box reduc-

tions are in a sense strictly weaker than black-box reductions. Therefore, we also

extend and generalize the previously known reductions. The corresponding new

reductions are Θ(
√

N) times more efficient, which is important for global-scale

time-stamping schemes where N is very large.

1 Introduction

Commitment schemes are basic building blocks in numerous cryptographic protocols.

The most important properties of commitment schemes are binding and hiding. A com-

mitment is hiding if it reveals no information about the committed message and binding

if it is impossible to change the committed message afterwards without detection. First

such schemes for committing a single bit were proposed by Blum [4] and by Bras-

sard et al [5] and were proven secure under the hardness of factoring assumption. Later

works have significantly improved their efficiency and weakened the underlying com-

plexity theoretic assumptions, see [14, 10] for further references. Here, we study the

so called partially releasable commitments, in which one can compute a commitment

(also called digest) for a list X = (x1, . . . , xN) of bit-strings, so that it is possible to

partially open the commitment for every xi ∈ X without disclosing the other elements

of X. For opening xi it is sufficient to present a decommitment string si (also called

certificate). Achieving the hiding property is somewhat trivial, as one can always add

another layer of commitments. Hence, our main emphasis is on the binding property.

List commitments [3, 1, 17] that are only binding are known as one-way accumulators.

⋆ Partially supported by Estonian SF grant no. 6944, and by EU FP6-15964: “AEOLUS”.
⋆⋆ Partially supported by Finnish Academy of Sciences, and by Estonian Doctoral School in

Information and Communication Technologies.

In particular, we analyze the security of a time-stamping protocol, where clients

send their requests x1, . . . , xN to a Time-Stamping Server (TSS) who computes the

commitment c and sends the corresponding certificates s1, . . . , sN back to the clients.

If c is published in an authentic way then everybody can verify that xi was generated

before c was published. This principle is used in practical time-stamping schemes [12]

where c is computed as the root of a hash tree. List commitment schemes were be-

lieved to be exactly what one needs for such kind of time-stamping. However, Buldas

et al [7] pointed out a flaw in the security proof of [12]. By giving a carefully crafted

oracle separation they showed that pure collision-resistance is insufficient to prove that

the hash tree time-stamping schemes [12] are secure. In other words, either there are

collision-resistant functions that are still insecure for time-stamping, or the security of

time-stamping schemes follows from currently unknown complexity-theoretic results.

The key point of this paradoxical result is that the number of committed elements is

potentially unbounded. In Sec. 4, we prove that all list and set commitments, where the

cardinality of X has an explicit bound |X| ≤ N , are suitable for time-stamping. The

proof is given in the exact security framework and is Θ(
√

N) times more efficient than

the previous reduction [7]. This improvement is especially valuable for global-scale

time-stamping schemes in which N is very large.

In Sec. 5, we show that all binding bounded list and set commitments are knowledge-

binding. This is a new and extremely strong security requirement inspired from the se-

curity of time-stamping schemes. Its strength is comparable to the plaintext awareness

property, which is defined for public key encryption. The knowledge-binding property

is also much more intuitive requirement for time-stamping schemes than the previous

ones [7, 9], which use unpredictable probability distributions to model the stream of

“new documents” sent to a TSS. Roughly, the knowledge-binding property states that

for every efficient TSS, it is possible (by observing the commitment procedure) to effi-

ciently extract the list X of all documents that can be opened by the TSS in the future.

The dedicated extractor must know only the internal coin tosses of TSS and some pub-

lic parameters. Consequently, even if the TSS is malicious, it must know the whole list

X before the corresponding commitment is published. This allows to prove the security

in the classical ideal vs real world comparison framework [11, pp.622–631,697–700].

Moreover, the notion of knowledge-binding commitments can be useful in other

cryptographic protocols, because the ability to open a commitment does not change in

time and we may skip the proofs of knowledge in the commitment phase. On the other

hand, the corresponding security proofs are not black box. This means that once we

have an efficient adversary A that breaks the knowledge-binding condition we know

that there exists an efficient adversary A′ that breaks the binding property of the corre-

sponding commitment scheme. However, we may have no efficient ways to construct

A′. Therefore, in reality the knowledge-binding property can be violated but the com-

mitment scheme may still be practically binding—the efficient breaking procedure ex-

ists but is not known. Black-box security proofs in turn give an efficient procedure for

constructing A′ from A. In this sense, Theorems 1–4 give substantially stronger security

guarantees for a fixed hash function (e.g. SHA-1) than Theorems 5 and 6.

In Sec. 6, we briefly discuss about other possible applications of knowledge-binding

such as distributed and fine-grained time-stamping.

Some of the details of this work have been omitted because of space limitations.

The missing details will be published in the IACR ePrint Archive.

2 Preliminaries and Notation

We use a non-uniform model of computations, where each algorithm A is specified as

an input of a universal multi-tape Turing machine U that first copies the code of A to

its working-tape and then starts to interpret it. A is a t-time algorithm if U performs at

most t elementary operations to interpret the code of A independent of the input of A.

By x ← D we mean that x is chosen randomly according to a distribution D.

In particular, if A is an algorithm, then x ← A(y) means that x is chosen accord-

ing to the output distribution of A on an input y. Finite sets are identified with the

corresponding uniform distributions, e.g., x ← {0, 1}ℓ means that x is a uniformly

chosen ℓ-bit string. If D1, . . . ,Dm are distributions and F (x1, . . . , xm) is a predi-

cate, then Pr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the probability that

F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm.

By a cryptographic primitive P we mean a set of computable functions associated

with the advantage function AdvP(·), such that for every adversarial algorithm A, the

advantage AdvP(A) is a positive real number. Mostly, AdvP(A) is defined as the non-

trivial success (scaled probability) in certain game sec that captures the desired prop-

erties of P. A primitive P is said to be (t, ε)-secure in terms of sec if Advsec
P (A) ≤ ε

for every t-time adversary A. For example, by a (t, ε)-secure collision-resistant hash

function we mean a pair H = (Gen, h) of algorithms such that if pk ← Gen is an

arbitrary output of the generation function then h(pk, ·) = hpk(·) is a function of type

{0, 1}ℓ → {0, 1}m where ℓ > m; and for every t-time adversary A :

Advcoll
H (A) = Pr [pk←Gen, (x1, x2)←A(pk) : x1 6= x2 ∧ hpk(x1) = hpk(x2)] ≤ ε .

Time-success ratio. Quite often it is suitable for adversaries to find a trade-off between

plausible attacking-time t and the corresponding advantage ε(t) against P. If the min-

imum time-success ratio for P is αP, then ε(t) ≤ t
αP

by definition. Often, we cannot

estimate anything else about P than αP. Now, any black- or white-box reduction intro-

duces a change ratio γ = α1

α0
where α0 is the time-success ratio of the basic primitive

and α1 is the ratio of the derived primitive, i.e., we have established a new approximate

bound ε1(t) ≤ t
γα0

. Therefore, large values of γ provide better approximating bounds.

Sampling bounds. Our proofs use several standard statistical bounds. Let X1, . . . , Xm

be identically distributed independent zero-one random variables with µ = Pr [Xi = 1]
and let X =

∑m
i=1 Xi. Then for any 0 ≤ θ ≤ 1 the Chernoff bounds [13]

Pr [X ≤ (1− θ)µm] ≤ e−θ2mµ/2 , and Pr [X ≥ (1 + θ)µm] ≤ e−θ2mµ/3 .

We also need a Birthday bound to determine the collision probability. Let Y1, . . . , Ym be

identically but arbitrarily distributed independent random variables with possible values

{1, . . . , N}. Then the probability p that all Yi-s are different satisfies p ≤ e−
m(m−1)

2N . In

particular, if m ≥ 1.5
√

N and N ≥ 9 then p ≤ 1
2 .

3 Partially Releasable Commitment Schemes

Set and list commitments. Most commitment schemes for ℓ-bit strings facilitate only

complete disclosure of the committed input. In the context of time-stamping, the com-

plete input can be several gigabytes long whereas we actually need to disclose only a

few hundred bits. Therefore, we study commitment schemes that facilitate partial dis-

closure of inputs. List commitments are order-preserving: committed strings are ordered

tuples. Set commitments in turn do not provide any ordering. Like ordinary commit-

ment schemes, these commitments are specified by four basic algorithms: Gen, Com,

Cert and Ver. Initialization algorithm Gen generates public parameters pk. Elements

(m1, . . . , mn) are committed by computing (c, d) ← Compk(m1, . . . , mn), where the

commitment c is sent to the receiver and d is kept by the sender for later use. To prove

that mi was indeed used to compute the commitment c, the sender generates a certifi-

cate5 s← Certpk(d, mi) the validity of which can be tested with the Ver algorithm.

The commitment scheme is functional if for any (c, d)← Compk(m1, . . . , mn) and

s← Certpk(d, mi), the verification result Verpk(c, n, mi, s) = true with overwhelming

probability. For list commitments, the certificate s contains also the exact location i of

the decommitted element, denoted as loc(s) = i. We explicitly assume that a decom-

mitment certificate for a set X = {x1, . . . , xr} is a union of the corresponding element

certificates s1, . . . , sr denoted by s1 ∪ . . .∪ sr. Consequently, certificates can be freely

joined together and split into sub-certificates. For many commitment schemes such lists

can further be compressed but this is only an implementation detail.

We omit the formal definition of the hiding property, since we study only the fea-

tures related to the binding property. The binding property is different for set and list

commitments. For list commitments, the binding property is violated if an adversary

can open the i-th element in two different ways:

Advbind(A) = Pr

pk← Gen, (c, n, x0, s0, x1, s1)← A(pk) :

x0 6= x1 ∧ loc(s0) = loc(s1)

∧ Verpk(c, n, x0, s0) = Verpk(c, n, x1, s1) = true

, (1)

where the probability is taken over the coin tosses of all relevant algorithms. Since

certificates are closed under union and there is no ordering for set commitments, the

only way to misbehave is to exceed the size of X:

Advbind(A) = Pr

[

pk← Gen, (c, n, X, s)← A(pk) :

Verpk(c, n, X, s) = true ∧ |X| > n

]

, (2)

where Verpk(c, n, X, s) first splits X and s into components and then verifies each com-

ponent xi ∈ X separately by using the corresponding component-certificate si ∈ s.

We say that the commitment scheme is (τ, ε)-binding if for all τ -time adversaries

Advbind(A) ≤ ε. For unbounded adversaries, we speak about statistical ε-binding.

Note that set and list commitments must explicitly specify the number n of the

committed elements. Indeed, if the certificates do not reveal the size of the commitment,

5 To be precise, Cert should return a vector of certificates for each location of mi in the list.

a malicious adversary can just hide some committed elements and receivers can never

be sure if the commitment is fully opened. A commitment scheme is N -bounded if

Verpk(c, n, x, s) = false for all n > N .

List commitment schemes that satisfy only the binding properties are known as one-

way accumulators [1, 3, 17]. One-way accumulators that in addition to positive state-

ments x ∈ X also allow to (compactly) prove negative statements x 6∈ X are called

undeniable attesters [6]. The commonly used binding requirement for one-way accu-

mulators is n-times collision-freeness [1], which is equivalent to the binding property

of set commitments.

Time-stamping schemes. Time-stamping protocols process documents in batches X1,

X2, X3, . . . that we call rounds. The rounds correspond to time periods of fixed duration

(one hour, one day, etc.) After the i-th period, a short commitment ci of the correspond-

ing batch Xi is published. A document x ∈ Xi precedes document y, if there is j > 0
such that y ∈ Xi+j . Obviously, for a fixed commitment ci there must be an efficient way

to prove that x ∈ Xi. However, for documents y 6∈ Xi such proofs must be infeasible to

create. Note that ci can be viewed as a classical set or list commitment to the set Xi and

the corresponding proof of x ∈ Xi as a certificate. Therefore, time-stamping schemes

share the same functionality and algorithmic description as the set and list commitment

schemes. Such a structural similarity is indeed remarkable. Still, careful studies of the

security requirements reveal considerable differences between time-stamping and com-

mitment schemes. Different security definitions exist for time-stamping schemes [7–9,

12]. In this paper, we adapt the strongest6 definition [9] for the non-uniform precise

security framework with minor modifications in notations.

Formal definitions of time-stamping schemes do not require that n is explicitly given

as an argument to the verification algorithm Ver, but negative results in [7] suggest

that time-stamping schemes (at least those without additional third parties) must be

bounded, i.e., n has to be at least implicitly specified.

Intuitively, time-stamping schemes must be secure against “back-dating” and this it-

self raises a subtle issue: How to model the future? Most works [7–9] have taken an ap-

proach based on computational entropy. Document generation is modeled as an efficient

randomized procedure and the security guarantees are given for document distributions

with high enough computational entropy. More formally, an adversary A = (A1, A2) is

(τ, δ)-unpredictable if for every τ -time predictor Π :

Advupr

A (Π) = Pr

[

ω1 ← Ω, pk← Gen, x̂← Π(pk, ω1),

(c, n, φ)← A1(pk; ω1), (x, s)← A2(φ) : x̂ = x

]

≤ δ ,

where ω1 denotes the random coins of A1 and the probability is taken over the coin

tosses of all relevant algorithms. The second stage A2 of the adversary models an effi-

cient document generation (back-dating) procedure.

6 There exist stronger security definitions for time-stamping schemes with additional (auditing)

parties [8]. The main drawback of those schemes is a large amount of extra communication.

