
Cryptographic techniques for privacy-preserving data
mining

Benny Pinkas
HP Labs

benny.pinkas@hp.com

ABSTRACT
Research in secure distributed computation, which was done
as part of a larger body of research in the theory of cryptog-
raphy, has achieved remarkable results. It was shown that
non-trusting parties can jointly compute functions of their
different inputs while ensuring that no party learns anything
but the defined output of the function. These results were
shown using generic constructions that can be applied to
any function that has an efficient representation as a cir-
cuit. We describe these results, discuss their efficiency, and
demonstrate their relevance to privacy preserving compu-
tation of data mining algorithms. We also show examples
of secure computation of data mining algorithms that use
these generic constructions.

1. INTRODUCTION
Consider a scenario in which two or more parties owning
confidential databases wish to run a data mining algorithm
on the union of their databases without revealing any unnec-
essary information. For example, consider separate medical
institutions that wish to conduct a joint research while pre-
serving the privacy of their patients. In this scenario it is
required to protect privileged information, but it is also re-
quired to enable its use for research or for other purposes.
In particular, although the parties realize that combining
their data has some mutual benefit, none of them is willing
to reveal its database to any other party.

Note that we consider here a distributed computing scenario,
rather than a scenario where all data is gathered in a central
server, which then runs the algorithm against all data. (The
central server scenario introduces interesting privacy issues,
too, but they are outside the scope of this paper.)

How much privacy?.It is obvious that if a data mining
algorithm is run against the union of the databases, and its
output becomes known to one or more of the parties, it re-
veals something about the contents of the other databases.
(For example, if a researcher from a medical institution
learns that the overall percentage of patients that have a
certain symptom is 50%, while he knows that this percent-
age in his population of patients is 40%, then he also learns
that more than 50% of the patients of the other institutions
have this symptom.) This leak of information is inevitable,
however, if the parties need to learn this output.

Defining privacy.The common definition of privacy in
the cryptographic community limits the information that
is leaked by the distributed computation to be the infor-
mation that can be learned from the designated output of
the computation. Although there are several variants of the
definition of privacy, for the purpose of this discussion we
use the definition that compares the result of the actual
computation to that of an “ideal” computation: Consider
first a party that is involved in the actual computation of
a function (e.g. a data mining algorithm). Consider also
an “ideal scenario”, where in addition to the original parties
there is also a “trusted party” who does not deviate from
the behavior that we prescribe for him, and does not at-
tempt to cheat. In the ideal scenario all parties send their
inputs to the trusted party, who then computes the func-
tion and sends the appropriate results to the other parties.
Loosely speaking, a protocol is secure if anything that an
adversary can learn in the actual world it can also learn in
the ideal world, namely from its own input and from the
output it receives from the trusted party. In essence, this
means that the protocol that is run in order to compute the
function does not leak any “unnecessary” information. (Of
course, there are partial leaks of information that are harm-
less. It is hard, however, to decide which type of leakage can
be tolerated. The cryptographic community therefore aims
at designing protocols that do not reveal any information
except for their designated output, and in many case such
protocols can in fact be efficiently constructed.)

As an example for the definition of privacy, consider the fol-
lowing problem (described in [8]). Alice and Bob are both
teaching the same class, and each of them suspects that one
specific student is cheating. None of them is completely
sure, though, about the identity of the cheater, and they
would therefore like to compare the names of their two sus-
pects. Since they care about their students privacy they
wish that, (1) if they both have the same suspect, then they
should learn his or her name, but (2) if they have different
suspects then they should learn nothing beyond that fact.
They therefore have inputs x and y, and wish to compute
f(x, y) which is defined as 1 if x = y and 0 otherwise. (Note
that if f(x, y) = 0 then each party does learn some informa-
tion, namely that the other party’s suspect is different than
his/hers, but this is inevitable). There are several efficient
solutions for this problem (described in [8; 14]). Note that
a seemingly trivial solution, of the parties publishing and
comparing the values H(x) and H(y), where H is a one-way
function, is insecure (since given H(x) Bob can do an ex-
haustive search over all students in the class, and find the

SIGKDD Explorations. Volume 4, Issue 2 - page 12

student whose name is hashed to this value).

Adversarial behavior.Privacy preserving protocols are de-
signed in order to preserve privacy even in the presence of
adversarial participants that attempt to gather information
about the inputs of their peers. There are, however, differ-
ent levels of adversarial behavior. Cryptographic research
typically considers two types of adversaries: A semi-honest
adversary (also known as a passive, or honest but curious ad-
versary) is a party that correctly follows the protocol specifi-
cation, yet attempts to learn additional information by ana-
lyzing the messages received during the protocol execution.
On the other hand, a malicious adversary may arbitrarily
deviate from the protocol specification. (For example, con-
sider a step in the protocol where one of the parties is re-
quired to choose a random number and broadcast it. If the
party is semi-honest then we can assume that this number
is indeed random. On the other hand, if the party is mali-
cious, then he might choose the number in a sophisticated
way that enables him to gain additional information.)

