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Abstract

This paper addresses the protection of mobile code against cheating and potentially mali-
cious hosts. We point out that the recent approach based on computing with “encrypted
functions” is limited to the case where only the code originator learns the result of the
computation and the host running the code must not notice anything at all. We argue
that if the host is to receive some output of the computation, then securing mobile code
requires minimal trust in a third party. Tamper-proof hardware installed on each host has
been proposed for this purpose. In this paper we introduce a new approach for securely
executing (fragments of) mobile code that relies on a minimally trusted third party. This
party is a generic independent entity, called the secure computation service, which performs
some operations on behalf of the mobile application, but does not learn anything about the
encrypted computation. Because it is universal, the secure computation service needs to be
only minimally trusted and can serve many different applications. We present a protocol
based on tools from theoretical cryptography that is quite practical for computing small
functions.

1 Introduction

Mobile code is an important programming paradigm for our increasingly networked world. It
provides a flexible way to structure cooperative computation in distributed systems. Already
today, the Internet is full of mobile code fragments, such as Java applets, which represent only
the simplest form of mobile code.

Mobile agents are mobile code that acts autonomously on behalf of a user for continuous
collecting, filtering, and processing of information. They combine the benefits of the agent
paradigm, such as reacting to a changing environment and autonomous operation, with the
features of remote code execution; they operate in computer networks and are capable of moving
from server to server as necessary to fulfill their goals. Important applications include mobile
computing, where bandwidth is limited or users are disconnected, data retrieval from large
repositories, and configuration management of software and networks. Today’s vision of mobile
agents roaming the Internet may soon become reality as the paradigm is incorporated in large-
scale applications.

Although sound definitions of mobile computations are still under debate (e.g., [FPV98]), we
assume here that mobile code is a program that is produced by one entity, called the originator,
and is subsequently transferred to a second entity, the host, immediately before it is executed
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by the host. In other words, no manual intervention (such as performing an installation or
running a setup routine) is required on behalf of the host; mobile code comes ready to run.
Moreover, mobile agents are capable of continued, autonomous operation disconnected from the
originator and migrate freely to other hosts during their lifetime. Such agents have also been
called itinerant agents.

Mobile Code Security. Two security problems arise in the area of mobile code: (1) protect-
ing the host from malicious code and (2) protecting the code from malicious hosts. The first
problem has received considerable attention because of the imminent threat of computer viruses
and Trojan horses—nothing but prominent members of the mobile agent family. Current solu-
tions are to run mobile code in a sandbox with fine-grained access control and to apply code
signing for exploiting a trust relation with the code producer. We address the second problem
in this paper: protecting the mobile application. Solutions for this are far less developed, but
this problem needs to be solved for making the mobile agent metaphor useful in many contexts.

Mobile code is exposed to various security threats: a malicious host may examine the code,
try to learn the secrets carried by an agent, and exploit this knowledge in its interaction with
the agent to gain an unfair advantage. A host might also try to manipulate the result of a
computation. We do not address denial-of-service attacks here, such as killing the agent. Our
goal is to achieve secrecy for mobile applications and integrity for their outputs in the traditional
sense of information security.

Protecting mobile code was deemed impossible by some mobile code researchers until Sander
and Tschudin [ST98] realized that protocols from theoretical cryptography could be useful to
execute mobile code in an encrypted form on an untrusted host. However, most such protocols
for so-called secure computation [GMW87, AF90] require several rounds of interaction and are
therefore not applicable in our context. Sander and Tschudin concluded that only functions
representable as polynomials can be computed securely in this manner. Subsequent work of
Sander et al. extends this to all functions computable by circuits of logarithmic depth [SYY99].

Recently some of us together with Kilian have found a protocol for computing all polynomial-
time functions efficiently [CCKM00], which solves the mobile code privacy problem in this
form. In particular, this protocol allows any polynomial-size circuit to be evaluated securely in
polynomial time using only one round of interaction.

However, this approach has a serious drawback: no information about the encrypted compu-
tation must leak to the host and only the originator may receive any output. This rules out any
active mobile code that performs some immediate action on the host (like a mobile agent in a
shopping scenario that accepts or rejects an offer of its host based on a secret strategy [Yee99]).
The impossibility of protecting active mobile code is demonstrated in Section 2 below; the basic
problem is that a malicious host can observe the output of the computation and simply run the
code again with a different input.

