
Cryptography Against Continuous Memory Attacks

Yevgeniy Dodis∗ Kristiyan Haralambiev † Adriana López-Alt ‡ Daniel Wichs§

September 29, 2010

Abstract

We say that a cryptographic scheme is Continuous Leakage-Resilient (CLR), if it allows users to refresh
their secret keys, using only fresh local randomness, such that:

• The scheme remains functional after any number of key refreshes, although the public key never
changes. Thus, the “outside world” is neither affected by these key refreshes, nor needs to know
about their frequency.

• The scheme remains secure even if the adversary can continuously leak arbitrary information about
the current secret-key of the system, as long as the amount of leaked information is bounded in
between any two successive key refreshes. There is no bound on the total amount of information
that can be leaked during the lifetime of the system.

In this work, we construct a variety of practical CLR schemes, including CLR one-way relations, CLR
signatures, CLR identification schemes, and CLR authenticated key agreement protocols. For each of
the above, we give general constructions, and then show how to instantiate them efficiently using a well
established assumption on bilinear groups, called the K-Linear assumption (for any constant K ≥ 1).
Our constructions are highly modular, and we develop many interesting techniques and building-blocks
along the way, including: leakage-indistinguishable re-randomizable relations, homomorphic NIZKs, and
leakage-of-ciphertext non-malleable encryption schemes.

∗Computer Science Dept. NYU. Email: dodis@cs.nyu.edu.
†Computer Science Dept. NYU. Email: kkh@cs.nyu.edu.
‡Computer Science Dept. NYU. Email: lopez@cs.nyu.edu.
§Computer Science Dept. NYU. Email: wichs@cs.nyu.edu.

Contents

1 Introduction 3

2 Continuous Leakage Resilience for One-Way Relations (CLR-OWR) 4

3 CLR-OWR Part I: Continuous Leakage from One-Time Leakage 6

4 CLR-OWR Part II: Constructing LIRR from Generic Components 7
4.1 Syntax of Construction and Hardness Properties . 7
4.2 Re-randomization Using Homomorphic Encryptions and NIZKs 8
4.3 Leakage-Indistinguishability . 10
4.4 Summary of Construction and its Requirements . 10

5 CLR-OWR Part III: Instantiating the Components 11
5.1 The encryption schemes E1, E2 . 12
5.2 The NIZK System Π : Groth-Sahai Proofs for Linear Equations 13
5.3 Efficiency and Relative-Leakage of Instantiation with E1, E2,Π 14

6 Applications: Signatures, ID Schemes, and AKA 14

7 Extensions 15
7.1 Leakage of Computation . 15
7.2 Leakage of Refreshing . 16
7.3 Noisy Leakage . 17
7.4 Security with Concurrent Leakage Rounds . 17

A Prior Work on Leakage-Resilient Cryptography 21
A.1 (One-Time) Memory Attacks . 21
A.2 Continuous Leakage Attack Models . 22

B Non-Interactive Zero Knowledge 22

C One-Way Secure Encryption 23

D Linear Algebra Notation for Prime-Order Groups 24

E The Encryption Schemes E1, E2 under the K-Linear Assumption 25
E.1 The scheme E1 : Generalized ElGamal Encryption . 25
E.2 The scheme E2 : Generalized “Cramer-Shoup Lite” . 25
E.3 The Plaintext-Equality Relation Req . 28

F The Proof-System Π : Groth-Sahai (GS) Proof System for Linear Equations 28
F.1 Construction . 29
F.2 Correctness and Security . 29
F.3 GS Proofs are Homomorphic . 30

G Putting It All Together : Efficient CLR-OWRs 31

H The Groth-Sahai (GS) Proof System for General Equations 31
H.1 System of Simple Pairing-Product Equations . 32

I CLR Signatures : Generic Construction from CLR-OWR 33

1

J CLR Signatures : Efficient Instantiation Under K-Linear 34
J.1 Expressing RC as a System of Pairing-Product Equations . 35
J.2 tSE NIZK for a System of Pairing-Product Equations . 35

K CLR Identification (ID) Schemes & CLR Authenticated Key Agreement (AKA) 37
K.1 CLR ID Schemes . 37
K.2 CLR AKA . 38

L Noisy Leakage 41
L.1 Background on Entropy . 41
L.2 Properties of Noisy Leakage . 41
L.3 Resilience to Noisy Leakage (Proof-Sketch of Theorem 7.5) 42
L.4 Comparison to the Definition of [49] . 43

M Leakage of Computation 43
M.1 Organization . 43
M.2 Background: Σ-Protocols . 43
M.3 Leakage of Randomness Security: Generic Constructions . 44

M.3.1 ID Schemes . 44
M.3.2 Signatures . 46
M.3.3 “Challenge-Response” Interactive Signatures . 47
M.3.4 AKA . 47

M.4 A Σ-Protocol for the Secret-Key of a CLR-OWR . 47
M.5 Summary of Results of Leakage-of-Randomness . 49

N Proofs Omitted from the Main Body 49
N.1 Theorem 3.2 (LIRR ⇒ CLR-OWR) . 49
N.2 Lemma 4.1 (Hardness Properties of LIRR) . 50
N.3 Lemma 4.5 (Homomorphic Relation) . 51
N.4 Lemma 4.6 (Rerandomization) . 51
N.5 Lemma 4.8 (LoC-NM ⇒ LIRR) . 51
N.6 Theorem 7.2 (Leakage of Refreshing) . 52

N.6.1 Proof Intuition . 52
N.6.2 Formal Proof . 52

2

1 Introduction

Main Technical Contribution. As our main technical contribution, we design an efficiently verifiable
relation R(pk, sk), on public keys pk (the statement) and secret keys sk (the witness), which is continuous
leakage resilient in the following sense. The user can periodically refresh the secret-key sk, using only some
additional fresh local randomness, without affecting the public-key pk. The adversary first sees pk and
then can attack the system for arbitrarily many periods, where, in each period, she can adaptively learn
up to ℓ bits of arbitrary information about the current witness sk, for some parameter ℓ < |sk|, called the
leakage bound. The secret-key sk is then refreshed for the next period. Nevertheless, after attacking the
system for any polynomial number of periods, the attacker still cannot produce a valid witness sk∗ such
that R(pk, sk∗) = 1. Notice that, while there is a necessary bound on the amount of leakage in each period
(learning the secret-key of any single period in full necessarily breaks the system), no restriction is placed
on its type, and the overall amount of leakage during the attack is unbounded.

Applications. We call such a relation R an ℓ-continuous-leakage-resilient (CLR) one-way relation (OWR)
(ℓ-CLR-OWR; see Definition 2.3). More generally, we say that a cryptographic primitive is ℓ-CLR, if its
secret key can be similarly refreshed using only fresh local randomness, and the usual security of this primitive
holds even in the presence of a “continuous key leakage attack”, as described above. Using CLR-OWRs,
we design more advanced CLR primitives, including CLR signatures, CLR identification (ID) schemes, and
CLR authenticated key agreement (AKA) protocols. For each of the above, we give general constructions,
and then show how to instantiate them efficiently using the same number-theoretic assumption we used
to derive our efficient CLR-OWR. This well established assumption is called K-Linear [9, 42, 54], and is
believed to hold in appropriate bilinear groups for constants K ≥ 1. In particular, the 1-linear assumption
is equivalent to the DDH assumption, which only holds in some asymmetric bilinear groups, while 2-linear is
regularly assumed to hold in many symmetric and asymmetric bilinear groups. The assumption gets weaker
as K grows. The amount of leakage that the schemes can tolerate in each period, measured by the ratio
α = ℓ

|sk| (i.e. the fraction of the secret-key that can leak), is given by α ≈ 1/2 under DDH, α ≈ 1/3 under

2-linear, and generally α ≈ 1
K+1 under K-linear.

Bigger Picture. Recently, works on various kinds of leakage-resilient (LR) cryptography have received
a lot of attention. The goal is to design cryptographic primitives which provably resist large classes side-
channel attacks, where the attacker may obtain additional unanticipated information about the secret key
sk, not captured by the traditional definitions. Very roughly, state-of-the-art LR schemes fall into two
categories. Schemes secure against “(one-time) memory attacks” [1, 49, 3, 46, 2], do not restrict the type
of leakage that the adversary can see, but have some a-priori upper bound ℓ on the overall amount of
leakage. They do not offer a method for refreshing the secret-key. In contrast, current “continuous leakage”
models [13, 43, 48, 26, 50, 27] use secret-key evolution, allowing them to only restrict the amount of key
leakage per period (as opposed to overall), but pay the price by placing additional non-trivial restrictions
on the type of leakage. For example, a popular assumption [48, 26, 50, 27] is the “only computation leaks
information” (OCLI) model of Micali and Reyzin [48], where any part of the secret-key that isn’t accessed
by the user during a given period cannot leak. A major open question in the area, articulated, for example,
by Goldwasser during her invited talk at Eurocrypt’09 [31], is to get “the best of both worlds”: allowing for
continuous (overall unbounded) leakage, without additionally restricting the type of leakage. In this work,
we show how to achieve this for several cryptographic primitives.

Related Prior Work. We give an extended overview of leakage-resilient cryptography in Appendix A,
and concentrate on only the most relevant works here. In the model of “(one-time) memory attacks”, the
most relevant schemes are the constructions of signatures, ID schemes and AKA protocols of [3, 46, 20].
As we shall see in Section 6, we will use the ideas from these works to construct advanced CLR primitives
from a CLR-OWR (while constructing the latter is the bulk of this work). The work of [3] also showed a
simple and general method for refreshing secret-keys with the aid of a “master refreshing key”, which must
be stored externally and cannot leak (essentially, the master key is used to sign a completely fresh key pair
used for that period only). In contrast, our work only requires fresh randomness, and no additional secrets,

3

during refreshing.
The work of [27] showed that a variant of the standard “tree-based” construction of many-time signatures

from one-time signatures is secure in the “only-computation leaks information model”, assuming the one-
time signature scheme is secure against memory attacks (albeit, against 3 signing queries). Unfortunately,
it is insecure against continuous memory attacks, since the component keys of the one-time signatures are
kept in memory for many periods (even though they are not accessed), and hence can completely leak in
the memory attack model.

Concurrent Work. Subsequent to our work, Brakerski et al. [11] solve the main remaining open
problem, by constructing CLR public-key encryption (and IBE) schemes under the K-Linear assumption.
Their techniques also yield an alternate construction of signature schemes under the K-Linear assumptions
(same as our work), with improved relative-leakage α ≈ 1/K. Prior to our work, the preliminary results of
Brakerski et al. showed the feasibility of CLR primitives under a strong and non-falsifiable assumption on
hash functions.

Structure of Our Paper. Our main technical contribution lies in building a CLR-OWR (Sections
3-5). We do so in a modular manner. First, in Section 3, we show how to reduce the problem of analyzing
continuous leakage for OWR to that of only analyzing one-time leakage, albeit in a more complicated
primitive, which we call a leakage-indistinguishable re-randomizable relations (LIRR). Then, in Section 4 we
show how to build LIRR generically from group-homomorphic encryptions and NIZKs, where the latter is
a new notion of possibly independent interest. In addition to the encryption being homomorphic, we need
it to have a certain (non-standard) one-time leakage-resilient property, which we call leakage-of-ciphertext
non-malleability (LoC-NM). Finally, in Section 5 we instantiate the required homomorphic components
efficiently using the K-Linear assumption in bi-linear groups. First, we show how build to homomorphic
LoC-NM encryption, by generalizing the “Cramer-Shoup-Lite” CCA-1 encryption scheme [17]. Second,
we notice that the efficient non-interactive zero-knowledge (NIZK) argument system of Groth-Sahai [38] is
actually homomorphic, and can be used as the last missing block to instantiate our construction efficiently.
This is the only place where we are currently “stuck” with the K-Linear assumption. In Section 6, we then
show how to leverage a CLR-OWR to get other more interesting CLR primitives: signatures, ID schemes,
and AKA protocols.

Extensions. Finally, in Section 7 we mention several important extensions of our results to even stronger
models/notions of CLR security. Most importantly, in our basic model we only consider leakage on the
secret-keys stored in memory, while in practice the adversary can also leak from the randomness of the
key-refreshing and the signing algorithms. We show that our schemes can allow (at least some) leakage from
these algorithms as well. For the randomness of signing, we show an alternate construction of signatures in
the random-oracle model (along the lines of [3, 46]) that allows a large amount of the signing randomness
to leak. For randomness of refreshing, we show that (generically) all CLR schemes (one-way relations,
signatures, encryption) also allow a small amount of randomness (logarithmic in the security parameter) to
leak as well. Lastly, we also show additional extensions to “concurrent leakage” and “noisy leakage” [49].

2 Continuous Leakage Resilience for One-Way Relations (CLR-OWR)

A one-way relation (OWR) consists of two efficient algorithms: a key-generation algorithm (pk, sk) ←
KeyGen(1λ), and a verification algorithm Ver(pk, sk), which decides whether a secret-key sk is valid for the
public-key pk.

Definition 2.1 (One-Way Relation (OWR)). We say that (KeyGen, Ver) is a one-way relation if it satisfies:

Correctness: If (pk, sk)← KeyGen(1λ), then Ver(pk, sk) = 1.

Security: For any PPT attacker A, we have Pr

[
Ver(pk, sk∗) = 1

∣∣∣∣
(pk, sk)← KeyGen(1λ)

sk∗ ← A(pk)

]
≤ negl(λ).

4

A one-way relation generalizes the concept of a one-way function (OWF). Of course, we can always set
sk to include all of the randomness of the KeyGen algorithm, so that pk = KeyGen(sk) is a OWF. However,
when defining leakage-resilient one-wayness (which we do next), this equivalence might no longer hold – by
putting more information into the secret key we would also have to give the adversary more information
during key-leakage attacks. Therefore, we consider OWRs, rather than OWFs, as the basic cryptographic
primitive for leakage-resilience.

Modeling Leakage Attacks. We model leakage attacks (also called memory attacks in prior work)
against a secret key sk, by giving the adversary access to a leakage oracle Oλsk(·), defined as follows:

Definition 2.2 (Leakage Oracle). A leakage oracle Oλsk(·) is parameterized by a secret key sk and a security
parameter λ. A query to the oracle consists of a description of a 1-bit probabilistic leakage function h :
{0, 1}∗ → {0, 1}. The oracle runs h(sk) for poly(λ) steps: if the computation completes it outputs h(sk),
else it outputs 0.

In our definitions of leakage-resilient primitives, the adversary can adaptively access Oλsk(·) to learn
information about the secret key sk during an attack. Each query provides 1 bit of information. Our
definitions will therefore place some upper bounds ℓ on the number of queries that the adversary can make
during various stages of the attack.

(One-Time) Leakage Resilient OWR. An ℓ-leakage-resilient OWR (ℓ-LR-OWR) is defined by modifying
Definition 2.1 so that the adversary can make up to ℓ queries to the oracle Oλsk(·), after seing pk and before
outputting sk∗. It was shown in [4, 20] (and implicitly in [3, 46]) that any second-preimage resistant1 (SPR)
function F automatically gives an ℓ-LR-OWR, where ℓ is roughly the number of bits by which F shrinks its
input. This follows from a simple entropy argument: if an adversary sees y = F (x) and ℓ-bits of leakage on x,
then x still has entropy. Therefore, if the adversary outputs x′ such that F (x′) = y, then, with overwhelming
probability, x′ 6= x and hence the adversary breaks SPR.

Continuous Leakage Resilience. A continuous-leakage-resilient (CLR) one-way relation (OWR) con-
sists of the algorithms KeyGen and Ver as before, but also includes a re-randomization algorithm sk′ ←
ReRandpk(sk), which can be used to update the secret key (we will omit the subscript pk, when clear from
context). On a high level, a OWR is continuous-leakage-resilient if an adversary can observe ℓ bits of leakage
on each of arbitrarily many re-randomized secret keys, and still be unable to produce a valid secret key
herself.

Definition 2.3 (CLR-OWR). We say that a scheme (KeyGen, ReRand, Ver) is an ℓ-continuous-leakage-
resilient (ℓ-CLR) one-way relation if it satisfies the following correctness and security properties.

Correctness: For any polynomial q = q(λ), if we sample (pk, sk)← KeyGen(1λ),
sk1 ← ReRand(sk), . . . , skq ← ReRand(skq−1), then, with overwhelming probability (w.o.p.),
Ver(pk, sk) = Ver(pk, sk1) = . . . = Ver(pk, skq) = 1.

Security: For any PPT adversary A, we have Pr[A wins] ≤ negl(λ) in the following game:

• The challenger chooses (pk, sk)← KeyGen(1λ) and gives pk to A.

• The adversary A runs for arbitrarily many leakage rounds. In each round:

– The adversary makes up to ℓ calls to a leakage-oracle Oλsk(·), with the current secret key sk.2

– At the end of the round, the challenger samples sk′ ← ReRand(sk) and updates sk := sk′.

• The adversary wins if it produces a value sk∗ such that Ver(pk, sk∗) = 1.

Why Prior LR Techniques Fail for CLR. All of the prior works on one-time memory-leakage attacks
crucially relied on an entropy argument: given the leakage and the public-key, the secret-key sk still had

1A function F is SPR if, given a random x, it’s hard to find any x′ 6= x such that F (x) = F (x′).
2 This is equivalent to a definition where, in each round, the adversary asks for a single leakage-function with ℓ-bit output

length.

5

some entropy left. For example, this was the main step of our argument for the leakage-resilience of SPR
functions. However, it is unclear how to translate this type of argument to the setting of continuous leakage-
resilience, where the total amount of information seen by the adversary is unbounded. We show a novel
strategy for reasoning about continuous leakage in the next section.

3 CLR-OWR Part I: Continuous Leakage from One-Time Leakage

In this section, we define a new primitive, called a leakage-indistinguishable re-randomizable relation (LIRR),
and show that it can be used to construct a CLR-OWR. Although the definition of the new primitive is
fairly complex with several security requirements, its main advantage is that it reduces the problem of
continuous-leakage resilience for OWR to a simpler one-time leakage-resilience property.

A LIRR allows one to sample two types of secret-keys: “good” keys and “bad” keys. Both types of keys
look valid and are acceptable by the verification procedure, but they are produced in very different ways. In
fact, given the ability to produce good keys, it is hard to produce any bad key and vice-versa. On the other
hand, even though the two types of keys are very different, they are hard to distinguish from each other.
More precisely, given the ability to produce both types of keys, and ℓ bits of leakage on a “challenge” key of
an unknown type (good or bad), it is hard to come up with a new key of the same type. More formally, a
LIRR consists of PPT algorithms (Setup, SampG, SampB, ReRand, Ver, isGood) with the following syntax:

• (pk, samG, samB, dk) ← Setup(1λ) : Outputs a public-key pk, a “good” sampling-key samG, a “bad”
sampling key samB, and a distinguishing-trapdoor dk.

• skG ← SampGpk(samG), skB ← SampBpk(samB): These algorithms sample good/bad secret-keys using
good/bad sampling keys respectively. We omit the subscript pk when clear from context.

• b = isGood(pk, sk, dk): Uses dk to distinguish good secret-keys sk from bad ones.

• sk′ ← ReRandpk(sk), b = Ver(pk, sk). These have the same syntax as in the definition of CLR-OWR.

Definition 3.1 (LIRR). We say that the scheme (Setup, SampG, SampB, ReRand, Ver, isGood) is an ℓ-
leakage-indistinguishable re-randomizable relation (ℓ-LIRR) if it satisfies the following properties:

Correctness: If (pk, samG, samB, dk)← Setup(1λ), skG ← SampG(samG), skB ← SampB(samB) then w.o.p.

Ver(pk, skG) = 1, isGood(pk, skG, dk) = 1 , Ver(pk, skB) = 1, isGood(pk, skB, dk) = 0

Re-Randomization: We require that (pk, samG, sk0, sk1)
c
≈ (pk, samG, sk0, sk

′
1), where:

(pk, samG, samB, dk)← Setup(1λ), sk0 ← SampG(samG), sk1 ← SampG(samG), sk′1 ← ReRand(sk0)

Hardness of Bad Keys: Given samG, it’s hard to produce a valid “bad key”. Formally, for any PPT
adversary A:

Pr

[
Ver(pk, sk∗) = 1

isGood(pk, sk∗, dk) = 0

∣∣∣∣
(pk, samG, samB, dk)← Setup(1λ)

sk∗ ← A(pk, samG)

]
≤ negl(λ)

Hardness of Good Keys: Given samB, it’s hard to produce a “good key”. Formally, for any PPT ad-
versary A:

Pr

[
isGood(pk, sk∗, dk) = 1

∣∣∣∣
(pk, samG, samB, dk)← Setup(1λ)

sk∗ ← A(pk, samB)

]
≤ negl(λ)

6

ℓ-Leakage-Indistinguishability: Given both sampling keys samG, samB, and ℓ bits of leakage on a secret-
key sk (which is either good or bad), it is hard to produce a secret-key sk∗ which is in the same
category as sk. Formally, for any PPT adversary A, we have

∣∣Pr[A wins]− 1
2

∣∣ ≤ negl(λ) in the
following game:

• The challenger chooses (pk, samG, samB, dk)← Setup(1λ) and gives pk, samG, samB to A.
The challenger chooses a random bit b ← {0, 1}. If b = 1 then it samples sk ← SampG(samG),
and otherwise it samples sk ← SampB(samB).

• The adversary A can make up to ℓ queries in total to the leakage-oracle Oλsk(·).

• The adversary outputs sk∗ and wins if isGood(pk, sk∗, dk) = b.

An ℓ-LIRR can be used to construct an ℓ-CLR-OWR, where the ReRand, Ver algorithms are kept the
same, while KeyGen samples pk and a “good” secret key skG (see Figure 1). Note that the CLR-OWR
completely ignores the the bad sampling algorithm SampB, the “bad” sampling key samB, the distinguishing
algorithm isGood, and the distinguishing key dk of the LIRR. These are only used in the argument of
security. Moreover, the “good” sampling key samG is only used as an intermediate step during key-generation
to sample the secret-key sk, but is never explicitly stored afterwards.

KeyGen(1λ): Sample (pk, samG, ·, ·)← Setup(1λ), sk ← SampG(samG) and output (pk, sk).

ReRand, Ver: Same as for LIRR.

Figure 1: Constructing CLR-OWR from an LIRR (Setup, SampG, SampB, ReRand, Ver, isGood)

We argue that the above construction is secure. Assume an adversary attacks the construction and, after
several leakage-rounds, produces a valid secret key sk∗. Since the adversary does not see any information
related to the bad sampling key samB, we can use the hardness of bad keys property to argue that sk∗ must
be a “good” key. However, we then argue that the adversary cannot notice if we start switching good keys
to bad keys in the leakage rounds. More precisely, we define several hybrid games, where each game differs
from the previous by replacing a good key with a bad key in one additional leakage round. We argue that,
by the ℓ-leakage-indistinguishability property, the probability that the adversary produces a good key sk∗ as
her forgery does not change between any two hybrids. Notice that this argument allows us to only analyze
leakage in a single round at a time, and thus avoids the main difficulty of analyzing continuous leakage. In
the last of the hybrids, the adversary only sees “bad keys”, yet still manages to produce a good key sk∗ as
her forgery. But this contradicts the hardness of good keys property, and proves the security of the scheme.
A formal proof of the following theorem appears in Appendix N.1.

Theorem 3.2. Given any ℓ-LIRR scheme, the construction in Figure 1 is a secure ℓ-CLR-OWR.

4 CLR-OWR Part II: Constructing LIRR from Generic Components

4.1 Syntax of Construction and Hardness Properties

We now instantiate an ℓ-LIRR using two public-key encryption schemes and a NIZK argument system.