It is of course easier to design a solution that is secure against
semi-honest adversaries, than it is to design a solution for
malicious adversaries. A common approach is therefore to
first design a secure protocol for the semi-honest case, and
then transform it into a protocol that is secure against ma-
licious adversaries. This transformation can be done by re-
quiring each party to use zero-knowledge proofs to prove
that each step that it is taking follows the specification of the
protocol. More efficient transformations are often required,
since this generic approach might be rather inefficient and
add considerable overhead to each step of the protocol.

We remark that the semi-honest adversarial model is often
a realistic one. This is because deviating from a specified
program which may be buried in a complex application is a
non-trivial task, and because a semi-honest adversarial be-
havior can model a scenario in which the parties that partic-
ipate in the protocol are honest, but following the protocol
execution an adversary may obtain a transcript of the pro-
tocol execution by breaking into a machine used by one of
the participants.

Note that we do not consider adversaries that change their
inputs in order to gain more information about the inputs
of the other parties. For example, an adversary could set its
input to be the empty set, run the distributed computation,
and then learn the result of applying the data mining algo-
rithm to the input of the other parties (since its own input
adds nothing to the union of the inputs). The operation
of this adversary is legitimate according to our definition,
since it learns exactly the same information it could learn
by sending an empty input to the trusted party in the ideal
scenario. One might wonder why our model does not cover
such attacks. The main reason is that such attacks are hard
to model, and that possible solutions are complex and tend
to be application oriented – for example, we could require
the parties to prove in zero-knowledge that their databases
consist of data they gathered from users, but such a solu-
tion must be tailored to the specific scenario, and is not
very efficient. We therefore assume that the authenticity of
the inputs is assured by some external process. For exam-
ple, parties might be interested in inputing their true data
to the protocol since they are more interested is obtaining
meaningful output from the distributed algorithm than they
are in learning information about the input of their peers.

2. CRYPTOGRAPHIC RESULTS: SECURE
FUNCTION EVALUATION

We describe here results of a body of cryptographic research
that shows how separate parties can jointly compute any
function of their inputs, without revealing any other infor-
mation. As we argued above, these results achieve maximal
privacy that hides all information except for the designated
output of the function. This body of research attempts to
model the world in a way which is both realistic and general.
While there are some aspects of the “real world” that are
not modeled by this research, the privacy guarantees and
the generality of the results are quite remarkable.

2.1 The main building block - oblivious trans-
fer

Oblivious transfer is a basic protocol that is the main build-
ing block of secure computation. It might seem strange
at first, but its role in secure computation should become
clear later. (In fact, it was shown by Kilian [11] that oblivi-
ous transfer is sufficient for secure computation in the sense
that given an implementation of oblivious transfer, and no
other cryptographic primitive, one could construct any se-
cure computation protocol.)

The notion of 1-out-2 oblivious transfer was suggested by
Even, Goldreich and Lempel [7] (as a variant of a different
but equivalent type of oblivious transfer that has been sug-
gested by Rabin [17]). The protocol involves two parties, the
sender and the receiver. The sender’s input is a pair (x0, x1)
and the receiver’s input is a bit σ ∈ {0, 1}. At the end of
the protocol the receiver learns xσ (and nothing else) and
the sender learns nothing. In other words, if we use the no-
tation (inputA, inputB) → (outputA, outputB) to define the
result of a function, then oblivious transfer is the function
((x0, x1), σ) → (λ, xσ), where λ is the empty output.

It is known how to design oblivious transfer protocols based
on virtually all known constructions of trapdoor functions,
i.e. public key cryptosystems. In the case of semi-honest
adversaries, there exist simple and efficient protocols for
oblivious transfer [7; 9]. One straightforward approach is
for the receiver to generate two random public keys, a key
Pσ whose decryption key he knows, and a key P1−σ whose
decryption key he does not know. The receiver then sends
these two keys to the sender, who encrypts x0 with the key
P0 and encrypts x1 with the key P1, and sends the two re-
sults to the receiver. The receiver can then decrypt xσ but
not x1−σ. It is easy to show that the sender does not learn
anything about σ, since the only message that she receives
includes two random public keys, and she cannot find which
one of them has a private key that is known to the receiver.
As for the sender’s privacy, if the receiver follows the pro-
tocol he only knows one private key and can therefore only
decrypt one of the inputs, and if the encryption scheme is
secure he cannot gain information about the other input.
If we consider also malicious adversaries, then this oblivi-
ous transfer protocol must ensure that the receiver chooses
the public keys appropriately. This can be done using zero-
knowledge proofs that are used by the receiver to prove that
he chooses the keys correctly. Fortunately, there are very
efficient proofs for this case, see e.g. [15].

Oblivious transfer is often the most computationally inten-
sive operation of secure protocols, and is repeated many
times. Each invocation of oblivious transfer typically re-

SIGKDD Explorations. Volume 4, Issue 2 - page 13

quires a constant number of invocations of trapdoor per-
mutations (i.e. public-key operations, or exponentiations).
It is possible to reduce the amortized overhead of oblivious
transfer to one exponentiations per a logarithmic number
of oblivious transfers, even for the case of malicious adver-
saries [15].

