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Abstract. The goal of this paper is finding fair protocols for the se-
cret sharing and secure multiparty computation (SMPC) problems, when
players are assumed to be rational.

It was observed by Halpern and Teague (STOC 2004) that protocols
with bounded number of iterations are susceptible to backward induction
and cannot be considered rational. Previously suggested cryptographic
solutions all share the property of having an essential exponential up-
per bound on their running time, and hence they are also susceptible to
backward induction.

Although it seems that this bound is an inherent property of every
cryptography based solution, we show that this is not the case. We sug-
gest coalition-resilient secret sharing and SMPC protocols with the prop-
erty that after any sequence of iterations it is still a computational best
response to follow them. Therefore, the protocols can be run any number
of iterations, and are immune to backward induction.

The mean of communication assumed is a broadcast channel, and we
consider both the simultaneous and non-simultaneous cases.

1 Introduction

1.1 Background and Related Work

The issue of fairness in multiparty computation has been actively investigated
since the inception of the field. In fact, the goal of Yao’s 1986 famous paper
[33] (where Garbled Circuits were introduced) was to address this problem. In
this work we consider the rational, game-theoretic version of the secure function
evaluation problem, that is when the players are assumed to have utility functions
they try to maximize.

Realizing the advantages of simulating an equilibrium without depending on
an honest mediator, the Game Theory community began pursuing a similar goal
to that of Yao’s in Game Theoretic settings. The works [2,5,4,30,10,16] tried to
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remove the mediator by allowing the players to have free communication (so-
called “cheap talk”) prior to playing the game. In [7] this problem was addressed
using cryptographic tools.

Recently, the Cryptography community started exploring cryptographic infor-
mation exchange problems, such as secret sharing and secure multiparty computa-
tion (SMPC), in Game Theoretic settings. Recall that in the classical problem of
m-out-of-n secret sharing a dealer issues shares of a secret and privately assigns
them to n players, such that any subset of m or more players can reconstruct
the secret, but a subset of less than m players cannot learn anything about the
secret. An SMPC protocol enables a group of players to evaluate a function on
private inputs, but does not reveal any additional information about the players’
inputs, over what is already disclosed by the function.

Since rational players will only participate in information exchange protocols
when having an initial incentive to collaborate, we need to assume that players
prefer getting the designated value (the secret or the function’s value) to not
getting it. In some papers it was further assumed that players prefer that as
few as possible of the other players get the value. Although our protocols work
without this last assumption, in the following discussions we always use this
extreme case as an example.

The main difficulty in designing such fair protocols in rational settings is the
players’ desire to keep silent in the last round, if they can identify it (e.g., if
the protocol is bounded), since they do no longer fear future punishment. Then,
using a backward induction argument it can be shown that players prefer to keep
silent in every round (see discussion in Section 1.3).

Several protocols overcoming this hurdle were offered by Halpern and Teague
[15], Gordon and Katz [14], Abraham et al. [1], and Lysyanskaya and Trian-
dopoulos [23]. All protocols require simultaneous channels (either a broadcast
channel, or secure private channels) and use the key idea that in any given round
players do not know whether the current round is going to be the last round, or
whether this is a just a test round designed to catch cheaters. To prevent players
from finding out the type of the round before it is carried out, the protocols in
[1,23] used computational based cryptography.

We claim that those protocols have a weak point: they are still essentially
bounded, since the cryptographic primitives used in the beginning of the proto-
cols can surely be broken after an exponential number of rounds. Hence, they are
also susceptible to backward induction. In a previous paper [19] we have offered
a non-cryptographic protocol for rational secret sharing that is immune to back-
ward induction. The protocol uses special formed shares taken from unbounded
domains (we have shown that unbounded domains are necessary in this setting),
and cannot be generalized to the case of rational SMPC.