Review of NIZK. We remind the reader of the basic syntax of non-interactive zero-knowledge (NIZK) argu-
ments [7, 52, 8]. LetR be an NP relation on pairs (y, x) with corresponding language LR = {y | ∃x s.t. (y, x) ∈
R}. A NIZK argument system for R, consists of four PPT algorithms (Setup, Prov, Ver, Sim) with syntax:

• (crs,tk)← Setup(1λ): Creates a common reference string (CRS) and a trapdoor key to the CRS.

• π ← Provcrs(y, x): Creates an argument π for the statement y ∈ LR, using the witness x.

• π ← Simcrs(y,tk): Creates a simulated argument for a statement y using the trapdoor tk.

• 0/1← Vercrs(y, π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prov and Ver without the crs in the subscript, when clear from context.
The definition of security for NIZK arguments is given in Appendix B. For this work, the default notion of

7

NIZKs includes composability (real/simulated NIZKs cannot be distinguished even given the trapdoor key
tk).

Overview of Construction. We first start by describing the high level idea and the syntax of the
construction. Let E1 = (KeyGen1, Enc1, Dec1), E2 = (KeyGen2, Enc2, Dec2) be two public-key encryption
schemes, with perfect correctness. We define the plaintext equality relation for the schemes E1, E2 by:

Req
def

=
{

(y, x)
∣∣ y = (pk1, pk2, c1, c2), x = (m, r1, r2) s.t. c1 = Enc1

pk1(m; r1), c2 = Enc2
pk2(m; r2)

}
.

The corresponding language Leq, is that of ciphertext pairs that encrypt the same plaintext. Let Π =
(SetupΠ, ProvΠ, VerΠ, SimΠ) be a NIZK argument system for Req. We will often omit the public-keys
pk1, pk2 from the descriptions of statements y ∈ Leq, when clear from context.

We will assume that the schemes E1, E2,Π can share some common system parameters prms← ParamGen(1λ)
(e.g. the description of some group) which are implicitly used as inputs by all of the algorithms of each of
the schemes. The parameters define a common message-spaceM for the schemes E1, E2. The basic syntax of
our construction of LIRR, except for the re-randomization algorithm, is shown in Figure 2. The main idea is
to encrypt a random message m using the scheme E1, and put the ciphertext c1 in the public-key. The secret
key consists of a ciphertext/proof pair (c2, π). In a good secret-key, c2 is a new random encryption of m
under E2, and π is a proof of plaintext-equality. In a bad secret-key, c2 is just an encryption of the message
1, and π is a simulated proof. The verification procedure just checks the proof π against the statement
(c1, c2).

Setup(1λ): Output pk = (prms,crs, pk1, pk2, c1), samG = (m, r1), samB = tk, dk = (sk1, sk2) where:

prms← ParamGen(1λ), (pk1, sk1)← KeyGen1(prms), (pk2, sk2)← KeyGen2(prms)

m←M, c1 ← Enc1
pk1

(m; r1), (crs,tk)← SetupΠ(prms)

SampG(samG): Output skG = (c2, π) where: c2 ← Enc2
pk2

(m; r2), π ← ProvΠ((c1, c2), (m, r1, r2)).

SampB(samB): Output skB = (c2, π) where: c2 ← Enc2
pk2

(1), π ← SimΠ((c1, c2),tk).

Ver(pk, sk): Parse sk = (c2, π) and output VerΠ((c1, c2), π).

isGood(pk, sk, dk): Parse sk = (c2, π), dk = (sk1, sk2). Output 1 iff Dec1
sk1

(c1) = Dec2
sk2

(c2).

Figure 2: Construction of LIRR: syntax of procedures (except for re-randomization).

It is easy to see that the scheme satisfies the correctness property. The hardness of bad keys, follows
directly from the soundness of the NIZK argument system. The hardness of good keys, on the other hand, fol-
lows from the security of the encryption scheme E1. In fact, we only need one-way security (see Appendix C),
which is weaker than semantic-security and only requires that an encryption of a random message is hard
to invert. The proof of the following lemma appears in Appendix N.2.

Lemma 4.1. Assume that E1 is a one-way secure and Π is a sound NIZK. Then the construction in Figure 2
satisfies the correctness, hardness of good keys and hardness of bad keys properties of the LIRR definition
(Definition 3.1).

We are left to show (1) how to re-randomize secret keys, and (2) that the leakage-indistinguishability
property holds. We do so in the next two sections, by requiring additional properties from the building-blocks
E1, E2,Π.

4.2 Re-randomization Using Homomorphic Encryptions and NIZKs

We now show how to perfectly re-randomize the secret keys of our LIRR construction. Recall that a secret-
key consists of a pair (c2, π) where π is a proof of plaintext-equality for the statement (c1, c2). Therefore, to
re-randomize the key, we need to first re-randomize the ciphertext c2 into a new ciphertext c∗2 with the same

8

plaintext. We then need to update the proof π to look like a fresh new proof of a new statement (c1, c
∗
2),

for which we do not know the witness! We show that this is indeed possible if the encryption schemes E1, E2
and the argument-system Π are all homomorphic over some appropriate group. In particular, we define a
new notion of homomorphic NIZKs, which is influenced by the notions of re-randomizable and malleable
NIZKs from [6].

Definition 4.2 (Homomorphic Encryption). We say that an encryption scheme (KeyGen, Enc, Dec) is ho-
momorphic if the system-parameters of the scheme define groups (M, ·), (R,+), (C, ·) for the message-space,
randomness-space, and ciphertext-space respectively, such that, for any m,m′ ∈M any r, r′ ∈ R:

c = Encpk(m; r), c′ = Encpk(m
′; r′) ⇒ c · c′ = Encpk(m ·m

′; r + r′)

It is easy to see that for any homomorphic encryption scheme and any public-key pk, we have Encpk(1M; 0R) =
1C (i.e. encryption of the identity -message under identity-randomness gives an identity-ciphertext).

Definition 4.3 (Homomorphic Relation). We say that a relation R ⊆ Y×X is homomorphic if (Y, ·), (X ,+)
are groups and, for any (y, x), (y′, x′) ∈ R, we have (y · y′, x+ x′) ∈ R.

Definition 4.4 (Homomorphic NIZK). We say that a NIZK argument-system (Setup, Prov, Ver, Sim) for a
homomorphic-relation R ⊆ Y×X is itself homomorphic if there are groups (R,+), (P, ·) for the randomness
of the prover and the proofs themselves respectively, such that for any (y, x), (y′, x′) ∈ R, any r, r′ ∈ R:

π = Prov(y, x; r), π′ = Prov(y′, x′; r′) ⇒ π · π′ = Prov(y · y′, x+ x′; r + r′)

where π, π′ ∈ P.

We now connect the above definitions of homomorphic primitives to our construction in Figure 2, showing
how to re-randomize the secret-keys if E1, E2, and Π are homomorphic. First, we show that the plaintext-
equality relation is homomorphic if we fix the public-keys pk1, pk2. That is, for each pk1, pk2, define the

relation R
(pk1,pk2)
eq ⊆ Req where pk1, pk2 are fixed and the statements only consist of (c1, c2). It is easy to

verify the following lemma.

Lemma 4.5. If E1, E2 are homomorphic with the same message-group M, randomness-groups R1,R2, and

ciphertext-groups C1, C2 respectively, then, for any pk1, pk2, the relation R
(pk1,pk2)
eq is a homomorphic relation

over Y = C1 × C2 and X =M×R1 ×R2.

To simplify the discussion, we will say that a proof-system Π for Req is homomorphic if, for every fixed choice

of the public-keys pk1, pk2, it is homomorphic for the (homomorphic) relations R
(pk1,pk2)
eq . Now assume that

E1, E2 are two homomorphic encryption schemes satisfying the requirements of Lemma 4.5, and that Π is a
homomorphic NIZK for Req, with randomness-group R3 and proof-group P. In Figure 3, we show how to
re-randomize the secret keys of our LIRR construction from Figure 2.

ReRand(sk): Parse sk = (c, π). Choose (r′2, r
′
3)← R2 ×R3.

Set c′ := Enc2
pk2

(1M; r′2), π
′ := Prov((1C1

, c′), (1M, 0R1
, r′2); r

′
3). Output sk∗ = (c · c′, π · π′).

Figure 3: Re-randomization

The main idea is to re-randomize the ciphertext c2 in the secret key (without modifying the encrypted
message), by multiplying c2 with a random encryption c′ of the identity message 1M. We then need to update
the proof π in the secret key to look like a fresh new proof of the new true statement (c1, c2 · c

′) ∈ Leq. We
do so by multiplying π with a random proof π′ of the true statement (1C1 , c

′) ∈ Leq. The following lemma
is proved in Appendix N.4.

Lemma 4.6. The re-randomization method in Figure 3 satisfies the re-randomization of LIRR (Defini-
tion 3.1).

9

4.3 Leakage-Indistinguishability

We are left to show the leakage-indistinguishability of our construction. To do so, we need to define a new
security property, called leakage-of-ciphertext non-malleability, for the encryption scheme E2. Intuitively,
this property says that, given ℓ bits of leakage on a ciphertext c, the adversary cannot produce a related
ciphertext c∗.

Definition 4.7 (Leakage-of-Ciphertext Non-Malleable Encryption). A public-key encryption scheme E =
(KeyGen, Enc, Dec) is ℓ-leakage-of-ciphertext non-malleable (ℓ-LoC NM) if, for any PPT adversary A, we
have

∣∣Pr[A wins]− 1
2

∣∣ ≤ negl(λ) in the following game:

• The challenger chooses (pk, sk)← KeyGen(1λ) and gives pk to A.

• The adversary A chooses two messages: m0,m1 and gives these to the challenger.

• The challenger chooses a bit b← {0, 1} and computes c← Encpk(mb), but does not give c to A.
Instead, the adversary A can make up to ℓ queries to a leakage-oracle Oλc (·), on the ciphertext c.

• The adversary A chooses a ciphertext c∗ and the challenger gives m∗ = Decsk(c
∗) to A.

• The adversary A outputs a bit b̃ and wins if b̃ = b.

Remarks on the Definition. Note that, in the definition, the leakage is only on the ciphertext c and
not on the secret-key sk. It is easy to see that even 1-LoC-NM security (i.e. adv. gets only 1 bit of leakage)
already implies semantic-security, since a 1-bit leakage function can act as a distinguisher. On the other hand,
the standard notion of non-malleable encryption from [24] implies ℓ-LoC-NM security where ℓ approaches
the message-size of the scheme. This is because an adversary that leaks less than ℓ bits about a ciphertext c
is unlikely to be able to re-produce c exactly, and the decryption of any other ciphertext c∗ 6= c safely keeps
the challenge message hidden. However, non-malleable encryption is inherently not homomorphic while, as
we will soon see, LoC-NM encryption is simpler to achieve and can be homomorphic as well.

Application to Leakage-Indistinguishability. We now show that, if the scheme E2 in our construction
is ℓ-LoC-NM, then the construction satisfies ℓ-leakage-indistinguishability (Definition 3.1). This is because
the secret-key contains a ciphertext c, and the decision wether the secret-key is “good” or not depends on
the encrypted message. Therefore, the ability to create a secret-key which is in the same category as a
challenge key, requires the ability to create “related ciphertexts”. The proof of the following lemma appears
in Appendix N.5.

Lemma 4.8. Assume that, in the construction of Figure 2, the scheme E2 is ℓ-LoC-NM and that Π is a secure
NIZK. Then the construction satisfies the leakage-indistinguishability property of LIRR (Definition 3.1).

4.4 Summary of Construction and its Requirements

The following theorem follows directly from Lemmata 4.1, 4.6 and 4.8 and Theorem 3.2.

Theorem 4.9. The construction in Figure 2, with the re-randomization procedure in Figure 3, is a secure
ℓ-LIRR as long as the components E1, E2,Π satisfy:

• E1, E2 are homomorphic encryption schemes with perfect correctness and a common message-spaceM.

• E1 is one-way secure and E2 is ℓ-LoC-NM secure.

• Π is a homomorphic NIZK argument system for the plaintext-equality relation Req.

Therefore, the existence of such components E1, E2,Π implies the existence of a ℓ-CLR-OWR.

A stripped-down construction of (just) the CLR-OWR from the schemes E1, E2,Π, without the additional
algorithms needed for LIRR, is shown in Figure 4.

10

KeyGen(1λ): Output pk = (prms,crs, pk1, pk2, c1), sk = (c2, π) where:

prms← ParamGen(1λ), (pk1, ·)← KeyGen1(prms), (pk2, ·)← KeyGen2(prms), (crs, ·)← SetupΠ(prms)

m←M, c1 ← Enc1
pk1

(m; r1), c2 ← Enc2
pk2

(m; r2), π ← ProvΠ((c1, c2), (m, r1, r2))

Ver(pk, sk): Parse sk = (c2, π) and output VerΠ((c1, c2), π).

ReRand(sk): Parse sk = (c2, π). Choose (r′2, r
′
3)← R2 ×R3.

Set c′2 := Enc2
pk2

(1M; r′2), π
′ := Prov((1C1

, c′2), (1M, 0R1
, r′2); r

′
3). Output sk∗ = (c2 · c′2, π · π

′).

Figure 4: CLR-OWR from Components E1, E2,Π

5 CLR-OWR Part III: Instantiating the Components

In this section, we now show how to instantiate the homomorphic encryption and NIZK schemes E1, E2,Π so
as to satisfy the requirements of Theorem 4.9. We will do so under the K-linear assumption (a generalization
of DDH) in Bilinear Groups. The main tool here will be the Groth-Sahai (GS) NIZK argument system,
which we notice to be homomorphic. This observation is influenced by [6], who noticed that GS proofs are
re-randomizable and malleable.

Number Theoretic Assumptions. Let G be a group generation algorithm, which outputs (p,G,g) ←
G(1λ), where G is (some description of) a cyclic group of prime order p with generator g.

Decisional Diffie-Hellman (DDH). The DDH assumption on G states that

(G,g0,g1,g
r
0,g

r
1)

c
≈ (G,g0,g1,g

r0
0 ,g

r1
1)

where (p,G,g)← G(1λ), g0,g1 ← G, and r, r0, r1 ← Zp.

K-Linear [9, 42, 54]. Let K ≥ 1 be constant. The K-Linear assumption on G states that

(G,g0,g1, . . . ,gK ,g
r1
1 ,g

r2
2 , . . . ,g

rK
K ,g

PK
i=1

ri
0)

c
≈ (G,g0,g1, . . . ,gK ,g

r1
1 ,g

r2
2 , . . . ,g

rK
K ,gr00)

where (p,G,g)← G(1λ), g0, . . . ,gK ← G, and r0, r1, . . . , rK ← Zp.
The K-linear assumption, for K = 1, is just the DDH assumption (in disguise). Also, K-linear implies
(K + 1)-linear, so the assumptions get progressively weaker as K grows. For K = 2, it is called the
decisional-linear (DLIN) assumption.

Pairings. Let Gpair be a pairing generation algorithm, which outputs (p,G,Γ,GT , e,g,γ) ← Gpair(1λ),
where G,Γ,GT are groups of prime order p, g is a generator of G, and γ is a generator of Γ. The map
e : G× Γ→ GT is an efficiently computable bilinear map, which satisfies: (1) non-degeneracy : the element
e(g,γ) generates GT , and (2) bilinearity : for any a, b ∈ Zp, we have e(ga,γb) = e(g,γ)ab. We call G,Γ the
base groups and GT is the target group. If G = Γ and g = γ, we say that the pairing is symmetric.

Our Instantiations. We show how to instantiate the components E1, E2 and Π assuming the K-linear
assumption, for any constant K ≥ 1, holds in both base groups G and Γ of a symmetric or asymmetric
pairing Gpair. For K = 1, this is equivalent to assuming DDH holds in the base groups. Although, the
DDH assumption is always invalid in the case of symmetric pairings (G = Γ), it is believed to hold for some
asymmetric pairings, if there is no efficiently computable linear mapping between G and Γ. This is also
sometimes called the External Diffie-Hellman (SXDH) assumption [53, 9, 5, 30, 55]. For symmetric-pairings
(when G = Γ), it is often reasonable to assume that the K-linear assumption holds in G for K = 2 (and
higher). Although the K-linear assumption gets progressively weaker as K grows, there seems to be little
reason to use K > 2 (i.e. anything other than DLIN) in practice.

For simplicity, we only concentrate on the K = 1 (DDH) case in the main body, and the generalization
to K > 1 appears in Appendix E. We note that our encryption schemes E1, E2 do not make use of pairing
operations at all, but the NIZK argument system Π will.

11

5.1 The encryption schemes E1, E2

For the encryption scheme E1, we can use any homomorphic one-way secure encryption. We simply choose
to use (a slight variant of) the ElGamal encryption scheme, shown in Figure 5.

Let prms = (p,G,g)← G(1λ).

KeyGen(prms): Choose x← Zp. Set f = gx. Output (pk = f , sk = x).

Encpk(m): Choose r ← Zp. Output c := (m gr, fr).

Decsk(c): Parse c = (z, c). Output z c−1/x.

Figure 5: ElGamal Encryption (variant)

For the scheme E2, we need a homomorphic encryption satisfying ℓ-LoC-NM security. We use a variant
of the “Cramer-Shoup Lite” (CS-Lite) [16] scheme shown in Figure 6. We implicitly show that ℓ-LoC-NM
security can be constructed from any “1-universal hash proof system” (of which CS-Lite is an example), but,
since we will need a scheme based on K-linear, we restrict ourselves to generalizations of CS-Lite.

Let n ∈ Z
+. Let prms = (p,G,g0,g1) where (p,G,g0)← G(1

λ) and g1 ← G.

KeyGen(prms): Choose (n+ 1) random pairs
{
~xi = (xi,0, xi,1)

⊤ ← Z
2
p

}n
i=0

.

Set h0 := g
x0,0

0 g
x0,1

1 , h1 := g
x1,0

0 g
x1,1

1 , . . . , hn := g
xn,0

0 g
xn,1

1 .
Output pk := (h0,h1, . . . ,hn), sk := (~x0, . . . , ~xn).

Encpk(m): To encrypt a message m ∈ G, choose r ← Zp and compute c0 := hr0, c1 := hr1 , . . . , cn := hrn.
Output c := (gr0, gr1, m c0, c1, . . . , cn).

Decsk(c): Parse c = (y0,y1, z, c1, . . . , cn). Set c̃0 := y
x0,0

0 y
x0,1

1 , c̃1 := y
x1,0

0 y
x1,1

1 , . . . , c̃n := y
xn,0

0 y
xn,1

1 .

If c̃1
?

= c1, . . . , c̃n
?

= cn, then output z/c̃0. Else output ⊥.

Figure 6: Multiple CS-Lite Scheme

For n = 0, the scheme above is already a semantically-secure encryption scheme under the DDH assumption.
For n = 1, we recover the original CS-Lite encryption scheme, in which the ciphertext includes an additional
verification element c1, which certifies that the ciphertext is well-formed.3 The CS-Lite scheme is known
to be CCA-1 secure under the DDH assumption, but CCA-1 security does not, in general, seem to imply
LoC-NM security. We show that the Multiple CS-Lite scheme is ℓ-LoC-NM secure, where the leakage-bounds
ℓ is proportional to the number of verification elements n.

The high level idea goes as follows. By the DDH assumption, the adversary cannot distinguish a correctly
generated challenge ciphertext from one where y0 = gr00 ,y1 = gr11 are uniformly random and independent
values (not a DDH tuple), and c0, . . . , cn are replaced with the corresponding c̃i, as computed as during
decryption. In that case, the value c̃0 is uniformly random over the randomness of the secret vector ~x0, and
m is statistically hidden by the ciphertext and the public-key. We only have to argue that the decryption
query keeps m hidden. If the ciphertext c∗ in the decryption query includes a DDH-tuple y∗0,y

∗
1 , then the

decrypted message m∗ is determined by the public-key alone, and does not reveal any additional information
about ~x0 or m. On the other hand, if y∗0,y

∗
1 are not a DDH-tuple, we argue that c∗ decrypts to ⊥. Consider

the values c̃∗1, . . . , c̃
∗
n, used by the challenger to check “well-formedness” during the decryption of c∗. These

values are uniformly random over the randomness of the secret components ~xi. Unfortunately, they not
independent of the challenge-ciphertext components c̃i.

4 However, since the adversary only sees ℓ bits of
leakage on the challenge ciphertext, this is not enough to guess all of the values c̃∗i correctly (if n is big
enough), and so the ciphertext c∗ will decrypt to ⊥.

3The main difference between the CS-Lite scheme and the full Cramer-Shoup scheme (which is CCA-2 secure) is that the lite
scheme implicitly only uses a “1-universal hash proof system” to compute the verification-element in the ciphertext, whereas
the full scheme uses a more complicated “2-universal hash proof system”. Of course, sice the full CS scheme is CCA-2 secure,
it cannot be homomorphic.

4For example, if (y∗
0 ,y∗

1) = (y0,y1), then c̃∗
i = c̃i are the same! But even if (y∗

0 ,y∗
1) 6= (y0,y1), the values are still not

independent.

12

Theorem 5.1. Under the DDH assumption, the multiple CS-Lite scheme (Figure 6) with parameter n, is an
ℓ-LoC-NM secure encryption with leakage ℓ = n log(p)−λ. The ratio of leakage to ciphertext-size approaches
1, as n grows. The scheme is homomorphic over the messagesM = G, randomness R = Zp, and ciphertexts
C = G

n+3.

The proof of the above theorem appears in Appendix E, where the schemes E1, E2 are also generalized to get
security under the K-linear assumption, for arbitrary values of K.

5.2 The NIZK System Π : Groth-Sahai Proofs for Linear Equations

We consider the language of satisfiable systems of linear equations, over some group G of primer order p.
A system of M equations over N variables consists of a matrix of coefficients B ∈ G

M×N and a vector of
target values ~c ∈ G

M :

B =
{
~bi = (bi,1,bi,2, . . . ,bi,N)

}M
i=1

, ~c = (c1, . . . , cM)

We say that the system (B,~c) is satisfiable if there exists a vector ~x = (x1, . . . , xN) ∈ Z
N
p such that

bx1

i,1b
x2

i,2 . . .b
xN

i,N = ci for i ∈ {1, . . . ,M}.

We call the vector ~x, the satisfying assignment for the system (B,~c). We define the relation Rlinear as
consisting of all pairs ((B,~c), ~x), where the system (B,~c) acts as a statement and the satisfying assignment
~x acts as a witness. We define the corresponding language Llinear of satisfiable linear equations.

If we fix the coefficients B, and define the relation RB
linear = {(~c, ~x) : ((B,~c), ~x) ∈ Rlinear}, then

RB
linear is a homomorphic relation. For simplicity, we will say that a NIZK argument system for Rlinear is

homomorphic if, for every fixed choice of B, it is homomorphic for the (homomorphic) relations RB
linear.

The Groth-Sahai (GS) [38] NIZK argument system is (among other things) an argument system for the
relation Rlinear. We give a brief overview of the GS construction in Appendix F. We notice that the GS
NIZKs already give us a homomorphic NIZK argument system for Rlinear, in the above-described sense.
Therefore, the following lemma follows directly from the work of [38] (see Appendix F for a generalization
to the K-linear assumption).

Lemma 5.2. Assume the DDH assumption holds in both base groups of some pairing Gpair. Then there
exists a homomorphic NIZK argument system for the relation Rlinear. For any statement consisting of M
linear equation in N unknowns, the corresponding proof π contains 2N +M group elements.

Proofs of Plaintext Equality for E1, E2. Let E1 be the ElGamal encryption scheme and E2 be the
CS-Lite encryption scheme as described in Figure 5 and Figure 6, respectively. We now show that the
corresponding language for plaintext-equality Leq can be expressed in terms of a satisfiable set of linear
equations.

Let (p,G,Γ,GT , e,g0,γ) ← Gpair(1
λ) and g1 ← G be the common system parameters. Let pk1, c1 be a

public-key and ciphertext of E1 and pk2, c2 be a public-key and ciphertext of E2 so that:

pk1 = f ∈ G, c1 = (z1, c1) ∈ G
2

pk2 = (h0,h1, . . . ,hn) ∈ G
n+1 c2 = (y0,y1, z2, c2,1, . . . , c2,n) ∈ G

(n+3).