2.2 Oblivious polynomial evaluation
The problem of “oblivious polynomial evaluation” (OPE)
involves a sender and a receiver. The sender’s input is a
polynomial Q of degree k over some finite field F and the
receiver’s input is an element z ∈ F (the degree k of Q is
public). The protocol is such that the receiver obtains Q(z)
without learning anything else about the polynomial Q, and
the sender learns nothing. That is, the problem considered is
the private computation of the function (Q, z) 7→ (λ, Q(z)).
This problem was introduced in [14], where an efficient so-
lution was also presented. The overhead of that protocol
is O(k) exponentiations (using methods suggested in [15]).
(Note that this protocol maintains privacy in the face of
a malicious adversary. In the semi-honest case a simpler
OPE protocol can be designed based on any homomorphic
encryption scheme, with an overhead of O(k) computation
and O(k|F|) communication.)

The main motivation for using OPE is to utilize the fact
that the output of a k degree polynomial is (k + 1)-wise
independent. Another motivation is that polynomials can
be used for approximating functions that are defined over
the Real numbers.

2.3 The two party case
In [19], Yao presented a constant-round protocol for pri-
vately computing any probabilistic polynomial-time func-
tion (where the adversary may be either semi-honest or ma-
licious). Denote the parties as Alice (A) and Bob (B), and
denote their respective inputs by x and y. Let f be the func-
tion that they wish to compute (for simplicity, assume that
Bob should learn the value f(x, y)). The protocol is based
on expressing f as a combinatorial circuit with gates defined
over some fixed base B. For example, B can include all the
functions g : {0, 1} × {0, 1} 7→ {0, 1}. The bits of the input
are entered into input wires and are propagated through
the gates. Note that it is known that any polynomial-time
function can be expressed as a combinatorial circuit of poly-
nomial size (see, e.g. [18]).

Encoding the circuit.Loosely speaking, Yao’s protocol
works by having one of the parties (say Alice) first generate
an “encrypted” or “garbled” circuit computing f and send
its representation to Bob. The encrypted circuit is gener-
ated in the following way: First, Alice “hardwires” her input
into the circuit, generating a circuit computing f(x, ·). She
then assigns to each wire i of the circuit two random (“gar-
bled”) values (W 0

i , W 1
i) corresponding to values 0 and 1 of

the wire (the random values should be long enough to be
used as keys to a pseudo-random function, e.g. 80-128 bits
long).

Consider a gate g which computes the value of the wire k
as a function of wires i and j. Alice prepares a table Tg

that encrypts the garbled value of the output wire using the
output of a pseudo-random function F keyed by the gar-
bled values of the input wires i and j. The table therefore
has four entries, one entry for every combination of input

values. (Note that pseudo-random functions are usually re-
alized using private-key primitives such as block ciphers or
hash functions, and are therefore very efficient.) The table
enables computation of the garbled output of g, from the
garbled inputs to g. Given the two garbled inputs to g, the
table does not disclose information about the output of g for
any other inputs, nor does it reveal the values of the actual
input bits.

The representation of the circuit includes the wiring of the
original circuit (namely, a mapping from inputs or gate out-
puts to gate inputs), the tables Tg, and tables that translate
the garbled values of the output wires of the circuit to actual
0/1 values. In this form the representation reveals nothing
but the wiring of the circuit, and therefore Bob learns noth-
ing from this stage. (We assume that the wiring of the circuit
is not secret, which is obviously the case if the function f is
public and the only secret information of Alice is her input
x. Even if f is secret and is known only to Alice, it can be
represented as being part of Alice’s input and the parties
can evaluate a universal circuit, i.e. a circuit whose input is
((f, x), y) and whose output is f(x, y).)

Encoding Bob’s input.The tables described above enable
the computation of the garbled output of every gate from
its garbled inputs. Therefore given these tables and the
garbled values of the input wires of the circuit, Bob is able
to compute the garbled values of its output wires and then
translate them to actual values. In order for Bob to obtain
the garbled values of the input wires, Alice and Bob engage,
for each input wire, in a 1-out-of-2 oblivious transfer. In
this protocol Alice is the sender, and her inputs are the two
garbled values of this wire, and Bob is the receiver, and his
input is his input bit. As a result of the oblivious transfer
protocol Bob learns the garbled value of his input bit and
nothing about the garbled value of the other bit, and Alice
learns nothing.

Computing the circuit.At the end of the oblivious transfer
stage Bob has sufficient information to compute the output
of the circuit by his own. After computing f(x, y), he can
send this value to Alice if she requires it.

To show that the protocol is secure it should be proved that
the parties learn nothing that cannot be computed based on
the input and output only. The main observation regarding
the security of each gate is that every masking value (e.g.
output of the pseudo-random function F) is used only once,
and that the pseudo-randomness of F ensures that without
knowledge of the correct keys, i.e. garbled values of input
wires, its output values look random. Therefore knowledge
of one garbled value of each of the input wires discloses only
a single garbled output value of the gate; while Bob cannot
distinguish the other garbled value from random.

As for the security of the complete circuit, the oblivious
transfer protocol ensures that Bob learns only a single gar-
bled value for each input wire, and Alice does not learn
which value it was. Inductively, Bob can compute only a
single garbled output value of each gate, and in particu-
lar of the circuit. The method in which the tables were
constructed hides the values of intermediate results (i.e. of
gates inside the circuit).

It is possible to adapt the protocol for circuits in which gates
have more than two inputs, and even for wires with more

SIGKDD Explorations. Volume 4, Issue 2 - page 14

than two possible values (which are possible since there is
no need for a physical realization of the circuit, and might
enable the construction of more compact circuits). The size
of the table for a gate with ` inputs, which each can have d
values, is d`.