The only existing defense for active mobile code against a malicious host uses trusted hard-
ware. This has been proposed by Yee [Yee99] and by Wilhelm et al. [WSB99] and entails run-
ning mobile code exclusively inside tamper-proof hardware, encrypting it as soon as it leaves
the trusted environment. The implicit assumption one must make here is that all users trust
the manufacturer of the hardware. Such an assumption seems very strong and it is unclear
whether the benefits of the mobile code software paradigm justify the deployment of an expen-
sive hardware infrastructure (unlike the example of a DVD player using tamper-proof hardware,
which primarily provides the functionality of playing video).
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Our Contribution. In this paper, we introduce an architecture for secure execution of active
mobile code fragments that needs no additional client hardware. Instead, we propose a generic
secure computation service that performs some cryptographic operations on behalf of the mobile
code; it guarantees privacy as well as integrity of the computation to the code originator and its
host. Moreover, the computation service itself does not learn anything about the computation;
it must only be trusted not to collude with the originator or the host.

Our architecture builds on tools for secure computation from cryptology and applies them
in new ways. In particular, we employ Yao’s “encrypted circuit construction” for scrambling
a circuit that computes the desired function [Yao86]. Such methods had been thought of
theoretical interest only, but current technology makes them appear practical for small tasks
where maintaining privacy justifies this overhead.

The generic nature of the proposed computation service has several benefits:

• Its cost can be shared across many applications because it is generic; nothing about its
usage must be known before deploying it.

• The trust placed in its integrity is universal and not bound to a particular service or
to an application context; secure computation servers may be set up and operated by
independent entities.

• It is based on software and commodity hardware only and therefore much cheaper to build
and operate than any solution involving specialized hardware.

In many respects, the secure computation service resembles other generic security services like
a public-key infrastructure (PKI) or an anonymous re-mailer. These services also enhance
security and privacy where needed.

Organization of the Paper. Section 2 introduces a formal model for mobile computations,
formulates the desired security properties, and reviews prior work for protecting mobile code. It
is shown why the approach based on “one-round secure computation” is not suitable for securing
active mobile code. Our architecture is introduced in Section 3, and Section 4 illustrates two
applications: a comparison shopping agent and a generalized auction scheme. Conclusions are
drawn in Section 5.

2 Protecting Mobile Agents

This section formalizes mobile agent computations and states our desired security conditions.
The formal model is then used to argue why protecting active mobile agents purely by software
is impossible without further assumptions.

2.1 Model

The defining element of a mobile code computation is that it proceeds autonomously and
independently of the originator. We model mobile agent computation as follows.

Participants: There are an originator O and ` hosts H1, . . . ,H`, on which the mobile agent
runs.
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Non-interactive communication: Each participant sends and receives only a single message.
We denote by m0 the message that O sends to H1 and by mj the message that Hj sends
to Hj+1 for j = 1, . . . , l − 1, and by m` the message that the last host H` returns to O.

Computation: Let the state of the mobile agent be an element of a set X . Its initial state x0

is determined by O. Let the input by Hj be an element of a set Yj and the output to Hj

an element of Zj . The agent computation on host Hj is represented by two functions

gj : X × Yj → X and hj : X × Yj → Zj

that determine the new state xj = gj(xj−1, yj) of the agent and the output zj = hj(xj−1, yj).
O obtains the final state ξ = x` ∈ X of the agent. The functions gi and hi are known to
all parties.

A (non-interactive) secure mobile computing scheme consists of 2` + 2 algorithms A0,
A1, . . . ,A`, B1, . . . ,B`, and D such that for all j = 1, . . . , ` and x0 ∈ X , yj ∈ Yj , and with

m0 = A0(x0)
mj = Aj(mj−1, yj) for j = 1, . . . , `

zj = Bj(mj−1, yj) for j = 1, . . . , `

ξ = D(m`)

the following two conditions hold.

Correctness: ξ = g`(x`−1, y`) and zj = hj(xj−1, yj) for j = 1, . . . , `, using

xj′ = gj′(· · · (g2(g1(x0, y1), y2) · · · ), yj′)

for j′ = 1, . . . , `− 1.