Then (c1, c2) ∈ Leq if and only if there exist a vector ~w = (r1, r2) ∈ Z
2
p such that:

f r1 = c1, hr21 = c2,1, . . . , hr2n = c2,n, gr20 = y0, gr21 = y1, and hr20 (g−1
0)r1 = z2/z1.

We notice that the message m completely drops out, and the witness ~w consists only of the randomness of
the two encryptions. The above system consists of M = n + 4 equations in N = 2 unknowns. Moreover,
notice that only the right side of the above equations depend on the ciphertexts c1, c2, while the coefficients
on the left are completely fixed by the public-parameters prms and the public-keys pk1, pk2. Therefore,

for each choice of pk1, pk2, there exists a matrix B such that R
(pk1,pk2)
eq = RB

linear. This, along with the
preceding paragraph, shows that the GS scheme is a homomorphic NIZK for Req, where the proofs contain
2N +M = n+ 8 group elements.

13

5.3 Efficiency and Relative-Leakage of Instantiation with E1, E2, Π

By plugging in the schemes E1, E2,Π from the previous sections (based on DDH) into our abstract construc-
tion (Theorem 4.9) we get a concrete CLR-OWR instantiation. Let us briefly look at its parameters. The
secret-key sk consists of a ciphertext c2 with n+3 group elements, and a proof π with n+8 group elements,
for a total of 2n + 11 group elements. The leakage, on the other hand, is ℓ = n log(p) − λ bits. Assuming
each group element can be represented optimally using log(p) bits, we therefore get relative leakage which
approaches ℓ

|sk| ≈
1
2 , as n grows.

We generalize the schemes E1, E2 and the NIZK system Π to the K-linear assumption in Appendix E. If
K is constant, the ciphertext c2 still consists of n+O(1) group elements. However, the proof π grows linearly
with K, and requires Kn+O(1) group elements. Therefore, as K grows, the relative leakage of the scheme
degrades, and only approaches 1

K+1 . Recall that, in practice, only the choices K = 1, 2 are interesting,

yielding a relative leakage of 1
2 (based on DDH) and 1

3 (based on DLIN) respectively. See Appendix G for a
proof of the following theorem.

Theorem 5.3. Fix a constant K ≥ 1, and assume that the K-linear assumption holds in the base group(s)
of some pairing Gpair. Then, for any constant ǫ > 0, there exists an ℓ-CLR-OWR, with relative-leakage
ℓ
|sk| ≥

1
K+1 − ǫ. The public/secret keys of the scheme contain O(1) group elements, and the algorithms of

the scheme use O(1) exponentiation/pairing operations.

6 Applications: Signatures, ID Schemes, and AKA

We now show how to use CLR-OWRs to build other CLR primitives; in particular, we define and achieve
CLR security for signatures, ID schemes, and Authenticated Key Agreement (AKA). Our constructions are
based on the prior works of [3, 46, 20], which (sometimes implicitly) construct “one-time” leakage-resilient
versions of these primitives, from underlying “one-time” leakage-resilient OWRs. We notice that these
constructions naturally extend to the continuous case. The details are given in the appendices, and we just
sketch the results.

Signatures. An ℓ-CLR Signature scheme is defined analogously to a CLR-OWR: the adversary’s attack
consists of many rounds, during each of which the adversary can interleave arbitrary signature queries with
up to ℓ leakage queries on the current secret key. At the end of each round, the key is updated using a
ReRand procedure. Our construction is based on the the leakage-resilient signature scheme of [20], which
slightly generalizes the original scheme of [46]. We start with a CLR-OWR C = (KeyGenC , ReRand, VerC),
and a NIZK Ψ = (SetupΨ, ProvΨ, VerΨ) for the relation

RC = {(y, x) | y = (pk,m), x = sk s.t. VerC(pk, sk) = 1}.

The signature scheme construction is shown in Figure 7. For security, we need the NIZK system Ψ to be
true-simulation extractable (tSE); even if an adversary sees simulated proofs of arbitrary true statements
y ∈ LR, if she produces a valid proof ψ∗ for a new statement y∗, then there is a way to extract a valid
witness x∗ from ψ∗, so that (y∗, x∗) ∈ R. Notice that this explains the (seemingly useless) role of m in the
relation RC . Even if the adversary sees simulated proofs for statements that contain many different values
m, any proof she produces for a new m∗ is extractable. We note that, as observed in [20], tSE NIZKs can
be constructed by either (1) composing a simulation-sound NIZK with a CPA-secure encryption, yielding
the scheme of [46], or (2) composing a standard NIZK with a CCA-secure encryption, yielding a (possibly)
more efficient scheme.

On a high level, this construction preserves the (continuous) leakage-resilience security of the underlying
OWR, since the signatures do not reveal any information about sk. In particular, the signatures can be
simulated using the trapdoor tk for the NIZK system, without any knowledge of sk. Nevertheless, we can
extract a valid secret-key sk∗ from any forgery σ∗ on a new message m∗. See Appendix I for the formal
definitions of CLR secure signatures, tSE NIZKs and a proof of security for the above construction.

14

KeyGen(1λ): Run (pk, sk)← KeyGenC(1λ), (crs, ·)← SetupΨ(1λ). Output: vk := (pk,crs), sk.

Signsk(m): Output σ ← ProvΨ((pk,m), sk).

SigVervk(m,σ): Output VerΨ((pk,m), σ).

ReRand(sk): Run the re-randomization procedure of the CLR-OWR C.

Figure 7: A CLR-Signature Scheme from a CLR-OWR and a tSE NIZK

In Appendix J, we also show that, amazingly, the above signature scheme can be instantiated efficiently
from our efficient construction of a CLR-OWR based on the K-linear assumption. This requires us to use
the efficient GS NIZK system to prove statements about the GS NIZK proofs themselves!

ID Schemes and AKA Protocols. The CLR security of identification (ID) schemes and authenticated
key agreement (AKA) protocols is defined naturally in Appendix K. We give black-box constructions of
such schemes from CLR signatures, naturally extending the prior constructions of [3, 20] in the (one-time)
LR setting. In particular, we can use a CLR signature to define a simple CLR ID scheme, where the prover
simply signs a random challenge chosen by the verifier. For AKA, the parties use a CLR signature scheme
to set up a public-key infrastructure (PKI). Then, any pair of parties can agree on a fresh ephemeral session
keys, by running a passively-secure key agreement protocol (such as the Diffie-Hellman key agreement, or
its generalization to K-linear), and authenticating the flows of the protocol by signing them. Even if the
adversary repeatedly sees (limited) leakage on many updated versions of the long-term signing keys, she will
be unable to impersonate an honest user, or break the privacy of past session-keys.

Signatures/ID/AKA Under K-Linear. The construction of signatures, ID schemes, and AKA proto-
cols uses the same secret-key as the underlying CLR-OWR, and preserves the absolute and relative leakage
of the underlying CLR-OWR. Therefore, as a corollary of our construction of CLR-OWR under the K-linear
assumption, and our constructions of ID/Signatures/AKA from CLR-OWR, we get the following result.

Theorem 6.1. Fix any constant K ≥ 1, and assume that the K-linear assumption holds in the base group(s)
of some pairing Gpair. Then, for any ǫ > 0, there exist ℓ-CLR Signatures, ID schemes, and AKA protocols,
with relative-leakage ℓ

|sk| ≥
1

K+1 − ǫ. Moreover, the schemes are efficient, with public-keys, secret-keys,

communication/signatures each consisting of O(1) group elements and all algorithms using at most O(1)
group operations.

The proof of the above theorem is divided into Appendix I (for existence of signatures), Appendix J (for
the efficiency of signatures) and Appendix K (for ID schemes and AKA).

7 Extensions

In this section, we show several important extensions of our results to stronger notions of leakage-resilient
security.

7.1 Leakage of Computation

When considering ID schemes, signatures and AKA, the secret key sk is not only stored in memory between
refreshes, but also computed upon during the creation of a signature or the execution of the ID scheme, or
AKA protocol. Taking signatures as an example, the work of [46] already noticed that, even in the case of
(non-continuous) one-time leakage, resilience to key-leakage attacks, where the leakage functions only get sk
as an input, does not necessarily guarantee security if the adversary can also leak the local randomness used
by the signing algorithm. Following [46], we define a stronger notion of CLR with leakage-of-computation
security, where the adversarial leakage functions in each round get the local randomness of the scheme as
an input, in addition to the secret-key. In particular, in each leakage round i, the adversary can jointly leak
on the current secret key ski, as well as on all the local-randomness ri used to run all of the computation
(signing, protocol execution of ID, AKA) during that round.

15

Unfortunately, as originally noted by [46] in the case of one-time leakage-resilience, the NIZK-based
construction of signatures does not (in general) achieve leakage-of-computation security. On the other hand,
[46] gave alternative constructions of signatures based on Σ-protocols for second-preimage resistent (SPR)
hash functions (also used in [3]), and showed that these do achieve leakage-of-computation security, albeit
in the random-oracle model. A priori, it is not clear if these results extend to continuous leakage-resilience,
since our constructions are not based on SPR functions. In Appendix M, we generalize the results of [46, 3]
in several important respects, and show that they can indeed apply to our construction. In particular, we
show general constructions of ID schemes (in the standard model), signatures and AKA protocols (in the
random oracle model) with leakage-of-computation security. We summarize the results of Appendix M in
the following theorem:

Theorem 7.1. Fix any constant K ≥ 1, and assume the K-linear assumption holds in the base group(s) of
a pairing Gpair. Let ǫ > 0 be a constant, and let α = 1

K+1 − ǫ. The following primitives can be instantiated
with leakage-of-computation security:

1. ℓ-CLR ID schemes with relative-leakage α, in the standard model.

2. ℓ-CLR AKA with relative-leakage α, in the random-oracle model.

3. ℓ-CLR signatures with relative-leakage α/2, in the random-oracle model.

4. ℓ-CLR “challenge-response” interactive signatures with relative-leakage α, in the random-oracle model.

The public-keys, secret-keys, communication, and signature size of all of these schemes consists of O(1)
group-elemets/exponents and all of the algorithms of the schemes require at most O(1) exponentiation/pairing
operations.

It remain an important open problem to construct (even one-time) leakage-resilient signature schemes
with leakage-of-computation security in the standard model.

7.2 Leakage of Refreshing

In our basic model of CLR security, we only consider leakage on the secret key sk in-between the refresh
operations. This is already sufficient if we imagine the refreshing operation to be performed in a secure
setting when no leakage occurs. However, if the adversary may also be able to leak information about the
random coins of the refreshing process itself, it is not clear if security is preserved. We can consider the
stronger notion of (ℓ, µ)-CLR security, where the adversary can leak up to ℓ bits of information on each secret
key ski in-between refresh operations, and up to µ-bits of information on the internal state (ski, ri) used
during each refresh operation ski+1 = ReRand(ski; ri). More precisely, the adversary can learn ℓi bits on any
secret key ski alone, and µi bits jointly on (ski, ri), subject to the constraints µi ≤ µ and ℓi+1 +µi ≤ ℓ (that
is, if the adversary chooses to leak many bits on the refreshing, she is constrained to leaking fewer bits on the
next key). Brakerski et al. [11] show that their particular CLR PKE scheme is secure w.r.t. logarithmic (in
the security parameter) leakage µ(λ) = O(log(λ)) of the refreshing randomness. It was observed by Brent
Waters (personal communication [56]) that this, in-fact, holds generically for all CLR OWRs, Signatures,
and Public-Key Encryption (PKE) schemes. It also carries over to our ID schemes and AKA protocols,
which are constructed in a generic manner from signatures. For completeness, we formalize this observation
in the following theorem. The proof-intuition as well as a formal proof are given in Appendix N.6.

Theorem 7.2. Assume that a construction of a CLR-OWR (respectively: Signature, PKE) is (ℓ(λ), 0)-CLR
secure, and let µ(λ) be any function with µ(λ) = O(log(λ)). Then the same construction is also (ℓ(λ), µ(λ))-
CLR secure. More generally, if the original construction is (ℓ(λ), 0)-secure even against leakage-functions
running in time t(λ)poly(λ) for some t(λ), then the above holds for µ(λ) = log(t(λ)).

Corollary 7.3. Fix any constant K ≥ 1, and assume the K-linear assumption holds in the base group(s) of a
pairing Gpair. Let ǫ > 0 be any constant. Then, for any polynomial ℓ(·) and any µ(λ) = O(log(λ)) there exist
(ℓ(λ), µ(λ))-CLR OWR, Signatures, ID schemes, and AKA protocols with ℓ(λ)/|sk(λ)| = 1

K+1 − ǫ. Further,
if we assume that the K-linear assumption is secure against adversaries running in time t(λ)poly(λ), then
the above also holds for µ(λ) = log(t(λ)).

16

It remains an important open problem to allow for super-logarithmic leakage of the refreshing randomness
without making computational assumptions against super-polynomial attackers.

7.3 Noisy Leakage

In our original definition, we model leakage attacks by allowing the adversary to compute arbitrary efficient
functions of the secret-key, as long as the output lengths of such functions are bounded. We call this length-
bounded leakage. We now define a generalization of length-bounded leakage, called noisy leakage, where the
adversary can learn functions with arbitrarily large output-lengths, as long as the entropy of the secret-key
does not decrease significantly. We define the leakiness of a function h as follows:5

Definition 7.4 (ℓ-leaky function). A probabilistic leakage function h : {0, 1}∗ → {0, 1}∗ is ℓ-leaky if, for
all n ∈ N, we have H̃∞(Un | h(Un)) ≥ n− ℓ, where Un is the uniform distribution over {0, 1}n.

It is easy to show that any function whose output-length is bounded by ℓ-bits, is also ℓ-leaky. Therefore,
noisy leakage provides a generalization of length-bounded leakage. We note that a similar definition of
noisy leakage already appeared in [49], but the definition of “leakiness” there depended on the scheme being
attacked. In contrast, our definition is independent of the scheme and hence seems easier to work with.
Moreover, we show that it composes nicely so that the concatenation of an ℓ1-leaky function and an ℓ2-
leaky function is ℓ1 + ℓ2 leaky. In practice, it may often be the case that physical leakage (say a read-out of
electromagnetic radiation measurements) observed during a side-channel attack satisfies the noisy definition,
even though it has a long description, which is not efficiently compressible, and hence does not satisfy the
length-bounded definition.

In Appendix L, we show that our concrete instantiation of a CLR-OWR, based on the K-linear as-
sumption, is secure with respect to noisy leakage. In particular, in each leakage-round, the adversary can
adaptively ask for arbitrary leakage-functions hi of the current secret-key, as long as each hi is ℓi-leaky and
the total leakage is at most

∑
ℓi ≤ ℓ. Moreover, we show that our constructions of signatures, ID schemes

and AKA preserve noisy-leakage resilience.

Theorem 7.5. The statement of Theorem 6.1 also holds w.r.t. noisy-leakage security, with the same leakage
and efficiency parameters.

7.4 Security with Concurrent Leakage Rounds

Recall that in our original definition of CLR security, the adversary runs in many leakage-rounds. The initial
secret key sk0 of round 0 is chosen via the KeyGen algorithm, and, in each subsequent round i, the secret-key
ski is sampled via ski ← ReRand(ski−1). The leakage-rounds occur sequentially : first the adversary can leak
ℓ bits on sk0, then an additional ℓ bits on sk1, then on sk2 . . . We call this sequential leakage.

We can also consider a stronger notion of security, which we call concurrent leakage. Firstly, for each
round i, we allow the adversary to pick an arbitrary index j ∈ {0, . . . , i−1} so that the key ski is sampled as
ski ← ReRand(skj). Secondly, in each round i, the adversary can concurrently leak on all of the secret keys
sk0, . . . , ski created so far, as long as the total amount of leakage on each key skj is at most ℓ bits during
the entire game. More specifically, in each round i, the adversary has access to all of the leakage-oracles
Oλsk0 ,O

λ
sk1
, . . . ,Oλski

concurrently, and can arbitrarily interleave leakage queries between them, as long as at
most ℓ queries are made to each oracle over the entire game. For more advanced applications, like signature
schemes, we also allow the adversary to arbitrarily interleave signature queries for the various keys ski.

Concurrent-leakage security may be very useful in practice. For example, we can allow for situations
where there is one public-key with many (different) corresponding secret keys distributed over many par-
ties/devices, each of which can tolerate up to ℓ bits of leakage. Moreover, the secret key in each device can
be updated at will, to allow for more leakage. Lastly, any single (full) secret-key allows for the creation of
arbitrarily many fresh new equivalent devices.

5See Appendix L for the definition of eH∞, which denotes average-case min-entropy.

17

We notice that our construction of a CLR-OWR from (any) LIRR, already achieves concurrent security.
This is because each of the keys ski ← ReRand(skj) looks like a freshly sampled “good” key, no matter
which prior key skj it’s generated from. Moreover, the main part of the security argument that allowed us
to switch a single good key for a single bad key, works even if the adversary saw all other keys in full, and
hence the order of leakage does not matter. Therefore, under the K-linear assumption, we get constructions
of OWRs, ID Schemes, Signatures and AKA protocols with concurrent leakage.

Theorem 7.6. The statement of Theorem 6.1 also holds w.r.t. concurrent-leakage security, with the same
leakage and efficiency parameters.

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography
against memory attacks. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer
Science, pages 474–495. Springer, 2009.

[2] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption in the
bounded-retrieval model. Cryptology ePrint Archive, Report 2009/512. To Appear at Eurocrypt, 2010.

[3] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-retrieval
model. In Halevi [40], pages 36–54.

[4] J. Alwen, Y. Dodis, and D. Wichs. Survey: Leakage resilience and the bounded retrieval model. In
ICITS, 2009.

[5] L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant storage via keyword-
searchable encryption. Cryptology ePrint Archive, Report 2005/417, 2005. http://eprint.iacr.org/.

[6] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable
proofs and delegatable anonymous credentials. In CRYPTO, pages 108–125, 2009.

[7] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In STOC, pages 103–112. ACM, 1988.

[8] M. Blum, A. D. Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM J. Comput.,
20(6):1084–1118, 1991.

[9] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, pages 41–55, 2004.

[10] V. Boyko. On the security properties of oaep as an all-or-nothing transform. In CRYPTO, pages
503–518, 1999.

[11] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-
key cryptography resilient to continual memory leakage. FOCS, 2010. Full version: ePrint 2010/278.
http://eprint.iacr.org/2010/278.

[12] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key de-
pendent chosen plaintext and adaptive chosen ciphertext attacks. In A. Joux, editor, EUROCRYPT,
volume 5479 of Lecture Notes in Computer Science, pages 351–368. Springer, 2009.

[13] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions and all-or-
nothing transforms. In EUROCRYPT, pages 453–469, 2000.

[14] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In B. Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science,
pages 453–474. Springer, 2001.

18

http://eprint.iacr.org/
http://eprint.iacr.org/2010/278

[15] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of
witness hiding protocols. In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer
Science, pages 174–187. Springer, 1994.

[16] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In H. Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, 1998.

[17] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in
Computer Science, pages 45–64. Springer, 2002.

[18] G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols in the bounded
retrieval model. In Halevi and Rabin [41], pages 225–244.

[19] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key encryption
schemes with auxiliary inputs. In TCC, pages 361–381, 2010.

[20] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in the pres-
ence of key leakage. Cryptology ePrint Archive, Report 2010/154, 2010. http://eprint.iacr.org/.

[21] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC, pages 621–630,
2009.

[22] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[23] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient cryptography.
In EUROCRYPT, pages 301–324, 2001.

[24] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In STOC, pages
542–552. ACM, 1991.

[25] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In Halevi and Rabin [41], pages
207–224.

[26] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302, 2008.

[27] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures. In TCC, pages
343–360, 2010.

[28] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting against computationally
bounded and noisy leakage. In EUROCRYPT, 2010. To Appear.

[29] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1986.

[30] S. D. Galbraith and V. Rotger. Easy decision-diffie-hellman groups. LMS Journal of Computation and
Mathematics, 7:2004, 2004.

[31] S. Goldwasser. Cryptography without (hardly any) secrets ? April, 2009.

[32] S. Goldwasser, Y. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning with errors
assumption. In Innovations in Computer Science (ICS), 2010.

[33] S. Goldwasser and Y. T. Kalai. On the (in)security of the fiat-shamir paradigm. In FOCS, pages 102–,
2003.

19

http://eprint.iacr.org/

[34] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In D. Wagner, editor, CRYPTO,
volume 5157 of Lecture Notes in Computer Science, pages 39–56. Springer, 2008.

[35] S. Goldwasser and G. N. Rothblum. How to play mental solitaire under continuous side-channels: A
completeness theorem using secure hardware. To Appear at Crypto 2010.

[36] J. Groth. Simulation-sound nizk proofs for a practical language and constant size group signatures. In
X. Lai and K. Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages
444–459. Springer, 2006.

[37] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for np. In S. Vaudenay,
editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 339–358. Springer,
2006.

[38] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart,
editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer,
2008.

[39] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten. Lest we remember: cold-boot attacks on encryption keys. Commun.
ACM, 52(5):91–98, 2009.

[40] S. Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes
in Computer Science. Springer, 2009.

[41] S. Halevi and T. Rabin, editors. Theory of Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in
Computer Science. Springer, 2006.

[42] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In CRYPTO,
pages 553–571, 2007.

[43] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. In
CRYPTO, pages 463–481, 2003.

[44] A. Juma, C. Rackoff, and Y. Vahlis. Leakage resilient key proxies. To appear at CRYPTO 2010.

[45] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposure-resilient
cryptography. In FOCS, pages 92–101, 2003.

[46] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In M. Matsui,
editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 703–720. Springer,
2009.

[47] U. M. Maurer. Unifying zero-knowledge proofs of knowledge. In AFRICACRYPT, pages 272–286, 2009.

[48] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In TCC, pages
278–296, 2004.

[49] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In Halevi [40], pages 18–35.

[50] K. Pietrzak. A leakage-resilient mode of operation. In Eurocrypt 2009, Cologne, Germany, 2009.

[51] R. L. Rivest. All-or-nothing encryption and the package transform. In FSE, pages 210–218, 1997.

[52] A. D. Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge with preprocessing. In
CRYPTO, pages 269–282, 1988.

20

[53] M. Scott. Authenticated id-based key exchange and remote log-in with simple token and pin number.
Cryptology ePrint Archive, Report 2002/164, 2002. http://eprint.iacr.org/.

[54] H. Shacham. A cramer-shoup encryption scheme from the linear assumption and from progressively
weaker linear variants, 2007. Cryptology ePrint Archive, Report 2007/074.

[55] E. R. Verheul. Evidence that xtr is more secure than supersingular elliptic curve cryptosystems. J.
Cryptology, 17(4):277–296, 2004.

[56] B. Waters. Personal Communication. April 2010.

A Prior Work on Leakage-Resilient Cryptography

Below we survey the two major kinds of work on leakage-resilient cryptography: regular (one-time) memory
attacks (and their variants) and continuous memory attacks (and their variants).

A.1 (One-Time) Memory Attacks

Security against Memory Attacks. This model of leakage, sometimes called memory-attacks, was first
proposed by Akavia, Goldwasser and Vaikuntanathan [1]. Here the attacker can learn an arbitrary ℓ bits of
information about the secret key. This model considerably strengthens the prior model of exposure resilient
cryptography [51, 10, 13, 23, 45], where an adversary can only learn ℓ arbitrary physical bits of the secret key.
Back to the general model, Akavia et al. [1] constructed CPA secure PKE and IBE schemes in this model
under the learning with errors (LWE) assumption. Naor and Segev [49] generalized the main ideas behind
these constructions to show that all schemes based on hash proof systems (see [17]) are leakage-resilient. In
particular, this resulted in efficient constructions based on the DDH and K-Linear assumptions, where the
relative leakage on the secret key could be made to approach 1. Moreover, [49] showed how to also achieve
CCA security in this model by giving an inefficient construction where the relative leakage can be made to
approach 1, and an efficient construction with relative leakage 1/6. Recently, Dodis et al. [20] constructed
efficent CCA-secure scheme in this model under the K-Linear assumption, where the relative leakage on the
secret key could be made to approach 1.