Overhead.The overhead of the protocol involves: (1) Alice
and Bob engaging in an oblivious transfer protocol for every
input wire of the circuit, (2) Alice sending to Bob tables of
size linear in the size of the circuit, and (3) Bob computing
a pseudo-random function a constant number of times for
every gate (this is the cost incurred in evaluating the gates).
The number of rounds of the protocol is therefore constant
(namely, two rounds using the oblivious transfer of [7; 9;
15]). The computation overhead is dominated by the obliv-
ious transfer stage, since the evaluation of the gates uses
pseudo-random functions which are very efficient compared
to the oblivious transfer protocol.

A common belief with regard to Yao’s protocol is that it is
inherently inefficient, since it uses a circuit representation of
the function. Let us examine the overhead more carefully.

• The computational overhead of the protocol is roughly
linear in the size of Bob’s input. To be more specific,
the oblivious transfer stage requires one exponentia-
tion (e.g. public key encryption) per bit of Bob’s input.
The amortized overhead can be reduced at the cost of
increasing the communication overhead, see [15]. It is
therefore reasonable to assume that about a hundred
oblivious transfers can be computed per second [6].

• The communication overhead is linear in the size of
the circuit. More accurately, a table of about 320-512
bits (40-64 bytes) is generated and communicated for
every gate (assuming that all gates have two inputs
and one output). The oblivious transfer stage requires
communication linear in the number of input bits, of
about three modular values per oblivious transfer (for
the protocol of [2]).

The major factor dominating the overhead is, therefore, the
size of the circuit representation of f . There are many func-
tions for which we do not know how to create linear size
circuits (e.g. functions computing multiplications or expo-
nentiations, or functions that use indirect addressing). How-
ever, there are many other functions, notably those involving
additions and comparisons, which can be computed by lin-
ear size circuits. The size of the input itself should also be
reasonable. For example, we cannot expect that two par-
ties, each of them holding a database with millions of en-
tries, could run the protocol for computing a function whose
inputs are the entire databases.

2.4 The multi-party case
In the multi-party scenario, there are protocols that enable
the parties to compute any joint function of their inputs
without revealing any other information about the inputs.
That is, compute the function while attaining the same pri-
vacy as in the ideal model. This was shown to be possible in
principle by Goldreich, Micali and Wigderson [10], Ben-Or,
Goldwasser and Wigderson [3], and by Chaum, Crepau and
Damgard [4], for different scenarios. These constructions,
too, are based on representing the computed function as a

circuit and evaluating it. The constructions do have, how-
ever, some additional drawbacks, compared to the two-party
case:

• The computation and communication overhead of the
protocol is linear in the size of the circuit, and the num-
ber of communication rounds depends on the depth of
the circuit1, unlike the two-party case where the num-
ber of rounds is constant. Furthermore, the protocol
that is run for every gate of the circuit is more com-
plex than the computation of a gate in the two-party
case, especially in the malicious party scenario, and
requires public-key operations (although the overhead
is still polynomial).

• The multi-party protocols require each pair of parties
to exchange messages (in order to compute each gate
of the circuit). The required communication graph is,
therefore, a complete graph, whereas a sparse commu-
nication graph could have been sufficient if no security
was required. In many applications, for example ap-
plications run between a web server and many clients,
it is impossible to require all pairs of parties to com-
municate.

• The security of the multi-party protocols is assured as
long as there is no corrupt coalition of more than one
half or one third of the parties (depending on the sce-
nario). In many situations, however, it is impossible
to ensure that the number of corrupt parties is smaller
than such a threshold (for example, consider a web ap-
plication in which anyone can register and participate,
and which, therefore, enables an adversary to register
any number of corrupt participants). In such cases the
security of the protocol is not guaranteed.

These drawbacks prevent most applications from using the
generic solutions for secure distributed computation.

2.5 Recommended reading
A preferred alternative to reading the original papers of se-
cure computation is to read Ronald Cramer’s lecture notes
that provide an elementary introduction to the methods of
secure computation [5], or Oded Goldreich’s manuscript de-
tails a rigorous introduction to secure multi-party computa-
tion [9].

3. THE TWO-PARTY CASE: COMPUTING
ID3

Yao’s two-party protocol is pretty efficient, as long as the
size of the inputs, and the size of the circuit computing the
function, are reasonable. In fact, for many functions the effi-
ciency of Yao’s generic protocol is comparable to that of pro-
tocols that are targeted for computing the specific function.
We describe here a distributed scenario of computing the
ID3 algorithm, where Yao’s protocol is obviously too costly.
On the other hand, a specialized protocol can be designed
for computing this algorithm, which uses Yao’s protocol as
a primitive.

1The only exception is the protocol of Beaver, Micali and
Rogaway [1] that requires a constant number of communica-
tion rounds, but this protocol uses general zero-knowledge
proofs that are inefficient.