In this work we show that new cryptographic tools can be used to get the
best of all worlds. We start off by considering the case of a simultaneous broad-
cast channel (SBC), where all player broadcast messages at the same time (no
rushing). We offer a fair, coalition-resilient rational secret sharing scheme that
may use any set of shares (provided that they can be authenticated), and
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generalize our protocol to the case of rational SMPC. We then consider the
case of a non-simultaneous broadcast channel (NSBC), where there is only a single
sender per round. We show how to run the previous protocols using only an
NSBC, at least when the function’s range is small.1 Unlike previously suggested
cryptographic solutions, our protocols are immune to backward induction.

Another line of work was pursued by Lepinski et al. [20,21] and Izmalkov et
al. [17] in their recent sequence of papers. Roughly speaking, they were able to
obtain fair, rational SMPC protocols, prevent coalitions, and eliminate sublimi-
nal channels. However, the hardware requirements needed for these operations,
including ideal envelopes and ballot boxes, are very strict; it is not clear how
they can be implemented for distant participants, if at all.

1.2 Rationality Concepts

In Game Theoretic settings players are assumed to be rational. A great deal of
effort was invested in trying to capture the nature of rational behavior, resulting
in a long line of stability concepts. The best known concept is that of a Nash
equilibrium: a vector of players strategies is a Nash equilibrium if given that all
the other players are following their prescribed strategy, no player can gain from
deviating from his strategy. In a Nash equilibrium, each player’s strategy is a
best response to the strategies of the others.

A natural generalization of a Nash equilibrium is a C-resilient equilibrium,
where C is a collection of subsets of players (coalitions). In a C-resilient equilib-
rium, for any C ∈ C, no member of the coalition C can do better, even if the
whole coalition C defects. A Nash equilibrium is a C-resilient equilibrium, where
C is the set of all coalitions of size 1.

A cryptographic protocol cannot be expected to be the best response for
all possible situations, since a relatively benign player may be very lucky and
discover how to break a cryptographic primitive. Therefore, the previously sug-
gested cryptographic protocols, as well the protocols suggested in this paper, are
not exact Nash equilibria. However, they are computational Nash equilibria, i.e.,
they are “close” to being Nash in the sense that no player has an efficient (poly-
nomial) deviating strategy that yields a non-negligibly greater payoff than the
equilibrium strategy. A computational C-resilient equilibrium is defined similarly.

As pointed out by Halpern and Teague [15], when considering information
exchange tasks, requiring protocols to induce a Nash equilibrium is not enough
to ensure stability. For example, the famous m-out-of-n scheme due to Shamir
[28], requiring players to broadcast their given shares, is a Nash equilibrium
when m < n and more than m players participate in the reconstruction, but
is unstable since players prefer to keep silent rather than reveal their shares.

1 Quite a lot of effort was invested into approximating an SBC via an NSBC and ob-
taining fair protocols using cryptographic techniques of gradual release (see [6,9,25]
for recent work). Note, however, that such results do not take into account the
rationality consideration that we use in this paper. Incorporating rationality con-
siderations into such protocols is an interesting challenge.
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This is due to the fact that silence strategy is never worse than the strategy of
revealing the share, but it is sometimes strictly better. For example, if exactly
m − 1 other players choose to reveal their shares.

To rule out such behaviors, two different strengthenings of the notion of Nash
equilibrium were used in [15,14,23,1,19]: equilibrium surviving iterated deletion
of weakly dominated strategies and strict equilibrium. Such notions are not dis-
cussed in this paper: we find the notion of surviving iterated dominance prob-
lematic (see [19] for discussion), and the notion of strict equilibrium unsuitable
for the computational case since it demands a unique best response.

1.3 The Backward Induction Process

As observed by Halpern and Teague, no information exchange protocol with
bounded number of rounds can be regarded as stable in the rational setting:
suppose that the protocol is bounded by b rounds. When round b is reached
players no longer fear future punishment and prefer to keep silent. As mentioned
before, the silence strategy is always at least as good as cooperation strategy,
but is sometimes strictly better. Consequently, round b−1 is now essentially the
last round, and players deviate from the same reason. The process continues in
this way backwards in time, thus it is called backward induction, showing that
players are better off keeping silent in rounds b − 2, b − 3, ..., 1 as well.