The work of [2] generalizes [49] still further by showing how to construct leakage-resilient IBE schemes
generically based on identity-based hash proof systems, with several instantiations.

Leakage-resilient signature schemes in the model of memory attacks were constructed in the random-
oracle model by [3, 46], and in the standard model by [46]. The random-oracle schemes are highly-efficient
but suffer from two limitations. Firstly they rely on the Fiat-Shamir [29] transform which is only known
to be secure in the Random Oracle model and is not sound in general [33]. Secondly, the schemes can only
tolerate leakage which approaches 1/2 of the secret key. On the other hand, the standard-model schemes
allow for relative-leakage approaching 1, but are based on generic simulation-sound NIZKs and do not come
with an efficient instantiation. Recently, Dodis et al. [20] constructed efficent signature scheme in this model
under the K-Linear assumption, where the relative leakage on the secret key could be made to approach 1.
We borrow some techniques from this work for our efficient CLR signature construction as well.

The work of [3] also constructs identification (ID) schemes and authenticated-key agreement (AKA)
protocols. The parameters and/or security of these schemes were later improved by [20], to achieve strongest
security notions and relative leakage approaching 1. We adapt the appropriate techniques from [3, 20] for
our CLR ID schemes and CLR AKA protocols.

The work of [34] shows how to implement any computation securely (for a bounded number of executions),
even against leakage of all intermediate steps of the computation, given some simple leakage-free hardware.

Extensions. We mention several related models of leakage-resilience which are strictly stronger than the
memory-attacks model. Firstly, the Bounded-Retrieval Model [18, 25, 3, 2] imposes an additional requirement
on leakage-resilient schemes, by insisting that they provide a way to “grow” the secret-key (possibly to many

21

http://eprint.iacr.org/

Gigabytes) so as to proportionally increase the amount of tolerated leakage, but without increasing the size
of the public-key, the computational-efficiency of the scheme, or the ciphertext/signature/communication
lengths. The work of [3] constructs “entropic” signatures, ID schemes and AKA protocols in this setting,
while the work of [2] constructs PKE and IBE schemes in this model.

Naor and Segev [49] also proposed the noisy leakage model, where the length of the leakage function is
not bounded, although it can still “contain” at most ℓ bits of information about the secret key of the system.
We consider this extension for our CLR setting in Section 7.3.

A different strengthening is the auxiliary input model [21, 19], where the leakage is not necessarily
bounded in length, but it is (only) assumed to be computationally hard to recover the secret-key from the
leakage. The work of [21] constructs symmetric-key encryption in this model, under a strengthening of the
learning parity with noise (LPN) assumption, while [19] constructs public-key encryption under the DDH
and LWE assumptions.

Yet another strengthening of the memory-attacks model, proposed by [32], is to require that there is a
single scheme (parameterized only by the security parameter) which can tolerate essentially any amount of
relative-leakage where the exact-security of the scheme degrades smoothly as the relative-leakage increases.
In this model, [32] construct a symmetric-key encryption scheme.

In a different vein, Katz and Vaikuntanathan [46] considered the setting where the leakage function
can also depend on the local randomness used during signature generation. We extend out CLR model to
capture this improtant aspect in Section 7.1.

A.2 Continuous Leakage Attack Models

Unlike the model of one-time (or bounded) memory attacks, continuous leakage models also restrict restrict
the type, as well as amount, of information that the adversary can learn. However, schemes in such models
also come with the key updating procedure, so that the overall leakage of the system is unbounded. The first
such model was considered by Canetti et al. [13] in the context of exposure resilient cryptography (where,
recall, the attacker can only learn ℓ physical bits of the secret). Namely, the work of [13] introduced the
gradual key exposure, where the secret key is (deterministically) updated in a way that up to ℓ physical bits
can be safely leaked in between successive refreshes. Canetti et al. [13] also showed a generic way to build
a stream cipher in this model from what they called an exposure-resilient function.

Later, [43] studied how to implement arbitrary (stateful) computation in the setting where an adversary
can observe a small subset of the physical wires of a circuit. Most recently, [28] study a similar problem,
where the adversary can observe a low-complexity (e.g. AC0) function of the wires. Unfortunately, these
models fail to capture many meaningful side-channel attacks, such as learning the hamming-weight of the
secret key bits or their parity.

In their seminal work, Micali and Reyzin [48] initiated the formal modeling of side-channel attacks under
the axiom that “only computation leaks information” (OCLI), where each invocation of a cryptographic
primitive leaks a function of only the bits accessed during that invocation. Several primitives have been
constructed in this setting including stream ciphers [26, 50] and signatures [27]. More recently, [44, 35]
construct a general compiler that can secure all primitives in this setting assuming the use of some limited
leak-free components. On the positive side, the OCLI model only imposes a bound on the amount of
information learned during each invocation of a primitive, but not on the overall amount of information that
the attacker can get throughout the lifetime of the system. On the negative side, this model fails to capture
many leakage-attacks, such as the cold-boot attack of [39], where all memory contents leak information,
even if they were never accessed.

B Non-Interactive Zero Knowledge

Let R be an NP relation on pairs (y, x) with corresponding language LR = {y | ∃x s.t. (y, x) ∈ R}. A non-
interactive zero-knowledge (NIZK) argument for a relationR consists of four PPT algorithms (Setup, Prov, Ver, Sim)
with syntax:

22

• (crs,tk)← Setup(1λ): Creates a common reference string (CRS) and a trapdoor key to the CRS.

• π ← Provcrs(y, x): Creates an argument that y ∈ LR.

• π ← Simcrs(y,tk): Creates a simulated argument that y ∈ LR.

• 0/1← Vercrs(y, π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prov, Ver, Sim without the crs in the subscript when the crs can be inferred
from the context.

Definition B.1. We say that (Setup, Prov, Ver) are a NIZK argument system for the relation R if the
following three properties hold.

Completeness: For any (y, x) ∈ R, if (crs,tk)← Setup(1λ) , π ← Prov(y, x), then Ver(y, π) = 1.

Soundness: For any PPT adversary A,

Pr

[
Ver(y, π∗) = 1

y 6∈ LR

∣∣∣∣
(crs,tk)← Setup(1λ)

(y, π∗)← A(crs)

]
≤ negl(λ).

Composable Zero-Knowledge: For any PPT adversary A we have
∣∣Pr[A wins]− 1

2

∣∣ ≤ negl(λ) in the
following game:

• The challenger samples (crs,tk)← Setup(1λ) and gives (crs,tk) to A.

• The adv. A chooses (y, x) ∈ R and gives these to the challenger.

• The challenger samples π0 ← Prov(y, x), π1 ← Sim(y,tk), b← {0, 1} and gives πb to A.

• The adv. A outputs a bit b̃, and wins if b̃ = b.

We note that we include composability in our default notion of NIZK. Also, often NIZKs are defined
with two different (but indistinguishable) algorithms for sampling the crs: an honest-crs algorithm (which
only outputs a crs and no trapdoor tk) and a simulated -crs algorithm which samples (crs,tk) pairs.
However, in the case of NIZK arguments (in contrast to proofs), this distinction is irrelevant and, without
loss of generality, we can just always use the simulated -crs generating algorithm. (In the case of proofs,
this distinction is important as soundness only holds unconditionally when the crs is generated under the
honest algorithm, without a trapdoor key.)

C One-Way Secure Encryption

Recall that an encryption scheme consists of three algorithms KeyGen, Enc, Dec satisfying the correctness
property described below:

• (pk, sk)← KeyGen(1λ) : Outputs a public/secret key pair

• c← Encpk(m) : Given a message m and a public key pk, outputs a ciphertext c

• m′ ← Decsk(c) : Given a ciphertext c and a secret key sk, outputs a message m′

Correctness: For all messages m and for all possible outputs (pk, sk) of KeyGen(1λ) : m = Decsk(Encpk(m)).
We now define the notion of one-way security for encryption schemes.

Definition C.1. An encryption scheme E = (KeyGen, Enc, Dec), is one-way secure if, for any PPT adversary
A we have:

Pr
[
m∗ = m | (pk, sk)← KeyGen(1λ),m←Mpk, c← Encpk(m),m∗ ← A(pk, c)

]
≤ negl(λ)

where the public-key pk defines the message-space Mpk.

It is easy to see that the standard notion of semantic-security implies one-way security if the size of the
message-space Mpk is super-polynomial in the security parameter.

23

D Linear Algebra Notation for Prime-Order Groups

Let G be a group of prime order p. For clarity, we are write groups elements, such as g,h ∈ G, in boldface
to distinguish them easily from exponents such as x, y ∈ Zp. We do the same for vectors and matrices
of group elements. Throughout the paper we use standard multiplicative notation when working with any
group G of primer order p. However, when describing our schemes based on the K-linear assumption and
the Groth-Sahai NIZK proof system, the presentation benefits greatly from certain linear algebra operations.
Therefore, following [12], when operating on vectors or matrices of group elements, we will use linear algebra
notation (defined next), which is additive in nature. Note that, in this paper, all vectors are column vectors
by default.

Operations Between a Vector/Matrix of Group Elements and of Exponents. We define
analogues of the standard linear algebra operations, where one of the operands is a vector/matrix of group
elements and the other is a vector/matrix of exponents.

• The dot-product of the vectors ~g = (g1, . . . ,gn)
⊤ ∈ G

n and ~x = (x1, x2, . . . , xn)
⊤ ∈ Z

n
p is defined as:

〈~x,~g〉 = 〈~g, ~x〉
def

=

n∏

i=1

gxi

i .

• The matrix multiplication of A ∈ G
m×n and X ∈ Z

n×k
p where:

A = {ai,j}m×n =

— ~a⊤1 —
— ~a⊤2 —
· · ·

— ~a⊤m —

 , X = {xi,j}n×k =

| | |
~x1 ~x2 . . . ~xk
| | |

is given by

A ·X
def

= {bi,j}m×k where bi,j = 〈~ai, ~xj〉 =

n∏

r=1

a
xr,j

i,r

For Y = {yi,j}k×m ∈ Z
k×m
p , we define the matrix multiplication Y ·A analogously, so that (Y ·A)⊤ =

A⊤ · Y ⊤.

Operations Between Two Vectors/Matrices of Group Elements. We also define linear algebra
operations where both operands are vectors/matrices of group elements.

• If A = {ai,j}m×n,B = {bi,j}m×n are two matrices of group elements, of the same dimension, then:

A ⊞ B
def

= {ci,j}m×n where ci,j = ai,j bi,j

is defined as the component-wise multiplication of the matrices. We aslo define the inverse operation:

A ⊟ B
def

= {ci,j}m×n where ci,j =
ai,j
bi,j

• Let G,Γ,GT be groups of prime order p and let e : G× Γ→ GT be a bilinear map. Let

A = {ai,j}m×n ∈ G
m×n , Υ = {γi,j}n×k ∈ Γn×k.

Then , we define the operation

A • Υ
def

= {ti,j}m×k ∈ G
m×k
T , where ti,j =

n∏

r=1

e(ai,r,γr,j).

Notice that the operands and the result of the operation all live in different groups.

24

Efficiency. All of the operations {+,⊞, ·, • } are efficient. For any (N ×K), (K ×M) matrices, the
operations {·, • } use at most O(NKM) group operations (exponentiations, multiplications, pairings). For
any two (N ×M) matrices, the operations {+,⊞} use at most O(NM) group operations (multiplications).

Linear Algebra Properties. Notice that the operations {⊞,+} are really the same except that {⊞}
acts on group elements and {+} acts on exponents. Similarly {·, • } are the same except that {·} acts on
two matrices of exponents, or one matrix of exponents and one of group elements, while { • } acts on two
matrices of group elements in the appropriate groups. Moreover {⊞,+} satisfy the standard properties of
matrix addition, while {·, • } satisfy the standard properties of matrix multiplication. For example, it is
easy to see that the following hold:

• Distributive property:

(A ⊞ B) • Υ = (A • Υ) ⊞ (B • Υ) and A • (Υ ⊞ ∆) = (A • Υ) ⊞ (A • ∆)

(X + Y) ·A = (X ·A) ⊞ (Y ·A) and A · (X + Y) = (A ·X) ⊞ (A · Y)

• Associativity:

(A ·X) • ∆ = A • (X ·∆) and B • (X ·Υ) = (B ·X) • Υ,

for appropriately chosen dimensions of the matrices X,Y , A,B, and Υ,∆ in each equation.

E The Encryption Schemes E1, E2 under the K-Linear Assumption

E.1 The scheme E1 : Generalized ElGamal Encryption

Let K ∈ Z
+. Let prms = (p,G,g0) where (p,G,g0)← G(1

λ).

KeyGen(prms): Choose (x1, x2, . . . , xK)← Z
K
p . Set f1 := gx1

0 , . . . , fK := gxK

0 .
Output sk = (x1, . . . , xK), pk = (f1, . . . , fK).

Encpk(m): Choose (r1, . . . , rK)← Z
K
p . Output c := (m g

P

K
i=1

ri

0 , fr11 , . . . , frK

K).

Decsk(c): Parse c = (c0, c1, . . . , cK). Output c0/
(∏K

i=1 ci
1/xi

)
.

Figure 8: Generalized ElGamal

For E1, we can use any homomorphic one-way secure encryption in bilinear groups, with security based
on the K-linear assumption. We choose to use a simple generalization of the ElGamal cryptosystem, shown
in Figure 5.

Notice that, with K = 1, we recover the scheme from Figure 5.

Theorem E.1. For any K ≥ 1, the generalized ElGamal scheme (Figure 8) is semantically-secure and
one-way secure under the the K-linear assumption. Furthermore, it is homomorphic over the message-group
M = G, randomness-group R = Z

K
p and ciphertext-group C = G

K+1.

Proof. Follows directly from the K-linear assumption.

E.2 The scheme E2 : Generalized “Cramer-Shoup Lite”

A generalization of the Multiple “Cramer-Shoup Lite” (CS-Lite) scheme, secure under the K-linear assump-
tion, is shown in Figure 9. We note that similar generalizations of Cramer-Shoup to the K-linear assumption
were already shown in [54, 12]. Notice that, with K = 1, we recover the scheme from Figure 6. Therefore,
Theorem 5.1 follows as a corollary of the following theorem.

25

Let K,n ∈ Z
+. Let prms = (p,G,g0, . . . ,gK) where (p,G,g0)← G(1

λ) and g1, . . . ,gK ← G.
The parameters implicitly define the K × (K + 1) matrix:

A =

g0 g1 1 1 . . . 1
g0 1 g2 1 . . . 1
g0 1 1 g3 . . . 1
...

...
...

...
. . .

...
g0 1 1 1 . . . gK

KeyGen(prms): Choose (n+ 1) random vectors
{
~xi ← Z

(K+1)
p

}n
i=0

.

Set ~h0 := A · ~x0, ~h1 := A · ~x1, . . . , ~hn := A · ~xn. Output pk := (~h0, ~h1, . . . , ~hn), sk := (~x0, ~x1 . . . , ~xn).

Encpk(m): To encrypt a message m ∈ G, choose ~r ← Z
K
p and set ~y := ~r⊤ ·A

Compute c0 := 〈~h0, ~r〉, c1 := 〈~h1, ~r〉, . . . , cn := 〈~hn, ~r〉 and z := c0m. Output c := (~y, z, c1, . . . , cn).

Decsk(c): Parse c = (~y, z, c1, . . . , cn). Compute c̃0 := 〈~y, ~x0〉, c̃1 := 〈~y, ~x1〉, . . . , c̃n := 〈~y, ~xn〉.

If c̃1
?

= c1, . . . , c̃n
?

= cn, then output z/c̃0. Else output ⊥.

Figure 9: Generalized Multiple CS-Lite Scheme

Theorem E.2. For any K ≥ 1, n ≥ 0, the generalized Multiple CS-Lite scheme (Figure 9) is an ℓ-LoC-
NM secure encryption under the K-linear assumption, and with leakage ℓ = n log(p) − λ. Furthermore
it is a homomorphic over the message-group M = G, randomness-group R = Z

K
p , and ciphertext-group

C = G
n+K+2.

Proof. The scheme satisfies perfect correctness since, for each i ∈ {0, . . . , n}:

ci = 〈~hi, ~r〉 = 〈(A · ~xi), ~r〉 = ~r⊤ · (A · ~xi) = (~r⊤ ·A) · ~xi = ~y⊤ · ~xi = 〈~y, ~xi〉 = c̃i .

For security, we first prove two simple claims:

Claim E.3. Let g0, . . . ,gK be random generators of a group G, and define the matrix A as in Figure 6.
Let ~y0 ← rowspace(A) and ~y1 ← G

K+1 \ rowspace(A). Then, under the K-linear assumption over G,

the following are computationally indistinguishable: (g0, . . . ,gK , ~y0)
c
≈ (g0, . . . ,gK , ~y1).

Proof. The K-linear assumption is equivalent to saying that (g0, . . . ,gK , ~y0)
c
≈ (g0, . . . ,gK , ~y0.5) where

~y0.5 is chosen uniformly and independently from G
K+1. But, even if we fix any g0, . . . ,gK , the conditional

distributions of ~y0.5 and ~y1 are statistically close. This is because Pr[~y0.5 ∈ rowspace(A)] = pK/pK+1 =
1/p is negligible.

Claim E.4. Let g0, . . . ,gK be any fixed generators of a group G, and define the matrix A as in Figure 6.
Fix any ~y ∈ G

K+1 \ rowspace(A). Then, over a random ~x← Z
K+1
p , the distribution of (A · ~x, 〈~y, ~x〉) is

exactly that of a uniformly random sample from G
K+1.

Proof. This follows from the fact that the rows of A, together with the vector ~y, span all of G
K+1 and

so the linear map f(A,~y)(~x) = (A · ~x, 〈~y, ~x〉) is a bijective.

Returning to the proof of Theorem E.2, we now do a series-of-games argument to show that the scheme
satisfies ℓ-LoC-NM security.

Game 0: Let Game 0 be the original ℓ-LoC-NM game from Definition 3.1.

26

Game 1: In this game, the challenge ciphertext is computed using the decryption key. That is, instead of
computing the components of the challenge ciphertext as ci := 〈~hi, ~r〉, the challenger computes them
as c̃i := 〈~y, ~x〉 and sets z̃ := c̃0mb (where b is the challenge bit). The challenge ciphertext is then
c = (~y, z̃, c̃1, . . . , c̃n).

The change between Game 0 and Game 1 is only syntactic and the two games are identically distributed.
This follows by the perfect correctness of decryption.

Game 2: In this game, the challenge ciphertext is computed the same way as in Game 1, except that the
challenger samples ~y← G

K+1 \ rowspace(A) and outputs c = (~y, z̃, c̃1, . . . , c̃n).

Notice that in Games 1 and 2, the components c̃i do not depend on ~r, and so they are still well-defined.

We argue that Games 1 and 2 are computationally indistinguishable under the K-linear assumption
(even if the adversary were given the entire ciphertext c and the secret key sk). This follows from
Claim E.3. Therefore, the probability of A winning in Game 2 differs at most negligibly from that of
Game 1.

Game 3: In this game, the challenger will run in exponential-time. When the adversary submits the “de-
cryption query” c∗ = (~y∗, z∗, c∗1, . . . , c

∗
n), the challenger automatically outputs ⊥ if ~y∗ 6∈ rowspace(A),

which it checks in exponential time. Otherwise, the challenger finds (in exponential time) the unique

solution ~r such that ~y∗ = ~r · A, and computes ĉ∗0 = 〈~h0, ~r〉, . . . , ĉ
∗
n = 〈~hn, ~r〉. If ĉ∗i

?

= c∗i for all
i ∈ {1, . . . , n}, it outputs m̃∗ = z∗/ĉ∗0 and else ⊥.

We show that games 2 and 3 are statistically indistinguishable, even if the adversary A is computa-
tionally unbounded.

Case 1: If ~y∗ ∈ rowspace(A) then the challenger’s response is identical in games 2 and 3 (this follows
by the correctness calculation c̃∗i = ĉ∗i).

Case 2: If ~y∗ 6∈ rowspace(A), then we argue that the response in Game 2 is also ⊥ with overwhelming
probability. By Claim E.4, the values {c̃∗i = 〈~y∗, ~xi〉}

n
i=1, used to decide if c∗ is well-formed (in

Game 2), are mutually uniform over the randomness of ~xi, even conditioned on (any) outcome
of the public-key components ~hi = A · ~xi and the generators g0, . . . ,gK . On the other hand, the
challenge-ciphertext c (as computed in Game 2) can reveal additional information about these
values (e.g. if ~y∗ = ~y is just copied from the challenge-ciphertext, then the corresponding values
c̃∗i = c̃i can just be copied from the challenge-ciphertext exactly). However, the adversary only
gets ℓ bits of information about the challenge ciphertext c and has to guess all n values c̃∗i correctly
in order for c∗ not to decrypt to ⊥. Since each value c̃i is uniform over a group of size p, and the
adversary is only give ℓ = n log(p)− λ bits of correlated information, her probability of success is
at most 1/2λ, which is negligible.

Hence, the only difference between games 2 and 3 is that, if ~y∗ 6∈ rowspace(A), then the probability
that the challenger answerers with ⊥ in Game 2 is ≥ 1− 1

2λ and in game 3 it is 1. Therefore games 2
and 3 are statistically indistinguishable.

We now argue that, in Game 3, the challenger’s bit b is perfectly hidden (even for a computationally
unbounded adversary A). This follows by applying Claim E.4 to the value c̃0, used as a one-time-pad when
computing z̃ = c̃0mb in the challenge ciphertext c = (~y, z̃, c̃1, . . . , c̃n). In particular, by Claim E.4, the
value c̃0 is uniformly random over G, even conditioned on the observed values of the generators g0, . . . ,gn
and the public-key pk = (h0, . . . ,hn). Moreover, the answer to the decryption query in Game 3 can now
be (inefficiently) perfectly simulated given g0, . . . ,gK ,h0, . . . ,hK and hence does not reveal any additional
information about c̃0. Therefore, the challenger’s bit b stays perfectly (information theoretically) hidden in
Game 3.

So the adversary’s probability of winning in Game 3 is exactly 1
2 and, by the hybrid argument, the

probability of winning in Game 0 must therefore be at most negligibly close to 1
2 , as we wanted to show.

27

We notice that, in the proof of Theorem E.2, we never made use of the fact that the adversary only
submits one decryption query at the end of the game. Indeed, we achieve a stronger notion then just ℓ-LoC-
NM security (closer to ℓ-LoC CCA-2 security). Even if the adversary can adaptively access a decryption
oracle arbitrarily many times during the game, before and after leaking on the challenge ciphertext, as long
as the leakage function cannot access it and the adversary only leaks ℓ bits, the challenger’s bit stays hidden.

E.3 The Plaintext-Equality Relation Req

We now generalize the plaintext-equality relation Req to the encryption schemes E1, E2 based on the K-linear
assumption. For any statement (pk1, pk2, c1, c2) where

pk1 = ~f = (f1, . . . , fK) ∈ G
K , c1 = (z1, c1,1, . . . , c1,K) ∈ G

K+1

pk2 =
(
~h0, ~h1, . . . , ~hn

)
∈ G

K×(n+1) c2 = (~y, z2, c2,1, . . . , c2,n) ∈ G
(n+K+2).