Privacy: The inputs, outputs, and the computations of all hosts remain hidden from the
originator and from all other hosts, except for what follows from their outputs: O learns
only ξ but nothing else about any yj than what follows from x0 and ξ, and similarly, Hj

learns only zj but nothing about x0 and yj′ for j′ < j than what follows from zj and yj .

These requirements can be defined formally using the simulation approach from cryptogra-
phy [Bea91, MR92, Gol98, Can00].

For simplicity, the model assumes that the order in which the agent visits all hosts is
fixed. It can be extended to allow for the sequence to depend on zj by introducing a function
π : Zj → {1, . . . , `} and sending the mobile agent to Hπ(zj) from Hj .

In the special case of mobile code applications with a single host H, the function g yields
O’s output ξ and h gives H’s output z.

2.2 Software-only Solutions

Sander and Tschudin [ST98] were the first to realize that a software-only solution to protecting
mobile code from a malicious host is indeed feasible for small programs using cryptographic
techniques. They proposed to use so-called homomorphic public-key encryption schemes that
allow for non-interactive addition or multiplication of two encrypted cleartext messages by
manipulating ciphertext only. In this way, the host can compute any function g(·, y) on a
hidden input x that is representable by a polynomial (in the single-host scenario).
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This approach was later improved by Sander et al. [SYY99] to non-interactive evaluation
of all functions g(·, y) on a hidden input x that can be represented by circuits of logarithmic
depth [SYY99]. Cachin et al. [CCKM00] further generalized this to arbitrary functions, provided
they can be represented by a polynomial-size circuit; they also described how to realize secure
mobile agent applications with multiple hosts in this way.

However, all those solutions address only the secure evaluation of gj for updating the agent’s
state and producing the final result, but ignore how to realize hj for producing output at Hj .
More precisely, they are restricted to functions hj : Yj → Zj such that the host’s output must
not depend on anything else than its own input.

In fact, it is not hard to see that this is the best one can achieve under the given circum-
stances. Towards a contradiction suppose there exists an active agent that also outputs some
value to its host, for example, in a shopping agent application indicating whether or not to
accept an offer. Assume for simplicity that the agent’s decision is solely based on the price yj

offered by Hj and that it will buy the cheapest offer; the state of the agent is xj−1 = c indicating
a secret threshold c chosen by the originator, below which it will accept the offer. Because of
the communication constraints in our model it must be that running algorithm Bj on mj−1

and yj immediately yields zj . Then Hj can determine whether the agent is willing to accept
yj or not, i.e., whether yj < c. But nothing prevents a malicious host from running Bj again
with some other y′j and continuing in this way until the agent has leaked c completely, applying
simple binary search.

This shows that software-only protection for the privacy of a mobile shopping agent appli-
cation is not possible. In fact, we can conclude the following.

Proposition 1. (Non-interactive) secure mobile computing schemes do not exist. In particular,
any scheme in which some host is to learn information that depends on the agent’s current state
cannot be secure.

As a consequence of this, we must extend our model above in order to obtain privacy
and integrity for active mobile agents. Allowing for communication between each host and the
originator would solve the problem as mentioned earlier; but it would destroy the benefits of the
mobile agent paradigm where the originator may be poorly connected or temporarily off-line.
The only alternative seems to extend the model by at least one trusted element.

One such extension, proposed by Yee [Yee99] and by Wilhelm et al. [WSB99], uses trusted
and tamper-proof hardware modules at every host, such as smart cards or cryptographic co-
processors. Each one of these hardware modules possesses a public key and mobile code can be
executed securely using this infrastructure in the following way: After generating the mobile
agent code, the originator encrypts it under the public key of H1’s module. Upon receiving
some encrypted mobile agent, a host Hj passes it along to its hardware module, together with
Hj ’s input yj . The module decrypts the code, executes it on the inputs provided and encrypts
the output again under the public key of the module in Hj+1. Then it returns this encryption
to the host, together with zj , the output intended for Hj . The host sends the encrypted code
and the encrypted data to the next host in the sequence.

To guarantee privacy in the strict sense discussed above, each hardware module must be
trusted to execute the code properly and only once. Furthermore, all trusted modules must be
produced and initialized by a trusted, external entity.