SIGKDD Explorations. Volume 4, Issue 2 - page 15

Classification, decision trees and ID3.Classification is
a classic problem in data mining, which is commonly solved
using decision trees. ID3 is a basic algorithm for construct-
ing decision trees. The input to a classification problem
is a structured database comprised of attribute-value pairs.
Each row of the database is a transaction and each column
is an attribute taking on different values (for example, each
row could represent a patient, and each column a different
symptom). One of the attributes in the database is desig-
nated as the class attribute (e.g., it could denote whether
the patient has a certain disease). The goal is to use the
database in order to predict the class of a new transaction
by viewing only the non-class attributes.

A decision tree is a rooted tree containing nodes and edges.
Each internal node is a test node and corresponds to an at-
tribute. The edges leaving a node correspond to the possible
values taken on by that attribute. The leaves of the tree con-
tain the expected class value for transactions matching the
path from the root to that leaf. Given a decision tree, one
can predict the class of a new transaction by traversing the
nodes from the root down, following the edges that corre-
spond to the attribute values of the transaction. The value
of the leaf is the expected class value of the new transaction.

The ID3 algorithm is used to design a decision tree based
on a given database. The tree is constructed top-down in
a recursive fashion. At the root, each attribute is tested
to determine how well it alone classifies the transactions.
The “best” attribute (to be defined below) is then chosen
and the remaining transactions are partitioned by it. ID3 is
then recursively called on each partition (which is a smaller
database containing only the appropriate transactions and
without the splitting attribute).

The central principle of ID3 is to choose the best predict-
ing attribute based on information theory. The idea is to
check which attribute reduces the information of the class-
attribute to the greatest degree. Namely, to choose the at-
tribute that provides the maximal information gain, where
this value is defined as the difference between the entropy
of the class attribute, and the entropy of the class attribute
given the value of the chosen attribute. This decision rule
results in a greedy algorithm that searches for a small deci-
sion tree consistent with the database. (Note that we only
discuss the basic ID3 algorithm, and assume that each at-
tribute is categorical and has a fixed set of possible values.)

Privacy preserving distributed computation of ID3.We
are interested in a scenario involving two parties, each one
of them holding a database of different transactions, where
all the transactions have the same set of attributes (this sce-
nario is also denoted as a “horizontally partitioned” database).
The parties wish to compute a decision tree by applying the
ID3 algorithm to the union of their databases. An efficient
privacy preserving protocol for this problem was described
in [12]. We describe its basic details below, and refer the
readers to [12] for the complete solution.

Obstacles.A naive approach for implementing a privacy
preserving solution is to apply the generic Yao protocol to
the ID3 algorithm. This approach encounters two major
obstacles. First, the size of the databases is typically very
large. As each transaction can have many attributes, and
there might be millions of transactions, the encoding of each

party’s input might require hundreds of millions of bits. This
means that the computational overhead of running an obliv-
ious transfer per input bit might be very high.

In addition, the circuit representation of ID3 is very large.
Note that the basic step of the algorithm, which is repeated
many times per node, involves computing the information
gain, which is defined as the difference between two entropy
values. Each entropy is computed as the sum of values of
the form pi log(pi), where each pi is the fraction of trans-
actions in which the class attribute, and possibly other at-
tributes, have certain values. This means that the proto-
col should compute the logarithm function, which is defined
over the Real numbers. Most cryptographic protocols, how-
ever, compute functions over finite fields. Even if the circuit
computes an approximation to the logarithm, this computa-
tion involves evaluating polynomials and therefore requires
computing multiplications and exponentiations.

An additional problem is that running ID3 involves many
rounds. The part of the circuit computing the ith round
depends on the results of the previous i−1 rounds. A naive
implementation could require an encoding of many copies of
this step, each one of them corresponding to a specific result
of the previous rounds.

Computing ID3.A key observation is that each node of the
tree can be computed separately, with the output made pub-
lic, before continuing to the next node. In general, private
protocols have the property that intermediate values remain
hidden. However, in the case of ID3 some of these interme-
diate values (specifically, the assignments of attributes to
nodes) are actually part of the output and may therefore
be revealed. Once the attribute of a given node has been
found, both parties can separately partition their remain-
ing transactions accordingly for the coming recursive calls.
This means that private distributed ID3 can be reduced to
privately finding the attribute with the highest information
gain. (This is a slightly simplified argument as the other
steps of ID3 must also be carefully dealt with. However, the
main issues arise within this step.)

Computing information gains.Let T be a set of transac-
tions. The exact test for determining the best attribute
is defined as follows. Let c1, ..., c` be the class-attribute
values and let T (ci) denote the set of transactions with
class ci. Then the information needed to identify the class
of a transaction in T is the entropy, given by HC(T) =∑`

i=1−
|T (ci)|
|T | log |T (ci)|

|T | .

Let C be the class attribute and A be some non-class at-
tribute. We wish to quantify the information needed to
identify the class of a transaction in T given that the value
of A has been obtained. Let A obtain values a1, ..., am

and let T (aj) be the transactions obtaining value aj for
A. Then, the conditional information of T given A equals

HC(T |A) =
∑m

j=1

|T (aj)|
|T | HC(T (aj)).

Now, for each attribute A the information-gain is defined
as Gain(A) = HC(T) − HC(T |A). The attribute A which
has the maximum gain (or equivalently minimum HC(T |A)
value) over all attributes is then chosen.