We sketch a basic version of the secret sharing schemes suggested in [23,1],
and show that a similar problem arises. We start by describing a version of
the scheme that requires an “on-line dealer” (i.e., the dealer is involved in the
reconstruction process), and then show how the on-line dealer was removed.

The scheme with an on-line dealer proceeds in a sequence of iterations. At
the beginning of each iteration the dealer distributes new (Shamir) shares: with
probability β (whose value is discussed later) the distributed shares are of the
original secret, and with probability 1 − β the shares are of a fictitious secret.
Every player should then broadcast the last share given to him, as long as no
player has deviated. If a deviation was detected, players abort the protocol.

When β is chosen to be small enough, as a function of the utility functions
(the greater the ratio between the payoff for learning alone and learning with the
others, the smaller β is), no player can improve his payoff by cheating. That is,
the risk of deviating in a fake round and causing the others to abort overcomes
the desire of getting a possibly higher payoff for deviating in a real round.

In order to remove the on-line dealer, players simulate the dealer using a (non-
rational) SMPC protocol: the dealer only distributes initial shares of the secret,
and in every iteration players run an SMPC protocol to compute the function
that gets as input their initial shares and distributes new shares. It was shown
in [1] that the described protocol is a computation C-resilient equilibrium where
C is the set of all coalitions of size smaller than the threshold.

We argue that a similar backward induction argument can be used to show
the instability of the protocol without the on-line dealer, even in computational
settings. To show our claim we first investigate the meaning of the phrase “fol-
lowing a strategy”. We usually think of a strategy as a code of a program and say



324 G. Kol and M. Naor

that player i follows the strategy σi if i runs the program σi line-by-line. How-
ever, the assumption that i runs the program σi, and not some other program
σ′

i with the exact same “external functionality” (i.e., σ′
i broadcasts the same

messages as σi), is not always realistic. Therefore, we consider a strategy as sat-
isfying the property X only if all possible implementations of it satisfy X.2 This
approach of checking all possible “undetectable” deviating strategies resembles
the “honest-but-curious” cryptographic approach.

Now suppose that players seem to be the running the protocol without the
on-line dealer, but actually run an implementation of it for which each player
works a polynomial “over time” in every iteration trying to crack information
hidden about the shares from the SMPC used in the first iteration. This is
done by checking one key in every iteration and storing the right key. Recall
that in general an SMPC protocol only gives a computational protection, not
information-theoretic one (this is certainly true when we want to be immune to
arbitrary coalitions, or if we do not assume private lines). Therefore, after expo-
nentially many iterations in the key size, even this new non-ambitious strategy
will surely find the right key. This shows that there is an essential upper bound to
the number of iterations this protocol can be run: if the Kth iteration is reached
(where K is the number of possible keys), each player may be better off quitting
and using his stored key to retrieve the secret and get a (non-negligible) extra
payoff. From this point on, the same backward induction process can be applied.

The above example shows that the backward induction process in compu-
tational settings, where presumably we are not concerned with the protocol’s
stability in rare events, is as problematic as in the standard Game Theoretic
settings, since it causes exponential events to be amplified: the instability of the
protocol without the on-line dealer in the rare case that it runs for exponential
number of iterations causes it to be unstable from round 1.

Although it seems that susceptibility to backward induction is an inherent
property of every computational based cryptographic solution, this paper shows
that this is not the case. Our protocols are not only computational C-resilient
equilibria, but satisfy the additional property that after any sequence of itera-
tions, they still induce such equilibria. Thus, players will never have an incentive
to deviate, and the backward induction argument cannot be used. We call such
protocols computational C-immune. Clearly, C-immunity implies C-resilience.3

2 In classical Game Theory, where there are no computational limitations, the distinc-
tion between running σi and running σ′

i is insignificant: in both cases i’s knowledge
consists of his initial information and all previously selected actions. However, in
settings such as ours, where resources are limited, the results of the calculations
made by a player when running a specific program should also be considered as
part of his knowledge, since it is not always possible for him to repeat them.