In the next section we introduce an alternative extension that is based on a minimally
trusted party, the secure computation service.
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Figure 1: The communication flow of a traditional mobile agent (left) and using the generic
secure computation service (right).

3 Generic Secure Computation Service

Suppose there exists a third party T that is on-line and connected to all hosts running agent
applications and is at their disposal for securing agent computations. Is it possible to realize
such a secure mobile computing scheme in which T itself does not gain any information about
the computation, no matter how it behaves? All computations should proceed with minimal or
no interaction. We give a positive answer below and describe a scheme with these properties
under assumptions that (1) T does not collude with the originator against any host, and (2) T
does not collude with any host against the originator or against any other host.

Our scheme is generic and not bound to any particular application. Hence the service of T
may be offered as a public service for “secure mobile agent computation” on the Internet. The
two trust assumptions seem reasonable for such a generic, independent entity. Clients who use
this service in the role of O or H (e.g., for comparison shopping) do not have to fear that T
has “second thoughts” trying to violate their privacy (e.g., of customer profiling and collecting
marketing data). Moreover, T itself has an interest to maintain its reputation as a security
provider.

The scheme described below extends the communication pattern of mobile agent computa-
tions by two messages from each host to T and back. Figure 1 shows the communication in
traditional mobile agent computation and in our scheme.

Our technique is based on encrypting a binary digital circuit that realizes the part of the
agent computation in which privacy must be maintained. Although, in principle, such circuits
may model arbitrary computations, the associated costs are prohibitive for larger applications.
But for small parts of an agent application, like the comparison function of the shopping agent,
the overhead seems reasonable.

We proceed by reviewing the encrypted circuit construction for interactive secure protocols.

3.1 Encrypted Circuit Construction

The encrypted circuit construction of Yao [Yao86] is an interactive protocol for secure function
evaluation between two parties. We describe it for a binary function g(·, ·) and parties Alice
(with input x) and Bob (with input y). Bob receives the output z = g(x, y) but learns nothing
else and Alice learns nothing at all. We give an abstract version of Yao’s construction describing
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only the properties necessary here (more details can be found in the literature [Fra93, Rog9X]).
Let (x1, . . . , xnx), (y1, . . . , yny), and (z1, . . . , znz) denote the binary representations of x,

y, and z, respectively, and let C denote a polynomial-sized binary circuit computing g. The
essential components of Yao’s construction are (1) an algorithm construct that Alice uses to
construct an encrypted circuit, (2) a transfer protocol between Alice and Bob, and (3) an
algorithm evaluate allowing Bob to retrieve g(x, y). More precisely, these procedures are as
follows.

(1) The probabilistic algorithm construct(C) takes the circuit as input and outputs the tuple

(C,L,K,U),

where C may be viewed as an encrypted version of the nx + ny-input circuit C(·, ·) and
where L,K, and U denote lists of “key pairs”

L = (L1,0, L1,1), . . . , (Lnx,0, Lnx,1)
K = (K1,0,K1,1), . . . , (Kny ,0,Kny ,1)
U = (U1,0, U1,1), . . . , (Unz ,0, Unz ,1),

corresponding to x, y, and z, respectively.

In order to compute C(x, y) from the encryption C, Bob needs one “key” for each input
bit: Li,b corresponds to input bit xi = b and Ki,b corresponds to input bit yi = b. The
keys Ui,0 and Ui,1 represent the output bits of the encrypted circuit, i.e., if evaluation
produces Ui,b, then the output bit zi is set to b.

The particular method in which C is encrypted ensures that for every gate in the circuit,
given two keys representing its input bits, the key representing the resulting output bit
can be readily computed, but no information is revealed about which cleartext bit it
represents.

(2) Alice and Bob engage in a protocol for oblivious transfer [EGL85] or “all-or-nothing-
disclosure-of-secrets” [BCR86]. This is an interactive two-party protocol for a sender
with input two messages m0 and m1 and a chooser with input a bit σ. At the end, the
chooser receives mσ but does not learn anything about mσ⊕1, and the sender has no
information about σ.

More precisely, Alice acts as the sender and Bob obtains for every bit yi of his input the
value K ′

i = Ki,yi but learns nothing about Ki,yi⊕1. At the same time, Alice learns nothing
about yi.