Definition 1 (Entropy based security). A time-stamping scheme is (t, τ, δ, ε)-secure

if for every (τ, δ)-unpredictable t-time A :

Advts(A) = Pr

[

ω1 ← Ω, pk← Gen, (c, n, φ)← A1(pk; ω1),

(x, s)← A2(φ) : Verpk(c, n, x, s) = true

]

≤ ε . (3)

Here, δ quantifies a trivial advantage. Indeed, consider the next adversary A = (A1, A2):

– A1(pk; ω1) computes (c, d) ← Compk(x̂) and the corresponding valid certificate

s← Certpk(c, x̂) and outputs a tuple (c, 1, (x̂, s)).
– A2(x̂, s) generates a random x so that x = x̂ with probability δ, and outputs (x, s).

For every τ the adversary A is (τ, δ)-unpredictable. However, no matter how the time-

stamping scheme is defined, the advantage Advts(A) of A is at least δ. Hence, it is

reasonable to assume that δ ≪ ε. Moreover, as log 1
δ is an upper bound for the compu-

tational Rényi entropy, we implicitly assume that the computational Shannon entropy

of the future documents is at least log 1
δ w.r.t. the time-bound τ .

The biggest drawback of the entropy based definition is non-uniformity. The se-

curity definition is natural in the polynomial model but has some flaws when adapted

to the exact model. It only offers protection against (τ, δ)-unpredictable adversaries!

Hence, it does not exclude extremely successful adversaries that are just not quite so

unpredictable. In theory, a time-stamping scheme could be protected against (τ, δ)-
unpredictable adversaries but still be totally insecure against (τ, δ+δ100)-unpredictable

adversaries. This flaw can be fixed by requiring strong uniformity in the definition:

Definition 2 (Black-box security). A time-stamping scheme is (t, τ, ε)-secure if there

exists a τ -time black-box extractor machine K such that for every t-time A :

Advts(A) = Pr

ω1 ← Ω, pk← Gen, X̂← K
A(pk;ω1,·)(pk),

(c, n, φ)← A1(pk; ω1), (x, s)← A2(φ) :

(Verpk(c, n, x, s) = true ∧ x 6∈ X̂) ∨ |X̂| > n

≤ ε , (4)

where ω1 denotes random coins of A1 and K gets a black-box access to A1(pk; ω1) and

A2(φ; ·). The working time of KA(pk;ω1,·) includes the time needed to execute all oracle

calls. For list commitments, we treat X̂ as a list and write x ∈ X̂ iff x = X̂[loc(s)].

Intuitively, we state that malicious time-stamping servers cannot issue valid cer-

tificates for unknown documents, as there exists a well known algorithm KA(pk;ω1,·)

for efficiently reconstructing the list of all valid documents X̂. This algorithm can be

automatically constructed for every t-time adversary.

It is straightforward to see that (t, τ, ε)-secure time-stamping scheme is always

(t, τ, δ, ε + Nδ) secure where N ≥| X |, as one can use K in prediction. In Sec. 4,

we prove that every binding N -bounded list commitment scheme is also a secure time-

stamping scheme. Still, there are quantitative differences between these two notions.

Practical constructions based on hash trees. Merkle trees [15] and count-certified

hash trees [16] (described below) constructed from collision-resistant hash functions

are binding but not hiding even if the hash function is modeled as a random oracle—a

release of an element (a leaf node) also reveals one neighboring element (the sibling

leaf node). Nevertheless, if we use Merkle trees to compute a short commitment from

hiding and binding commitments, we get binding and hiding list and set commitments.

x1 x3x2 x4

x12

x14

x34h(x1x2) →

h(x12x34) →

h(x3x4) →

x1 x2

x12 x3

1

12

1

h(1x1x21) →

h(2x12x31) → x13

Fig. 1. Merkle hash tree for {x1, x2, x3, x4} and a count-certified hash tree for {x1, x2, x3}.

A Merkle hash tree for a list X is a binary tree the leaves of which are the elements of

X and each non-leaf node is a hash of its two children (Fig. 1, left). Nodes with a single

child can be avoided. Hence, every non-leaf node is assumed to have two children.

A count-certified hash tree (Fig. 1, right) is a binary tree which is similar to a Merkle

tree, except that its arcs are labeled with counters each of which equal to the number of

leaves in the corresponding subtree. Each non-leaf vertex v is a hash h(nLxLxRnR),
where nL and nR are the counters of the left- and the right subtree respectively. The

counter c of the unique outgoing arc of v is the sum nv = nL + nR.

Each hash tree can be represented as a commitment function (c, X) ← Compk(X),
where c is the root hash value of the corresponding tree and pk denotes the public

parameters associated with the collision-resistant hash function h. By the certificate

Certpk(X, xi) for xi ∈ X we mean the smallest amount of data needed to recompute the

root hash value. For example, in the Merkle hash tree (Fig. 1, left) the certificate s2 for

x2 is s2 = ((x1,), (, x34)) which represents a sequence of hashing steps starting from

the leaf x2 and ending with the root hash value, whereas denotes an empty slot which

during the verification is filled with the hash of the previous pair. Similarly, in the count-

certified hash tree (Fig. 1, right) the certificate for x2 is s2 = ((1, x1, , 1), (2, , x3, 1)).
The verification function Verpk(c, n, x, s) simply recomputes the root hash value by us-

ing s and compares it with c. It also checks whether n ≤ N . The verification algorithm

for count-certified trees also recomputes the intermediate counter values to verify the

certificate s, in particular if the counter of the root vertex is n.

Collision-Extraction Property. For hash trees with a fixed shape and count-certified

hash trees there is a straight and precise reduction of the binding property to the collision-

resistance of h because of the following property: If x0 6= x1, Verpk(c, n, x0, s0) =
Verpk(c, n, x1, s1) = true, and loc(s0) = loc(s1), then the internal h-calls of these

two verifications comprise a collision for h. Moreover, if the tree is balanced, then the

collision can be extracted in O(|s0|+ |s1|) = O(log2 N) time.

1. Execute A1 in a black-box way and store (c, n, φ)← A1(pk; ω1).

2. Generate m independent samples (x1, s1)← A2(φ), . . . , (xm, sm)← A2(φ).

3. Output (c, n) and a set of valid pairs V = {(xi, si) : Verpk(c, n, xi, si) = true}.

Fig. 2. Black-box certificate extractor K
A
cert(m).

4 Bounded Commitments are Sufficient for Time-Stamping

In this section, we prove that bounded commitment schemes with partial opening are

sufficient to construct secure time-stamping schemes. The new security reductions use

a simple black-box certificate extractor (Fig. 2) and in the proofs we just show that a

big enough set of valid decommitments V allows to break the binding property.

Our proofs do not only generalize the existing ones [7] but are also more efficient.

Presented theorems together with the previous separation results [7, 9] provide a clear

border between the well studied classical binding properties like collision-freeness and

the properties needed for time-stamping. For bounded commitment schemes the binding

property implies time-stamping security. Otherwise, these notions are independent—

binding properties are not necessary [9] nor sufficient [7].

To clarify the presentation, we have omitted a small O(N log N + t) term that

counts the computational effort needed to manage the list V of valid decommitments,

as the contribution to the total working time is irrelevant for all reasonable values of ε.

To be absolutely precise, one has to increase the time-bounds for the binding property

by O(N log N + t) in Theorems 1–4.

Theorem 1 (Entropy based security). Every
(

6t
√

N
ε , ε

8

)

-binding and N -bounded list

commitment scheme is also a
(

t, t, ε3

432·N , ε
)

-secure time-stamping scheme for N ≥ 9.

Proof. Let A = (A1, A2) be a t-time adversary that violates
(

t, t, ε3

432·N , ε
)

-security

promise, i.e., Advts(A) ≥ ε and A2 is sufficiently unpredictable (even for itself):

Pr [Coll] := Pr

[

pk← Gen, (c, n, φ)← A1(pk; ω),

(x0, s0)← A2(φ), (x1, s1)← A2(φ) : x0 = x1

]

≤ ε3

432N
.

If m = 6
√

N
ε then the black-box certificate extractor KA

cert(m) runs in time 6t
√

N
ε and

provides enough certificates to reveal a double opening. Let Coll∗ denote that two equal

messages xi = xj are produced internally by KA
cert(m). Then by the union bound

Pr [Coll∗] ≤
∑

pk,ω1

Pr [pk, ω1] ·
m(m− 1)

2
· Pr [Coll|pk, ω1]

≤ m(m− 1)

2
· Pr [Coll] ≤ m2

2
· ε3

432N
≤ ε

24
.

Next, we estimate the number of valid document-certificate pairs created by KA
cert(m).

Let εpk,ω1 = Advts(A|pk, ω1) denote the probability that A is successful for fixed pk

and ω1. As Pr
[

pk← Gen, ω1 ← Ω : εpk,ω1 ≥ ε
2

]

≥ ε
2 , we apply the Chernoff bound

for these (pk, ω1) pairs with θ = 1
2 and Xi indicating (xi, si) ∈ V, and get

Pr [|V| ≤ 1.5
√

N |εpk,ω1 ≥ ε
2] ≤ e−

3
√

N

8 < 1/3 .

Since V consists of identically distributed independent variables, we apply the Birthday

bound. If |V| ≥ 1.5
√

N then loc(si) = loc(sj) for some i, j with probability > 1
2 . Let

C be an adversary that runs KA
cert(m) and then tries to find a double opening in V. Then

Advbind(C) ≥ ε

2
·
(

1− e−
3
√

N

8

)

· 1
2
− Pr [Coll∗] >

ε

6
− ε

24
=

ε

8

for N ≥ 9 and we have obtained a desired contradiction. ⊓⊔

Theorem 2 (Entropy based security). Every
(

4Nt
ε , ε

8

)

-binding and N -bounded set

commitment scheme is a
(

t, t, ε3

64N2 , ε
)

-secure time-stamping scheme for N ≥ 6.

Proof. Similarly to the previous proof, let A = (A1, A2) be a t-time adversary that

violates a
(

t, t, ε3

64N2 , ε
)

-time-stamping security promise. In other words, Advts(A) ≥
ε and Pr [Coll] ≤ ε3

64(N+1)2 . Fix m = 4N
ε . Then the black-box certificate extractor

C := K
A
cert(m) then runs in time 4Nt

ε . The Chernoff bound with θ = 1
2 yields

Pr
[

|V| ≤ N |εpk,ω1 ≥ ε
2

]

≤ e−
N

4 < 1/2 .

Again, Pr
[

pk← Gen, ω1 ← Ω : εpk;ω ≥ ε
2

]

≥ ε
2 and we have obtained a contradic-

tion: Advbind(C) ≥ ε
2 ·

(

1− e−
N

4

)

− Pr [Coll∗] > ε
4 − m2

2 · ε3

64N2 = ε
8 . ⊓⊔

Theorem 3 (Uniform security). Every (2Nt
ε , ε

2)-binding and N -bounded list commit-

ment scheme is also (t, 2Nt
ε , ε)-black-box secure time-stamping scheme.

Proof. For the proof we have to fix a canonical black-box extractor machine KA:

1. First run A1 and store (c, n, φ)← A1(pk; ω1) and set X̂[i] = ⊥ for i ∈ {1, . . . , n}.
2. Fix m = 2N

ε and for k ∈ {1, . . . , m} do
– Compute an independent sample (xk, sk)← A2(φ).

– If Verpk(c, n, xk, sk) = true and X̂[loc(sk)] = ⊥ then set X̂[loc(sk)] = xk.

3. Output the last snapshot of X̂.

Clearly, for every t-time adversary A = (A1, A2), the extraction algorithm KA runs in

time 2Nt
ε and the extractor K is valid for the definition.

For the sake of contradiction, assume that a t-time adversary A = (A1, A2) violates

the security promise (4) w.r.t. K. Let a pair (xk, sk) be revealing if xk 6= X̂[loc(sk)] in

Step 2 of KA. Then the probability that (xk, sk) is revealing must be larger than ε for

every k ∈ {1, . . . , m}, since the previous state of X̂ can be viewed as a partial output of

KA. Let Xk be the corresponding zero-one indicator variable, i.e., Xk = 1 if (xk, sk)
is revealing. Then εk = E[Xk] > ε and the average of Sm =

∑m
k=1 Xk is

E[Sm] = E [X1 + · · ·+ Xm] = ε1 + · · · εm > mε = 2N .

On the other hand, E[Sm] ≤ N + Pr [Sm > N] · 2N
ε and thus Pr [Sm > N] > ε

2 .

Therefore, with probability strictly more than ε
2 there are N +1 revealing pairs (xk, sk)

computed by K
A. As the commitment scheme is N -bounded, revealing pairs exist only

if n ≤ N . Hence, at least one slot must be overwritten if there are N +1 revealing pairs

and we have found a double opening with probability strictly more than ε
2 . ⊓⊔

Theorem 4 (Uniform security guarantee). Every (2Nt
ε , ε

2)-binding N -bounded set

commitment scheme is also (t, 2Nt
ε , ε)-black-box secure time-stamping scheme.

Proof. The construction given above is also valid for set commitments. ⊓⊔

Comparison with previous results. Our reductions are not completely novel. A similar

proof with a different reduction was given in [7] for hash trees. Therefore, we compare

the time-success ratios. Recall that the minimal time-success ratio α implies ε(t) ≤ t
α

and hence large ratios γ = α1

α0
lead to better security bounds.