Notice that the algorithm needs only to find the name of the
attribute A which minimizes HC(T |A); the actual value is ir-
relevant. Therefore, the coefficient 1/|T | can be ignored, and
natural logarithms can be used instead of logarithms to base

SIGKDD Explorations. Volume 4, Issue 2 - page 16

2. Let TA and TB be the transactions in Alice’s and Bob’s
databases, respectively. The values |TA(aj)| and |TA(aj , ci)|,
which are a function of the first database alone, can be com-
puted by Alice independently, and a similar argument holds
for Bob. Therefore the value HC(T |A) can be written as
a sum of expressions of the form (vA + vB) · ln(vA + vB),
where vA is known to Alice and vB is known to Bob (e.g.,
vA = |TA(aj)|, vB = |TB(aj)|).
The protocol computes the information gain of every at-
tribute, such that at the end of the computation Alice and
Bob hold two random shares, whose sum is equal to the in-
formation gain. None of the parties learns the information
gains themselves, but they can later compare the sum of the
different shares and find the attribute with the maximum
gain. The main technical component of the protocol is a
private computation of x ln x using a protocol that receives
private inputs xA and xB such that xA+xB = x and outputs
random shares of an approximation of x ln x. The shares are
elements of a field F where it holds that x ln x < |F|.

Thex ln x protocol. The protocol first computes random
shares of ln x. The first step is computing random shares
of the values n and ε such that x = 2n(1 + ε) and −1/2 ≤
ε ≤ 1/2. Note that ln x = n ln 2 + ln(1 + ε). This computa-
tion is done using Yao’s protocol, and is efficient since the
circuit required for computing this function is very small (it
basically sums the shares and checks for the location of the
most significant bit of x).

The shares of the value ε that are output from the previ-
ous step are used to privately compute the Taylor series for

ln(1 + ε), using the equation ln(1 + ε) =
∑∞

i=1
(−1)i−1εi

i
=

ε − ε2

2
+ ε3

3
− ε4

4
+ · · · . This computation is done up to

the power k that makes the approximation error sufficiently
small. The parties therefore need to compute a polynomial
of degree k and can do this using the oblivious polynomial
evaluation primitive. All computations are done in F . In or-
der to avoid dealing with fractions, the parties compute the
results multiplied by the least common multiple of 1, . . . , k
and therefore all intermediate values are integers (this means
that the parties actually compute lcm(1, . . . , k)x ln x, but
this does not matter since they are only interested in com-
paring the entropies).

After obtaining shares of ln x, the parties compute shares
of x ln x using the oblivious polynomial evaluation primi-
tive. To see how this is done, denote the shares of ln x
as lA and lB . Therefore, x ln x = (xA + xB)(lA + lB) =
xAlA + xAlB + xBlA + xBlB . Alice can define two linear
polynomials P1(y) = xAy + r1 and P2(y) = lAy + r2, where
r1, r2 are random. Bob runs oblivious polynomial evaluation
protocols to obtain P1(lB) and P2(xB), and sets his share
to be P1(lB) + P2(xB) + xBlB . Alice sets her share to be
xAlA − r1 − r2.

Finding the best attribute.Given shares for the differ-
ent x ln x values, the parties should find the attribute with
the best information gain. Each party first sums his or her
shares that correspond to the same entropy value, in or-
der to obtain a share of this entropy value. The parties
then use Yao’s protocol to compute the different informa-
tion gain values and compare them, and output the index of
the best attribute. Note that this is a simple circuit that has
to perform one addition per attribute and then compare the

results. Once the best attribute is found, the parties parti-
tion their databases according to the values of this attribute
and run the algorithm recursively.

Note that this protocol actually does not compute the result
of ID3, but rather an approximation: If the difference be-
tween two information gain values is smaller than the effect
of the approximation errors that are generated by the Taylor
approximations, then the protocol might choose either one
of the two attributes as the best attribute.

4. THE MULTI-PARTY CASE
The multi-party case involves three or more parties that wish
to compute some function of their inputs without leaking
any unnecessary information. As we have described above,
there are generic constructions for this task [10; 3; 4]. Com-
pared to the two-party case, however, it is harder to apply
the generic constructions to actual scenarios. To illustrate
this point we consider the case of running a secure compu-
tation for computing the result of an auction, where there is
an obvious motivation for privacy and security, and also cer-
tain restrictions on the operation of the parties. The auction
application, discussed in [16], is not related to data mining,
but it does exemplify some of the difficulties of the multi-
party case. The discussion below applies for any function
that can be computed by a circuit of reasonable size.

The auction scenario is that of a “sealed bid” auction, and
consists of an auctioneer and many bidders. Each bidder
submits a single secret bid (i.e. the bid is sealed in an en-
velope). There is a known decision rule, whose inputs are
the submitted bids, and whose output is the identity of the
winning bidder and the amount that this bidder has to pay.
For example, in an “English auction” the winning bidder is
the bidder who offered the highest bid, and he has to pay
the amount of his bid. In the second-price, or Vickrey, type
of auction (which has some nice properties that are outside
the scope of this paper) the winner is the highest bidder and
he has to pay the amount of the second highest bid. Bidding
is allowed until some point in time, and at that stage the
decision rule is applied to the submitted bids.