3 We do not regard the C-immunity property as a sufficient condition, ensuring the
stability of information exchange protocols, as some unstable protocols satisfy it.
For example, Shamir’s m-out-of-n secret sharing scheme is C-immune for the max-
imal possible set C (the set of all coalitions of size smaller than m), when m < n
and more than m players participate in the reconstruction, since its reconstruction
protocol consists of a single communication round.
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1.4 Organization and Summary

The main idea of our protocols is ensuring that no iteration until the last one
contains any information, in the information-theoretic sense, about the players’
private values. In order to so, we construct in Section 3 a new cryptographic
tool called meaningful/meaningless encryption that has a special property: some
public keys yield ciphertexts that cannot be decrypted (even with unbounded
computational power). Such keys are called meaningless, while the other keys are
called meaningful and provide semantic security. One can efficiently distinguish
meaningful keys from meaningless ones only when given the private key.

In Section 4 we offer a rational secret sharing scheme for the SBC model that
works for any kind of shares, provided that they can be authenticated. In every
iteration of the scheme new private and public keys are created using a random
seed via a (non-rational) SMPC. The public key is published and the seed is
shared between the players. Players use the public key to encrypt their shares,
and the ciphertexts are broadcasted. Then, the validity of the ciphertexts is
verified by another SMPC. A key point is that the verification does not require
knowledge of the original shares, thus leaks no information about the secret.
After a successful verification the seed’s shares are exchanged, allowing players
regenerate the private key and check whether the public key is meaningful. If it
is, the shares of the secret are retrieved from the ciphertexts, and the secret is
regenerated. Otherwise, the protocol proceeds to the next iteration.

No information about the secret can be retrieved from the ciphertexts sent in
iterations with meaningless keys, hence no coalition can benefit from deviating
before the last iteration. Since players cannot efficiently identify this iteration
before sending their encrypted share, they cannot prevent others from learning.

In Section 5 we offer a rational SMPC protocol, based on the secret sharing
scheme. We first note that in a secret sharing scheme players are required to
evaluate a “reconstruction function” on their shares in order to retrieve the se-
cret. Since our secret sharing scheme works for any type of shares, it can be used
to compute any reconstruction function. The main problem is that the compu-
tation is not secure, as players’ shares are revealed during the last iteration. To
protect players’ inputs, the new rational SMPC protocol additionally creates a
Garbled Circuit in each iteration, and requests players to encrypt their garbled
strings instead of their original inputs.

Finally, in Section 6 we show how to get rid of the simultaneity assumption,
at the price of causing the expected length of the protocol to depend (linearly)
on the size of the function’s range.

Our protocols are C-immune for the maximal possible set of coalitions C: the
secret sharing scheme considers all coalitions of size smaller than the threshold.
The SMPC protocols do not pose any new constraints on C, over the ones already
posed by the players ability to learn the function’s value by colluding before the
game starts. In general, we give no guarantee about the composability of our
protocols with any other protocol.

Further details, as well as omitted proofs and definitions, can be found in the
full version of this paper [18].



326 G. Kol and M. Naor

2 Definitions and Settings

2.1 Computing Games and Protocols

As discussed in Section 1.4, both rational secret sharing and rational SMPC
require rational protocols allowing players to evaluate a function on their private
values. Hence, we start off by describing a model for rational joint computation.
This model is the computational analog of the one suggested in [19].

In rational joint computation a set of players N = {1, ..., n} each holding an
input are interested in evaluating an n-ary function f : X → Y (X ⊆ ×i∈NXi for
some sets Xi) with finite domain and range. Players are assumed to be rational,
and try to maximize their utility function. Recall that utility functions associate
numeric values to outcomes of the game, the value ui(o) is player i’s payoff if
outcome o was reached. In our case, an outcome consists of the players’ inputs,
and the sequence of actions taken by them.