In Thm. 1 we constructed a double opener with running time t0 ≈ 6t
√

N
ε and with

advantage ε0 ≈ ε
8 , based on a back-dating adversary with running time t and advan-

tage ε. Thus the change ratio is γ ≈ ε
48

√
N

for our reduction. If we adapt the reduction

presented in [7] for the exact security model we obtain a ratio γ ≈ ε
2N , which is sig-

nificantly smaller for N ≥ 600. In global-scale time-stamping services, N can be very

large (say millions or even billions) and our new reduction by far supersedes the previ-

ous one [7].

Similarly, one can verify that γ ≈ ε
4N for Thm. 3 and Thm. 4 but the security

guarantees are much stronger. To break the black-box security an adversary can produce

valid document-certificate pairs with low computational Rényi entropy, which makes it

impossible to use the birthday paradox. It is easy to see that the extractor must work in

time Θ(Nt
ε) and

√
N in the denominator is not achievable.

5 All Bounded Commitment Schemes are Knowledge-Binding

Both security definitions for time-stamping (Def. 1,2) are based on heuristic assump-

tions. Namely, the future is modeled as a computationally efficient stochastic process.

Such an assumption has two major drawbacks. Firstly, it is philosophically questionable

and causes practical problems in the classical framework of secure computations [11]:

due to the non-uniform nature of such model, future documents may have arbitrary dis-

tributions. Secondly, the success of back-dating adversaries is computed as an average

over the distribution of future documents and it might still be easy to “backdate” a fixed

document. To overcome these problems, we propose a new security notion where the

future is modeled as an advice string that is independent of pk. The independence as-

sumption is essential. Otherwise, no computationally binding commitment scheme can

be secure, since the advice may contain explicit double-openings.

Definition 3. A commitment scheme is (t, τ, ε)-knowledge-binding if for every t-time

adversary A = (A1, A2) there exist a dedicated τ -time extractor machine KA such that

Advk-bind(A) = max
adv

Pr

pk← Gen, ω1 ← Ω, X̂← KA(pk; ω1),

(c, n, φ)← A1(pk; ω1), (x, s)← A2(φ, adv) :

(Verpk(c, n, x, s) = true ∧ x 6∈ X̂) ∨ |X̂| > n

≤ ε ,

where adv varies over all advices of length t and the probability is taken over the coins

of Gen, A1 and A2. For list commitments, X̂ is a list and write x ∈ X̂ iff x = X̂[loc(s)].

The new definition explicitly states that there exists an efficient extraction strategy

KA that is able (by observing the internal computations of the committing algorithm A1)

to predict any bit-string x that is later ”back-dated” by A2. I.e, in some sense x already

existed before the commitment and no real back-dating attacks were performed.

But there is an even more intuitive interpretation. When an adversary publishes a

commitment c, he implicitly fixes his level of knowledge about the commitment and

no future actions can change it. As the level of knowledge does not change in time, a

successful opening “proves” that the adversary already “knew” the committed element

when the commitment was created. Hence, we can omit proofs of knowledge at the

commitment stage and reduce the number of rounds in various protocols. Thus, the new

notion is very similar to plaintext-awareness of public-key encryption schemes.

Finally, note that knowledge-binding is a necessary condition for the multi-party

security of time-stamping schemes. In the ideal implementation, TSS gives a list X to a

trusted party who will later serve partial release queries x ∈ X? Hence, there must be

an efficient way to extract all documents that TSS can potentially open as a response

for any future message that is independent of pk, i.e., the extractor machine KA must

exist. To get multi-party security in the malicious model, we must also protect a honest

TSS against malicious clients. This can be done in an obvious way by using digital

signatures, but due to the space limitations we defer the discussion to follow-up articles.

Clearly, the knowledge-binding property can be established only by using white-

box reductions. In other words, we cannot efficiently construct the code of KA given

only the code of A, although KA itself is an efficient algorithm. Such reductions provide

substantially weaker security guarantees for fixed hash functions like SHA-1, since we

know a priori that efficient collision finders must exist for SHA-1. Therefore, the claims

of existence without efficient construction strategies provide no new information. As a

result, we can only talk about the security of hash function families, i.e., we have to

consider SHA-1 as a “typical” representative of a collision-free hash function family.

The proofs consist of two main steps. First we analyze the behavior of A and con-

struct a dedicated knowledge extractor KA. Next we show that KA is efficient and

Advk-bind(A) is sufficiently small. To construct KA, we run A on all possible inputs and

find suitable triggering messages adv that force A to reveal most of the valid certificates.

Next, we construct KA from A and the triggering messages. As the knowledge-binding

condition only requires the existence of KA, the construction time is not an issue.

Theorem 5. For every t > 0 and δ > 0, there exists τ = (N
δ +1) ·O(t) such that every

(τ, ε)-binding list commitment scheme is (t, τ, ε + δ)-knowledge binding.

Proof. Fix a t-time adversary A and consider a giant status matrix W[pk, ω1; adv, ω2]
the rows of which are indexed by public keys pk and random coins ω1 of A1, whereas

the columns are indexed by t-bit advices adv and random coins ω2 of A2. Define

W[pk, ω1; adv, ω2] =

{

0, if Verpk(c, n, x, s) = false ,

loc(s), if Verpk(c, n, x, s) = true ,

where (c, n, φ) ← A1(pk; ω1) and (x, s) ← A2(φ, adv; ω2). Note that few columns

of W cover most of the rows containing non-zero elements. Namely, Lemma 1 from

App. A assures the existence of I =
{

(adv1, ω
1
2), . . . , (advk, ωk

2)
}

such that |I| ≤ N
δ

and for any fixed advice-randomness pair (adv, ω2):

Pr [(pk, ω1) : 0 6= W[pk, ω1; adv, ω2] 6∈ L[pk, ω1] ∧ |L[pk, ω1]| < N] ≤ δ , (5)

where L[pk, ω1] = {W[pk, ω1; adv, ω2] : (adv, ω2) ∈ I} is a set of revealed locations.

Now the construction7 of KA is evident:

1. Given (pk, ω1) store (c, n, φ)← A1(pk; ω1) and set X̂[i] = ⊥ for i ∈ {1, . . . , n}.
2. For each (adv, ω2) ∈ I do

– Compute (x, s)← A2(φ, adv; ω2).

– If Verpk(c, n, x, s) = true then set X̂[loc(s)]← x.

3. Output the last snapshot of X̂.

To analyze the advantage of KA, we fix a pair (adv, ω2). Let (c, n, φ) ← A1(pk; ω1)
and (x, s) ← A2(φ, adv; ω2) as before. For valid decommitment value s, the entry

X̂[loc(s)] = ⊥ only if |L[pk, ω1]| < N and thus the inequality (5) given above yields

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ X̂[loc(s)] = ⊥] ≤ δ. Alternatively, KA can fail

if Verpk(c, n, x, s) = true but X̂[loc(s)] 6= x. However, we can naturally combine

A1, A2 and KA into an adversary B that outputs these double openings and performs

(N
δ + 1) ·O(t) elementary operations. Consequently, Advbind(B) ≤ ε and thus

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ x 6= X̂[loc(s)] 6= ⊥] ≤ ε .

As a result, we have obtained that for any pair (adv, ω2):

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ x 6= X̂[loc(s)]] ≤ δ + ε

and the claim follows. ⊓⊔

Theorem 6. For every t > 0 and δ > 0, there exists τ = (N
δ +1) ·O(t) such that every

(τ, ε)-binding set commitment scheme is (t, τ, ε + δ)-knowledge-binding.

7 Note that all elements of the set I are hardwired as explicit constants into the code of KA, i.e.,

KA does not compute I. As KA runs on a universal Turing machine, it must rewind the code

of A2 and thus KA performs at most O(t) extra steps to complete the loop of Step 2.

Proof. Fix a t-time adversary A and consider a status matrix W[pk, ω1; adv, ω2] that is

indexed identically to the previous proof but the entries are defined differently:

W[pk, ω1; adv, ω2] =

{

0, if Verpk(c, n, x, s) = false ,

x, if Verpk(c, n, x, s) = true ,

where (c, n, φ) ← A1(pk; ω1) and (x, s) ← A2(φ, adv; ω2). Then Lemma 1 from

App. A assures the existence of I =
{

(adv1, ω
1
2), . . . , (advk, ωk

2)
}

such that |I| ≤ N
δ

and for every fixed advice-randomness pair (adv, ω2):

Pr [(pk, ω1) : 0 6= W[pk, ω1; adv, ω2] 6∈ L[pk, ω1] ∧ |L[pk, ω1]| < N] ≤ δ , (6)

where L[pk, ω1] = {W[pk, ω1; adv, ω2] : (adv, ω2) ∈ I} is a set of revealed elements.

Now the construction of KA is straightforward:

1. Given (pk, ω1) store (c, n, φ)← A1(pk; ω1) and set X̂← ∅.
2. For each (adv, ω2) ∈ I do

– Compute (x, s)← A2(φ, adv; ω2).

– If Verpk(c, n, x, s) = true then add x to X̂.

3. Output the last snapshot of X̂.

To analyze the advantage of KA, fix (adv, ω2). Let (c, n, φ)← A1(pk; ω1) and (x, s)←
A2(φ, adv, ω2) as before. As X̂[pk, ω1] = L[pk, ω1] by the construction (see Lemma 1),

the inequality (6) yields Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂ ∧ |X̂| < n ≤ N] ≤ δ. The

extractor KA can also fail when Verpk(c, n, x, s) = true but x /∈ X̂ and |X̂| ≥ n.

Again, we can naturally combine A1, A2 and KA into an adversary B with running-time

(N
δ +1)·O(t) that runs all algorithms and extracts all valid openings. Consequently, the

restriction Advbind(B) ≤ ε yields Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂ ∧ |X̂| ≥ n] ≤ ε
and we have obtained that for any pair (adv, ω2):

Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂] ≤ δ + ε

and the claim follows. ⊓⊔

Efficiency of the new reduction. Again, we compute time-success ratios to compare

the efficiency of the new white-box reduction to the previous black-box ones. To have

a fair comparison we take δ ≈ ε. Then Theorems 5 and 6 provide attacks against the

binding property with parameters t0 ≈ (N
δ + 1)t and ε0 = ε, provided that there

exist a t-time adversary achieving ε + δ success. As a result, we obtain a change ratio

γ = α1

α0
≈ (N

δ + 1)−1 · ε
ε+δ ≈ ε

2N , which is better than the change ratio γ ≈ ε
4N

provided by Thm. 3 and Thm. 4. The difference is not essential rather it comes from

slightly loose success bounds in Thm. 3 and Thm. 4.

6 Applications of Knowledge-Binding Commitments

Here, we briefly describe how knowledge-binding count-certified hash trees can be used

and why knowledge-binding property is important. Knowledge-binding property can be

viewed as an indifference against outside advices. Similar to the plaintext-awareness,

the knowledge-binding property allows one to combine commitments with other cryp-

tographic primitives without a fear of unwanted interference. Such interference often

makes it hard or impossible to prove the security of new constructions. If the secret or

public parameters of other primitives are independent of the commitment parameters

pk, then the rest of the protocol can be interpreted as an external advice. Hence, one can

use the standard hybrid argument technique even if the primitives are used concurrently.

Distributed and fine-grain time-stamping. Knowledge-binding commitments give

rise to a secure time-stamping service where a central time-stamping authority (TSS)

computes and publishes the round commitment (c, n) and distributes the respective cer-

tificates si to the clients. But such service is susceptible to denial-of-service attacks.

Hence, it is more natural to consider a distributed service where k independent servers

compute sub-commitments (ci, ni) and at the end of the round the master commitment

(c, n) is compiled. Therefore, it is advantageous to use knowledge-binding commit-

ments that facilitate fast merging of sub-commitments and mostly local certificate com-

putations. Count-certified hash trees have the following important property: every root

node (ci, ni) of a hash subtree forms a correct commitment. Moreover, given two root

nodes (cL, nL) and (cR, nR) it is straightforward to compute the commitment of the

merged tree and update the corresponding certificates.

In a way, a set commitment scheme provides a really coarse-grain time-stamping

service. It is impossible to order the events inside the round X. List commitment pro-

vides only a partial solution, as clients have to trust that the TSS orders documents cor-

rectly in a single round. Tree-shaped list commitments that preserve knowledge-binding

w.r.t. the root of each subtree allow also fine-grained time-stamping even if the TSS acts

maliciously. Essentially, TSS has to send to a Client all root commitments (ci, ni) of

all preceding computations, then the Client has strong guarantees that after submitting

his query the TSS cannot insert any messages in the prefix of the list without getting

caught. Hence, count-certified hash trees could be used for fine-grain time-stamping.

Non-malleable partially releasable commitments. To show that knowledge-binding

commitments have other applications outside of the domain of time-stamping, we give

a construction of partially releasable non-malleable commitments form non-malleable

string commitments and knowledge-binding commitments. It is just an informal exam-

ple, we do not formalize the claim due to the lack of space.

Recall that a commitment scheme is non-malleable if given a commitment c it is

infeasible to construct a new commitment c′ 6= c such that after seeing a certificate

s for x it is infeasible to output a valid certificate s′ for x′ such that x and x′ are re-

lated. Let L = {c1, . . . , cn} be a list of non-malleable commitments for x1, . . . , xn and

(C, D)← Compk(L) is computed by using a knowledge-binding commitment scheme.