In addition, Alice computes the keys representing x as L′
i = Li,xi for i = 1, . . . , nx and

sends
C, L′

1, . . . , L
′
nx

,U
to Bob.

(3) The algorithm evaluate(C, L′
1, . . . , L

′
nx

,K ′
1, . . . ,K

′
ny

) takes as inputs the encrypted circuit,
a representation of x, and a representation of y by the respective keys. It outputs the
keys U ′

1, . . . , U
′
nz

from which Bob can recover z, and if Alice and Bob obey the protocol,
then z = g(x, y).

The security of this construction can be proved in the appropriate formal models. Im-
plementing the construct and evaluate algorithms requires pseudo-random functions [GGM86],
which are realized in practice by block ciphers. Block ciphers are very fast cryptographic prim-
itives, even if implemented in software.
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3.2 Basic Scheme

We first show how to use the encrypted circuit construction for realizing secure mobile code
computation with a single host. The extension to multiple hosts is considered in Section 3.3.

Assume T has published the public key of an encryption scheme. We denote the correspond-
ing encryption and decryption operations by ET (·) and DT (·), respectively. Assume further that
all parties can communicate over secure authenticated links, which could be realized by using
standard public-key encryption and digital signatures.

The basic idea is that O constructs an encrypted circuit C computing the two values ξ and
z. It sends C to H, but encrypts all keys in K for T and does not include the key pairs in U
which correspond to ξ (denoted by Ux) so that H will not learn anything about ξ. Next H
selects from K the encrypted keys representing y and invokes T to decrypt them in a single
round of interaction. Then H evaluates the circuit and obtains z; it also returns the keys in
the circuit output representing ξ to O, who can determine ξ from this.

We now give the details. Let C be the binary circuit computing (ξ, z) = (g(x, y), h(x, y))
from the same inputs with nx + ny input bits x1, . . . , xnx , y1, . . . , yny and nx + nz output bits
ξ1, . . . , ξnx , z1, . . . , znz , slightly modifying the notation from the previous section. The scheme
proceeds in five steps.

1. O chooses a string id that uniquely identifies the computation, e.g., containing the name
of O, a description of g and h, and a sequence counter. O invokes construct(C) and obtains
(C,L,K,U) as above with U consisting of nx +nz key pairs in total. We let Ux denote the
pairs in U with indices 1, . . . , nx and Uz denote those with indices nx + 1, . . . , nx + nz.

For i = 1, . . . , ny and b ∈ {0, 1}, it computes

K̄i,b = ET (id‖i‖Ki,b).

Let K̄ denote the list of pairs of all such K̄. Then O lets L′
i = Li,xi as above for i =

1, . . . , nx and sends
id, C, L′

1, . . . , L
′
nx

, K̄,Uz

to H.

2. H sets K̄ ′
i = K̄i,yi for i = 1, . . . , ny to be the encryptions representing its input y and

sends them to T along with id.

3. T decrypts K̄ ′
i for i = 1, . . . , ny and verifies that the ith decrypted string contains the iden-

tifier id and index i. If all checks are successful, T returns the decrypted keys K ′
1, . . . ,K

′
ny

to H.

4. H invokes evaluate(C, L′
1, . . . , L

′
nx

,K ′
1, . . . ,K

′
ny

) and obtains U ′
1, . . . , U

′
nx+nz

. Then H de-
termines z = (z1, . . . , znz) such that Unx+i,zi = U ′

nx+i for i = 1, . . . , nz and forwards the
remaining values U ′

1, . . . , U
′
nx

to O.

5. O determines its output ξ = (ξ1, . . . , ξnx) such that Ui,ξi
= U ′

i for i = 1, . . . , nx.

This is the basic form of the scheme, and it works under the assumption that all parties
follow the protocol but try to infer more information later (this is also called honest-but-curious
behavior).

The scheme is as secure as the original encrypted circuit construction, assuming that the
public-key encryption scheme used by T is semantically secure and that T does not collude
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with either H or O. More precisely, for the originator O and for H, it corresponds directly to
Yao’s method with oblivious transfer realized by encryption and a third party T . By itself, T
does not obtain any useful information about the circuit and sees only random keys. But if T
would collude with O, they could learn the input of H together, whereas if T and H colluded,
they could evaluate the circuit for several different input values of H and thus gain information
about O’s input.