Our input as protocol designers is the function f , the distribution over inputs
D, and players’ utilities (ui)i∈N

4. Actually, as discussed later, we only require
partial information about the utilities and the distribution. We should then
output a game and “rational” strategies allowing all players to “learn” f(x).

We suggest a computing game for f (with respect to (ui)i∈N and D) that
proceeds in a sequence of iterations, where each iteration may consist of multiple
communication rounds. In every round players are allowed to broadcast any finite
binary string of their choice and update their state (a private binary string). If
an SBC is assumed, the broadcasts in every round are simultaneous. Otherwise,
an NSBC is assumed, and only a single player may broadcast in every round. We
make no assumptions regarding the NSBC’s behavior when two or more players
try to broadcast at the same time. In such cases, some players may get partial
information about the messages. A player can leave the game in any round by
broadcasting a quit sequence and outputting his guess of f(x). Players observe
the actions taken by the others in previous rounds, but do not view their guesses.

Throughout the paper we assume that players are computationally bounded
and can only run efficient strategies to evaluate polynomial time computable
functions. To define the computational power of the players, we introduce an
external initial security parameter k into the game. The security parameter used
in round t is k + t, and we require that the players’ strategies can be computed
in probabilistic polynomial time in the security parameter of the corresponding
round. We assume that the parameters of the original game (like the payoff
functions, the initial distribution over inputs, etc.) are all independent of the
security parameter, and thus can always be computed “in constant time”.

We say that strategy σ′ implements strategy σ if they both choose the same
action after witnessing the same transcript (sequence of messages broadcasted

4 We regard the players’ utility functions as given, and do not attempt to change
them. Simpler solutions can be obtained by introducing a discounting factor to
the utilities, causing them to decline over time. However, in such solutions when
an advanced round is reached, the utilities assumed are very far from the original
ones, thus do not properly reflect players preferences.
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in previous rounds) when given the same input and random tape. Note that
“implements” is a symmetric relation. A vector of strategies σ = (σ1, ..., σn) is
called a protocol, and we say that σ computes the function f if it almost always
ends, and in every finite run of it all players output f(x).

2.2 The C-Immunity Property

In Game Theory, to show that an equilibrium σ is immune to backward in-
duction, one needs to prove that it satisfies the following property: if players
are running σ, then after any history, following σ is still an equilibrium. Such
equilibria are called subgame perfect or sequential equilibria. Note that if this
property holds, then no player will ever have an incentive to deviate from σi,
and thus no backward induction process can be applied.

However, since our protocols involve cryptographic tools, there may be histo-
ries for which the cryptographic primitives are broken, and we cannot expect the
protocol to induce an equilibrium in such cases. In particular, since we deal with
protocols that proceed in a sequence of iterations, executing cryptographic prim-
itives in each, we can only hope to satisfy a slightly weaker property. Namely,
that following the protocols is still a (computational C-resilient) equilibrium after
any sequence of iterations ; i.e., after all histories that can be reached by σ, after
which a new iteration begins. As discussed in Section 1.3, we need to require this
property to also hold when players are running an implementation of σ, instead
of σ. We call protocols satisfying this demand computational C-immune.

Definition 1 (computational C-immune). Let σ be an efficient protocol for
a computing game, and C be a set of coalitions (subsets of players). Let Rt be
the set of sequences of random tapes for the first t iterations that do not cause σ
to end. A sequence r ∈ Rt is of the form r = (r1, ..., rt) where rs = (rs

1, ..., r
s
n)

and rs
j is the random tape used by player j in iteration s.

The protocol σ is computational C-immune if for every coalition C ∈ C, and
every sequence of tapes r0 = (r1

0, ..., r
t
0) ∈ Rt used by the players in the first t

rounds, there exists a negligible function ε(k) such that for every player i ∈ C,
every efficient (deviating) joint strategy σ′

C for players in C, and every efficient
joint strategy τ−C for players in N �C implementing σ−C , it hold that:

E [ui(τ−C(k), σC(k))] + ε(k) ≥ E [ui(τ−C(k), σ′
C(k))]

The expectation is taken over all sets of random tapes for the players assigning
them the tapes r1

0, ..., r
t
0 for the first t iterations.