Then the resulting commitment scheme is non-malleable. From the knowledge-binding

property it follows that after seeing a proof that ci was computed by using xi, ad-

versary’s ability to output certificates (c, s) such that Pr [Ver(C, n, c, s) = true] does

not increase. Hence, the adversary knows all valid commitment-certificate pairs (ci, si)
essentially before any commitment is opened. Therefore, non-malleability directly fol-

lows from the non-malleability of the lower-level commitment.

References

1. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes with-

out trees. In Proc. of EUROCRYPT’97, LNCS 1233, pages 480–494, 1997.

2. D. Bayer, S. Haber, and W.-S. Stornetta. Improving the efficiency and reliability of digital

time-stamping. In Sequences II: Methods in Communication, Security, and Computer Sci-

ence, pages 329-334, Springer-Verlag, New York 1993.

3. J. Benaloh and M. de Mare. One-way accumulators: a decentralized alternative to digital

signatures. In Proc. of EUROCRYPT’93, LNCS 765, pages 274–285, 1994.

4. M. Blum. Coin flipping by telephone: a protocol for solving impossible problems. In Proc.

of CompCon, pages 133–137, 1982.

5. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. JCSS,

vol.37, pages 156–189, 1988.

6. A. Buldas, P. Laud, H. Lipmaa. Eliminating counterevidence with applications to account-

able certificate management. Journal of Computer Security, 10(3), pages 273–296, 2002.

7. A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In Proc. of ASI-

ACRYPT 2004, LNCS 3329, pages 500–514, 2004.

8. A. Buldas, P. Laud, M. Saarepera, and J. Willemson. Universally composable time-stamping

schemes with audit. In ISC05, LNCS 3650, pages 359–373, 2005.

9. A. Buldas, S. Laur. Do broken hash functions affect the security of time-stamping schemes?

In Proc. of ACNS’06, LNCS 3989, pages 50–65, 2006.

10. I. Damgård. Commitment schemes and zero knowledge protocols. In Lectures on Data Se-

curity: modern cryptology in theory and prectice, LNCS 1561, pages 63–86, 1999.

11. O. Goldreich. Foundations of Cryptography II: Basic Applications, Cambridge University

Press, 2004.

12. S. Haber and W.-S. Stornetta. Secure Names for Bit-Strings. In Proc. of ACM Conference on

Computer and Communications Security, pages 28–35, 1997.

13. T. Hagerup and C. Rüb. A Guided Tour of Chernoff Bounds. Information Processing Letters,

33, pages 305–308, 1990.

14. S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-

free hashing. In CRYPTO’96, LNCS 1109, pages 201–215, 1996.

15. R. C. Merkle. Protocols for public-key cryptosystems. Proceedings of the 1980 IEEE Sym-

posium on Security and Privacy, pages 122–134, 1980.

16. G. Nuckolls, C. U. Martel, and S. G. Stubblebine. Certifying Data from Multiple Sources. In

Proc. of the DBSec 2003, pages 47–60, 2003.

17. K. Nyberg. Fast accumulated hashing. In Proc. of FSE’96, LNCS 1039, pages 83–87, 1996.

A Combinatorial Extraction Lemma

Consider a finite matrix W[r; c] the rows of which are indexed by r ∈ R and the

columns are indexed by c ∈ C. Moreover, assume that a certain probability measure

Pr [·] is defined over the row indices R. Then it is straightforward to state and prove a

combinatorial lemma that we used for proving the knowledge-binding property.

Lemma 1. For any δ > 0 and N ∈ N, there exist a set of column indices ∅ ⊆ I ⊆ C
such that 0 ≤ |I| ≤ N

δ and for every column c ∈ C :

Pr [r ←R : W[r; c] 6= 0 ∧W[r; c] /∈ L[r] ∧ |L[r]| < N] ≤ δ ,

where L[r] = {W[r, c] : c ∈ I} \ {0} is the set of nonzero elements revealed by I.

Proof. Consider following iterative procedure:

1. Set I = ∅ and initialise row counters cnt[r] = N for r ∈ R.

2. While exists c ∈ C such that Pr [r : W[r; c] 6= 0] ≥ δ do

(a) Choose c such that Pr [r : W[r; c] 6= 0] ≥ δ and insert c into I.

(b) For each row r ∈ R such that W[r; c] 6= 0 do

– Store w ←W[r; c].
– Remove w entries from the row.

If W[r; c′] = w then W[r, c′]← 0 for c′ ∈ C.

– Decrease counter cnt[r]← cnt[r]− 1.

(c) Zero all rows where cnt[r] = 0.

– If cnt[r] = 0, set W[r; c′]← 0 for c′ ∈ C.

Let N = {r : ∃W[r; c] 6= 0} denote nonzero rows and Nold, Nnew denote the value of

N before and after update at Step 2. Let

µ[N] =
∑

r∈N
Pr [r] cnt[r]

be the average counter value. Then by the construction µ[Nnew] ≤ µ[Nold] − δ after a

single iteration of Step 2. As initially µ[N] ≤ N , then after ⌊N/δ⌋ iterations Pr [N] ≤
µ[N] < δ. Note that the algorithm nullifies the elements W[r, c′] only if they already

belong to L[r] or |L[r]| ≥ N . In the end, each column c contains at most a δ-fraction

of elements that satisfy the predicate W[r; c] 6= 0 ∧W[r; c] /∈ L[r] ∧ |L[r]| < N and

the claim follows. Note that I can be empty. ⊓⊔

I = ∅ L I = {1} L I = {1, 3} L I = {1, 3} L
1 2 0 1 1 ∅
1 0 3 0 2 ∅
2 0 1 2 3 ∅
0 0 0 1 0 ∅
0 0 0 0 2 ∅

⇒

0 2 0 0 0 {1}
0 0 3 0 2 {1}
0 0 1 0 3 {2}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

⇒

0 2 0 0 0 {1}
0 0 0 0 0 {1, 3}
0 0 0 0 0 {2, 1}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

1 2 0 1 1 {1}
1 0 3 0 2 {1, 3}
2 0 1 2 3 {1, 2}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

Fig. 3. Illustration of Lemma 1. The first three sub-figures show how the columns are selected

for the uniform distribution over the rows and for parameter values N = 2, δ = 0.3, boldface

symbols denote the changed values. The last sub-figure shows the final result. Boldface symbols

denote the revealed entries. Underlined symbols denote the entries that satisfy the predicate.

Publication P4

Sven Laur and Kaisa Nyberg. Efficient Mutual Data Authentication Using Manually

Authenticated Strings. Lecture Notes in Computer Science, volume 4301, pages 90–

107. c© Springer-Verlag. Reprinted with permission.

P4

Efficient Mutual Data Authentication Using Manually

Authenticated Strings

Sven Laur2 and Kaisa Nyberg1,2

1 Nokia Research Center, Finland kaisa.nyberg@nokia.com
2 Helsinki University of Technology, Finland {slaur,knyberg}@tcs.hut.fi

Abstract. Solutions for an easy and secure setup of a wireless connection be-

tween two devices are urgently needed for WLAN, Wireless USB, Bluetooth and

similar standards for short range wireless communication. All such key exchange

protocols employ data authentication as an unavoidable subtask. As a solution,

we propose an asymptotically optimal protocol family for data authentication that

uses short manually authenticated out-of-band messages. Compared to previous

articles by Vaudenay and Pasini the results of this paper are more general and

based on weaker security assumptions. In addition to providing security proofs

for our protocols, we focus also on implementation details and propose practi-

cally secure and efficient sub-primitives for applications.

1 Introduction

In this paper we consider the problem of setting up a shared secret key in an ad hoc

manner, that is, in isolation from any key management facility and without pre-shared

secrets. Consider two parties Alice and Bob who want to establish a shared secret key

over an insecure network without any prior authenticated information. If adversaries

are passive, that is, no malicious messages are sent to the network and all messages are

delivered unaltered, then exchanging public keys for Diffie-Hellman or similar public

key based key exchange protocol is sufficient. However, an active adversary, Charlie,

can launch an man-in-the-middle attack. Namely, Charlie can replace a desired secure

channel from Alice to Bob by a pair of secure channels, one from Alice to Charlie and

one from Charlie to Bob. The attack is transparent to legitimate users without prior au-

thenticated information. Thus secure key exchange is impossible without authenticated

channels. The main question is how much information, authentic out-of-band messages

(OOB messages), must be sent over the authenticated channel to achieve reasonable se-

curity level. We are aiming at an application, where keys are exchanged between various

electronic devices and authentic communication is done by an ordinary user who either

enters messages into devices or compares output displays. The latter severely limits a

plausible size of OOB messages: one could consider 4–6 decimal digits as optimal and

16 hexadecimal characters as an absolute limit. Other possible OOB channels include

various visual or audible signals like blinking lights, images, phone calls etc.

Most urgently such a solution is needed for WLAN: the current use of pre-shared

keys degrades both practical usability and security. The home users should have a clear

and manageable procedure to set up a secure wireless network so that it is easy to add

2 Sven Laur and Kaisa Nyberg

and remove devices from the network. Hence, the WiFi Alliance is working on a better

solution. Recently, manual data authentication using short authenticated strings received

practical applications in ad hoc key agreement. Phil Zimmermann released a software

called Zfone and an Internet draft to offer security to Voice over IP [ZJC06]. A similar

protocol (See Protocol 3) was adopted by USB-IF for Wireless USB devices [WUS06]

and manual data authentication is going to be incorporated into Bluetooth [BT06].

A formal security model for such protocols consists of three bidirectional asyn-

chronous channels, where messages can be arbitrarily delayed. In-band communication

is routed from Alice to Bob via an active adversary Charlie, who can drop, modify or

insert messages. The out-of-band channel between Alice and Bob is authentic but has

low bandwidth and Charlie can arbitrarily delay3 OOB messages. The model captures

nicely all threats in wireless environment, as malicious adversary with a proper equip-

ment can indeed change the network topology and thus reroute, drop, insert and modify

messages. However, security is not the only objective. User-friendliness, low resource

consumption and simple setup assumptions are equally important. There should be no

public key infrastructure, as it is almost impossible to guarantee authenticity and avail-

ability of public keys to the humongous number of electronic devices. Also, protocols

should use only symmetric primitives if possible.

All currently known user-aided key exchange and data authentication protocols can

be divided into two different groups: protocols with authenticated but public OOB mes-

sages [Hoe05,CCH06,Vau05,LAN05,PV06a,PV06b,NSS06] and protocols with confi-

dential passwords. Password-protected key exchange, see [BM92,KOY01] and Mana

III in [GMN04], is needed when a user wants to establish a secure connection between

devices that have input only, for example, devices with keyboards but no display. The

main application for the manual data authentication is also a cryptographically secure

but still user-friendly ad hoc key agreement between two or more network devices.

Our contribution. In this paper, we clarify and extend our preliminary results [LAN05].

In particular, we show that the previously presented manual cross authentication pro-

tocols [LAN05,PV06b] are indeed instantiations of the same protocol family that uses

a commitment scheme to temporarily hide a secret key needed for data authentication.

Compared to the results by Pasini and Vaudenay [PV06b], our security proofs (Sec. 4)

are more modular and assumptions on used primitives are weaker and geared towards

practice. We explicitly consider implementation details, that is, how to choose practi-

cal primitives (Sec. 5). Given a data authentication protocol it can be combined with

the Diffie-Hellman key agreement in a secure way by taking the Diffie-Hellman key,

or the pair of the public keys, as the data to be authenticated. But the designers of the

practical protocols from [ZJC06,WUS06] have taken a different approach by using the

Diffie-Hellman key shares as the source of randomness. In Sec. 3, we extend our proof

of security also for such a case. In App. A, we consider security in any computational

context and show that, under reasonable assumptions, security is not abruptly degraded

if several protocols are executed in parallel. As an important theoretical result, we show

that all asymptotically optimal (unilateral) manual data authentication protocols have a

3 For example, the adversary can distract the user who compares the output of two devices.

Efficient Mutual Data Authentication Using Manually Authenticated Strings 3

certain structure (App. B, Theorem 5) and that there are no asymptotically optimal two

round protocols for data authentication (Corollary 1).

2 Cryptographic preliminaries

Our results are formalised in exact security framework where security reductions are

precise and thus reveal quantitative differences between various assumptions. Security

goals are formalised through games between a challenger and a t-time adversary 4 A
who tries to violate some design property. Advantage of A is a non-trivial success prob-

ability Advsec(A) in the game sec. The description of sec is omitted when the shape of

Advsec(A) reveals the complete structure of sec. We consider asymptotic complexity

only w.r.t. the time-bound t. Let g(t) = O(f(t)) if lim supt→∞ g(t)/f(t) < ∞. If the

working time of adversary can be unbounded, we talk about statistical security.

Let x ← X denote independent random draws from a set X and y ← A(x 1, . . . , xn)
denote assignment according to a randomised algorithm A with inputs x 1, . . . , xn.

Keyed hash functions. A keyed hash function h : M×K → T has two arguments:

the first argument corresponds to a data and the second to a key. In our context an

applicable tag space T is relatively small (may contain as few as 104 elements) and we

need information theoretic properties. A hash function h is εu-almost universal, if for

any two inputs x0 �= x1, Pr [k ← K : h(x0, k) = h(x1, k)] ≤ εu and εu-almost XOR

universal if for any x0 �= x1 and y, Pr [k ← K : h(x0, k) ⊕ h(x1, k) = y] ≤ εu.