In the physical world bids are submitted in sealed envelopes
that are kept secure until the end of the bidding period,
and are then opened by the auctioneer. In the virtual world
we would like to keep the bids secret during the bidding
period, but we could also attempt to hide all information
afterwards, except for the identity of the winning party and
the amount he has to pay. For example, in the case of a
Vickrey auction the auctioneer’s output could be limited to
the identity of the highest bidder (but not the value of his
bid), and the value of the second highest bid (but not the
identity of the second highest bidder). This is more privacy
than can be achieved in the physical world. (In fact, some of
the suggested explanations for the unpopularity of second-
price auctions are based on possible attacks that a malicious
auctioneer can mount if he learns the bid value of the highest
bidder. This phenomenon is inevitable in the real world,
but can be avoided if a privacy preserving protocol is used
to compute the result of the auction.)

The difficulty of applying the generic constructions.A
natural approach for achieving privacy is to run a secure
multi-party computation involving the auctioneer and all
bidders, where the inputs are the respective bids of the par-

SIGKDD Explorations. Volume 4, Issue 2 - page 17

ties, and the output is the result of the auction. This ap-
proach seems promising in the auction scenario since the
circuit that computes the result of the auction is typically
small, as it involves only comparisons.

The drawbacks of the generic solutions for the multi-scenario
case, which we have described in Section 2.4, become ap-
parent when we consider applying these constructions to
auctions. The computation overhead per gate is high, the
protocol requires each pair of bidders to exchange several
rounds of messages (which might be unacceptable, for ex-
ample, in an Internet environment where different bidders
do not have mutual relationships, and are not even online at
the same times), and security and privacy are only assured
if less than, say, one half of the parties collude (whereas in
an environment where there are no long term trust relation-
ships between the parties an adversary could register the
majority of the bidders that participate in the auction).

Applying the two-party solution in the multi-party sce-
nario. Privacy preserving multi-party computation can be
reduced to the two-party case. Namely, it is possible to use
the generic two-party protocol to compute a function in the
multi-party scenario. Such a reduction is described in [16].
Before describing the highlights of the reduction we first de-
scribe the advantages of this approach.

• Trust: In order to use the two-party construction it is
assumed that there are two special parties, and privacy
is preserved as long as these two parties do not collude.
Namely, a collusion of any number of parties (even
a majority of the parties) that does not include both
special parties does not affect the privacy and security
of the protocol.

Protocols with this security assurance might seem weaker
than protocols that are secure against collusions of say,
any coalition of less than one half of the parties. After
all, there is a coalition of just two parties – the two spe-
cial parties, is able to break the security of the system.
Consider however a scenario where most of the parties
are users (e.g. bidders) that have not established trust
relationships between themselves, and there are one
or more central parties that are more established. For
example, in the auction scenario we can assume that
the two special parties are the auctioneer and another
party which we denote as the “issuer”, and which can
be, for example, an accounting firm. We know that
an adversary can register many fake bidders in order
to control a majority of the participating parties. It
seems harder, though, for the adversary to be able to
control insiders of both special parties, i.e. in the auc-
tioneer’s organization and in the accounting firm.

• Communication: We can design the reduction such
that each of the “simple” participating parties should
only communicate with one of the special parties (e.g.
the auctioneer), and should only send a single message
to this party. This property greatly simplifies the re-
quired communication infrastructure, and enables to
run the protocol without requiring all parties to be
online at the same time (in fact, compared to a pro-
tocol that provides no security at all, the only new
communication channel that is introduced by the se-
cure protocol is the channel between the two special

parties). When all the “simple” parties finish send-
ing their messages, the two special parties run a short
protocol to complete the computation of the function.

• Efficiency: The protocol evaluates a circuit represen-
tation of the function. The overhead per gate and per
input bit is as in the two-party construction, and is
lower than in the multi-party constructions.

The protocol is run with the two special parties taking the
roles of the two parties in the two-party case. The issuer
prepares a circuit for computing the function. This circuit
might have many inputs of different parties – for example,
the inputs might be the bids of the different bidders. The is-
suer encodes the circuit as in the two-party case, by choosing
garbled values for the wires and preparing tables for every
gate. The other special party (the auctioneer) is responsible
for computing the result of the circuit. In order to do that
it should receive the tables that were prepared by the issuer,
and one garbled value for every input wire, namely the value
that corresponds to the input bit associated with that wire.
Once it receives the garbled values of all input wires it can
compute the output of the circuit.

Note that the inputs are, and should remain, unknown to the
auctioneer, yet it should be able to obtain the correct gar-
bled value for each input wire. In order to do that the par-
ties run a protocol called “proxy oblivious transfer”, which
was introduced in [16]. This protocol is similar to oblivi-
ous transfer, but involves three parties: the chooser (which
is the party who knows the value of the input wire), the
sender (which is the issuer), and the receiver (the auction-
eer). The input of the chooser is a bit σ, and the input
of the sender consists of two items x0, x1. At the end of
the protocol the receiver should learn xσ, and no informa-
tion about x1−σ or σ, and the other parties should learn
nothing. An implementation of this protocol, which has an
overhead comparable to that of plain oblivious transfer, and
does not require direct communication between the chooser
and the sender, is described in [16].