2.3 Settings for Rational Secret Sharing and Rational SMPC

We review the models for rational secret sharing and rational SMPC assumed
in this paper.

Definition 2 (computational rational secret sharing scheme). A com-
putational rational m-out-of-n secret sharing scheme for a set of secrets Y , with
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respect to the distribution over secrets D and the utilities (ui)i∈N , consists of
a dealer’s algorithm for issuing shares, and a protocol allowing the players to
reconstruct the secret. We require that:

– No subset Cof less than m players can reveal any partial information about
the secret before the game begins. I.e., the distribution over inputs given any
shares of players in C is identical to the original distribution D.

– The reconstruction protocol run by any group of at least m players is a com-
putational C-immune protocol for C = {C | |C| ≤ m − 1} that computes the
reconstruction function induced by the dealer’s algorithm in the correspond-
ing computing game.

Definition 3 (computational C-rational SMPC protocol). Let C be a set
of coalitions. A computational C-rational SMPC protocol for f , with respect to a
distribution over inputs D and utilities (ui)i∈N , is:

– A secure protocol in the cryptographic sense for the one shot case (see [11],
Definition 7.5.3).

– A computational C-immune protocol that computes f in the corresponding
computing game.

2.4 Assumptions on the Utilities and the Distribution over Inputs

As mentioned in the Introduction, we must assume that players have initial
motivation to participate in the computing games. As was done in previous
papers, we assume that players prefer to learn the designated value. Formally,
we say that a player learns the value when outcome o is reached, if according to
o the player quits and outputs the right value. Our assumption is that for two
possible outcomes o and o′ it holds that ui(o) > ui(o′) whenever player i learns
the value when o is reached, but does not learn when o′ is reached.

In order to achieve C-immune protocols, we additionally need to require that
no coalition can guess the designated value or the last iteration of our protocol
with a high enough probability. We denote by α an upper bound to the probabil-
ity that a coalition C ∈ C can guesses the right value in advance, and by β′ the
probability (upto a negligible factor) that a coalition C ∈ C is able to identify the
last iteration of the protocol before it is carried out. Note that in the protocol
described in Section 1.3, as well as in our protocols, a value β determines the
probability of proceeding to the next iteration and satisfies β = β′.

In the next sections we require α < α0 and β < β0, where α0 and β0 are
functions of the utilities and of the set C. The calculation of the functions is
deferred to the full version of this paper [18]. As before, the greater the ratio
between the payoff for learning the secret alone and learning with the others,
the smaller α0 and β0 should be. Note that since players can always guess the
value y with the highest probability according to D, it holds that α ≥ D(y), and
thus the requirement α < α0 poses a condition on D.
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3 Cryptographic Tools

3.1 Standard Cryptographic Tools

Our protocols use several standard cryptographic tools:

A Commitment Scheme. We assume that Commit(x, r) = com generates a
commitment for the value x using randomness r, and that the commitment is
perfectly binding. We call (r, x) the opening of com.

A (Non-Rational) SMPC Protocol. We assume that the protocol allows the
evaluation of randomized functions (in particular, we use it to select a random
seed, and assume that the players cannot bias the result). In addition, we require
that the SMPC protocol enables its participants to detect deviations with high
probability. The protocol should work for an active adversary statically corrupt-
ing any number of parties (≤ n − 1). We do not consider premature suspension
of execution a violation of security, and do not assume fairness. Our application
of the SMPC ensures that players have an incentive to carry it out, allowing
everybody to get the output.

A 1-Out-Of-2 OT Protocol. We assume that the OT protocol works for the
active adversary model and provides computational security to the sender, and
information-theoretic protection to the receiver. That is: (i) if the sender’s val-
ues are (s0, s1) and the receiver’s input is b ∈ {0, 1}, then the OT protocol
is an SMPC (again, in the sense of Definition 7.5.3 in [11]) of the function
f((s0, s1), b) = sb, (ii) for every behavior of the sender, he witnesses the same
distribution over transcripts when the receiver’s input is 1 and when it is 0.