We need a special notion of almost regular functions when the key is divided into

two sub-keys, i.e., h : M×Ka×Kb → T . A hash function h is (εa, εb)-almost regular

w.r.t. the sub-keys if for each data x ∈ M, tag y ∈ T and sub-keys k̂a ∈ K, k̂b ∈ Kb, we

have Pr [ka ← Ka : h(x, ka, k̂b) = y] ≤ εa and Pr [kb ← Kb : h(x, k̂a, kb) = y] ≤ εb.

In particular, (εa, εb)-almost regularity implies that the inequalities hold even if y is

drawn from a distribution that is independent from ka and kb. Finally, a hash func-

tion h is εu-almost universal w.r.t. the sub-key ka if for any two data x0 �= x1 and

kb, k̂b ∈ Kb, we have Pr [ka ← K : h(x0, ka, kb) = h(x1, ka, k̂b)] ≤ εu. We say that h

is strongly εu-almost universal w.r.t. the sub-key ka if for any (x0, kb) �= (x1, k̂b), we

have Pr [ka ← K : h(x0, ka, kb) = h(x1, ka, k̂b)] ≤ εu. Note that εu, εa, εb ≥ 1/|T |
and the word ‘almost’ is skipped in the definitions if the latter equality holds.

Commitment schemes. A commitment scheme Com is specified by a triple of algo-

rithms (Gen, Com, Open). A setup algorithm Gen generates public parameters pk of the

commitment scheme. The commitment function Compk : M×R → C ×D transforms

data m ∈ M into a commitment string c of fixed length and a decommitment value d.

Usually d = (m, r), where r ∈ R is the used randomness. Finally, correctly formed

commitments can be opened, i.e., Openpk(c, d) = m for all (c, d) = Compk(m, r).
Incorrect decommitment values yield to a special abort value ⊥. We often use a short-

hand Compk(m) to denote Compk(m, r) with r ← R. Basic properties of commitment

4 We explicitly assume that adversarial code is executed on a universal Turing or RAM machine.

4 Sven Laur and Kaisa Nyberg

schemes are defined by hiding and binding games. A commitment scheme is (t, ε 1)-
hiding if any t-time adversary A achieves advantage

Advhid

Com(A) = 2 ·
∣∣∣∣∣Pr

[
pk ← Gen, s ← {0, 1}, (x0, x1, σ) ← A(pk)

(cs, ds) ← Compk(xs) : A(σ, cs) = s

]
− 1

2

∣∣∣∣∣ ≤ ε1 .

A commitment scheme is (t, ε2)-binding if any t-time adversary A achieves advantage

Advbind

Com(A) = Pr

[
pk ← Gen, (c, d0, d1) ← A(pk) :

⊥ �= Openpk(c, d0) �= Openpk(c, d1) �= ⊥

]
≤ ε2 .

Non-malleable commitment schemes. Many notions of non-malleable commitments

have been proposed in cryptographic literature [CIO98,FF00,DG03] starting from the

seminal article [DDN91] by Dolev, Dwork and Naor. All these definitions try to capture

requirements that are necessary to defeat man-in-the-middle attacks. We adopt the mod-

ernised version of [CIO98]—non-malleability w.r.t. opening. The definition is slightly

weaker than the definition given in [DG03], as we assume that committed messages are

independent from public parameters pk. Such choice allows to define non-malleability

without a simulator similarly to the framework of non-malleable encryption [BS99].

Intuitively, a commitment scheme is non-malleable, if given a valid commitment

c, it is infeasible to generate related commitments c1, . . . , cn that can be successfully

opened after seeing a decommitment value d. Formally, an adversary is a quadruple

A = (A1, A2, A3, A4) of efficient algorithms where (A1, A2, A3) represents an ac-

tive part of the adversary that creates and afterwards tries to open related commitments

and A4 represents a distinguisher (sometimes referred as a target relation). The adver-

sary succeeds if A4 can distinguish between two environments World0 (real world) and

World1 (environment where all adversaries are harmless). In both environments, Chal-

lenger computes pk ← Gen and then interacts with adversary A:

1. Challenger sends pk to A1 that outputs a description of an efficient message sam-

pler MGen and a state σ1. Then Challenger draws two independent samples x0 ←
MGen, x1 ← MGen and computes a challenge commitment (c, d) ← Compk(x0).

2. Challenger sends c, σ1 to A2 that computes a state σ2 and a commitment vector

(c1, . . . , cn) with arbitrary length. If some ci = c then Challenger stops A with ⊥.

3. Challenger sends d, σ2 to A3 that must produce a valid decommitment vector

(d1, . . . , dn). More precisely, Challenger computes yi = Openpk(ci, di). If some

yi = ⊥ then Challenger stops A with ⊥.5

4. In World0 Challenger invokes A4(x0, y1, . . . , yn, σ2) with the correct sample x0

whereas in World1 Challenger invokes A4(x1, y1, . . . , yn, σ2) with the sample x1.

5 The latter restriction is necessary, as otherwise A3 can send n bits of information to A4 by

refusing to open some commitments. The same problem has been addressed [DG03] by re-

quiring that behaviour of A4 should not change if yi is replaced with ⊥. The latter is correct

but somewhat cumbersome, as static program analysis of A4 is undecidable in theory. Also, in

a real life protocol a honest party always halts when yi = ⊥ as in our model.

Efficient Mutual Data Authentication Using Manually Authenticated Strings 5

Alice Bob

α

β

γ

Short OOB messages
ra rb

Fig. 1. Three round manual authentication protocol

The working time of A is the total time taken to run A1, . . . , A4 and MGen. A com-

mitment scheme is (t, ε)-non-malleable iff for any t-time adversary A the advantage of

distinguishing the two worlds is

Advnm

Com(A) = |Pr [A4 = 0|World0] − Pr [A4 = 0|World1]| ≤ ε .

The definition given above is natural in the concrete security framework, as it is con-

ceptually clear and easy to apply. Also, the equivalence result between simulation and

comparison based definition of non-malleable encryption [BS99] can be directly gener-

alised.6 Moreover, the definition of non-malleable encryption is stronger and therefore

non-malleable encryption schemes (including CCA2 secure encryption schemes) can

be used as non-malleable commitments provided that the public parameters pk are gen-

erated by the trusted party. See Sec. 5 for more detailed discussion.

3 Manual data authentication and key exchange protocols

Formal security model. Consider a three round manual cross-authentication protocol

for data (depicted in Fig. 1) where messages α, β, γ are routed via an active adversary

Charlie who can drop, delay, modify and insert messages. A low bandwidth out-of-band

channel between Alice and Bob is bidirectional and authentic, but Charlie can arbitrar-

ily delay OOB messages. As communication is asynchronous, Charlie can arbitrarily

reorder in-band messages, e.g., Bob can receive α̂ from Charlie even before Alice has

sent α. Throughout the article, the hatted messages are received from Charlie and sub-

scripts a and b denote values Alice and Bob compute locally. In particular, r a, rb denote

random coins and ma, mb input data of Alice and Bob. The desired common output is

(ma, mb) if both parties reach accepting state.

We assume that Alice and Bob send two OOB messages ooba→b and oobb→a in a

fixed order during the protocol. Additionally, we require that the OOB messages have

been specified in such a way that either both Alice and Bob accept the output or neither

of them does. Often, the second OOB message just indicates whether the sender reached

the accepted state. Charlie succeeds in deception if at the end of the protocol Alice and

Bob reach the accepting state but (ma, m̂b) �= (m̂a, mb). A protocol is correct if Alice

and Bob always reach the accepting state when Charlie does not intervene.

6 Substitutions in the definitions and proofs of [BS99] are straightforward, except that there is no

decommitment oracle and an isolated sub-adversary A3 has to compute decommitment values.

6 Sven Laur and Kaisa Nyberg

Let A be an adversarial algorithm used by Charlie. Then the advantage of A against

data authentication protocol is defined as

Advforge(A) = max
ma,mb

Pr [Alice and Bob accept (ma, m̂b) �= (m̂a, mb)]

where probability is taken over random coins of A and the honest participants. An

authentication protocol is (t, ε)-secure if for any t-time adversary A, Adv forge(A) ≤ ε.

We use the same adversarial model for user-aided key exchange protocols. Here, the

number of exchanged messages might be larger than three and the desired common

output consists of a fresh key key and a unique session identifier sid. A key exchange

protocol is (ε, t)-immune against active attacks if, for any t-time adversary A,

Advforge(A) = Pr [Alice and Bob accept (sid, keya) �= (sid, keyb)] ≤ ε .

A (ε, t)-immune key exchange protocol is secure when it can resist passive attacks: ε
quantifies the maximal security drop against active compared to passive attacks.

Clearly, the protocol outcome is determined by the first OOB message. Moreover,

for the ℓ-bit message there exists an efficient deception strategy that with Adv forge(A) =
2−ℓ. A protocol family is asymptotically optimal if it is possible to choose sub-primitives

so that security level reaches asymptotically 2−ℓ, see App. B for further discussion.

Other authors [Vau05,PV06a,PV06b] have used more complex framework [BR93]

to define security. Such approach is needed only if consecutive runs of authentication

protocols are not statistically independent, i.e., protocols use long-lived authentication

keys. In our case, all protocol runs are statistically independent, i.e., given m a and

mb or sid, a potential adversary can always perfectly simulate all protocol messages.

Therefore, our protocols are secure in any computational context, see App. A.

New protocol families. Our new construction for cross-authentication protocols cov-

ers all currently known asymptotically optimal protocol families: a construction given

by Pasini and Vaudenay [PV06b] and our earlier results [LAN05]. The protocol is de-

picted in Fig. 2. We explicitly assume that all public parameters are generated correctly

by a trusted authority, i.e., we assume the common reference string model. Such as-

sumption is not farfetched, as almost all communication standards provide some public

parameters, e.g., descriptions of hash functions.

Protocol

1. Alice computes (c, d) ← Compk(ka) for random ka ← Ka and sends (ma, c) to Bob.

2. Bob chooses random kb ← Kb and sends (mb, kb) to Alice.

3. Alice sends d to Bob, who computes ka ← Openpk(c, d) and halts if ka = ⊥.

Both parties compute a test value oob = h(ma||mb, ka, kb) from the received messages.

4. Both parties accept (ma, mb) iff the local ℓ-bit test values ooba and oobb coincide.

Specification: h is a keyed hash function with sub-keys ka, kb where Ka is a message space

of commitment scheme. The hash function h and the public parameters pk of the commitment

scheme are fixed and distributed by a trusted authority.

Fig. 2. Three round cross-authentication protocol Mana IV with ℓ-bit OOB messages.

Efficient Mutual Data Authentication Using Manually Authenticated Strings 7

Protocol

1. Alice computes (c, d) ← Compk(ka) for ka = ga, a ← Zq and sends (ida, c) to Bob.

2. Bob computes kb = gb for random b ← Zq and sends (idb, kb) to Alice.

3. Alice sends d to Bob, who computes ka ← Openpk(c, d) and halts if ka = ⊥.

Both parties compute sid = (ida, idb) and oob = h(sid, ka, kb) from the received messages.

4. Both parties accept key = (ga)b = (gb)a iff the ℓ-bit test values ooba and oobb coincide.

Specification: h is a keyed hash function with sub-keys ka, kb ∈ G where G = 〈g〉 is a q

element Decisional Diffie-Hellman group; G is a message space of commitment scheme. Public

parameters pk and G are fixed and distributed by a trusted authority. Device identifiers ida and

idb must be unique in time, for example, a device address followed by a session counter.

Fig. 3. Manually authenticated Diffie-Hellman protocol MA–DH with ℓ-bit OOB messages

The Bluetooth authentication mechanisms are undergoing the standardisation phase

and the current proposal for the standard [BT06] includes an instantiation of Mana IV

(NUMERIC COMPARISON) among other methods. Our security analysis provides the

necessary theoretical validation (A more detailed discussion is given in Sec. 5).

One can use the Mana IV protocol to authenticate the transcript of the classical

Diffie-Hellman key exchange and thus prevent active attacks. Another reasonable al-

ternative, proposed by Zimmermann and Wireless-USB standard group, is to fuse both

protocols into a single one (See Fig. 3). Such solution reduces the number of random

bits and computational complexity. Both are scarce resources in small electronic de-

vices. The MA–DH protocol does not directly correspond to these protocols, as it uses

commitments to hide ga whereas these practical protocols use a cryptographic hash

function H instead and set c = H(ga). As a result our security proofs do not directly

apply for protocols [ZJC06,WUS06]. Still the results give a some insight and provide

suggestions how to achieve provable security (See Sec. 5).

Related work. The protocols by Pasini and Vaudenay [PV06b, Fig. 2 and 4] do not

directly follow the structure of Mana IV, since in their first message α = c where

(c, d) = Compk(ma||ra) and ra ← Ka. In our security model, we can always assume

that Charlie knows ma, as ma can be hardwired into the adversarial code. Therefore,

if we send α = (ma, c), the security level does not drop and sending ma under the

commitment becomes unnecessary. As the authenticated data ma can be many kilobytes

long, it also increases the message space for the commitment scheme. The latter can

significantly decrease efficiency, as all currently known provably secure non-malleable

commitment schemes are based on asymmetric cryptography.