In order to prevent deviations from the protocol and make the scheme robust, one must
take additional steps and require that every party proves, using zero-knowledge proofs, that
it correctly carried out all operations according to the protocol. T must use a public-key
cryptosystem that is secure against adaptive chosen-ciphertext attacks (which is equivalent to
it being non-malleable [DDN00]). O and H must also commit to their inputs. In a practical
system, all of these can be realized in the so-called “random oracle model” [FS87, BR93] using
a secure hash function. In this case, the public-key encryption scheme and the pseudo-random
functions for circuit encryption should be implemented with discrete logarithms based on the
hardness of the Diffie-Hellman problem [NR97]. Details are omitted here.

A variation of the protocol that is easier to make robust is presented in Section 3.4.

3.3 Extension for Mobile Agents

We can extend the method above to a general mobile computing scheme with hosts H1, . . . ,H`

in the model of Section 2.1. The generalization is the natural one in which each host executes
steps 2–4 of the basic scheme above and sends the agent to the next host afterwards.

The originator must prepare one encrypted circuit for each host and there must be a way
for incorporating the encrypted state xj−1 from C(j−1) into C(j) for j > 1. This can be done by
using the output keys U ′

1
(j−1), . . . , U ′

nx

(j−1) from C(j−1) for decrypting a hidden representation
of the inputs to C(j).

Suppose there is a symmetric cryptosystem with encryption and decryption operations under
key κ denoted by Eκ(·) and Dκ(·), respectively. The cryptosystem must include sufficient
redundancy such that given a potential key U and a ciphertext c, it can be determined with
high probability whether c results from an encryption under U .

The modifications to the scheme are now as follows.

1. The originator obtains C(j), L(j), K(j), U (j), and K̄(j) for j = 1, . . . , ` in the same way as
for C above. However, it selects the values L′

i = L′
i,xi

(1) only for C(1). The identifier in
the jth stage is set to id‖j. The originator also prepares two encryptions

E
U

(j−1)
i,0

(L(j)
i,0 ) and E

U
(j−1)
i,1

(L(j)
i,1 )

for each j > 2 and i = 1, . . . , nx, and randomly permutes them before assigning them to
V

(j)
i,0 and V

(j)
i,1 ; call the list of such pairs V(j).

Then O sends

id, L′
1, . . . , L

′
nx

, C(1), K̄(1),U (1)
z and C(j), K̄(j),U (j)

z ,V(j) for j = 2, . . . , `

to H1 in a single message.

2. For j > 1, when Hj runs step 2 of the basic scheme, it has received V(j) and U ′
1
(j−1), . . . ,

U ′
nx

(j−1) from Hj−1, who has before evaluated C(j−1).
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The host interprets each U ′
i
(j−1) as a symmetric key to E, determines which one of the

ciphertexts V
(j)
i,0 and V

(j)
i,1 it decrypts, and then decrypts the one that matches. This yields

K
(j)
i , an oblivious representation of the ith bit in the current state xj of the mobile agent.

Those keys are then needed to evaluate C(j).

3. When Hj has obtained its output from evaluating C(j), it forwards all data that it has
received from Hj−1, together with U ′

1
(j), . . . , U ′

nx

(j), to Hj+1. At the end of the circle, H`

returns only the U ′
i
(`) to O.

3.4 Variation

In this section we present a different scheme in the same model for which robustness can be
added at much lower cost.

The main difference is that the trusted party generates the encrypted circuit. Because
it is trusted to follow the protocol one does not have to add a costly zero-knowledge proof
for correctness of the whole circuit. Therefore, the operations of the other parties and the
corresponding proofs ensuring robustness become much simpler. T has to know g and h for
constructing the circuit, but it may obtain a description of C from O in the first protocol
message.

We use a three-party oblivious transfer protocol introduced by Naor et al. [NPS99] in which
the role of the chooser is separated among the chooser and a third party, called the receiver.
Compared to the standard notion of oblivious transfer (see Section 3.1), the receiver gets the
output message mσ specified by the chooser, who itself learns nothing. This so-called “proxy”
oblivious transfer can be realized using three message flows: from chooser to receiver and from
receiver to sender and back.

The protocol needs also a one-round implementation of standard oblivious transfer between
two parties, which can be realized using the methods of Cachin et al. [CCKM00] or Sander et
al. [SYY99].