Given the proxy oblivious transfer protocol, the rest of the
implementation is simple. Each bidder engages in a proxy
oblivious transfer for each of its input bits. The input of
the bidder to this protocol is the value of the input bit.
The sender is the issuer, and its two inputs are the two gar-
bled values that are associated with the corresponding input
wire. The receiver is the auctioneer, and it learns the gar-
bled value that corresponds to the input bit. This protocol
consists of a single message that is sent from the bidder to
the auctioneer, and then a round of communication between
the auctioneer and the issuer. The auctioneer can actually
wait until it receives messages from all the bidders before it
runs the round of communication with the issuer in parallel
for all input bits. The main computational overhead of the
protocol is incurred by the proxy oblivious transfers, and is
the same as in the two-party case – a proxy oblivious trans-
fer must be executed for every input wire. Estimates in [16]
show that this method can be used to securely implement
Vickrey auctions that involve hundreds of bidders.

5. CONCLUSIONS
This paper was intended to demonstrate basic ideas from a
large body of cryptographic research on secure distributed
computation, and their applications to data mining. We

SIGKDD Explorations. Volume 4, Issue 2 - page 18

described in brief the definitions of security, and the generic
constructions for the two-party and multi-party scenarios.
We showed that it is easier to design an implementation
based on the constructions for the two-party case than it is
to design one based on the multi-party constructions. The
main parameter that affects the feasibility of implementing a
secure protocol based on the generic constructions is the size
of the best combinatorial circuit that computes the function
that is evaluated. The main computational bottleneck of
the constructions is the oblivious transfer protocol, and any
improvement in the overhead of this protocol should directly
affect the overhead of secure computation.

6. REFERENCES

[1] D. Beaver, S. Micali and P. Rogaway, The round com-
plexity of secure protocols, Proc. of 22nd ACM Sympo-
sium on Theory of Computing (STOC), pp. 503-513,
1990.

[2] M. Bellare and S. Micali, Non-Interactive Oblivious
Transfer and Applications, Advances in Cryptology -
CRYPTO ’89. Lecture Notes in Computer Science,
Vol. 435, Springer-Verlag, 1997, pp. 547-557.

[3] M. Ben-Or, S. Goldwasser and A. Wigderson, Complete-
ness theorems for non cryptographic fault tolerant dis-
tributed computation, Proceedings of the 20th Annual
Symposium on the Theory of Computing (STOC), ACM,
1988, pp. 1–9.

[4] D. Chaum, C. Crepeau and I. Damgard, Multiparty
unconditionally secure protocols, Proceedings of the
20th Annual Symposium on the Theory of Computing
(STOC), ACM, 1988, pp. 11–19.

[5] R. Cramer, Introduction to Secure Computation, 2000.
Available at
http://www.brics.dk/~cramer/papers/CRAMER_revised.ps.

[6] Wei Dai, The Crypto++ library, benchmark of Nov. 3,
2002,
http://www.eskimo.com/ weidai/cryptlib.html.

[7] S. Even, O. Goldreich and A. Lempel, A Randomized
Protocol for Signing Contracts, Communications of the
ACM, vol. 28, 1985, pp. 637–647.

[8] R. Fagin, M. Naor and P. Winkler, Comparing Informa-
tion Without Leaking It, Communications of the ACM,
39(5), pp. 77-85, 1996.

[9] O. Goldreich, Secure Multi-Party Computation,
manuscript, 2002. Available at
http://www.wisdom.weizmann.ac.il/ oded/pp.html.

[10] O. Goldreich, S. Micali and A. Wigderson, How to Play
any Mental Game - A Completeness Theorem for Proto-
cols with Honest Majority, Proceedings of the 19th An-
nual Symposium on the Theory of Computing (STOC),
ACM, 1987, pp. 218–229.

[11] J. Kilian, Founding cryptography on oblivious transfer,
ACM STOC ’88, pp. 20-31.

[12] Y. Lindell and B. Pinkas, Privacy Preserving Data Min-
ing, Journal of Cryptology, Vol. 15, No. 3, pp. 177-206,
2002.

[13] M. Luby, Pseudorandomness and Cryptographic
Applications, Princeton Computer Science Notes,
1996.

[14] M. Naor and B. Pinkas, Oblivious Transfer and Polyno-
mial Evaluation, Proceedings of the 31th Annual Sympo-
sium on the Theory of Computing (STOC), ACM, 1999,
pp. 245–254.

[15] M. Naor and B. Pinkas, Efficient Oblivious Transfer
Protocols, Proceedings of 12th SIAM Symposium on Dis-
crete Algorithms (SODA), January 7-9 2001, Washing-
ton DC, pp. 448–457.

[16] M. Naor, B. Pinkas and R. Sumner, Privacy Preserving
Auctions and Mechanism Design, Proc. of the 1st ACM
conference on Electronic Commerce, November 1999.

[17] M. O. Rabin, How to exchange secrets by oblivious
transfer, Technical Memo TR-81, Aiken Computation
Laboratory, 1981.

[18] J.E. Savage, Computational work and time on finite
machines, Journal of the ACM, 19(4), pp. 660-674, 1972.

[19] A. C. Yao, How to generate and exchange secrets, Pro-
ceedings 27th Symposium on Foundations of Computer
Science (FOCS), IEEE, 1986, pp. 162–167.

SIGKDD Explorations. Volume 4, Issue 2 - page 19