A modified scheme with (c, d) ← Compk(ra) and α = (ma, c) is a specific instance

of Mana IV. We also note that in the security proofs of [Vau05,PV06b] it is assumed

that the commitment is either a simulation sound trapdoor commitment scheme or a

hiding one, even if adversary is allowed to query values for non-challenge commitments

c �= cs. Both of these notions imply non-malleability [MY04], hence our assumptions

are weaker. Moreover, in Sec. 4, we show that non-malleability of Com is also necessary,

in a certain sense, to the security of the protocol. Finally, a secure fusion of [PV06b] and

Diffie-Hellman key exchange similarly to MA–DH becomes problematic (See Sec. 5).

8 Sven Laur and Kaisa Nyberg

4 Security analysis of Mana IV and MA–DH protocols

The structure of Mana IV and MA–DH protocols forces adversary, Charlie, to fix data

m̂a and m̂b before the complete hash key (ka, kb) becomes public. Hence, Charlie must

either directly attack the hash function h or some property of commitment scheme to get

extra knowledge about the hash key. A good message authentication code h provides

security against simple substitution attacks and basic properties of commitment scheme

along with non-malleability safeguard against more complex attacks.

Theorem 1 (Statistically binding commitments). For any t, there exists τ = t +
O(1) such that if Com is (τ, ε1)-hiding, ε2-binding and (τ, ε3)-non-malleable and h
is (εa, εb)-almost regular and εu-almost universal w.r.t. the sub-key ka then the Mana

IV protocol is (2ε1 + 2ε2 + ε3 + max{εa, εb, εu}, t)-secure. If additionally h is also

strongly εu-almost universal w.r.t. the sub-key ka, then the MA–DH protocol is (2ε1 +
2ε2 + ε3 + max{εa, εb, εu}, t)-immune against active attacks.

Theorem 2 (Computationally binding commitments). For any t, there exists τ =
2t +O(1) such that if Com is (τ, ε1)-hiding, (τ, ε2)-binding and (τ, ε3)-non-malleable

and h is (εa, εb)-almost regular and εu-almost universal w.r.t. the sub-key ka then the

Mana IV protocol is (2ε1 + ε2 +
√

ε2 + ε3 +max{εa, εb, εu}, t)-secure. If additionally

h is also strongly εu-almost universal w.r.t. the sub-key ka, then the MA–DH protocol

is (2ε1 + ε2 +
√

ε2 + ε3 + max{εa, εb, εu}, t)-immune against active attacks.

Proof. For clarity, the proof is split into Lemmata 1–5, as all (including passive) attacks

can be divided into four disjoint classes. Combining the corresponding upper bounds

on success probabilities proves the claims. ⊓⊔
Theorems 1 and 2 have several noteworthy implications. First, the Mana IV and

MA–DH protocols are indeed asymptotically optimal, see Def. 1 in App. B, as one can

choose h such that max{εa, εb, εu} = 2−ℓ and under standard complexity assump-

tions there exist commitment schemes where ε1, ε2, ε3 are negligible w.r.t. the security

parameter if allowed working time τ is polynomial. Secondly, statistically binding com-

mitments give better security guarantee than computationally binding ones: ε 2 vs.
√

ε2.

The latter is caused by the “non-trivial” reduction technique in Lemma 5. Thirdly, the

slight difference in security objectives of Mana IV and MA–DH protocol manifests it-

self as an extra requirement to h. This is quite natural: if ma = m̂a, mb = m̂b but

(ka, k̂b) �= (k̂a, kb), we get a correct output for Mana IV but incorrect output for MA–

DH, as sida = sidb but keya �= keyb. Finally, if Decisional Diffie-Hellman assumption

holds for G, then MA–DH is approximately 2−ℓ secure key exchange protocol.

We give a formal security proof of Mana IV and MA–DH by constructing black

box reductions corresponding to four different attack types. These reductions have the

following structure: given an adversary A that is good in deception, we construct an ad-

versary A∗ that breaks some property of the commitment scheme. Generic construction

of A∗ is depicted on Fig. 4: in order to win a security game A∗ simulates the original

protocol and communicates with Challenger. As the communication is asynchronous,

A can reorder protocol messages α, β, γ. Let msg1 ≺ msg2 denote that msg1 was out-

put on a communication channel before msg 2. As Alice and Bob are honest, temporal

restrictions α ≺ β̂ ≺ γ and α̂ ≺ β ≺ γ̂ hold for all executions.

Efficient Mutual Data Authentication Using Manually Authenticated Strings 9

C
h
a
ll
en

g
er

Adversary A∗ that simulates original protocol

Alice Bob

ra rb

α

β̂

γ

α̂

β

γ̂

Charlie

runs

A

Fig. 4. Generic reduction scheme

An execution path is almost normal (denoted as norm) if the second round is com-

pleted before A starts the third round, i.e., α, α̂, β, β̂ ≺ γ, γ̂. Otherwise, one of the

mutually exclusive events γ ≺ β or γ̂ ≺ β̂ must occur. For brevity, let d-forge denote

that Alice and Bob accept (ma, m̂b) �= (m̂a, mb) in the Mana IV protocol and k-forge

denote that Alice and Bob accept (ida, îdb, keya) �= (îda, idb, keyb) in the MA–DH pro-

tocol. Note that all probabilities in Lemmata 1–5 are taken over random coins of Gen,

A and Alice and Bob and for a fixed input data (ma, mb) or identifiers (ida, idb). As

all proofs are quite straightforward but tedious, only the proof of Lemma 1 covers all

details. All other proofs are more compact: some elementary steps are left to the reader.

Attacks based on almost normal execution paths. In the simplest attack, Charlie

attacks directly h by altering only ma, mb, kb and possibly γ. Charlie’s aim here is to

cleverly choose k̂b so that ooba = oobb. An attack where kb �= k̂b but other messages

are unaltered can be successful against MA–DH but not against Mana IV. Strong ε u-

universality w.r.t the sub-key ka provides appropriate protection against such attacks.

Lemma 1. For any t, there exists τ = t + O(1) such that if Com is (τ, ε1)-hiding and

(τ, ε2)-binding and h is εu-almost universal w.r.t. the sub-key ka, then for any t-time

adversary A and input data (ma, mb)

Pr [d-forge ∧ norm ∧ c = ĉ] ≤ εu · Pr [norm ∧ c = ĉ] + ε1 + ε2 . (1)

If additionally h is strongly εu-almost universal w.r.t. the sub-key ka, then for any pair

of identifiers (ida, idb)

Pr [k-forge ∧ norm ∧ c = ĉ] ≤ εu · Pr [norm ∧ c = ĉ] + ε1 + ε2 . (2)

Proof. ANALYSIS OF MANA IV. Assume a t-time algorithm A violates (1). Then

Pr [d-forge ∧ norm ∧ c = ĉ ∧ ka = k̂a] ≥ Pr [d-forge ∧ norm ∧ c = ĉ] − ε2, or other-

wise Alice and A together can open the commitment c to two different values k a �= k̂a

with probability more than ε2. The latter contradicts (τ, ε2)-binding for τ = t + O(1).
Next, we construct A∗ that wins the hiding game, i.e., given pk outputs (x0, x1, σ)

and afterwards given a commitment cs for s ← {0, 1}, can correctly guess the bit s.

The adversary A∗ acts in the following way:

1. Given pk, chooses ka, k∗
a ← Ka as (x0, x1) and sends (ka, k∗

a, pk) to Challenger.

10 Sven Laur and Kaisa Nyberg

2. When Challenger replies cs for (cs, ds) = Compk(xs), A∗ simulates a faithful

execution of Mana IV with α = (ma, cs) until A queries γ. A∗ stops the simulation

and halts with ⊥, if there is a protocol failure, ¬norm or c �= ĉ.

3. If h(ma||m̂b, ka, k̂b) = h(m̂a||mb, ka, kb) and (ma, m̂b) �= (m̂a, mb) outputs a

guess s = 0, else outputs a guess s = 1.

Now, consider when the simulation diverges from the real run of Mana IV with the

same randomness ra and rb. If s = 0 then (c0, d0) = Compk(ka) and Step 3 does not

reflect the protocol outcome in three disjoint cases: (a) abnormal execution or c �= ĉ, (b)

γ̂ is not a valid decommitment (d-forge does not happen) and (c) k a �= k̂a. Therefore,

we get Pr [A∗ = 0|s = 0] ≥ Pr [d-forge ∧ norm ∧ c = ĉ ∧ ka = k̂a]. For s = 1, we

get Pr [A∗ �= ⊥|s = 1] = Pr [norm ∧ c = ĉ], as simulation is perfect until A queries γ.

Since c1 and ka are statistically independent, all values computed by A are independent

from ka and thus Pr [A∗ = 0|s = 1, A∗ �= ⊥] ≤ εu. We arrive at a contradiction, as

these bounds imply Advhid(A∗) = |Pr [A∗ = 0|s = 0]−Pr [A∗ = 0|s = 1] | > ε1 and

A∗ runs in time t + O(1).
ANALYSIS OF MA–DH. Lets update only the forgery test in the last step of A∗:

3. If h(ida||îdb, ka, k̂b) = h(îda||idb, ka, kb) and (ida, îdb, k̂b) �= (îda, idb, kb) output

a guess s = 0, else output a guess s = 1.

Similarly to Mana IV, Pr [A∗ = 0|s = 0] ≥ Pr [k-forge ∧ norm ∧ c = ĉ ∧ ka = k̂a]
and Pr [A∗ �= ⊥|s = 1] = Pr [norm ∧ c = ĉ], since the remaining code of A∗ is iden-

tical. The new forgery test forces a restriction (x0, kb) �= (x1, k̂b) instead of x0 �= x1

and we need strongly εu-universal h to bound Pr [A∗ = 0|s = 1, A∗ �= ⊥] ≤ εu. ⊓⊔

Note 1. Strong εu-universality is necessary for the security of the MA–DH protocol,

see Sec. 5 for a concrete counter example.

Another alternative is a direct attack against non-malleability where A tries to create

“cleverly” related sub-keys ka and k̂a to bypass the security check.

Lemma 2. For any t, there exists τ = t + O(1) such that if Com is (τ, ε3)-non-

malleable and h is (εa, εb)-almost regular, then for any t-time adversary A and inputs

(ma, mb) or session identifier (ida, idb)

Pr [d-forge ∧ norm ∧ c �= ĉ] ≤ εa · Pr [norm ∧ c �= ĉ] + ε3 , (3)

Pr [k-forge ∧ norm ∧ c �= ĉ] ≤ εa · Pr [norm ∧ c �= ĉ] + ε3 . (4)

Proof. Let A be a t-time algorithm that violates (3). Then we can build an adversary

A∗ = (A∗
1, A

∗
2, A

∗
3, A

∗
4) that can break non-malleability of the commitment scheme:

1. Given pk, A∗
1 outputs a uniform sampler over Ka and a state σ1 = (pk, ma, mb).

Challenger computes x0, x1 ← Ka and (c, d) ← Compk(x0).
2. Given c, σ1, A∗

2 simulates the protocol with kb ← Kb and stops before A demands

γ. A∗ stops the simulation and halts with ⊥, if there is a protocol failure, ¬norm or

c = ĉ . Otherwise, A∗
2 outputs a commitment ĉ and σ2 containing enough informa-

tion to resume the simulation including (ma, m̂a, mb, m̂b, kb, k̂b).

Efficient Mutual Data Authentication Using Manually Authenticated Strings 11

3. Given d, σ2, A∗
3 resumes the simulation and outputs d̂ as a decommitment value.

4. If A∗
3 was successful in opening ĉ then A∗

4(xs, y, σ2) sets ka ← xs and k̂a ← y and

computes ooba = h(ma||m̂b, ka, k̂b) and oobb = h(m̂a||mb, k̂a, kb). If ooba =
oobb but (ma, m̂b) �= (m̂a, mb), then A∗

4 outputs a guess s = 0, else outputs 1.

Again, consider where the simulation can diverge from the real execution of Mana

IV. In both worlds, we can have a discrepancy if execution is abnormal or c = ĉ . In

World0, Step 4 provides a perfect simulation whereas in World1 ka is independent of

all variables computed by A. Therefore, using same methodology as before

Pr [A∗

4 = 0|World0] = Pr [d-forge ∧ norm ∧ c �= ĉ] ,

Pr [A∗

4 = 0|World1] ≤ εa · Pr [norm ∧ c �= ĉ] ,

as h is (εa, εb)-almost regular. A contradiction as Adv nm(A∗) > ε3. For the MA–DH

protocol, we have to refine the forgery test in Step 4 similarly to the proof of Lemma 1,

but otherwise the analysis is exactly the same. ⊓⊔

Note 2. Obviously, non-malleability w.r.t. every target relation is not necessary. In par-

ticular, if h is fixed then it is necessary and sufficient that Com is secure for all adver-

saries having the same structure as in Lemma 2. The latter requirement is weaker than

complete non-malleability, however, one has to reconsider the condition if h is substi-

tuted with a different function and technically such condition is not easier to prove.

Attacks based on abnormal execution paths. The remaining two attack patterns are

easy to analyse, since they are direct attacks against binding and hiding properties. If

γ̂ ≺ β̂ then successful A can predict ka given only c and thus win the hiding game.