Note that the overall structure of this protocol is similar to the auction scheme of Naor et
al. [NPS99].

Protocol. As in the basic scheme the essential component here is the encrypted circuit con-
struction. The protocol is described for the basic case of mobile code with a single host H.

Suppose O employs a public-key encryption scheme with encryption and decryption opera-
tions denoted by EO(·) and DO(·), respectively. O starts the computation as the chooser in nx

parallel three-party oblivious transfers, one for each bit of x. It sends these hidden choices to
H, who acts as the receiver in the three-party oblivious transfers, together with C and EO(·).
H forwards the appropriate data to T , who acts as the sender; it will send the key pairs L in the
three-party oblivious transfer. Furthermore, H also prepares its input to ny parallel one-round
oblivious transfers (playing the role of the chooser), one for each bit of y. It sends these to T ,
together with the descriptions of C and EO(·); T will send the key pairs K in the one-round
oblivious transfers.

T invokes construct(C) to obtain C and the key pairs L, K, and U . It replys to H with
EO(Ux), C, Uz, and the final flows in all oblivious transfer protocols.

From this H can determine the keys L′
1, . . . , L

′
nx

representing x and the keys K ′
1, . . . ,K

′
ny

representing y. It runs evaluate(C, L′
1, . . . , L

′
nx

,K ′
1, . . . ,K

′
ny

) to obtain U ′
1, . . . , U

′
nx+nz

as above.
Then it determines its output z from U ′

nx+1, . . . , U
′
nx+nz

and from Uz, and it forwards U ′
1, . . . , U

′
nx

together with EO(Ux) to O. This enables O to obtain its output ξ.
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Extension for Mobile Agents. We show how to extend the protocol from a single host
to ` hosts H1, . . . ,H`. The protocol starts as before for the first host. However, the steps for
H2, . . . ,H` are slightly different: three-party oblivious transfer and encryption under EO are
not needed. Instead, T encrypts the keys L(j) in the input of C(j) and representing the state
xj−1 of the mobile agent under the output keys in U (j−1) from C(j−1) as before in V(j). The
keys U (j−1) can be stored by T between step j−1 and step j or they can be sent along with the
protocol flow and are transmitted to T via Hj−1 and Hj (in this case, they must be encrypted
using ET (·)). In addition, the last host obtains Ux encrypted with EO(·) from T and forwards
this to O as before.

Discussion. The communication pattern is the same as in the basic scheme: there is one mes-
sage from O to H1, one from each Hj−1 to Hj and one from H` to O, plus one communication
flow between each host and the trusted party. Robustness can be added as before by using non-
malleable public-key encryption schemes and non-interactive zero-knowledge proofs. However,
the result will be much more practical because zero-knowledge proofs are not needed for the po-
tentially large encrypted circuit in our trust model—only for the relatively few steps pertaining
to the oblivious transfers. Moreover, the encrypted circuit construction can be implemented by
a block cipher instead of public-key operations.

4 Applications

We discuss two applications of mobile agents that greatly benefit from privacy support for in
mobile code: comparison shopping and a complex auction scheme.

4.1 Comparison Shopping

A mobile agent visits several vendor sites and compares offers—not just based on price, but also
on other attributes. The originator wants to maintain the privacy of his preferences, but a shop
has an interest to learn the buyer’s strategy as well as information about other vendor’s offers.
For complex offers where the price is determined individually for each customer based on its
needs, such as in the insurance market, the vendor wants to keep its method of calculating the
price secret. All these requirements can be fulfilled by the secure mobile computing scheme.

An electronic negotiation between a buyer and a single vendor can take place using the
scheme for secure mobile code that visits a single host. Typically, the vendor would act as the
originator and download an applet to the buyer’s browser (as is already quite common on the
Internet). The applet is executed the using the help of the trusted computation service by the
buyer and the offer is displayed to the buyer. The vendor may obtain some information as well,
which it would have to spell out clearly in a “privacy statement” accompanying the applet.

A shopping agents that goes out and collects offers from several vendors can be realized
as well, but this requires prior agreement on the data format of the offers. It seems therefore
restricted to highly structured areas where privacy is important.