Then (pk1, pk2, c1, c2) ∈ Leq if and only if there exist a vector ~w = (~r1, ~r2) ∈ Z
2K
p , ~r1 = (r1,1, r1,2, . . . , r1,K)

such that:

f
r1,1

1 = c1,1, f
r1,2

2 = c1,2 , . . . , f
r1,K

K = c1,K (1)

~r⊤2 ·A = ~y (2)

〈~h0, ~r2〉
K∏

i=0

(g−1
0)r1,i = c2,0/c1,0 (3)

〈~h1, ~r2〉 = c2,1 , . . . , 〈~hn, ~r2〉 = c2,n (4)

That makes for M = 2K + n+ 2 equations in N = 2K unknowns.

F The Proof-System Π : Groth-Sahai (GS) Proof System for Linear
Equations

In [38], Groth and Sahai give a NIZK proof system for showing that a system of equations of certain type
over bilinear groups are satisfiable. For many applications, including the construction of LIRR, the simplest
type of equations, linear equations, suffices. Recall that we say a system of linear equations (B,~c), where
B is a M ×N matrix of group elements and ~c is a vector of M group elements in G, is satisfiable if there
exists a vector of exponents ~x ∈ Z

N
p such that

b1,1 b1,2 . . . b1,N

b2,1 b2,2 . . . b2,N
...

...
. . .

...
bM,1 bM,2 . . . bM,N

 ·

x1

x2
...
xN

 =

c1

c2
...

cM

 .

Such vector ~x is called a satisfying assignment for the system (B,~c). The relation Rlinear is defined for all
pairs of systems of linear equations and their satisfying assignments ((B,~c), ~x).

For completeness, we present the Groth-Sahai (GS) NIZK proof system for linear equations in detail,
including its correctness and security. Then, we observe that it is homomorphic (when B is fixed).

Altogether, this gives us a homomorphic NIZK proof system. Note that we use the GS NIZK proof system
as a NIZK argument system, achieving only computational soundness. This can be done by running all the
algorithms with a simulated CRS as described below. As a result we prove Lemma F.1 which generalizes
Lemma 5.2.

28

For common parameters (p,G,Γ,GT , e,g,γ0)← Gpair(1
λ):

Setup(1λ): Output crs = Υ and tk = ~t, where γ1, . . . ,γK ← Γ, ~t = (t1, . . . , tK)⊤ ← Z
K
p , and

Υ =

γ
P

K
i=1

ti
0 γt11 γt22 γt33 . . . γtKK
γ0 γ1 1 1 . . . 1
γ0 1 γ2 1 . . . 1
γ0 1 1 γ3 . . . 1
...

...
...

...
. . .

...
γ0 1 1 1 . . . γK

∈ Γ(K+1)×(K+1).

Provcrs((B,~c), ~x): Assume B ∈ G
M×N ,~c ∈ G

M , ~x ∈ Z
N
p . Select R← Z

N×K
p and output π = (∆,P) where:

∆ =

x1

R...
xN

 ·Υ and P = B ·R

for ∆ ∈ ΓN×(K+1), P ∈ G
M×K .

Simcrs((B,~c), tk): Assume B ∈ G
M×N ,~c ∈ G

M . Select R← Z
N×K
p and output π = (∆,P) where:

∆ =

0
R...

0

 ·Υ and P =

c1

B...
cM

 ·

(
−t1 . . .− tN

R

)
.

Vercrs((B,~c), π): Parse π = (∆,P) and output 1 iff

B • ∆ =

c1

P...
cM

 • Υ .

Figure 10: The GS NIZK system for proving a set of linear equations is satisfiable under K-Linear.

F.1 Construction

In Figure 10, we describe the NIZK argument system of [38] for showing that a system of linear equations
is satisfiable, following the presentation of [12] and using the notation from Appendix D.

F.2 Correctness and Security

Recall from Appendix D that · and • are associative operations, and both of them are distributive over ⊞.

Correctness: It is easy to verify that the verification equation holds if B · ~x = ~c :

B • ∆ = B •
((

~x R
)
·Υ

)
=

(
B ·

(
~x R

))
• Υ

=
(

B · ~x B ·R
)
• Υ =

(
~c P

)
• Υ

Perfect Simulation: First notice that Υ could be viewed as

Υ =

(
~τ⊤

Υ′

)
,where Υ′ =

γ0 γ1 1 . . . 1
γ0 1 γ2 . . . 1
...

...
...

. . .
...

γ0 1 1 . . . γK

 , and ~τ⊤ = ~t⊤ ·Υ′.

Let (B,~c) ∈ Llinear be a true statement with witness ~x.

29

For π = (∆,P) outputted by the Prov algorithm, we can write:

∆ =
(
~x R

)
·Υ =

(
~x R

)
·

(
~τ⊤

Υ′

)

=
(
~x · ~τ⊤

)
⊞

(
R ·Υ′

)
=

(
~x ·

(
~t⊤ ·Υ′

))
⊞

(
R ·Υ′

)
=

(
R+ ~x · ~t⊤

)
·Υ′

P = B ·R.

For π̃ = (∆̃, P̃) produced by Sim we can write:

∆̃ =
(
~0 R

)
·

(
~τ⊤

Υ′

)
=

(
~0 · ~τ⊤

)
⊞

(
R ·Υ′

)
= R ·Υ′

P̃ =
(
~c B

)
·

(
−~t⊤

R

)

=
(
~c · −~t⊤

)
⊞ (B ·R) =

(
(B · ~x) · −~t⊤

)
⊞ (B ·R) = B ·

(
R− ~x · ~t⊤

)

Since for fixed ~x,~t, we have the distributional equivalence (over a uniformly random R):
(
R+ ~x · ~t⊤, R

)
≡

(
R, R− ~x · ~t⊤

)

it is clear that (∆,P) ≡ (∆̃, P̃) are also distributionally equivalent. Therefore the simulation is perfect,
even given the trapdoor key ~t. This proves the composable NIZK property.

Soundness To show soundness, change Setup to output Υ =

(
~τ⊤

Υ′

)
, where Υ′ is defined as above, but

the first row of Υ is chosen randomly so that ~τ⊤ 6∈ rowspace(Υ′). This crs is indistinguishable from
a properly generated crs by the K-linear assumption. But then Υ is a full-rank square matrix, an can
therefore be viewed as a basis of a vector space. Hence for any proof π = (∆,P), there exist unique ~x
and R such that

(
~x R

)
·Υ = ∆ (as each row of ∆ is a vector in the vector space and has a unique

representation). The left side of the verification equation is then equal to

B • ∆ = B •
((

~x R
)
·Υ

)
=

(
B · ~x B ·R

)
• Υ

which is equals the right side,
(
~c P

)
• Υ, if and only if B · ~x = ~c and P = B · R. That is, if and

only if the system of linear equations is satisfiable and π is a valid proof.

F.3 GS Proofs are Homomorphic

When the matrix B is fixed, it is easy to see that RB
linear is a homomorphic relation, since, for (~c, ~x), (~c′, ~x′) ∈

RB
linear, we have

B · ~x = ~c , B · ~x′ = ~c′ ⇒ B · (~x+ ~x′) = (B · ~x) ⊞ (B · ~x′) = ~c⊞ ~c′

so (~c ⊞ ~c′, ~x+ ~x′) ∈ RB
linear.

Let π = (∆,P) and π′ = (∆′,P′) be proofs for the statements (~c, ~x), (~c′, ~x′) ∈ RB
linear, generated honestly

by Prov with the coins R,R′ respectively. We can write π · π′ = (∆∗,P∗) where

∆∗ = ∆ ⊞ ∆′ =
((

~x R
)
·Υ

)
⊞

((
~x′ R′

)
·Υ

)
=

(
~x+ ~x′ R+R′

)
·Υ

P∗ = P ⊞ P′ = (B ·R) ⊞ (B ·R′) = B · (R+R′)

This shows that π ·π′ is the same as a proof for the statement (~c⊞~c′, ~x+~x′) ∈ RB
linear, generated with random

coins R+R′ of the prover. Therefore, the GS argument system for the relation Rlinear is homomorphic.
Together with the correctness/security properties, we therefore prove the following lemma, generalizing
Lemma 5.2:

30

Lemma F.1. Fix a constant K ≥ 1, and assume that the K-linear assumption holds in both base groups
for some pairing Gpair. Then there exists a homomorphic NIZK argument system for the relation Rlinear.
For any statement consisting of M linear equation in N unknowns, the corresponding proof π contains
(K + 1)N +KM group elements. The creation/verification of π uses O(NM) group operations.

G Putting It All Together : Efficient CLR-OWRs

We now use our results from the previous sections, showing how to construct the schemes E1, E2,Π, to prove
Theorem 5.3. Fix a constant K ≥ 1 and assume that the K-linear assumption holds in both base groups
G,Γ of a symmetric or asymmetric pairing Gpair.
Taking the schemes E1, E2,Π from the previous sections (all of which are parameterized by K) we see that:

• E1 is semantically-secure and therefore also one-way secure.
In addition, it is homomorphic over the message-groupM = G. (Theorem E.1)

• E2, parameterized by n, is ℓ-LoC-NM secure where ℓ ≥ n log(p)− λ.
In addition, it is homomorphic over the message-groupM = G. (Theorem E.2)

• Π is a homomorphic NIZK for the relation Req defined by E1, E2. (Lemma F.1)

Therefore, by Theorem 4.9, when we instantiate our construction (Figure 2) with the schemes E1, E2,Π, we
get an LIRR and therefore also a CLR-OWR (Figure 4). This proves the existence of ℓ-CLR-OWRs for
arbitrarily large ℓ.

Relative Leakage. For any choice of n ∈ N, the ciphertext of the scheme E2 consists of n+K + 2 group
elements. From Appendix E.3, we see that the equality relation Req for E1, E2 consists of M = n+ 2K + 2
equations in N = 2K unknowns. Therefore, a proof π for this relation consists of

(K + 1)2K +K(n+ 2K + 2) = Kn+ 4K2 + 4K = Kn+O(1)

group elements. Lastly, the full secret-key of the final CLR-OWR, which contains a ciphertext c2 of E2 and
a proof π, consists of

(K + 1)n+ 4K2 + 5K + 2 = (K + 1)n+O(1)

group elements.
Assuming group elements can be represented optimally using log(p) bits6, we therefore get relative leakage

ℓ

|sk|
=

n log(p)− λ

((K + 1)n+O(1)) log(p)
≥

log(p)(n− 1)

((K + 1)n+O(1)) log(p)
=

n− 1

(K + 1)n+O(1)

Therefore, for any constant ǫ > 0 there is a constant n such that ℓ
|sk| ≥

1
K+1 − ǫ.

Efficiency. Since K,n are always constants, the secret-key (c2, π) consists of Kn + 3K2 + 3K = O(1)
group elements. Furthermore, the creation of the ciphertext c2 and the proof π, as well as the verification
of (c2, π), consists of O(1) group operations (multiplications, exponentiations, pairings).

H The Groth-Sahai (GS) Proof System for General Equations

Note: this appendix is only used for the construction of efficient CLR-Signatures in Appendix J.
In Appendix F, we described the GS NIZK proof system for the simple case of linear equations. The

full GS system [38] allows one to prove more complex systems of equations for which the variables could
be both group elements and exponents. It also allows to prove the satisfiability of systems where each
equation is of one of the following types: pairing product (PP) equations, multi-exponentiation (ME) in G,

6We also assume, w.log. that log(p) ≥ λ.

31

multi-exponentiation in Γ. Note that the linear equations described in Appendix F are a simple form of the
ME equations (with all constants di and ci,j , defined below, equal to 0).

Next we present the language of satisfiable systems of equations containing equations of the types de-
scribed above. As usual, we work in a pairing setting (p,G,Γ,GT , e,g,γ) ← Gpair(1

λ), where G and Γ are
the base groups of prime order p, GT is the target group of order p, and e is an efficiently computable
non-degenerate bilinear map e : G× Γ→ GT .

A system of equations is defined by statement elements in G,Γ, and Zp (described below). Different
equations use (possibly but not necessarily) different statement elements. We say that a system of equations
of the described types is satisfiable if there exist x1, . . . ,xL ∈ G, χ1, . . . ,χN ∈ Γ, r1, . . . , rL′ , s1, . . . , sN ′ ∈ Zp

for which all equations are satisfied. We now describe each type of equation.

Pairing Product (PP) equations. A paring-product equation is defined by statement elements {β}Li=1 ∈
Γ, {bi}

N
i=1 ∈ G, and {(ai,αi)}

J
i=1 for J ∈ Z

+ with J = O(L+N). It has the form:

L∏

i=1

e(xi,βi)
N∏

i=1

e(bi,χi)
L∏

i=1

N∏

j=1

e(xi,χj)
J∏

i=1

e(ai,αi) = 1GT

Multi-Exponentiation (ME) equations in G. A multi-exponentiation equation in G is defined by state-
ment elements a, {bi}

N ′

i=1 ∈ G, {di, {ci,j}
N ′

j=1}
L
i=1 ∈ Zp. It has the form:

N ′∏

i=1

bsi

i

L∏

i=1

xdi

i

L∏

i=1

x
PN′

j=1
ci,jsj

i = a

Multi-Exponentiation (ME) equations in Γ. A multi-exponentiation equation in Γ is defined by state-
ment elements α, {βi}

L′

i=1 ∈ Γ, {di, {ci,j}Nj=1}
L′

i=1 ∈ Zp.

L′∏

i=1

βrii

N∏

i=1

χdi

i

N∏

i=1

χ

PL′

j=1
ci,jrj

i = α

Theorem H.1. [38] Under either SXDH or DLIN, a system of M PP equations and M ′ ME equations, in G

or Γ, can be proved to be satisfiable in zero-knowledge. The proof size is O(M(N+L)+M ′+L+N+L′+N ′).

H.1 System of Simple Pairing-Product Equations

For our purposes, it is often nice to think of a system of simple pairing-product equations in matrix form.
We define a system of M simple pairing-product equations over MN+J ′L variables as a set of four matrices:
BG ∈ G

M×L,BΓ ∈ ΓN×J
′
,AG ∈ G

M×J ,AΓ ∈ ΓJ×J
′
.

We say that the system (BG,BΓ,AG,AΓ) is satisfiable if there exist matrices XG ∈ G
M×N and XΓ ∈

ΓL×J
′
such that:

(BG • XΓ) ⊞ (XG • BΓ) ⊞ (AG •AΓ) = JGT
,

where JGT
∈ G

M×J ′

T is the all-1GT
matrix.

We call the matrices (XG,XΓ) a satisfying assignment for the system. We define relation Rpp for all pairs
of such systems and their satisfying assignments ((BG,BΓ,AG,AΓ), (XG,XΓ)). We define the corresponding
language Lpp of satisfiable simple pairing-product equations.

It is easy to see that Lpp is a subset of the (general) pairing-product equations define previously (in
particular, simple PP equations do not have any pairings of the type e(xi,χj)), for which GS is a good proof
system.

32

I CLR Signatures : Generic Construction from CLR-OWR

In this section, we give a formal definition of continuous-leakage resilient signatures, and show that the
construction in Figure 7 is secure under this definition. Because the construction in Figure 7 uses true-
simulation extractable (tSE) NIZK arguments [20], we also include the definition of this primitive below.

Definition I.1. We say that a signature scheme (KeyGen, Sign, SigVer, ReRand) is ℓ-continuous-leakage-
resilient (ℓ-CLR) if for any PPT adversary A, we have Pr[A wins] ≤ negl(λ) in the following game:

• The challenger chooses (vk, sk)← KeyGen(1λ) and gives vk to A.

• The adversary A runs for arbitrarily many leakage rounds. In each round:

– The adversary makes up to ℓ calls to a leakage-oracle Oλsk(·), with the current secret key sk.7 The
adversary also makes queries to a signing oracle Ssk(·). The signing oracle responds to a query
m with a signature σ of m under the current secret key sk : σ = Signsk(m).

– At the end of the round, the challenger samples sk′ ← ReRand(sk) and updates sk := sk′.

• The adversary wins if it produces a message/signature pair (m∗, σ∗) such that SigVervk(m
∗, σ∗) = 1

and m∗ was not given to Ssk(·) as a signing query in any leakage round.

Definition I.2 (True-Simulation Extractability [20]). Let Ψ = (Setup, Prov, Ver, Sim) be an NIZK argument
for an NP relation R, satisfying the completeness, soundness and zero-knowledge properties. We say that Ψ
is true-simulation extractable (tSE) if:

• Apart from outputting a CRS and a trapdoor key, Setup also outputs an extraction key:
(crs, tk, ek) ← Setup(1λ).

• There exists a PPT algorithm Extek such that for all A we have Pr[A wins] ≤ negl(λ) in the following
game:

1. The challenger runs (crs, tk, ek) ← Setup(1λ) and gives crs to A.

2. ASIMtk(·) is given access to a simulation oracle SIMtk(·), which it can adaptively access. A
query to the simulation oracle consists of a pair (y, x). The oracle checks if (y, x) ∈ R. If true, it
ignores x and outputs a simulated argument Simtk(y). Otherwise, the oracle outputs ⊥.

3. A outputs a pair (y∗, ψ∗), and the challenger runs x∗ ← Extek(y∗, ψ∗).

A wins if (y, x∗) /∈ R, Ver(y∗, ψ∗) = 1, and y∗ was not part of a query to the simulation oracle.

We are now ready to prove that the CLR signature construction in Figure 7 is secure, that is, that it complies
with the requirements of Definition I.1.

Theorem I.3. If C = (KeyGenC , ReRand, VerC) is an ℓ-CLR-OWR, and Ψ = (SetupΨ, Prov, VerΨ, Sim, Ext)
is a tSE-NIZK argument for relation RC = {(y, x) | y = (pk,m), x = sk s.t. VerC(pk, sk) = 1}, then
the signature scheme in Figure 7 is ℓ-CLR.

Proof. We use a series-of-games argument to prove the above theorem.

Game 0: This is the original ℓ-CLR attack game described in Definition I.1, in which simulation queries
are answered correctly by running σ ← Prov((pk,m), sk) and A wins if she produces a valid forgery
(m∗, σ∗).

Game 1: In this game, the queries to the signing oracle are answered with simulated arguments: σ ←
Simtk(pk,m). Games 0 and 1 are indistinguishable by the zero-knowledge property of the argument
Ψ. Notice that the simulated arguments given to A as answers to signing queries are always of true
statements.

7 This is equivalent to a definition where, in each round, the adversary asks for a set of leakage functions whose output
lengths sum up to at most ℓ bits.

33

Game 2: In this game, we modify the winning condition so that the adversary only wins if it produces a
valid forgery (m∗, σ∗) and the challenger is able to extract a valid secret key sk∗ for pk from (m∗, σ∗).
That is, A wins if SigVer(m∗, σ∗) = 1 and VerC(pk, sk∗) = 1, where sk∗ ← Extek((pk,m∗), σ∗).
The winning probability of A in Game 2 is at least that of Game 1 minus the probability that
VerΨ((pk,m∗), σ∗) = 1 ∧ VerC(pk, sk∗) = 0. By the true-simulation extractability of the argument
Ψ we know that this probability is negligible. Therefore, the winning probability of A in Game 2
differs from that in Game 1 by a negligible amount.

We have shown that the probability that A wins in Game 0 is the same as that in Game 2, up to
negligible factors. We now argue that the probability that A wins in Game 2 is negligible, which proves that
the probability that A wins in Game 0 is negligible as well. To prove that the probability that A wins in
Game 2 is negligible, we assume otherwise and show that there exists a PPT algorithm B that breaks the
ℓ-continuous-leakage resilience of C. On input pk, B generates (crs,tk,ek)← SetupΨ(1λ) and emulates A
on input vk = (crs, pk). In each leakage round, B answers A’s leakage queries using the leakage oracle Oλsk(·)
and answers signing queries mi by creating simulated arguments Simtk(pk,mi). When A outputs her forgery
(m∗, σ∗), B runs sk∗ ← Extek((pk,m∗), σ∗) and outputs sk∗. Notice that Pr[B wins] = Pr[A wins], so that
if Pr[A wins] is non-negligible then B breaks the ℓ-continuous-leakage resilience of C. We therefore conclude
that the probability that A wins in Game 2 is negligible. This concludes the proof of the theorem.

We now know that the signature scheme in Figure 7 is CLR, but we have not proven that an instantiation
of such signature scheme exists! This is because we have not shown that tSE NIZK can be achieved.
Fortunately, Dodis et al. [20] show that we can indeed construct tSE NIZK arguments for any NP relation
by combining any CCA-secure encryption scheme supporting labels with (standard) NIZK.

Theorem I.4. [20] The existence of CCA-secure encryption, together with the existence of NIZK arguments
for NP, implies the existence of true-simulation extractable NIZK arguments for NP.

The following corollary follows from Theorem I.3 together with Theorem I.4.

Corollary I.5. The existence of CCA-secure encryption, NIZK arguments for NP, and ℓ-CLR-OWRs with
relative leakage ℓ

|sk| = α implies the existence of ℓ-CLR Signatures with relative leakage ℓ
|sk| = α.

Since NIZK proof systems for NP were shown to exist under either the DDH or DLIN assumptions (in the
base groups of a pairing) by [37], and CCA-secure encryption was shown to exist under these assumptions
by [16, 54], we also get the following corollary.

Corollary I.6. Under either the DDH assumption or the DLIN assumption in the base group(s) of a pairing
Gpair, there exist ℓ-CLR signature schemes with relative leakage ℓ

|sk| ≥
1

K+1 − ǫ, where K = 1 in the case of
DDH and K = 2 in the case of DLIN.

J CLR Signatures : Efficient Instantiation Under K-Linear

In this section, we show an efficient instantiation of the CLR signature construction shown in Figure 7,
under the K-Linear assumption. In order to show this, we will reduce our problem to showing that there
exists an efficient tSE NIZK argument system (see Definition I.2) for (a special case of) the language of
satisfiable systems of pairing-product equations (see Appendix H.1). We will therefore divide this section
into two subsections. In Appendix J.1, we prove that if there exists an efficient tSE NIZK argument system
for Lpp, then we have an efficient instantiation of the CLR signature scheme in Figure 7. In Appendix J.2
we show that efficient tSE NIZK argument systems for Lpp do indeed exist, and give a construction.

34

J.1 Expressing RC as a System of Pairing-Product Equations

The construction in Figure 7 uses a CLR-OWR C and a tSE NIZK argument Ψ for RC . In Section 5 we
showed how to instantiate C under K-Linear for K = 1 and in Appendix E we generalized the construction
for K ≥ 1. In this section we will show how to instantiate Ψ for general K ≥ 1.

Using the instantiation of C given in Section 5, we can write RC as follows:

RC =
{

(y, x) | y = ((pk1, pk2,crsΠ, c1),m) , x = (c2, π) s.t. VerΠ((pk1, pk2, c1, c2), π) = 1
}
,

where π is a Groth-Sahai argument that c1 = Enc1
pk1

(w; r1) and c2 = Enc2
pk2

(w; r2) for some values of
w, r1, r2, and E1 and E2 are the Generalized ElGamal and Generalized Multiple CS-Lite encryption schemes,
respectively. Recall from Appendix F that a Groth-Sahai argument consists of matrices ∆,P so that
π = (∆,P). Further recall that to verify the argument π, VerΠ checks a system of equations. These
equations are pairing-product equations of the form described above, where the statement (BG,BΓ,AG,AΓ)
is defined by elements in (crsΠ, pk1, pk2, c1, L), and the witness (XG,XΓ) is defined by the ciphertext c2
and the matrices ∆,P. To see this, rewrite the verification equation as follows:

B • ∆ =

c1

P...
cM

 • Υ = (~c • τ⊤) ⊞ (P • Υ′)

where Υ =

(
~τ⊤

Υ′

)
. From Appendix E we see that ~c = ~c1 ⊞~c2, where ~c1 depends solely on the ciphertext

c1 and ~c2 depends solely on the ciphertext c2. Therefore:

B • ∆ = ((~c1 ⊞~c2) • τ⊤)⊞ (P • Υ′) = (~c1 • τ⊤)⊞ (~c2 • τ⊤)⊞ (P • Υ′) = (~c1 • τ⊤)⊞

c2,1

P...
c2,M

 • Υ

Rewriting again, we get that:

JGT
= (~c1 • τ⊤) ⊞

c2,1

P...
c2,M

 • Υ ⊟ (B • ∆),

where JGT
is the matrix will all 1GT

entries. This is a system of (simple) pairing product equations, where
BG is defined by B,BΓ = Υ,AG = ~c1,AΓ = τ⊤,XG = (~c2 | P) and XΓ = ∆.