Lemma 3. For any t there exists τ = t + O(1) such that if Com is (τ, ε1)-hiding, h is

(εa, εb)-almost regular. Then for any t-time adversary A and input (ma, mb) or session

identifier (ida, idb)

Pr [d-forge ∧ γ̂ ≺ β̂] ≤ ε1 + εa · Pr [γ̂ ≺ β̂] , (5)

Pr [k-forge ∧ γ̂ ≺ β̂] ≤ ε1 + εa · Pr [γ̂ ≺ β̂] . (6)

Proof. Let A be a t-time adversary that violates (5). If γ̂ ≺ β̂, the Bob’s control value

oobb is fixed before A receives γ. Consider A∗ that plays the hiding game:

1. Given pk, chooses ka, k∗
a ← Ka as (x0, x1) and sends (ka, k∗

a, pk) to Challenger.

2. When Challenger replies cs for (cs, ds) = Compk(xs), A∗ simulates a faithful

execution of Mana IV with α = (ma, cs) until A outputs β̂. A∗ stops the simulation

and halts with ⊥, if there is a protocol failure, γ̂ ⊀ β̂ or Openpk(ĉ, d̂) = ⊥.

3. Next A∗ computes k̂a = Openpk(ĉ, d̂), ooba = h(ma||m̂b, ka, k̂b) and oobb =

h(m̂a||mb, k̂a, kb). If ooba = oobb and (ma, m̂b) �= (m̂a, mb) outputs 0, else 1.

Again, consider where the simulation can diverge from the real protocol. If s = 0 then

only γ̂ ⊀ β̂ can cause the difference. For s = 1, simulation is perfect until γ is queried

12 Sven Laur and Kaisa Nyberg

and thus Pr [A∗ �= ⊥|s = 1] = Pr [γ̂ ≺ β̂]. As ka is independent from oobb, m̂b and

k̂b, then Pr [A∗ = 0|s = 1, A∗ �= ⊥] ≤ εa follows from (εa, εb)-almost regularity. A

contradiction, as Advhid(A∗) > Pr [d-forge ∧ γ̂ ≺ β̂] − εa · Pr [γ̂ ≺ β̂] > ε1. Same

algorithm with a redefined forgery check is suitable for the MA–DH protocol. ⊓⊔
To win the remaining case γ ≺ β, adversary A must double open ĉ to succeed. For

statistically binding commitments, the reduction is simple. Analysis of computational

binding commitments is more complex.

Lemma 4. If Com is statistically ε2-binding and h is (εa, εb)-almost regular, then for

any adversary A and input (ma, mb) or session identifier (ida, idb)

Pr [d-forge ∧ γ ≺ β] ≤ ε2 + εb · Pr [γ ≺ β] , (7)

Pr [k-forge ∧ γ ≺ β] ≤ ε2 + εb · Pr [γ ≺ β] . (8)

Proof. For each commitment ĉ, fix a canonical k̂a such that k̂a = Openpk(ĉ, d̂0) for

some d̂0. If γ ≺ β then ooba is fixed before kb. Now, the probability that different

kb values lead to different valid openings k̂′
a �= k̂a is at most ε2. Otherwise, one can

find valid double openings Openpk(ĉ, d̂0) �= Openpk(ĉ, d̂1) just by enumerating all

possible protocol runs. Now Pr [kb ← K : ooba = h(m̂a||mb, k̂a, kb)] ≤ εb, as kb is

independent form k̂a and ooba and thus both claims follow. ⊓⊔
Lemma 5. For any t there exists τ = 2t+O(1) such that if Com is (τ, ε2)-binding and

h is (εa, εb)-almost regular, then for any t-time adversary A and inputs (ma, mb)

Pr [d-forge ∧ γ ≺ β] ≤ εb · Pr [γ ≺ β] +
√

ε2 , (9)

Pr [k-forge ∧ γ ≺ β] ≤ εb · Pr [γ ≺ β] +
√

ε2 . (10)

Proof. Let A be a t-time adversary that violates (9). Consider A∗ that

1. Simulates protocol run until A queries β and stores ĉ. Halts if γ ⊀ β.

2. Provides k0
b , k1

b ← Kb and outputs ĉ with the corresponding replies d̂0 and d̂1.

For a fixed pk and ĉ, let εpk,bc = Pr [d-forge|γ ≺ β, pk, ĉ] denote the forgery probability

w.r.t. a single challenge kb at Step 2 and

δpk,bc = Pr [⊥ �= Openpk(ĉ, d̂0) �= Openpk(ĉ, d̂1) �= ⊥|γ ≺ β, pk, ĉ]

the success probability at Step 2. Then δpk,bc ≥ εpk,bc(εpk,bc − εb), since h is (εa, εb)-
almost regular and oob0

b is fixed before k1
b . Using a special case of Jensen’s inequality,

E(X2) ≥ E(X)2 for any distribution of X , we get

Pr [success|γ ≺ β] =
∑

pk,bc

Pr [pk = Gen, ĉ |γ ≺ β] (ε2
pk,bc − εbεpk,bc)

≥ Pr [d-forge|γ ≺ β]2 − εb Pr [d-forge|γ ≺ β] .

As Pr [d-forge|γ ≺ β] > εb, we get Pr [success|γ ≺ β] ≥ (Pr [d-forge|γ ≺ β] − εb)
2.

Now from Pr [γ ≺ β] ≥ Pr [γ ≺ β]2, we obtain a contradiction

Advbind(A∗) ≥ Pr [γ ≺ β]
2
(Pr [d-forge|γ ≺ β] − εb)

2 > ε2 .

The same proof is valid also for the MA–DH protocol. ⊓⊔

Efficient Mutual Data Authentication Using Manually Authenticated Strings 13

Note 3. There are several alternatives to Lemma 5 that offer various tradeoffs between

time τ and ε2 depending how many times A is probed with different values of k b. As A
may totally break the Mana IV protocol on ε2 fraction public parameters pk and do noth-

ing for other values of pk, we cannot get a better bound than Pr [d-forge ∧ γ ≺ β] ≤
εb · Pr [γ ≺ β] + ε2 with black-box reductions. In our earlier work [LAN05], we used

knowledge extraction techniques to obtain more complex reductions.

Note 4. Compared to proofs in [Vau05,PV06b] Lemma 5 seems to be inefficient and

cumbersome. However, Vaudenay et al uses a different notion of binding—de facto

they postulate Lemma 5 for a certain h as a security requirement. In asymptotic sense

these notions are equivalent (there are polynomial reduction between them), but the

exact security framework reveals that their condition is quantitatively much stronger.

In practical applications, commitments are constructed from cryptographic hash

functions like SHA-1 and classical binding is more appropriate notion, since it leads

directly to collision resistance. Secondly, Vaudenay’s approach does not generalise for

more complex constructions of h.

5 Practical Implementation Details

Security constraints. Mana IV and MA–DH protocols are secure in any computational

context if (a) random values are never reused, (b) protocol outputs are never used be-

fore reaching the accepting state, (c) there are no multiple protocol instances between

the same device pair at any time. Then a single protocol instance has same security

guarantees as in Theorems 1 and 2. See App. A for a formal proof and discussion.

Hash functions. To instantiate Mana IV and MA–DH protocols, we need hash func-

tions h : M×Ka × Kb → {0, 1}ℓ that are (εa, εb)-almost regular and (strongly) εu-

almost universal w.r.t. the sub-key ka. In our preliminary work [LAN05], we proposed

a construction h(m, ka, kb) = h0(m, f(ka, kb)) where h0 is a εu-almost universal and

εa-regular and f : Ka × Kb → {0, 1}m is regular w.r.t. sub-keys ka, kb and for any

kb �= k̂b the distribution of pairs (f(ka, kb), f(ka, k̂b)) for ka ← Ka is statistically

δ-close to uniform distribution. Then it is straightforward to verify that h is (ε a, εa)-

almost regular and max{εa + δ, εu}-almost universal, since for kb �= k̂b keys f(ka, kb)

are f(ka, k̂b) almost independent.

As a concrete example let f : {0, 1}2m×{0, 1}2m → {0, 1}m be defined as follows:

f(x0||x1, y) = x0y ⊕ x1 in GF(2m) if x0 �= 0 and f(0m||x1, y) = x1 ⊕ y otherwise.

Clearly, f is regular w.r.t. the sub-keys and f(x0, x1, y1)⊕f(x0, x1, y2) = x0(y1⊕y2)
covers GF(2m) \ {0} when y1 �= y2 and x0 �= 0. Hence, f is (εa, εa)-almost regular

and max{2−m+1 + εa, εu}-secure. Note that for proper choice of m, 2−m+1 ≪ 2−ℓ.

Pasini et al., [PV06b] proposed a construction h(m, ka, kb) = h0(m, ka)⊕kb where

h0 is εu-almost XOR universal and εa-almost regular w.r.t. ka. The latter is (εa, 2−ℓ)-
almost regular and strongly εu-almost universal. But such construction cannot be used

in the MA–DH protocol, as kb is typically at least 200 bits long. If we compress kb in

some manner, i.e., compute h(ma||mb, ka, kb) = h0(ma||mb, ka)⊕h1(mb, kb) then the

resulting hash function is only εu-almost universal. A malicious adversary can choose

14 Sven Laur and Kaisa Nyberg

(mb, kb) �= (mb, k̂b) such that h1(mb, kb) = h1(mb, k̂b). Since ℓ is small in practical

protocols, such pair can be found in real time and Charlie can indeed break the MA–

DH protocol by choosing k̂b = gc for c ← Zq in this way. As a result Charlie and

Alice share a common key. If Bob is a wireless router, then Charlie has successfully

completed the attack, as he can transfer Alice’s communication to Bob using secure

channel between himself and Bob. Hence, the proper choice of h is extremely important.

For practical purposes M = {0, 1}512 is sufficiently big, as one can always use a

collision resistant hash functions to compress longer messages. And for such parameters

many efficient εu-almost (XOR) universal and perfect hash functions are known with

εu ≤ 2−ℓ+1 (See [Sti91,BJKS93,NGR05] for some concrete examples).

Some practical proposals [BT06, p. 13, 21] propose use cryptographic hash func-

tions to construct h. The latter is a plausible though heuristic choice, as long as statistical

tests do not reveal a significant deviation from desired parameters ε a, εb, εu. Otherwise,

the potential adversary can discover and exploit these weaknesses.

Non-malleable commitment schemes. The simplest construction of a non-malleable

commitment scheme is based on a CCA2 secure encryption scheme. Let Enc pk : M×
R → C be a deterministic encryption rule where r ∈ R denotes randomness used to

encrypt a message. Define (c, d) ← Compk(x, r) as c = Encpk(x, r) and d = (x, r) and

Openpk(c, d) = m if Encpk(x, r) = c and ⊥ otherwise. Then the corresponding com-

mitment scheme is non-malleable provided that pk is generated by a trusted party. We

suggest Cramer-Shoup or Desmedt-Kurosawa encryption schemes [CS98,KD04], as the

public key is a random tuple of group elements and can be easily generated without the

secret key. RSA-OAEP is also CCA2 secure in a random oracle model [FOPS01]. Nev-

ertheless, the key pk must be securely distributed, since a priori non-malleability w.r.t.

pk does not guarantee non-malleability w.r.t. related keys pk 1 and pk2.

All these constructions are too inefficient for small electronic devices and they offer

too high levels of security. Recall that ℓ � 14 and thus a commitment scheme should

be roughly (280, 2−20)-non-malleable. Secure distribution of pk is another problem. In

principle, it can be managed as there is only single public key, but may still not be

well accepted for industrial applications. There are commitment schemes that are non-

malleable without commonly shared pk, but these are very inefficient in practice.

In reality, a cryptographic hash functions like SHA-1 are used instead of commit-

ments, as such constructions are hundred times faster and there are no setup assump-

tions. Let H be a collision resistant hash function. Then the hash commitment is com-

puted as (c, d) ← Com(x, r) with c = H(x||r) and d = (x, r) or, as in HMAC,

c = H(r ⊕ opad||H(r ⊕ ipad||x)) with d = r (See [BT06, p. 13] as an exam-

ple). Both constructions are a priori not hiding. We would like to have a provably

secure construction. In theory, we could use one-wayness of H and define commit-

ment with hard-core bits but this leads to large commitments. Instead, we use Bellare-

Rogaway random oracle design principle to heuristically argue that a hash commitment

based on the OAEP padding is a better alternative. Recall that the OAEP padding is

c = H(s, t), s = (x||0k0) ⊕ g(r), t = r ⊕ f(s). The corresponding commitment c
along with d = r is provably hiding and binding if g is pseudorandom, f is random

oracle, and H is collision resistant. A priori SHA-1 and SHA-512 are not known to

Efficient Mutual Data Authentication Using Manually Authenticated Strings 15

be non-malleable, as it has never been a design goal. On the other hand, the security

proof of OAEP [FOPS01] shows CCA2 security (non-malleability) provided that H is

a partial-domain one-way permutation. More specifically, it should be infeasible to find

s given h(s, t), s ← M1, t ← M2. The partial one-wayness follows for r, t ∈ {0, 1}80

if we assume that H is at least (2160, 2−20)-collision resistant as we can enumerate all

possible t values to get a collision. The other assumption that h is a permutation is im-

portant in the proof. Therefore, we can only conjecture that the proof can be generalised

and the OAEP padding provides a non-malleable commitment scheme.

Hence, an important theoretical task is to provide efficient but provably hiding

and non-malleable but efficient padding construction for hash commitments. Also, one

could reprove Lemma 1 and Lemma 3 without assuming hiding from Com , as in both

proofs we do not need hiding of ka but just Charlie’s inability to control Alice’s ooba.