Such protection is possible under standard assumptions such as enhanced
trapdoor permutations [8,11] and Computational Diffie-Hellman [3] for honest-
but-curious players (the recent work [32] shows that OT is symmetric, thus a
protocol that protects the sender information theoretically can be transformed
to one that protects the receiver). In order to handle malicious behaviors, we use
the compiler described in [11], with one change: the receiver uses a ZK argument
with a perfectly hiding commitment ensuring information-theoretic security for
its value in order to prove to the sender that he followed the protocol properly.

We assume that all the cryptographic primitives (the standard tools and the
meaningful/meaningless encryption described next) are immune to non-uniform
attacks. This assumption is needed in order to show that our protocols are stable
after any number of iterations.

3.2 Meaningful/Meaningless Encryptions

In additional to the standard tools, we use a non-standard encryption scheme E
called a meaningful/meaningless encryption. E has a special property: some pub-
lic keys of it yield ciphertexts that cannot be decrypted (even with unbounded
computational power). Such keys are called meaningless, while the other keys
are called meaningful.
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Definition 4 (meaningful/meaningless encryption). An encryption
scheme E(pub key, random, plain) = cipher is a β-Meaningful/Meaningless En-
cryption if it satisfies the following properties:

Key Generation: Polynomial time generation of a private key, priv key, and
a public key, pub key, on a given seed.

Encryption: Computing c = E(pub key, r, m) can be done in polynomial time,
given a public key pub key, randomness r, and plaintext m.

Meaningful and Meaningless Keys: The public keys are partitioned into
meaningful and meaningless sets. The probability, over the seeds, that the gener-
ated public key is ’meaningful’ is β, and the probability of it being ’meaningless’
is 1 − β.

If pub key is meaningful, then given c = E(pub key, r, m) and priv key, the
message m can be uniquely retrieved in polynomial time. Furthermore, for every
ciphertext c there is only one plaintext m for which there exists a randomness
r satisfying c = E(pub key, r, m). The encryptions are computationally indistin-
guishable: for any two messages m and m′, the distributions of E(pub key, r, m)
and E(pub key, r, m′) are computationally indistinguishable.

If pub key is meaningless, then knowing c and priv key yields no informa-
tion about m. That is, for any two messages m and m′, the distributions of
E(pub key, r, m) and E(pub key, r, m′) are identical.

Distinguishing Meaningful from Meaningless: Given two public keys, one
meaningful and one meaningless, guessing which is which cannot be done with a
non-negligible advantage over 1

2 by a probabilistic polynomial time tester. How-
ever, when supplied with the corresponding private key, the test is polynomial.

Meaningful/meaningless encryption schemes can be constructed based on Deci-
sional Diffie Hellman, using the construction in [24], on Quadratic Residousity
[13], and on any homomorphic encryption5.6 For completeness we describe a con-
struction of E that assumes the intractability of Quadratic Residousity, based
on the scheme of Goldwasser and Micali [13].

Recall that in Goldwasser and Micali’s scheme two distinct large prime num-
bers p and q are generated, and (p, q) is used as a private key. The public
key generated is (N, x) where N = pq and x is a quadratic non-residue of N
(x �= z2 mod N) that has a Jacobi Symbol of +1. Each bit bi of the message m
is encrypted separately by choosing yi ∈R Z

∗
n and calculating ci = y2

i xbi mod N .

5 Homomorphic encryption is an encryption scheme with the additional special prop-
erty: given two ciphertexts it is possible to generate a ciphertext for the sum (or
multiplication) of the corresponding plaintexts.