Therefore, if we show that there exists an efficient instantiation of tSE NIZK for the language Lpp
described in Appendix H.1, then we automatically show an efficient instantiation of tSE NIZK for RC and
consequently, for the CLR signature construction in Figure 7. We show this in Appendix J.2 below.

J.2 tSE NIZK for a System of Pairing-Product Equations

Dodis et. al [20] show how to generically construct tSE NIZK from CCA-secure encryption and (standard)
NIZK arguments. We give a brief description of their construction below. For full details, see [20].

Let R be any NP relation, and define

R′ = { (y′, x′) | y′ = (y, L) , x′ = x s.t. (y, x) ∈ R }.

Let E = (KeyGen, Enc, Dec) be a CCA-secure encryption scheme supporting labels. We write Enc(. . . : L) and
Dec(. . . : L) to denote encryption and decryption under label L, respectively. Let Φ = (SetupΦ, ProvΦ, VerΦ)
be an NIZK argument for the relation

RΦ = { (yΦ, xΦ) | yΦ = (y, c, pk, L) , xΦ = (x, r) , (y, x) ∈ R ∧ c = Encpk(x; r : L) }.

35

Setup(1λ) : Output crs = (crsΦ, pk), tk = tkΦ,ek = sk where
(pk, sk)← KeyGen(1λ) , (crsΦ,tkΦ)← SetupΦ(1λ).

Prov((y, L), x; r) : Output ϕ = (c, φ) where c← Encpk(x; r : L) , φ← ProvΦ((y, c, pk, L), (x, r)).

Ver((y, L), ϕ) : Parse ϕ = (c, φ) and return VerΦ((y, c, pk, L), φ).

Figure 11: Construction of tSE NIZK from CCA-secure encryption and (standard) NIZK

Then the argument system described in Figure 11 is a tSE NIZK argument system for the relation R′.
We will use the tSE NIZK construction of [20] described above to give an efficient instantiation of tSE

NIZK for Lpp. We therefore need a CCA-secure encryption scheme E = (KeyGen, Enc, Dec) and an NIZK
argument Φ for the relation

RΦ =

(y, x) | y = ((BG,BΓ,AG,AΓ), c, pk, L) , x = ((XG,XΓ), r) s.t.

((BG,BΓ,AG,AΓ), (XG,XΓ)) ∈ Rpp ∧ c = Encpk((XG,XΓ); r : L)

For CCA-secure encryption, we use the Linear Cramer-Shoup scheme from [54], modified to support labels
as in [12]. The scheme is described in Figure 12. We need two instances of the Linear Cramer-Shoup scheme,
one for elements in G and another for elements in Γ. This is because the components of XG are elements in
G, while the components of XΓ are elements in Γ. We encrypt each component of XG and each component
of XΓ separately, but all using the same label L. 8

Let K ∈ Z
+. Let prms = (H, p,G,g0, . . . ,gK) where (p,G,g0) ← G(1

λ), g1, . . . ,gK ← G, and H is a collision-
resistant hash function. The parameters implicitly define the K × (K + 1) matrix:

A =

g0 g1 1 1 . . . 1
g0 1 g2 1 . . . 1
g0 1 1 g3 . . . 1
...

...
...

...
. . .

...
g0 1 1 1 . . . gK

KeyGen(prms): Choose 3 random vectors ~v, ~w, ~x← Z
(K+1)
p . Set ~d := A · ~v, ~e := A · ~w, ~h := A · ~x.

Output pk := (~d,~e, ~h), sk := (~v, ~w, ~x).

Encpk(m : L): To encrypt a message m ∈ G under label L, choose ~r ← Z
K
p and set ~y := ~r⊤ ·A.

Compute a := 〈~h, ~r〉, z := am and c := 〈~d ⊞ (~e · t), ~r〉, where t = H(~y, z, L). Output c := (~y, z, c).

Decsk(c): Parse c = (~y, z, c). Compute c̃ := 〈~y, ~v + t~w〉. If c̃
?

= c, then output z/〈~y, ~x〉. Else output ⊥.

Figure 12: The Linear Cramer-Shoup Scheme (with Labels)

To instantiate the NIZK argument Φ, first notice that because of the form of the ciphertext components
of a Linear Cramer-Shoup encryption, the sub-language

LCS = { (y, x) | y = (c, pk, L) , x = (w, ~r) s.t. c = Encpk(w;~r : L)}

can be expressed as a system of (K + 2) multi-exponentiation equations:

yi = g
PK

i=1
ri

0 grii for i = 1, . . . ,K , z = w

K∏

i=1

hrii , c =
K∏

i=1

(di, e
t
i)
ri

8We note that encrypting each component of a plaintext separately does not necessarily conserve CCA-security. This problem
can be solved by using a strong one-time signature to sign the resulting ciphertexts. More precisely, the encryptor generates a
signature key pair (vk, sk), attaches vk to the label when encrypting each component, and signs all resulting ciphertexts. In our
instantiation, we can use the strong one-time signature of [36], secure under the Discrete Log assumption (implied by K-Linear).
Because of the small signature size of this scheme, namely 2 elements in Zp, this does not affect the overall efficiency of our
scheme.

36

Therefore, the language LΦ can be expressed as a system of equations containing a combination of
pairing-product equations, multi-exponentiation equations in G, and multi-exponentiation equations in Γ.
As described in Appendix H, the Groth-Sahai argument system [38] can be used to prove that such a system
is satisfiable. Moreover, such a proof has size O(1) and requires O(1) exponentiation/pairing operations.

Theorem J.1. Fix a constant K ≥ 1 and assume that the K-Linear assumption holds in the base group(s)
of some pairing Gpair. Let (BG,BΓ,AG,AΓ) be a system of M pairing-product equations with N unknowns.
Then there exists a tSE NIZK argument system for proving that (BG,BΓ,AG,AΓ) ∈ Lpp that uses proofs of
size O(1) and requires O(1) exponentiation/pairing operations.

Combining the generic construction of CLR signatures in Figure 7 with Theorem 5.3 and Theorem J.1,
yields the following theorem, which proves (part of) Theorem 6.1.

Theorem J.2. Fix any K ≥ 1, and assume that the K-Linear assumption holds in the base group(s) of
some pairing Gpair. Then for any ǫ > 0, there exists an ℓ-CLR signature scheme with relative leakage
ℓ
|sk| ≥

1
K+1 − ǫ.

K CLR Identification (ID) Schemes & CLR Authenticated Key Agree-
ment (AKA)

K.1 CLR ID Schemes

In this section, we construct a CLR Identification (ID) scheme from our construction of CLR signatures.
We begin by giving a definition of CLR ID schemes.

Definition K.1 (CLR-ID). We say that an ID scheme (KeyGen, ReRand,P,V) is CLR if it satisfies the
following properties:

Correctness: In an interaction between an honest prover and an honest verifier {P(pk, sk) ⇋ V(pk)},
the verifier V always accepts the execution.

Security: The winning probability of any PPT adversary A is Pr[A wins] ≤ negl(λ) in the following
game:

Initialization: The challenger chooses (pk, sk)← KeyGen(1λ) and gives pk to A.

Learning Stage: The learning stage proceeds in arbitrary many leakage rounds. In each round, the
adversary A can arbitrarily interleave the following actions:

• Protocol Executions: The adversary A can execute arbitrarily many protocols with the honest
prover P(sk), who uses fresh random coins for each execution.

• Leakage Queries: In each round, the adversary A can make up to ℓ queries to the oracle Oλsk,
on the current secret key sk.

At the end of each round, the challenger computes sk′ ← ReRand(sk) and updates sk := sk′.

Impersonation Stage: The adversary A interacts with an honest verifier V(pk), by taking the role
of the prover (there is no leakage at this point). We say that A wins if V accepts the execution.

Construction. Our CLR ID scheme naturally extends the construction of [3] to the continuous-leakage
setting. In the ID scheme, the prover simply uses a CLR signature scheme to sign a message randomly
chosen by the verifier. The scheme is described in Figure 13.

Theorem K.2. Let S = (KeyGen, Sign, SigVer) be an ℓ-CLR signature scheme with message spaceM such
that |M| = 2ω(λ). Then the ID scheme of Figure 13 is an ℓ-CLR ID scheme.

37

Public Parameters: CLR signature scheme S = (KeyGen, Sign, SigVer) with message space M.
Input Parameters: pk = verk and sk = sigk, where (sigk, verk)← KeyGen(1λ).

P(pk, sk) V(pk)

r
r ←M

←−−−−−−−−−−

σ = Signsigk(r)
σ

−−−−−−−−−−→

Accept iff SigVerverk(r, σ) = 1

Figure 13: CLR-ID Scheme from CLR Signatures

Proof. The correctness property is trivial. For security, assume there exists an adversary A breaking the
security of the CLR ID scheme with non-negligible probability ǫ. We build B that breaks the CLR security
of the signature scheme as follows. During the learning stage, in every leakage round, B answers to A’s
leakage queries by using the leakage oracle Oλsigk. In every protocol execution, B simulates the prover by
using the signature oracle Ssigk(·) to responds to A’s challenges. During the impersonation stage, B samples
r∗ ← M and sends r∗ to A. A responds with a signature σ∗, and B outputs the message/signature pair
(r∗, σ∗).

Let q(λ) be an upper bound on the number of protocol executions A performs during the impersonation
stage, where q is some polynomial. Let r1, . . . , rq(λ) be the challenges that A sent during the learning stage.
Let E be the event that r∗ = ri for some i = 1, . . . q(λ). Then:

Pr[B succeeds] = Pr[¬E ∧ A succeeds] = Pr[A succeeds]− Pr[A succeeds | E] Pr[E] = ǫ− Pr[E]

And we have that

Pr[E] ≤

q(λ)∑

i=1

Pr[r∗ = ri] =
q(λ)

2ω(λ)
≤ negl(λ),

since q is a polynomial. Therefore, if ǫ is non-negligible, then so is Pr[B succeeds]. Since we assumed that
S was a CLR signature scheme, then we must have that ǫ ≤ negl(λ). This completes the proof.

Combining Theorem K.2 with Theorem J.2 yields the following theorem, which proves (part of) Theo-
rem 6.1.

Theorem K.3. Fix any K ≥ 1, and assume that the K-Linear assumption holds in the base group(s) of
some pairing Gpair. Then for any ǫ > 0, there exists an ℓ-CLR ID scheme with relative leakage ℓ

|sk| ≥
1

K+1−ǫ.

K.2 CLR AKA

Using our CLR signature scheme from Figure 7 (and instantiating it as described in Appendix J), we
construct a CLR authenticated key agreement (AKA) scheme. Our scheme achieves perfect forward security
in the unauthenticated-links model with erasures [14] (with the modifications of [3]). We refer the reader to
[14, 3] for a detailed description of the model and definitions of security, but give a high level of the problem
and our solution below. Note, however, that we slightly modify the security definitions from [14, 3] to make
them applicable to the continuous-leakage setting.

Model and Security Definitions. We consider the problem of exchanging a cryptographic key between
two parties, Alice and Bob, in the presence of a “man-in-the-middle” adversary. Moreover, Alice and Bob not
only want to be sure that the privacy of the key is preserved, but also that they are indeed communicating

38

with each other (and not with a malicious third party). In the continuous-leakage setting, the “man-in-the-
middle” adversary not only has the ability to read and intercept messages between the Alice and Bob (and
between Alice and/or Bob and other parties), but is also able to learn unbounded and arbitrary information
about Alice and Bob’s long-term secret keys. On the other hand, Alice and Bob are able to periodically
and inconspicuously update their long-term secret keys, so that the adversary is limited to learn at most
ℓ bits of information about any one particular secret key (though it might learn an unbounded amount of
information in total).

We model this scenario more formally by considering an adversary that plays against concurrent sessions
of the protocol between n players P1, . . . ,Pn, with corresponding long-term secret keys sk1, . . . , skn. The
adversary can schedule key exchanges between players and choose the players that will participate in each
session. She also has the ability to corrupt players, learn their ephemeral states, and learn arbitrary infor-
mation about their long-term secret keys. This last ability is modeled by providing the adversary with n
leakage oracles Oλsk1 , . . . ,O

λ
skn

. The goal of the adversary is to learn the session key of a test session of her
choice, between players Pi and Pj also of her choice. We do not allow the adversary to corrupt Pi or Pj or
learn their ephemeral states during the test session, and we restrict her access to the n leakage oracles as
follows:

• The adversary can only perform queries to the leakage oracles before the test session (but not during).

• Each leakage oracle Oλsk maintains an internal counter that keeps track of how many queries the
adversary has asked the oracle. When the counter reaches ℓ, the oracle Oλsk automatically updates
sk and sets the internal counter to 0. This models leakage rounds in the continuous-leakage setting,
allowing the adversary to call each leakage oracle an unbounded number of times, but only learn ℓ bits
of information about any specific secret key sk. Note that modifying the leakage oracles in this way is
the only change we make to the model and security definitions of [14, 3].

Finally, we require perfect forward security, which guarantees that the session key remains secure even if
the adversary learns the entire long-term secret keys of Pi,Pj after the test session has been completed and
the session key has been deleted from memory.

Generic Construction. Our construction takes any passively-secure key agreement protocol achieving
perfect forward security (such as the Diffie-Hellman key exchange) and authenticates it using our CLR
signature scheme from Figure 7. For simplicity, we assume that the passively-secure key agreement is a 2-
round protocol (which is the case for the most widely used protocols). We use the following five algorithms
to denote a 2-round key agreement protocol, and informally describe the correctness and passive security
properties:

• prms← Setup(1λ) : Outputs public parameters prms.

• (α, s1)← RoundOne(prms) : Takes in public parameters prms and outputs a value α and an ephemeral
state s1.

• (β, s2)← RoundTwo(prms, α) : Takes in prms, and α, and outputs a value β and an ephemeral state s2
• k1 := KeyOne(prms, s1, α, β) : Takes in prms, the values α, β and the ephemeral state s1 and outputs a

key k1.

• k2 := KeyTwo(prms, s2, α, β) : Takes in prms, the values α, β and the ephemeral state s2 and outputs a
key k2.

Correctness guarantees that k = KeyOne(prms, s1, α, β) = KeyTwo(prms, s2, α, β) where prms ← Setup(1λ),
(α, s1)← RoundOne(prms), and (β, s2)← RoundTwo(prms, α). Passive security guarantees that k is indistin-
guishable from a randomly chosen key.

Using the notation described above, we present our generic CLR-AKA scheme in Figure 14. Our con-
struction uses a CLR signature scheme S = (KeyGen, Sign, SigVer) and passively-secure key agreement
protocol Π = (Setup, RoundOne, RoundTwo, KeyOne, KeyTwo) achieving perfect forward security.

Theorem K.4. Let S = (KeyGen, Sign, SigVer) be an ℓ-CLR signature scheme and let Π = (Setup, RoundOne,
RoundTwo, KeyOne, KeyTwo) be a passively-secure key agreement protocol achieving perfect forward security.

39

Public Parameters: prms← Setup(1λ)
Common Input: signature verification keys (verki, verkj)

Initiator Pi(sigki) Responder Pj(sigkj)

(α, s1)← RoundOne(prms)
register session (Pj , α) Pi, α

−−−−−−−−−−−−−−−−−−−−→

Pj , β, σj

(β, s2)← RoundTwo(prms, α; r2)
σj = Signsigkj

(Pi,Pj , α, β)

register session (Pi, α, β)
←−−−−−−−−−−−−−−−−−−−−

σi = Signsigki
(Pj ,Pi, α, β)

output peer = Pj , sid = (α, β),
output session key
ki ← KeyOne(s1, α, β)

delete s1 Pi, σi
−−−−−−−−−−−−−−−−−−−−→

mark session complete
output peer =Pj , sid=(α, β)
output session key
kj ← KeyTwo(s2, α, β)

delete s2
mark session complete

Sanity Checks:

1. If σj is not a valid signature of (Pi,Pj , α, β), under verkj then Pi ignores the message. Similarly for σi and
Pj .

2. If Pi receives a round-2 message σj of (Pi,Pj , α, β) but has not registered a session (Pj , α) then ignore the
message. Similarly Pj and σi.

Figure 14: CLR-AKA Scheme from CLR Signatures and Passively-Secure Key Agreement with Perfect
Forward Security

Then the protocol in Figure 14 is an ℓ-CLR authenticated key agreement protocol with perfect forward security
in the unauthenticated-links model.

The proof of Theorem K.4 is analogous to the one presented in [3] for the protocol eSig-DH. Informally, it
satisfies perfect forward security because after the session is completed, learning the signing keys sigki, sigkj
does not give the adversary any new information about the key that was exchanged.

Instantiation under K-Linear. Let E = (KeyGen, Enc, Dec) be a CPA-secure encryption scheme and
consider the following 2-round passively-secure key agreement protocol: RoundOne runs (pk, sk) ← KeyGen

and outputs (α := pk, s1 := sk), RoundTwo samples random k, computes c← Encpk(k), deletes the random-
ness used for encryption, and outputs (β := c, s2 := k). KeyOne computes k := Decsk(c), deletes sk and
outputs k, and KeyTwo simply outputs k. Correctness follows directly from the correctness of E and passive
security follows from the CPA-security of E . Perfect forward security is trivially achieved because sk is
deleted by KeyOne and the randomness used in encryption is deleted by RoundTwo as soon as the ciphertext
is created. Therefore, there are no long-term secret keys to be revealed.

Notice that we can instantiate the above key agreement construction under theK-linear assumption using
the Generalized ElGamal encryption scheme described in Section E.1. This, combined with Theorem K.4
and Theorem J.2 yields the following theorem, which proves (part of) Theorem 6.1.

Theorem K.5. Fix any K ≥ 1, and assume that the K-Linear assumption holds in the base group(s) of
some pairing Gpair. Then for any ǫ > 0, there exists an ℓ-CLR AKA scheme achieving perfect forward
security with relative leakage ℓ

|sk| ≥
1

K+1 − ǫ.

40

L Noisy Leakage

L.1 Background on Entropy

The min-entropy of a random variable X is

H∞(X)
def

= − log(max
x

Pr[X = x]).

This is a standard notion of entropy used in cryptography, since it measures the worst-case predictability of
X. We also review a generalization from [22], called average conditional min-entropy defined by

H̃∞(X|Z)
def

= − log

(
E

z←Z

[
max
x

Pr[X = x|Z = z]
])

= − log

(
E

z←Z

[
2−H∞(X|Z=z)

])
.

This measures the worst-case predictability of X by an adversary that may observe a correlated variable Z.
Sometimes, it is easier to talk about predictability rather than entropy, and we define

Pred(X | Z)
def

= 2−
eH∞(X | Z) = E

z←Z

[
max
x

Pr[X = x|Z = z]
]

(5)

It is easy to see that for any (unbounded) adversary A that “sees” the outcome of Z and tries to predict
the outcome of a correlated variable X, we have Pr[A(Z) = X] ≤ Pred(X | Z). Conversely, the optimal
unbounded strategy A does achieve Pr[A(Z) = X] = Pred(X | Z). We will also use the following lemma.

Lemma L.1 ([22]). Let X,Y, Z be random variables where Y takes on values in a set of size at most 2ℓ.
Then H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y)|Z)− ℓ ≥ H̃∞(X|Z)− ℓ and, in particular, H̃∞(X|Y) ≥ H∞(X)− ℓ.

The above lemma shows that, if h : {0, 1}∗ → {0, 1}ℓ is a length-bounded function, then for any random
variable X, we have H̃∞(X | h(X)) ≥ H∞(X)− ℓ. In particular, if f is length-bounded with ℓ bit output,
then f is ℓ-leaky, as defined in Definition 7.4.

L.2 Properties of Noisy Leakage

We now show that our definition of noisy leakage (Definition 7.4) has several nice properties which make it
particularly easy to work with.

First we show that, if a function h decreases the entropy of the uniform distribution by at most ℓ bits,
then it decreases the entropy of every distribution by at most ℓ bits. In other words, the uniform distribution
always gives us the worst possible entropy degradation.

Lemma L.2. Assume a probabilistic function h : {0, 1}∗ → {0, 1}∗ is ℓ-leaky. Then, for every random
variable X over {0, 1}n, we have H̃∞(X | h(X)) ≥ H∞(X)− ℓ.

Proof. Assume otherwise, thatX is some distribution over {0, 1}n such that H∞(X) = t and H̃∞(X | h(X)) <
t − ℓ. Also assume that h uses m random coins. That means there is some predictor P for which
Pr[P (h(X;Um)) = X] > 2ℓ−t. Call a pair (x, r) ∈ {0, 1}n+m “good” if P (h(x; r)) = x. Then there
must be > 2ℓ+m good pairs, since the probability of any given pair occurring is ≤ 2−(t+m). Therefore
Pr[P (h(Un;Um)) = Un] = Pr[(Un, Um) is “good”] > 2ℓ+m/2n+m = 2ℓ−n. Hence H̃∞(Un | h(Un)) < n − ℓ,
which contradicts h being ℓ-leaky.

Next we show that any strategy which adaptively applies many ℓi-leaky functions, only learns
∑

i ℓi bits
of information at the end.

Lemma L.3. Let X be an arbitrary random variable over {0, 1}n. Assume that A is an arbitrary (un-
bounded) adversarial strategy which adaptively chooses probabilistic functions hi : {0, 1}∗ → {0, 1}∗ and
learns hi(X). Assume each hi is ℓi-leaky, and that the function hi always satisfy

∑
i ℓi ≤ ℓ. Let A(x) be the

view os A at the end of the above game with input x. Then H̃∞(X | A(X)) ≥ H∞(X)− ℓ.

41

Proof. Let us first prove the lemma in the case that A can only ask for two functions h1, h2, where h1 is ℓ1-
leaky and h2 is (ℓ−ℓ1)-leaky, but can be chosen adaptively based on the answer to h1. The view of A consists
of (z1, z2) = (h1(X), h2(X)). For any value z1 define the conditional distribution Xz1 = (X | h1(X) = z1).
We then have:

Pred(X | A(X)) = E
(z1,z2)←A(X)

max
x∈{0,1}n

Pr[X = x | A(X) = (z1, z2)]

≤ E
z1←h1(X)

max
h2

E
z2←h2(Xz1

)
max
x

Pr[X = x | h1(X) = z1, h2(X) = z2]

= E
z1←h1(X)

max
h2

(
E

z2←h2(Xz1
)
max
x

Pr[Xz1 = x | h2(Xz1) = z2]

)

= E
z1←h1(X)

max
h2

Pred(Xz1 | h2(Xz1))

≤ E
z1←h1(X)

Pred(Xz1)2
ℓ−ℓ1 (6)

= 2ℓ−ℓ1Pred(X | h1(X))

≤ 2ℓPred(X) (7)

where (6) (respectively (7)) follows from the fact that h2 is ℓ − ℓ1-leaky (respectively, h1 is ℓ1-leaky) and
Lemma L.2. To generalize to the case where A can ask for many functions, we just use induction on the
number of functions m. We just showed the case of m = 1, 2. Assume the lemma holds for m, and we show
that it holds for m+ 1. The main idea is that, after seing the answer to the first ℓ1-leaky query h1(X), we
can define the rest of the strategy of A as a function A2(X), which consists of m adaptively chosen queries
h2, . . . , hm+1. By the inductive hypothesis, we see that A2 is (ℓ− ℓ1)-leaky. The theorem then follows from
the m = 2 case.