Practical implementations [ZJC06,WUS06] of the MA–DH protocol use c = H(g a)
and such a relaxed security proof would bridge the gap between theory and practice.

Acknowledgements. We would like to thank N. Asokan for joint work on the initial

solution and for many useful discussions and comments, and Emilia Käsper for helpful

suggestions. The first author was partially supported by the Finnish Academy of Sci-

ences and Estonian Doctoral School in Information and Communication Technologies.

References

[BJKS93] J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets. On families of hash

functions via geometric codes and concatenation. In Proc. of CRYPTO ’93, LNCS

773. Springer, 1993.

[BM92] S. Bellovin and M. Merrit. Encrypted Key Exchange: Password-Based Protocols

Secure Against Dictionary Attacks. In Proc. of the IEEE Symposium on Security and

Privacy, pages 72–84, 1992.

[BR93] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In

Proc. of CRYPTO ’93, LNCS 773, pages 232–249. Springer, 1993.

[BS99] Mihir Bellare and Amit Sahai. Non-malleable Encryption: Equivalence between Two

Notions, and an Indistinguishability-Based Characterization. In Proc. of CRYPTO

’99, LNCS 1666, pages 519–536. Springer, 1999.

[BT06] Bluetooth Special Interest Group. Simple Pairing Whitepaper (Revision V10r00).

http://www.bluetooth.com/Bluetooth/Apply/Technology/

Research/Simple Pairing.htm, 2006.

[CCH06] M. Cagalj, S. Capkun, and J.-P. Hubaux. Key agreement in peer-to-peer wireless

networks. Proc. of the IEEE, 94(2):467–478, Feb 2006.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-

malleable commitment. In STOC ’98, pages 141–150, 1998.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably

Secure Against Adaptive Chosen Ciphertext Attack. In Proc. of CRYPTO ’98, LNCS

1462, pages 13–25. Springer, 1998.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In

STOC ’91, pages 542–552, New York, NY, USA, 1991. ACM Press.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable commit-

ment schemes. In STOC 2003, pages 426–437, 2003.

16 Sven Laur and Kaisa Nyberg

[FF00] Marc Fischlin and Roger Fischlin. Efficient Non-malleable Commitment Schemes.

In Proc. of CRYPTO 2000, LNCS 1880, pages 413–431. Springer, 2000.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-

OAEP Is Secure under the RSA Assumption. In Proc. of CRYPTO 2001, LNCS

2139, pages 260–274, 2001.

[GMN04] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual authentication for

wireless devices. RSA Cryptobytes, 7(1):29–37, January 2004.

[Hoe05] Jaap-Henk Hoepman. Ephemeral Pairing on Anonymous Networks. In Proc. of SPC

2005, LNCS 3450, pages 101–116. Springer, 2005.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryption Scheme.

In Proc. of CRYPTO 2004, LNCS 3152, pages 426–442. Springer, 2004.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient Password-Authenticated

Key Exchange Using Human-Memorable Passwords . In Proc. of EUROCRYPT 2001,

LNCS 2045, pages 475–494. Springer, 2001.

[LAN05] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient Mutual Data Authentication

Using Manually Authenticated Strings: Preleiminary Version. Cryptology ePrint

Archive, Report 2005/424, 2005. http://eprint.iacr.org/.

[LN06] Sven Laur and Kaisa Nyberg. Efficient Mutual Data Authentication Using Manu-

ally Authenticated Strings: Extended Version. Cryptology ePrint Archive, Report

2005/424, 2006. http://eprint.iacr.org/.

[MY04] Philip D. MacKenzie and Ke Yang. On Simulation-Sound Trapdoor Commitments.

In Proc. of EUROCRYPT, LNCS 3027, pages 382–400. Springer, 2004.

[NGR05] Kaisa Nyberg, Henri Gilbert, and Matt Robshaw. Galois MAC with forgery probabil-

ity close to ideal. General Public Comments on NIST Cryptopage, 2005.

[NSS06] Moni Naor, Gil Segev, and Adam Smith. Tight Bounds for Unconditional Authentica-

tion Protocols in the Manual Channel and Shared Key Models. In Proc. of CRYPTO

2006, LNCS 4117, pages 214–231 Springer, 2006.

[PV06a] Sylvain Pasini and Serge Vaudenay. An Optimal Non-interactive Message Authen-

tication Protocol. In Proc. of CT-RSA 2006, LNCS 3860, pages 280–294. Springer,

2006.

[PV06b] Sylvain Pasini and Serge Vaudenay. SAS-Based Authenticated Key Agreement. In

PKC 2006, LNCS 3958, pages 395–409. Springer, 2006.

[Sti91] D. R. Stinson. Universal Hashing and Authentication Codes. In Proc. of CRYPTO

’91, LNCS 576, pages 74–85. Springer, 1991.

[Vau05] Serge Vaudenay. Secure Communications over Insecure Channels Based on Short Au-

thenticated Strings. In Proc. of CRYPTO 2005, LNCS 3621, pages 309–326. Springer,

2005.

[WUS06] Association Models Supplement to the Certified Wireless Universal Serial Bus Spec-

ification, 2006. http://www.usb.org/developers/wusb/.

[ZJC06] Philip Zimmermann, Alan Johnston, and Jon Callas. ZRTP: Extensions to RTP

for Diffie-Hellman Key Agreement for SRTP draft-zimmermann-avt-zrtp-01, March

2006.

A Security in arbitrary computational context

Assume that Mana IV and MA–DH protocols are run so that the security constraints

presented in Sec. 5 are fullfilled. Then a protocol instance is uniquely determined by

the time, origin and destination of the OOB message and a potential adversary cannot

Efficient Mutual Data Authentication Using Manually Authenticated Strings 17

interleave OOB messages. This restriction can be trivially fullfilled—there is no need

to exchange more than one key at a time and multiple messages can be sent together.

Consider ideal implementations of cross-authentication and Diffie-Hellman key ex-

change protocols. In ideal world, given ma and mb adversary can either deliver them to

Alice and Bob or drop messages. Similarly, given g a, gb and sid, adversary can either

do a passive attack against the key exchange protocol or interrupt it. Now consider a

security game sec that defines security of a complex protocol. Next, theorem shows that

the security drop compared to the ideal implementation is at most ε.

Theorem 3. Let tp be the total computational time needed to complete a complex pro-

tocol Π . For any t-time adversary A such that Advsec
real(A) = δ in the real protocol,

there exists a (t + tp)-time adversary A∗ that achieves Advsec
ideal(A

∗) ≥ δ − ε, if used

Mana IV or MA–DH protocol is at least (t + tp + O(1), ε)-secure.

Proof (Sketch). Since the source and destination of OOB messages together with the

time uniquely reveal the corresponding Mana IV or MA–DH instance, it is straightfor-

ward to verify that honest Alice and Bob accept ma||m̂b �= m̂a||mb or (sida, keya) �=
(sidb, keyb) with probability at most ε. Otherwise, we can simulate the surrounding

computational context and break a stand-alone Mana IV or MA–DH protocol instance

with larger probability than ε. Of course, the preceding history that determines (m a, mb)
or sid should be fixed in such attack. As all previously used random coins can be hard-

wired, the corresponding attack still takes t + tp + O(1) steps.

Now consider an adversary A∗ that tries to win the game sec in the ideal world. It

simulates a real protocol run to the adversary A. Essentially, A∗ provides A a direct

access to the ideal world except for the absent Mana IV or MA–DH protocol instance.

Given (ma, mb) or (ida, ga, idb, g
b), A∗ simulates the corresponding protocol to A.

If A succeeds in deception, then A∗ halts. Otherwise it simulates the end result of the

protocol in the ideal world, i.e., delivers all messages unaltered or drops them. Note that

when A∗ does not halt then there is no discrepancy between the ideal and real protocol

run. Since Pr [A∗ halts] ≤ ε due to the first part of the proof, the result follows. ⊓⊔

Note 5. If many protocol instances can be run in parallel between the same device pair,

then there are no security guarantees. When more than 2 ℓ protocols run in parallel, then

Charlie can certainly swap OOB messages so that at least one attacked protocol reaches

accepting state. Of course, such attack is not practical.

B Theoretical limitations

In the following, we show that there are no asymptotically optimal two round manual

message authentication protocols. In other words, two round protocols are inherently

less secure. However, the exact quantification of such security drop is out of our scope.

Here it is advantageous to consider unilateral authentication protocols since uni-

lateral authentication is a special case of cross authentication. In a manual unilateral

authentication protocol Sender wants to transfer a authentic message m to Receiver.

The restrictions to the protocols are same: protocol must be correct, the order of all

18 Sven Laur and Kaisa Nyberg

messages is fixed ahead and the first OOB message oob determines the protocol out-

come. Let ℓ the maximal length of oob. We explicitly assume that ℓ ≤ 30, since for

sufficiently large ℓ (say 160 bits) one can use collision resistant hash functions to pro-

tect authenticity, e.g., send oob = h(m). We also assume that the length of inputs m is

larger than ℓ or otherwise we can send m as the first OOB message. Note that a simple

collision attack where Charlie interacts honestly but uses 2ℓ+1 pre-tabulated values for

input and randomness gives a formal proof to the “folklore” bound.

Theorem 4. Let π be a correct unilateral authentication protocol with fixed message

order and let ℓ be the maximal length of the first out-of-band message. Then there exists

a strategy A such that Advforge

π (A) ≥ 2−ℓ.

Proof. The proof is omitted due to the lack of space. The complete proof is given in the

extended version of the current article [LN06]. ⊓⊔
Such strategy is feasible to follow in real-time for ℓ ≤ 30, as necessary pre-tabulated

values can be hardwired into the code of A and then the computational resources needed

to construct the actual program code are irrelevant.

Next we show that no two round protocols can achieve security bounds arbitrarily

close to 2−ℓ. A practical protocol must be secure against the attacks that take super-

linear time w.r.t. the honest protocol run or otherwise the security margin is too small.

Definition 1. We say that a protocol family {πk} with a fixed message ordering is

asymptotically optimal when the maximal advantage εk with respect to the time-bound

tk approaches εk → 2−ℓ and tk is at least super-linear in the protocol complexity.

In principle, unilateral authentication protocols can have arbitrary structure. If we

assume asymptotic optimality from the protocol family, then we can show that for large

enough k, oob(m, rr , rs) is almost uniform w.r.t. to Receiver’s randomness rr and

Sender’s randomness rs, and with high probability only a single value oob(m, rr, rs)
leads to acceptance. Formally, we need a concept of uniform convergence to state these

properties. A parametrised sequence xk(a) converges uniformly xk(a) ⇒ x with re-

spect to the parameter a ∈ {0, 1}∗, if lim
k

sup
a

xk(a) = lim
k

inf
a

xk(a) = x.

Theorem 5. Let {πk} be an asymptotically optimal and correct protocol family, let

probability Pr [·|πk] be taken over honest runs of πk and let two-oob denote the event

that more than one value of oob lead to acceptance. Then next statements are true:

(a) Pr [oob|m, rs, πk] ⇒ 2−ℓ w.r.t. the parameters m, rs,

(b) Pr [two-oob|m, πk] ⇒ 0 w.r.t. the parameter m,

(c) Pr [oob|rr , m, πk] ⇒ 2−ℓ w.r.t. the parameters rr and m.

Proof. Follows from an extended analysis of the collision attack, see [LN06]. ⊓⊔
Corollary 1. There are no asymptotically optimal and correct two round protocol fam-

ilies with a fixed message order for unilateral authentication.

Proof. Omitted, see the extended version of [LN06]. ⊓⊔
The stated result is rather weak, since it does not quantify how close to the optimal

bound the deception probability of two round protocols can go. More accurate analysis

is still an open question.

	Introduction
	Cryptography as an Engineering Discipline
	Introduction to Cryptographic Protocol Design
	Benefits of Finite Set Policy
	Contributions of the Author

	Common Notation and Basic Concepts
	Basic Mathematical Concepts
	Different Interpretations of Probability
	Basic Properties of Random Variables
	Different Formal Models of Computation

	Hypothesis Testing
	Simple Hypothesis Testing
	Negligible Events and Semantic Security
	Interactive Inference and Security Games

	Cryptographic Proof Techniques
	Reductions As Rewriting Rules
	Reductions and Time-success Profiles
	Surprising Properties of Conditional Probabilities
	From Game Chains to Proof Trees
	Formal Verification of Cryptographic Proofs

	Security of Interactive Computations
	Formal Requirements to Security Definitions
	Security of Idealised Computations
	The Real versus Ideal World Paradigm
	Security in Semi-Honest Model
	Input-Privacy in Malicious Model
	Output-Consistency in Malicious Model
	Complete Security in Malicious Model
	Canonical Constructive Correspondence

	Alternative Security Models
	Scalability and Polynomial Security
	Asymptotic Security for Protocols
	Gentle Introduction to Subjective Security
	Setup Assumptions and Subjective Security
	Rigorous Formalisation of Subjective Security
	Reductions and Subjective Security Premises
	Strictly Constructive Proof Techniques

	Modular Design of Complex Protocols
	Duality between Protocol Design and Analysis
	Layered Description of Computational Contexts
	Two Flavours of Stand-Alone Security
	Canonical Decomposition Techniques
	Characterisation of Sequential Composability
	Characterisation of Universal Composability
	Trusted Setup and Universal Composability
	Public Inputs and Universal Composability

	Bibliography
	Index