4.2 Generalized Auctions

Auctions with generalized bidding strategies present an interesting application area for secure
mobile agents. Bidding agents can implement a complex strategy being a function of time and
other participants’ behavior, which gives the bidder more flexibility compared to traditional
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single-parameter auctions based purely on price. Sandholm and Huai [SH00] present a mobile
agent system to conduct such auctions.

Recently the German UMTS licenses were sold employing a sealed-bid, multiple-round,
multiple-lot auction. It provides an interesting example of a real-world generalized auction.
Telecom operators could buy either two or three packets of frequencies out of twelve available
frequency packets. In each round the bidders had to submit their bids, which had to be increased
by a minimum amount over the previous bids. The winners for each frequency were announced
at the end of the round. The bidding stopped after a round with no more new bids. During
each round the bidders were isolated and under close supervision by the authorities to prevent
coalitions. They had to enter the bids into a computer system, which played the role of the
auctioneer and computed the winner. The German UMTS auction in August 2000 lasted for
173 rounds during almost three weeks and raised about 99 billion DEM.

As the value of the lots is interrelated, a bidder is interested to define his bidding behavior
as dynamically as possible, for example making the valuation of a lot depend on other winning
bids that he observed in the previous rounds. If the bidders can express their strategies as a
computable function, then one may construct a circuit to compute the auction function, i.e.,
the outcome of the auction, with the strategies as the private inputs of all participants. This
would require an auction agent that visits each bidder only once.

However, in the likely case that the bidders are unable to express their strategies mathe-
matically, each round of the auction could also be performed securely by an auction applet that
visits each bidder once and returns to the auctioneer. There it outputs the winning bids or the
end of the auction if the bids did not exceed the minimum increment. If the scheme for secure
mobile computing is used, then there is no single entity that sees all bids (like the auctioneer,
its computer system, or its operators).

Generalized auctions are common in electricity markets, equities trading, bandwidth auc-
tions, and transportation exchanges, and bidders often have preferences over combination of
items.

4.3 Implementation Note

Although encrypted circuits can be constructed for an arbitrary function and any mobile code
application in theory, a practical implementation will only represent privacy-critical parts in this
way and execute the remaining parts in the form of conventional programs. Thus, the circuits are
rather small and processing them is realistic with current technology. It seems feasible to include
them as an add-on to an existing mobile code platform, such as Aglets (http://algets.org).

The comparison shopping agent, for example, could compute most bookkeeping functions
in unencrypted form and hide only its preferences and the best offer so far. The same holds
for the auction applications. If the encrypted circuit construction is realized using AES with
128-bit keys, an encryption of a binary gate may be stored in 96 bytes, including 64 bits for
redundancy. An encrypted circuit that outputs the maximum of two n-bit numbers using
specialized comparison gates can be represented by far less than n kilobytes and requires about
100n block cipher operations.

5 Discussion

Our scheme for secure mobile agent computing provides an attractive alternative to using
trusted hardware. Let us compare the trust assumptions in these two approaches. The proposed
scheme relies on the assumption that T does not actively collude with any of the participants
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against another one. When using trusted hardware, which is also generic, all parties have to
trust the hardware manufacturer in the same way.

There is however a small difference because the trusted hardware can observe all compu-
tations and may possibly leak some information about this (covert channels could easily be
realized and might go to a large government organization). The on-line secure computation
service in our approach does not learn anything about the computation, except that it takes
place and has a certain size; there is no information that can be leaked.

Otherwise, the differences between the server-based approach and trusted hardware are
clearly the speed advantage of secure hardware compared to the encrypted circuit construction
on the one hand, and the high cost and low flexibility of trusted hardware on the other hand.

Note that server-aided computations are quite common for other cryptographic applica-
tions and have been studied extensively [AFK87, BQ95, LL95]; these are protocols in which a
powerful server performs some computation on behalf of a client device with limited processing
capabilities such as a smart card. The server provides computing power to the client, but should
not learn anything about the secrets of the client.

References

[AF90] M. Abadi and J. Feigenbaum, Secure circuit evaluation: A protocol based on hiding
information from an oracle, Journal of Cryptology 2 (1990), 1–12.

[AFK87] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle,
Proc. 19th Annual ACM Symposium on Theory of Computing (STOC), 1987,
pp. 195–203.
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