L.3 Resilience to Noisy Leakage (Proof-Sketch of Theorem 7.5)

Definitions. Defining resilience to noisy leakage is slightly more difficult then length-bounded leakage,
since there is no efficient procedure to check how leaky a function h is. We define the noisy-leakage oracle
NOλsk(·), analogously to Definition 2.2, except that the query functions h : {0, 1}∗ → {0, 1}∗ can have
arbitrary output lengths (not just 1 bit). In the definition of CLR primitives, we will not restrict the number
of queries to the oracle, but rather the sum of the “leakiness” of the queries. For example, we define a noisy
CLR-OWR as follows.

Definition L.4 (Noisy-Leakage Security for CLR-OWR). We say that an ℓ-CLR-OWR is secure against
noisy leakage, if it satisfies the definition of CLR-OWR (Definition 2.3) with the following modifications:

1. In each leakage round, the adversary can adaptively make an arbitrary number of oracle-calls to
NOλsk(·).

2. The adversary only wins if, in each leakage-round i, the set of queries hi,1, . . . , hi,mi
made to NOλsk(·)

satisfy
∑mi

j=1 ℓi,j ≤ ℓ, where each hi,j is ℓi,j-leaky.
(Notice that the winning condition cannot be checked efficiently.)

We can define the other noisy CLR primitives (signatures, ID schemes, AKA) analogously. We can also
analogously define noisy variants of our building blocks for the CLR-OWR construction: a noisy LIRR and
a noisy LoC-NM encryption. To prove Theorem 7.5, we notice that our web of reductions preserves noisy
leakage. In particular, it it easy to extend our results to get the following:

Theorem 4.9 noisy LoC-NM encryption ⇒ noisy LIRR.

Theorem 3.2 noisy LIRR ⇒ noisy CLR-OWR.

Theorem I.3: noisy CLR-OWR ⇒ noisy CLR-signatures

Theorem K.2, Theorem K.4: noisy CLR-signature ⇒ noisy CLR-ID schemes and noisy CLR-AKA

42

Therefore, to prove Theorem 7.5, we only need to show that the construction of the encryption scheme
E2 is ℓ-LoC-NM w.r.t. noisy leakage. But this follows almost directly from the proof of Theorem E.2.

The only place in that proof where the nature of the leakage is used, is in arguing the indistinguishability
of Games 2 and 3. In particular, it is used in the analysis of case 2, arguing that a decryption query with
~y∗ 6∈ rowspace(A) is likely to decrypt to ⊥ in Game 2. To do so, we used the fact that the correct verification
elements c̃∗i corresponding to ~y∗ are uniformly random given all other information except for the leakage.

Then, the nature of the leakage was only used to argue that H̃∞(c̃∗1, . . . , c̃
∗
n | leakage) ≥ λ, and so the

adversary can only predict these values with negligible probability. In the case of length bounded leakage,
the above inequality follows from Lemma L.1. For the case of noisy-leakage, the above inequality still holds
by Lemma L.3.

L.4 Comparison to the Definition of [49]

Naor and Segev [49], introduced the concept of noisy leakage, but with a slightly different definition.
That is, if a scheme has distribution PK,SK on public/secret keys than a leakage-function h is ℓ-leaky
if H̃∞(SK | PK, h(SK)) ≥ H̃∞(SK | PK)− ℓ. We find this definition less robust since the “leakiness” of
a function h depends on the scheme within which this function is analyzed, rather than just on the function
itself. However, by Lemma L.2, our measure of noisy leakiness is always more pessimistic and so security
under the [49] definition is a stronger notion. Interestingly, our schemes do not satisfy it. In particular,
our secret-key sk for CLR-OWR does not, in itself, have large statistical entropy but only pseudo-entropy.
Therefore, the identity function h(sk) = sk, would be legal leakage for our scheme according to the definition
of [49], but not according to our Definition 7.4.

M Leakage of Computation

M.1 Organization

In Appendix M.2, we give some background on Σ-protocols. In Appendix M.3, we then give general con-
structions of CLR security for ID schemes, signatures and AKA from CLR-OWRs and Σ-protocols, and
show that these constructions satisfy leakage-of-computation security. Lastly, in Appendix M.4, we show
how to efficiently instantiate Σ-protocols for the concrete relations we need, using our concrete instantiation
of a CLR-OWR.

This gives us several alternative constructions of the above primitives, differing from those in Appendix I
and Appendix K. The main advantage is that the current constructions satisfy leakage-of-computation
security. Interestingly, they are also more efficient. The main disadvantage, for the signatures and AKA
protocols, is that they are only proven secure in the random oracle model. Also, the relative-leakage of the
signature scheme (but not the ID scheme and AKA protocol) is halved.

M.2 Background: Σ-Protocols

Definition. Let R be an NP relation consisting of instance, witness pairs (y, x) ∈ R and let LR =
{y | ∃x, (y, x) ∈ R} be the corresponding language of R. A Σ-protocol for R is a protocol between a PPT
ITM prover P(y, x) and a PPT ITM verifier V(x), which proceeds in three rounds where: (1) the prover
P(y, x) sends an initial message a, (2) the verifier V(y) sends a uniformly random challenge c from some
space C (3) the prover P(y, x) sends a response z. The verifier V(x) either accepts or rejects the conversation
by computing some predicate Ver(y, a, c, z) of the instance y and the conversation (a, c, z). We require that
Σ-protocols satisfy the following three properties:

Perfect Completeness: For any (y, x) ∈ R, the execution {P(y, x) ⇋ V(y)} is always accepting.

Special Soundness: There is an efficient extractor algorithm such that, given an instance y and two
accepting conversations for y: (a, c, z), (a, c′, z′) with the same first message a but different challenges

43

c 6= c′, the algorithm outputs x′ such that (y, x′) ∈ R.

Perfect Honest Verifier Zero Knowledge (HVZK): There is a PPT simulator S such that, for any
(y, x) ∈ R, the simulator S(y) produces conversations (a, c, z) which are identically distributed to the
conversations produced by an execution with an honest verifier {P(y, x) ⇋ V(y)}.

Although it often makes sense to talk about Σ-protocols with even a 1-bit challenge space C = {0, 1}, we
will (from now on) assume that the challenge-space is super-polynomial in the security parameter:
|C| = 2ω(log(n)). This can always be made to hold, using parallel repetition.

Properties of Σ-Protocols. As was shown in [15], the HVZK property implies witness indistinguisha-
bility : For any adversarial verifier V∗ any (y, x), (y, x′) ∈ R the conversations:

{P(y, x) ⇋ V∗(y)} ≡ {P(y, x′) ⇋ V∗(y)}

are identically distributed. This also implies that, for any joint distribution (Y,X) over R and any adversary
V∗, if we condition on any outcome Y = y, then the random variables X and Z = (view of V∗) are
independently distributed.

Although computationally-indistinguishable HVZK Σ-protocols are known to exists for all of NP, this is
unlikely to be the case with perfect HVZK Σ-protocols [15], which is our default notion. Therefore, we will
need to explicitly give a Σ-protocol for our concrete relations later.

M.3 Leakage of Randomness Security: Generic Constructions

Let C = (KeyGen, ReRand, VerC) be a CLR-OWR. Let Rc = {(pk, sk) | VerC(pk, sk) = 1} be a relation on
valid pk, sk pairs of the CLR-OWR, and let Σ = (P,V) be a Σ-protocol for the relation RC .

9 In the rest of
the section, we give generic constructions of several CLR primitives with leakage-of-computation security,
from C and Σ.

M.3.1 ID Schemes

Definition M.1 (CLR-ID with Leakage of Randomness). We say that an ID scheme (KeyGen, ReRand,P,V)
is a CLR-ID with leakage-of-computation security if the regular correctness property holds (see Defini-
tion K.1) and the winning probability of any PPT adversary A is Pr[A wins] ≤ negl(λ) in the following
game:

Initialization: The challenger chooses (pk, sk)← KeyGen(1λ) and gives pk to A. It sets r to be the empty
string.

Learning Stage: The learning stage proceeds in arbitrary many leakage rounds. In each round, the adver-
sary A can arbitrarily interleave the following actions:

• Protocol Executions: The adv. A can execute arbitrarily many protocols with the honest prover
P(sk; ri), who uses fresh random coins ri. In the beginning of each such execution, the challenger
sets r := r||ri (i.e. appends ri to r).

• Leakage Queries: In each round, the adv. A can make up to ℓ queries to the oracle Oλsk,r, on the
current secret key sk and all the randomness r used so far in the current round.

At the end of each round, the challenger resets r to the empty string, computes sk′ ← ReRand(sk) and
updates sk := sk′.

Impersonation Stage: The adversary A interacts with an honest verifier V(pk), by taking the role of the
prover (there is no leakage at this point). We say that A wins if V accepts the execution.

9Recall, we assume that a Σ-protocol is perfect HVZK.

44

We want to say that, if C = (KeyGen, ReRand, VerC),Σ = (P,V) are define as before, then (KeyGen,
ReRand, P, V) is a secure CLR-ID scheme with leakage-of-computation security. Unfortunately, we do not
know how to prove this statement in general (even without leakage-of-computation security). The problem
is that executions of a Σ-protocol cannot be efficiently simulated, even though they do not (information
theoretically) reveal any additional information about the secret key. The way to get around this problem
is to make a stronger assumption on C, that it satisfies CLR security with respect to noisy leakage (Defini-
tion 7.4). That way, we can actually include all of the protocol executions as outputs of a leakage function
on sk.

Theorem M.2. Assume that C = (KeyGen, ReRand, VerC) is an (ℓ+ 1)-CLR-OWR with noisy-leakage secu-
rity and that Σ = (P,V) is a Σ-protocol for the relation RC. Then I = (KeyGen,P,V) is an ℓ-CLR-secure
ID scheme with leakage-of-computation security.

Proof. Let A be an adversary against the ID scheme, with noticeable probability of winning. We construct
an adversary B for the CLR-OWR as follows. We can define the leakage function hA,pk(x) which does the
following: (1) checks that VerC(pk, x) = 1 and, if not, it outputs ⊥, (2) otherwise, it simply runs A for a
single leakage round, using sk = x to perfectly simulate the the prover P(pk, sk; r) and the leakage-oracle
Oλsk,r, outputting the entire view of A at the end. We first prove the following:

Claim M.3. For any fixed pk and algorithm A, the function hA,pk(x) is (ℓ+ 1)-leaky.

Proof. Let X be any random variable and let us define the random-variables B = VerC(pk,X) to be a
binary indicator variable for whetherX is a valid secret-key for pk, P to be the outcome of all interactions
between A and the prover P(pk,X;R) with uniform randomness R, and L to be the responses to all of
A’s the leakage-oracle queries to OλX,R on the secret-key X and randomness R. Then

Pred(X|hA,pk(X))

= Pred(X|hA,pk(X), B = 1)Pr[B = 1] + Pred(X|hA,pk(X), B = 0)Pr[B = 0] (8)

≤ Pred(X|P,L,B = 1)Pr[B = 1] + Pred(X|B = 0)Pr[B = 0] (9)

≤ 2ℓPred(X|P,B = 1)Pr[B = 1] + Pred(X|B = 0)Pr[B = 0] (10)

≤ 2ℓPred(X|B = 1)Pr[B = 1] + Pred(X|B = 0)Pr[B = 0] (11)

≤ 2ℓPred(X|B) ≤ Pred(X)2ℓ+1 (12)

Where (8) follows by the definition of predictability and the laws of expectation, (9) follows by decom-
posing the output of the function hA,pk(x) depending on the outcome of B, (10) follows since the queries
to the leakage oracle are cumulatively at most ℓ-leaky (and Lemma L.3), (11) follows since interaction
with the prover P is perfectly witness indistinguishable (and hence P reveals 0 information conditioned
on B = 1) and (12) follows by the definition of predictability again.

By substituting X = Un, we get H̃∞(Un|hA,pk(Un)) = − log(Pred(Un|hA,pk(Un)) = n − (ℓ + 1), which
proves the claim.

So, the reduction B breaking the CLR-OWR simply takes the description of A (including it’s random-
coins and current state) at the beginning of each leakage-round and queries its oracle Osk with the leakage-
function hA,pk. It then feeds the output to its copy of A to progress to the next leakage round. This goes
on until A moves to the impersonation stage.

When that occurs, B simply runs as an honest verifier with A to get a conversation (a, c, z). It then
rewinds A to the challenge phase and sends a fresh challenge c′. Using the standard rewinding argument,
there is a noticeable probability that B recovers two valid conversations (a, c, z)(a, c′, z′) with c 6= c′, and
therefore a witness sk∗ such that VerC(pk, sk∗) = 1. Therefore B wins the CLR-OWR attack game with
noticeable probability.

45

M.3.2 Signatures

Definition M.4 (CLR-Sig with Leakage of Randomness). We say that a signature scheme (KeyGen, Sign,
SigVer, ReRand) is ℓ-CLR with leakage-of-computation security if for any PPT adversary A, we have
Pr[A wins] ≤ negl(λ) in the following game:

• The challenger chooses (vk, sk)← KeyGen(1λ) and gives vk to A.

• The adversary A runs for arbitrarily many leakage rounds. In the beginning of each round r is initial-
ized to be the empty string. Then, in each round:

– The adversary makes up to ℓ calls to a leakage-oracle Osk,r, with the current secret key sk and
the randomness r used so far. The adversary also makes queries to a signing oracle Ssk(·). The
signing oracle responds to a query m with the signature σ = Signsk(m; ri) under fresh random
coins ri, and the challenger updates r = r||ri.

– At the end of the round, the challenger samples sk′ ← ReRand(sk) and updates sk := sk′. It
resets r to the empty string.

• The adversary wins if it produces a message/signature pair (m∗, σ∗) such that SigVervk(m
∗, σ∗) = 1

and m∗ was not given to Ssk(·) as a signing query in any leakage round.

Let C = (KeyGen, ReRand, VerC) be a CLR-OWR and Σ = (P,V) be a Σ-protocol for RC . We can then
use the Fiat-Shamir [29] transform to define a signature scheme S = (KeyGen, Sign, SigVer, ReRand) as
shown in Figure 15.

Let H : {0, 1}∗ → C be a Random Oracle mapping arbitrary messages to the challenge-space C of the Σ-protocol.

KeyGen, ReRand: Same as for the OWR.

Signsk(m): Use the prover P(pk, sk) to compute the first message a of the protocol. Compute the challenge
c := H(a,m) and give c to P(pk, sk) to get a last message z. Output (a, z).

SigVerpk(m,σ): Parse σ = (a, z). Compute c = H(a,m). Output 1 if the conversation (a, c, z) is accepting for
pk.

Figure 15: Fiat-Shamir Transform [29]: Signatures from Σ-Protocols

Note on Leakage in the RO Model. As noted by [46], when analyzing leakage in the RO model, the
leakage functions h(·) should have access to the random-oracle. This captures the essence of the random-
oracle model, where all parties, honest or adversarial, have access to the oracle. We assume this to be the
case in the following theorem.

Theorem M.5. Assume that C = (KeyGen, ReRand, VerC) is an (ℓ + 1)-CLR-OWR with noisy-leakage se-
curity and concurrent-leakage-round security. Assume that Σ = (P,V) is a Σ-protocol for the relation RC.
Then the Fiat-Shamir scheme S = (KeyGen, Sign, SigVer, ReRand), as defined in Figure 15 is an ℓ/2-CLR-
secure (existentially-unforgeable) signature scheme with leakage-of-computation security.

Proof. Assume that A is an attacker on the signature scheme with noticeable success probability. Also,
assume that A runs for at most qL leakage round and makes at most qH calls to the random oracle H
(including calls made by the leakage functions). We define an attacker B against the concurrent/noisy-
leakage security of the CLR-OWR. The attacker B works as follows. It chooses a 2(qH)-wise independent
function fk (keyed by a random k) with range C10 and a random c′ ∈ C. It uses these to define a leakage-
function hA,pk,k,c′(sk1, . . . , skqL) which concurrently leaks on qL versions of the CLR-OWR secret keys. The
function works as follows:

Check that Secret Keys Are Legal: If Ver(pk, ski) = 0 for any i, output ⊥.

10We can also replace fk by an appropriate PRF.

46

Run A: Run the adversary A. Answer all random-oracle queries z via fk(z). Answer all signing queries on
m honestly by running the honest prover P with challenge c = fk(a,m) secret key ski and uniform
randomness rj . Let the set P be all the answers to the signing queries. Answer all leakage queries on
the secret-keys ski and randomness rj honestly. Let L be the answers to all leakage queries.

Rewind Once: At the end, A outputs some value (m∗1, σ
∗
1 = (a∗1, z

∗
1)). Rewind all the way to the beginning

and run A again, answering random-oracle queries, signing queries and leakage queries as before, except
that, on random-oracle query (m∗, a∗) output c′. If A makes any new signing/leakage queries, update
the set L,P accordingly. At the end A outputs some value (m∗2, σ

∗
2 = (a∗2, z

∗
2)).

Output: Output the responses to the leakage/signing queries L,P .

Now, when B gets L,P , it can use them to run A the same way as was done inside the leakage function
(using L,P instead of the secret-keys), eventually getting (m∗1, σ

∗
1 = (a∗1, z

∗
1)), (m∗2, σ

∗
2 = (a∗2, z

∗
2)). Using the

standard rewinding argument, there is a noticeable probability that (a∗1, c
∗
1 = fk(m

∗
1, a
∗
1), z

∗
1) and (a∗2, c

∗
2 =

c′, z∗2) are two accepting conversations with a∗1 = a∗2 and c∗1 6= c∗2. In this case B can come up with a valid
secret key sk using the special soundness property.

So all we are left to prove is that hA,pk,k,c′ is (ℓ+ 1)-leaky. But this follows from the same argument as
Claim M.3.

M.3.3 “Challenge-Response” Interactive Signatures

We can also define a weaker notion of security for signatures, called challenge-response unforgeability, where
the adversary only wins the game if she is able to forge a signature of a message of the type (z,m∗) where
z is chosen by the challenger from some appropriately random distribution, after all adversarial leakage
queries have been made.11 In particular, the adversary’s leakage cannot depend on z. We notice that, for an
analogue of Theorem M.5 is simpler to prove for entropically-unforgeable signature. In particular, since the
oracle-query (a∗, (z,m∗)) for the forgery is made only after all leakage queries have been made, B does not
make any new leakage queries after rewinding during the extraction stage. Therefore we can allow ℓ bits of
leakage, as compared to ℓ/2 in the previous scheme. Moreover, we do not need concurrent security from the
CLR-OWR any longer.

Theorem M.6. Assume that C = (KeyGen, ReRand, VerC) is an ℓ-CLR-OWR with noisy leakage secu-
rity. Assume that Σ = (P,V) is a Σ-protocol for the relation RC. Then the Fiat-Shamir scheme S =
(KeyGen, Sign, SigVer, ReRand), as defined in Figure 15 is an ℓ-CLR-secure entropically unforgeable signa-
ture scheme with leakage-of-computation security.

M.3.4 AKA

Here, we just notice that in our construction of AKA from CLR-Sigs, we only require entropic unforgeability,
since, to mount an attack, the adversary has to forge a signature for a message that partially depends on
the (random) protocol messages of the other party. This same observation was made in [3].

M.4 A Σ-Protocol for the Secret-Key of a CLR-OWR

Let C = (KeyGen, ReRand, VerC) be our concrete instantiation of a CLR-OWR based on the schemes E1, E2,Π
under the K-linear assumption. Let Rc = {(pk, sk) | VerC(pk, sk) = 1} be an NP relation.

Recall that pk = (crs, pk1, pk2, c1) and sk = (c2, π) where VerC(pk, sk) = 1 if and only if

VerΠ
crs((pk1, pk2, c1, c2), π) = 1

11The work of [3] gave a somewhat more general definition called entropic unforgeability.

47

where VerΠ is the verification procedure of the NIZK Π for the plaintext-equality relation Req.
12

Also recall that VerΠ
crs((pk1, pk2, c1, c2), π) = 1 iff

B • ∆ =
(
~c P

)
• Υ

where Υ depends on the crs, B depends only on (pk1, pk2), ~c depends on c1, c2, and (∆,P) = π. However,
we can also write ~c = ~c1 ⊞ ~c2 where ~c1 depends only on c1 and ~c2 depends only on c2 (see Appendix E.3 for
why that is).

Therefore, we can write pk = (crs, pk1, pk2, c1) = (Υ,B,~c1), and secret-keys sk = (c2, π) = (~c2,∆,P)
such that:

(pk, sk) ∈ RC iff B • ∆ =
(
~c1 ⊞ ~c2 P

)
• Υ

iff B • ∆ =
((
~c2 P

)
⊞

(
~c1 {1G}

))
• Υ

iff B • ∆ ⊟
((
~c2 P

)
• Υ

)
=

(
~c1 1G

)
• Υ

Therefore each pk = (Υ,B,~c1) defines a group homomorphism

ρpk : (~c2,∆,P) 7→ B • ∆ ⊟
((
~c2 P

)
• Υ

)

and we want a Σ-protocol to prove the knowledge of a pre-image of the element
(
~c1 1G

)
• Υ under the

above homomorphism. We now use a general strategy for building efficient Σ-protocols for the pre-image of
a group homomorphism (see [47] for an elegant general description of this strategy). Our protocol is shown
in Figure 16.

Let pk = (crs, pk1, pk2, c1) = (Υ,B,~c1), sk = (c2, π) = (~c2,∆,P).
Define T =

(
~c1 1G

)
• Υ.

First Message P(pk, sk): Choose a random aux = (~c′2,∆
′,P′) in the same domain as sk. Output A = ρpk(aux).

Challenge V(pk): Choose a random challenge c← Zp.

Response P(pk, sk, aux): Output Z = (~c∗2,∆
∗,P∗) where

~c∗2 := ~c′2 ⊞ (~c2 · c)

∆∗ := ∆′
⊞ (∆ · c)

P∗ := P′
⊞ (P · c)

Verify Conversation V(pk, (A, c,Z)): To verify the conversation (A, c,Z), the verifier checks ρpk(Z)
?

= A ⊞

(T · c).

Figure 16: A Σ-protocol for RC .

Theorem M.7. The protocol in Figure 16 is a Σ-protocol (with perfect completeness, special soundness and
perfect HVZK) for the relation RC.

Proof. We show the thee properties one-by-one.

Perfect Completeness: Assume that the conversation (A, c,Z) comes from an honest prover where aux =
(~c′2,∆

′,P′) and Z = (~c∗2,∆
∗,P∗). Then

ρpk(Z) = B • ∆∗ ⊟
((
~c∗2 P∗

)
• Υ

)

= B • ∆′ ⊟
((
~c′2 P′

)
• Υ

)
⊞ B • (∆ · c) ⊟

((
(~c2 · c) (P · c)

)
• Υ

)

= ρpk(aux) ⊞ (ρpk(sk) · c)

= A ⊞ (T · c)

12It’s important, at this point, to remember the difference between Req and RC. For Req, the statements are (pk1, pk2, c1, c2)
and we want to prove that c1, c2 encrypt the same plaintext. For RC the statement is pk = (crs, pk1, pk2, c1), the witness is
(c2, π), and we want to prove that π is a valid GS NIZK for the relation Req with statement (pk1, pk2, c1, c2).

48

Special Soundness: Assume that (A, c,Z), (A, c̃, Z̃) are two accepting conversations where c 6= c̃. We
write
Z = (~z1,Z2,Z3), Z̃ = (~̃z1, Z̃2, Z̃3). Then

{
ρpk(Z) = A ⊞ (T · c)

ρpk(Z̃) = A ⊞ (T · c̃)

}
⇒ ρpk(Z) ⊟ ρpk(Z̃) = T · (c− c̃)

⇒ ρpk(~z1 ⊟ ~̃z1,Z2 ⊟ Z̃2,Z3 ⊟ Z̃3) = T · (c− c̃)

⇒ ρpk(sk
∗) = T

Where

sk∗ =

(
(~z1 ⊟ ~̃z1) ·

1

(c− c̃)
, (Z2 ⊟ Z̃2) ·

1

(c− c̃)
, (Z3 ⊟ Z̃3) ·

1

(c− c̃)

)

Therefore the extractor can efficiently compute the above sk∗ such that (pk, sk∗) ∈ RC .

Perfect HVZK: The simulator samples c← Zp at random. It then chooses Z = (~c∗2,∆
∗,P∗) uniformly at

random from the same domain as sk. Lastly it computes A := ρpk(Z) ⊟ (T · c) and outputs (A, c,Z).

Perfect simulation follows since honest and simulated conversations are both uniformly random subject
only to the constraint: ρpk(Z) = A ⊞ (T · c).

M.5 Summary of Results of Leakage-of-Randomness

The generic constructions of ID schemes (Theorem M.2) and signatures (Theorem M.5), along with the
construction of a Σ-protocol for the relation RC when instantiated with our efficient CLR-OWR (based on
K-linear) proves the existence and relative leakage of the schemes. The AKA protocol then follows black-box
from the construction of entropic-signatures Theorem M.6 and their superior relative leakage. This proves
Theorem 7.1.

N Proofs Omitted from the Main Body

N.1 Theorem 3.2 (LIRR ⇒ CLR-OWR)

Proof of Theorem 3.2. The correctness properties of CLR-OWR follow from the correctness/re-randomization
of the LIRR. We use a series-of-games argument to argue ℓ-CLR security:

Game 0: This is the original ℓ-CLR Game from Definition 2.3.

Game 1: In this game, the challenger initially samples (pk, samG, samB, dk)← Setup(1λ) sk1 ← SampG(samG)
and gives pk to A. The game them proceeds as before with many leakage rounds, except that the secret
key used in each leakage-round i is chosen as ski ← SampG(samG), independently of all previous rounds.

Games 0 and 1 are indistinguishable by the re-randomization property (applied q times, where q is the
total number of leakage-rounds).

Game 2: Game 2 is the same as Game 1, except that we modify the winning-condition to say that the
adversary only wins if, at the end, it outputs sk∗ such that isGood(pk, sk∗, dk) = 1.

The winning probability of A in Games 2 is at least that of Game 1 minus the probability that sk∗

satisfies Ver(pk, sk∗) = 1 ∧ isGood(pk, sk∗, dk) = 0. However, since the entire interaction between the
challenger and the adversary in Games 1,2 can be simulated using (pk, samG), we can use the hardness
of good keys property to argue that the probability of the above happening is negligible. Therefore the
probability of A winning in Games 2 is at least that of Game 1, up to negligible factors.

49

Games 2.i - 3: Let q be the total number of leakage rounds for which A runs. We define the Games 2.i
for i = 0, 1 . . . , q as follows. The challenger initially samples (pk, samG, samB, dk) ← KeyGen(1λ) and
gives pk to A. The game them proceeds as before with many leakage rounds, except that the secret
keys in rounds j ≤ i are chosen by skj ← SampB(samB), and in the rounds j > i, they are chosen as
skj ← SampG(samG). Note that Game 2.0 is the same as Game 2, and we define Game 3 to be the
same as Game 2.q.

We use the ℓ-Leakage Indistinguishability property to argue that, for i = 1, . . . , q, the winning proba-
bility of A is the same in Game 2.(i − 1) as in Game 2.i, up to negligible factors. This is because a
reduction B, attacking the LR subset indistinguishability game, can simulate As view in leakage-rounds
j < i using samB and rounds j > i using samG. For round i, the reduction simulates leakage by calling
its own leakage-oracle, on the challenge secret-key. At the end, B outputs the value sk∗ output by A.
If B’s challenger uses a good key then that corresponds to the view of A in game 2.(i− 1) and a bad
key corresponds to game 2.i. Therefore, letting b be the bit used by Bs challenger:

∣∣∣∣Pr[B wins]−
1

2

∣∣∣∣ =

∣∣∣∣Pr[isGood(pk, sk∗, dk) = b]−
1

2

∣∣∣∣

=
1

2

∣∣∣ Pr[isGood(pk, sk∗, dk) = 1 | b = 1]− Pr[isGood(pk, sk∗, dk) = 1 | b = 0]
∣∣∣

=
1

2

∣∣∣ Pr[A wins in Game 2.(i− 1)]− Pr[A wins in Game 2.i]
∣∣∣

Can’t Win Game 3: We now argue that probability of A winning game 3 is negligible, by the hardness of
good keys. Notice that A’s view in Game 3 can be simulated entirely just given pk, samB. Therefore,
there is a PPT algorithm which, given pk, samB as inputs, can run Game 3 with A and output sk∗

such that isGood(pk, sk∗, dk) = 1 whenever A wins. So the probability of A winning in Game 3 is
negligible.

By the hybrid argument, the probability of A winning in Game 0 is at most that of A winning in Game 3,
up to negligible factors. Therefore, since the latter is negligible, the former must be negligible as well, which
concludes the proof of the theorem. 2

N.2 Lemma 4.1 (Hardness Properties of LIRR)

Proof of Lemma 4.1. The correctness properties follow from the correctness of NIZK and encryption.
The hardness of bad keys property follows by the soundness of the argument-system Π. In particu-
lar, if Ver(pk, sk∗) = 1 and isGood(pk, sk∗, dk) = 0, then sk∗ = (c2, π) where π is a valid proof (i.e.
Ver((c1, c2), π) = 1) for a false statement (c1, c2) 6∈ Leq. Therefore, an adversary A that wins the “hardness
of bad keys” game, and produces such sk∗ with non-negligible probability, can be used to break the sound-
ness of the NIZK argument system Π. Notice that we can easily simulate pk, samG for such an adversary
without knowing the trapdoor tk for the crs of the NIZK.

The hardness of good keys property follows by the one-wayness of E1. In particular, if sk∗ = (c∗2, π
∗) is

such that isGood(pk, sk∗, dk) = 1, then Dec1
sk1

(c1) = Dec2
sk2

(c∗2) = m. Therefore, we can use an adversary
that wins the “hardness of good keys” game, and produces such sk∗ with non-negligible probability, to
break the one-wayness of E1. We simply simulate (pk, samB) for the adversary by choosing the key-pair
(pk2, sk2) of E2 and the (crs,tk) of the NIZK system ourselves, and using the challenge public-key pk1 and
challenge-ciphertext c1 to generate pk = (pk1, pk2,crs, c1), samB = tk. Then, given the adversary’s forged
key sk∗ = (c∗2, π

∗), we simply recover m = Dec2
sk2

(c∗2) to break the one-wayness of the challenge-ciphertext
c1. 2

50

N.3 Lemma 4.5 (Homomorphic Relation)

Proof of Lemma 4.5. Let y = (c1, c2), y
′ = (c′1, c

′
2), x = (m, r1, r2), x

′ = (m′, r′1, r
′
2) such that (y, x), (y′, x′) ∈

R
(pk1,pk2)
eq . Then y·y′ = (c1·c

′
1, c2·c

′
2) and x+x′ = (m·m′, r1+r

′
1, r2+r

′
2) such that c1·c

′
1 = Enc1

pk1
(m·m′; r1+r

′
1),

c2 · c
′
2 = Enc2

pk2
(m ·m′; r2 + r′2). Therefore (y · y′, x+ x′) ∈ R

(pk1,pk2)
eq . 2

N.4 Lemma 4.6 (Rerandomization)

Proof of Lemma 4.6. Fix any pk = (pk1, pk2,crs, c1), samG output by KeyGen and skG = (c2, π) output by
SampG(samG). Then there exist some m, r1, r2, r3 for which

samG = (m, r1) , c1 = Enc1
pk1(m; r1) , c2 = Enc2

pk2(m; r2) , π = Prov((c1, c2), (m, r1, r2); r3).

If we sample sk∗ ← ReRand(skG), we have sk∗ = (c∗, π∗) and:

c∗ = c2 · Encpk2(1M; r′2) = Encpk2(m; r2 + r′2)

π∗ = π · Prov((1C1 , c
∗/c2), (1M, 0R1

, r′2); r
′
3) = Prov((c1, c

∗), (m, r1, r2 + r′2); r3 + r′3)

for some fresh random values r′2, r
′
3. Therefore, sampling sk∗ ← ReRand(skG) is exactly the same as sampling

sk∗ ← SampG(samG), even after fixing any choice of pk, samG, skG. This shows that the re-randomization
property holds with perfect distributional equality.

2

N.5 Lemma 4.8 (LoC-NM ⇒ LIRR)

Proof of Lemma 4.8. Assume A is a PPT adversary which has a non-negligible advantage in the leakage-
indistinguishability (LI) game of Definition 3.1.

Consider the following modification to the LI game. In the original LI game, if the challenger’s bit is
b = 1, then the challenger samples the challenge secret-key s̃k = (c̃, π̃) ← SampG(samG). Therefore, c̃ is a

random encryption of m, and π is an honestly generated proof for the statement (c1, c2) ∈ L
(pk1,pk2)
eq under

the witness (m, r1, r2). In the modified-LI game, if the challenger’s bit is b = 1, then the challenger samples
c̃ as before, but uses a simulated proof π̃ ← SimΠ((c1, c2),tk).

The adversary’s probability of winning in the modified LI game is the same as that of the original game,
up to negligible factors, by the the (composable) NIZK property of the proof system Π (note that we need
composable NIZK, since the adversary see the trapdoor tk for the crs of Π).

We now show how to use any adversary A that attacks the modified LI game to construct a reduction
B that attacks the LoC-NM game.

1. The reduction B initially gets a challenge public-key, which it sets as pk2. In addition B samples and
the values (pk1, sk1), (crs,tk), samG = (m, r), samB = tk and c1 = Encpk1(m; r) just as the honest
key-generation algorithm of the LIRR construction. It gives pk = (crs, pk1, pk2, c1), samG, samB to A.

2. The reduction B chooses challenge messages m0 = 1M, m1 = m and gives these to its challenger.

3. The adv. A expects to make up to ℓ calls to a leakage-oracle (simulated by B) on a secret key s̃k = (c̃, π̃).
The reduction B initially chooses some randomness r for a NIZK simulator. Then, for each function
h chosen by A (recall h expects a value s̃k = (c̃, π̃) as input), the adv. B creates a function h′ (which
expects only c̃ as input, and contains tk, r hard-coded) such that h′(c̃) computes π̃ = Sim((c1, c̃), tk; r)
and then outputs h(c̃, π̃). The reduction B then passes h′ to its own leakage-oracle on the challenge
ciphertext c̃. 13

13Essentially, we are saying that B can correctly simulate ℓ bits of leakage on s̃k = (c̃, π̃) given ℓ bits of leakage on c̃ alone, by
having the leakage-functions simulate π̃.

51

4. When A outputs sk∗ = (c∗, π∗), the reduction B gives c∗ to its challenger and, if it gets back the
message m, it outputs b̃ = 1. Else it outputs b̃ = 0.

We now argue that the reduction B wins the ℓ-LoC game with the exact same probability that A wins in
the modified-LI game, which concludes the proof. This is because, no matter what bit b is chosen by the
challenger in the ℓ-LoC-NM game, the simulated view of A above is exactly that of the modified LI game
with challenge-bit b. Moreover, B outputs b̃ = b whenever A outputs sk∗ such that isGood(pk, sk∗, dk) = b.
2

N.6 Theorem 7.2 (Leakage of Refreshing)

N.6.1 Proof Intuition

The main idea behind allowing logarithmic leakage-of-refreshing is that we can simulate the µ(λ)-bits of
leakage on the internal state (ski, ri) of the refresh operation ski+1 = ReRand(ski; ri), by leaking an additional
µ(λ)-bits on the secret-key ski+1 alone, without knowing ri. In particular, our leakage function will get ski+1

and try all possible choices of the µ(λ)-bit leakage that the adversary A could have seen during the refresh.
For each of the 2µ(λ) possible choices, our leakage-function it will gage A’s success probability given this
choice, by running A on many random continuations of the leakage game using the key ski+1 to simulate
the challenger going forward. At the end, the leakage-function will output the optimal µ(λ)-bit value that
maximizes A’s probability. So leakage on the refreshing (ski, ri) is simulated using ski+1 alone. Note that
the actual behavior of the challenger in future rounds depends only on ski+1 (and randomness), so the
estimate that the leakage-function gets on success probability of A is (likely) accurate. Therefore, given
this “simulated” leakage, A’s success probability should not be much smaller then when given the “correct”
leakage calculated using (ski, ri). The only bottleneck of the approach is that the simulated-leakage-function
runs in 2µ(λ) time. Therefore, using this approach, we are stuck with µ(λ) = O(log(λ)) or with making
stronger hardness assumptions.

N.6.2 Formal Proof

Proof of Theorem 7.2. Let (KeyGen, Ver, ReRand) satisfy the syntax of a CLR-OWR. Assume that there is
an adversary A that breaks the (ℓ(λ), µ(λ))-CLR security of the scheme, for some µ(λ) = O(log(λ)). Then
there are some polynomials q(·), p(·) such that A runs in q(λ) leakage rounds and that its success probability
is at least 1/p(λ) for infinitely many λ ∈ N. Let ǫ(·) be any inverse-polynomial. We define an adversary B
that wins the ℓ(λ)-CLR security game (without leakage-of-refreshing) against the scheme with probability
1/p(λ)− ǫ(λ)− negl(λ).

Description of B. It is easiest to think of A as submitting a single deterministic leakage-query fi on the
secret key ski (in-between refreshing), and a single deterministic leakage-query hi on the state ski, ri (during
the refreshing) in each round. On the other hand, B will submit two randomized queries on each secret ski in
each round.14 The adversary B works as follows. It runs an internal copy of A and forwards the public-key
pk from its challenger to A. In between refreshing, B forwards the leakage query fi : {0, 1}∗ → {0, 1}ℓi

from A to its challenger and the response fi(ski) back to A. During the refreshing, when A submits a
leakage query hi : {0, 1}∗ → {0, 1}µi on the refreshing state (ski, ri), the reduction B moves on to the next
leakage round and simulates the refreshing leakage by leaking µi bits on the secret key ski+1. In particular,
B constructs a query h′i : {0, 1}∗ → {0, 1}µi on the key ski+1, as described below, and feeds the output
h′i(ski+1) to A. At the end, B outputs whatever secret-key sk∗ is output by A.

14Recall that this is w.l.o.g. as any adversary that submits multiple adaptive randomized queries can always be converted
into an adversary making a single deterministic query in each round. In particular, the adversary can choose the randomness
for the query itself beforehand, and can combine several adaptive queries into one.

52

Description of the function h′i : {0, 1}∗ → {0, 1}µi .

The function h′i contains a hard-coded copy of A, in its current state after issuing the query hi.

Main Computation: Try all 2µi possible values of ψ ∈ {0, 1}µi . For each ψ, find an estimate ρ̃ψ ∈ [0, 1] for the
success probability of A with the leakage ψ, as described below. Output the choice of ψ that maximizes ρ̃ψ.

Estimating ρ̃ψ using ski+1: Perform the following random experiment k = 8q2(λ)(λ+ µi)/ǫ
2(λ) times:

Choose fresh random coins ri+1, . . . , rq(λ)−1 and compute the keys

ski+2 = ReRand(ski+1; ri+1), . . . , skq(λ) = ReRand(skq(λ)−1, rq(λ)−1).

Then run the rest of the leakage game with A by feeding it ψ in response to hi, and use the values
ski+1, ri+1, ski+2, . . . , rq(λ)−1, skq(λ) to correctly respond to all of A’s future queries fj , hj for j > i.

Set ρ̃ψ to be the fraction of the k experiments in which A “wins” at the end.

Analysis of B. It is easy to see that B runs a legal strategy since the number of bits leaked in each round
i is µi−1 + ℓi ≤ ℓ(λ). Furthermore, the run-time of each leakage functions is at most 2µ(λ)poly(λ) = poly(λ).
So we are left to analyze the success probability of B. To do so, it is useful to consider the following hybrid
experiments.

Define Experiment 0 to be the (ℓ(λ), µ(λ))-CLR OWR game between the challenger and the adversary
A. Define experiments 1, . . . , q(λ) analogously, but in Experiment i, the first i leakage-of-refreshing queries
h0, . . . , hi−1 asked by A are answered with h′j(skj+1) instead of hj(skj , rj). Let Wi be the event that A wins
in Experiment i. Then B’s success probability is exactly Pr[Wq(λ)]. Let Prei,j denote the random variable
for the “preamble” of experiment i up to the “point” j, consisting of:

• The view of A right after making the leakage-of-refreshing query hj , but before seing the response.
This includes the random coins of A, the public-key pk seen by A, and all of the responses to all of
the prior leakage queries.

• The value of the secret key skj used in round j and the randomness rj used to compute skj+1 =
ReRand(skj ; rj).

Conditioned on the preambles Prei,i and Prei+1,i of experiments i and i + 1 taking on some concrete value
σ, the only difference between experiments i and i+ 1 is how the leakage-of-refreshing query hi is answered.
In the former case, it is answered via hi(ski, ri), and in the latter case it is answered via h′i(ski+1), where
ski, ri, ski+1 are fixed by σ. The following claim intuitively says that, since h′i chooses its response by trying
all options and testing, its answer should not be much worse than that of hi.

Claim N.1. For any σ in the support of Prei+1,i and any i ∈ {0, . . . , q(λ)− 1}, we have

Pr[Wi+1 | Prei+1,i = σ] ≥ Pr[Wi | Prei,i = σ]− ǫ(λ)/q(λ)− negl(λ).

Proof of Claim N.1. In the proof we fix σ and always condition all probabilities on the preamble of
the experiment being σ; we will use the variables Wi,σ and Wi+1,σ to make this conditioning explicit.
Recall that σ fixes ski, ri, ski+1. Let ψ∗ = hi(ski, ri) and let ρ∗ = Pr[Wi,σ]. Define the random variable
A to be the value of h′i(ski+1) in experiment i + 1, over the internal randomness of h′i. Define ρψ =
Pr[Wi+1,σ | A = ψ]. Then, it is easy to see that ρψ∗ = ρ∗ since, conditioned on the response to hi
being ψ, the continuation of the two experiments i+ 1 and i are exactly the same. Let us define the set
Good = {ψ : ρψ ≥ ρ

∗ − ǫ(λ)/q(λ)}. Then:

Pr[Wi+1,σ] ≥
∑

ψ∈Good

Pr[Wi+1,σ | A = ψ] Pr[A = ψ] ≥ (ρ∗ − ǫ(λ)/q(λ)) Pr[A ∈ Good] (13)

53

We now show that Pr[A ∈ Good] is high. To do so, recall that the function h′i(ski+1) chooses the response
ψ based on the estimated success probabilities ρ̃ψ. Since ρ̃ψ is computed by averaging k experiments
each of which succeeds with probability ρψ, we can use the Chrnoff bound to get:

Pr[|ρ̃ψ − ρψ| ≥ ǫ(λ)/2q(λ)] ≤ 2e−kǫ
2(λ)/8q2(λ) ≤ 2e−λ2−µi (14)

Using the Union Bound over all ψ ∈ {0, 1}µi , we get that, with probability (1− negl(λ)) every estimate
ρ̃ψ computed by h′i satisfies |ρ̃ψ − ρψ| < ǫ(λ)/2q(λ). If that occurs then:

• For the “correct” ψ∗ = hi(ski, ri), we have ρ̃ψ∗ > ρψ∗ − ǫ(λ)/2q(λ) = ρ∗ − ǫ(λ)/2q(λ).

• For the “actual” ψ′ output by h′i, we have ρ̃ψ′ ≥ ρ̃ψ∗ and ρψ′ > ρ̃ψ′− < ǫ(λ)/2q(λ).

• Putting these together, we get: ρ̃ψ′ > ρ∗ − ǫ(λ)/q(λ) and hence ψ′ ∈ Good.

So Pr[A ∈ Good] = (1− negl(λ)) and hence, plugging this into (13) and expanding out, we get

Pr[Wi+1,σ] ≥ Pr[Wi,σ]− ǫ(λ)/q(λ)− negl(λ)

2

Using the above claim, we get that for each i ∈ {0, . . . , q(λ)}:

Pr[Wi+1] =
∑

σ∈{0,1}∗

Pr[Wi+1 | Prei+1,i = σ] Pr[Prei+1,i = σ]

≥
∑

σ∈{0,1}∗

(Pr[Wi | Prei,i = σ]− ǫ(λ)/q(λ)− negl(λ)) Pr[Prei,i = σ]

≥ Pr[Wi]− ǫ(λ)/q(λ)− negl(λ)

where the second line follows from the claim and the fact that Prei+1,i and Prei,i have the exact same
distribution (the preambles are the same in both experiments). Therefore

Pr[B wins] = Pr[Wq(λ)] ≥ Pr[W0]− ǫ(λ)− negl(λ) = Pr[A wins]− ǫ(λ)− negl(λ)

which proves the theorem. 2

It is easy to extend the above proof to encryption, signatures and other schemes with CLR security.
Also, it is easy to see that we can allow for a super-logarithmic leakage-of-refreshing bound µ(n) if the
leakage-functions of the original scheme can run in time 2µ(n)poly(n).

54

	Introduction
	Continuous Leakage Resilience for One-Way Relations (CLR-OWR)
	CLR-OWR Part I: Continuous Leakage from One-Time Leakage
	CLR-OWR Part II: Constructing LIRR from Generic Components
	Syntax of Construction and Hardness Properties
	Re-randomization Using Homomorphic Encryptions and NIZKs
	Leakage-Indistinguishability
	Summary of Construction and its Requirements

	CLR-OWR Part III: Instantiating the Components
	The encryption schemes E1, E2
	The NIZK System : Groth-Sahai Proofs for Linear Equations
	Efficiency and Relative-Leakage of Instantiation with E1,E2,

	Applications: Signatures, ID Schemes, and AKA
	Extensions
	Leakage of Computation
	Leakage of Refreshing
	Noisy Leakage
	Security with Concurrent Leakage Rounds

	Prior Work on Leakage-Resilient Cryptography
	(One-Time) Memory Attacks
	Continuous Leakage Attack Models

	Non-Interactive Zero Knowledge
	One-Way Secure Encryption
	Linear Algebra Notation for Prime-Order Groups
	The Encryption Schemes E1, E2 under the K-Linear Assumption
	The scheme E1 : Generalized ElGamal Encryption
	The scheme E2 : Generalized ``Cramer-Shoup Lite''
	The Plaintext-Equality Relation Req

	The Proof-System : Groth-Sahai (GS) Proof System for Linear Equations
	Construction
	Correctness and Security
	GS Proofs are Homomorphic

	Putting It All Together : Efficient CLR-OWRs
	The Groth-Sahai (GS) Proof System for General Equations
	System of Simple Pairing-Product Equations

	CLR Signatures : Generic Construction from CLR-OWR
	CLR Signatures : Efficient Instantiation Under K-Linear
	Expressing RC as a System of Pairing-Product Equations
	tSE NIZK for a System of Pairing-Product Equations

	CLR Identification (ID) Schemes & CLR Authenticated Key Agreement (AKA)
	CLR ID Schemes
	CLR AKA

	Noisy Leakage
	Background on Entropy
	Properties of Noisy Leakage
	Resilience to Noisy Leakage (Proof-Sketch of Theorem 7.5)
	Comparison to the Definition of NS09

	Leakage of Computation
	Organization
	Background: -Protocols
	Leakage of Randomness Security: Generic Constructions
	ID Schemes
	Signatures
	``Challenge-Response'' Interactive Signatures
	AKA

	A -Protocol for the Secret-Key of a CLR-OWR
	Summary of Results of Leakage-of-Randomness

	Proofs Omitted from the Main Body
	Theorem 3.2 (LIRR CLR-OWR)
	Lemma 4.1 (Hardness Properties of LIRR)
	Lemma 4.5 (Homomorphic Relation)
	Lemma 4.6 (Rerandomization)
	Lemma 4.8 (LoC-NM LIRR)
	Theorem 7.2 (Leakage of Refreshing)
	Proof Intuition
	Formal Proof