6 An interesting open problem is finding the minimal assumptions under which such a
meaningful/meaningless encryption scheme can be constructed. The task requires
non-trivial SZK: given a public key pub key and two messages m and m′ play-
ers should not be able to tell whether the two efficiently generated distributions
E(pub key, r,m) and E(pub key, r, m′) are identical or far apart. This problem was
shown to be in SZK [27], and hence we must assume that there is a problem in SZK
that is not in BPP.
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The ciphertext is (c1, ..., cn), and it can be decrypted using the private key (p, q):
bi = 0 iff ci is a quadratic residue.

To construct a meaningful/meaningless encryption E we modify this scheme
such that x is a random quadratic residue with probability 1− β, and a random
quadratic non-residue with Jacobi Symbol of +1 with probability β. Note that
if x is a quadratic residue, ci is always a quadratic residue, and nothing can be
learned about bi, even when p and q are known.

Claim. The scheme E described above is a meaningful/meaningless encryption.

4 The Rational Secret Sharing Scheme

4.1 The Scheme

We describe an m-out-of-n rational secret sharing scheme for the SBC model.

The Dealer’s Protocol. The scheme works for any kind of m-out-of-n shares
the dealer may distribute (e.g. Shamir shares), provided that he additionally
issues information-theoretic authentications for each share. For concreteness, it
is assumed that the authentication information given to each player consists of a
tag and a hash function. The hash function should allow the player to verify the
authenticity of shares broadcasted by the others in probabilistic polynomial time
and with error probability negligible in the security parameter. The tag should
allow the player to prove the authenticity of the share he uses. The authentication
information held by a group of players must not disclose any information about
the other players’ shares.7

The Players’ Protocol. The reconstruction protocol is called clean-slate
and it proceeds in a sequence of iterations. The protocol, like the one described
in Section 1.3, uses a parameter β and has the property that after any sequence
of iterations, the probability that the next iteration is the last one, revealing the
secret, is β. Every iteration of the protocol consists of the following steps:

The Key Generation step. In each iteration new private and public keys for
a β - meaningful/meaningless encryption are generated. This is done via a (non-
rational) SMPC that takes no inputs, and generates the keys using a randomly
chosen seed. The seed is shared between the players, and the public key, as well
as a perfectly binding commitment to each of the seed’s shares, are published.

If the public key generated is meaningful (which happens with probability
β), we call the iteration meaningful, otherwise the iteration is meaningless. The
protocol is designed not to reveal any information about the secret in meaning-
less iterations, and to allow the players to uncover the secret during the first
meaningful iteration.

7 For example, this can be done using the following method (see [31,26]): if player
i’s true information is x ∈ F, then si, bi ∈ F, bi �= 0, are chosen at random and we
set ci = bi · x + si ∈ F. The value si (the tag) is given to i. The other players each
get bi and ci (the hash function). Player i is required to broadcast si in order to
prove that x is his true information. The other players can then verify with high
probability by checking that ci = bi · x + si.
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The Encryption and Verification steps. Players encrypt their share of the
secret and authentication information (i.e., the tag and the hash function) using
the meaningful/meaningless encryption with the public key generated in the last
step. The ciphertexts are broadcasted and then validated by another SMPC.

The verification process takes as inputs the shares of the seed used to generate
the keys, and additionally uses the broadcasted ciphertexts and the commitments
published during the Key Generation step. It authenticates the seed’s shares
using the commitments, and uses them to regenerate the private key. Since the
commitments are binding, the original private key is always the one generated,
allowing the process to correctly determine whether the iteration is meaningful. If
it is, the ciphertexts are decrypted and the retrieved authentication information
is used to authenticate the retrieved shares of the secret, by verifying that all
the tags and hash functions match.

The verification is considered to be successful if: (i) each seed share is a valid
opening of the corresponding commitment, (ii) in case of a meaningful iteration,
each ciphertext is valid encryption of a share of secret and a corresponding
authentication.

A key point is that the verification process does not take the players’ shares
or authentication information as inputs, and when the public key is meaningless
the ciphertexts it uses convey no information about the shares of the secret.

The Exchange step. If the verification process was successful, players simul-
taneously broadcast their shares of the seed. Each player then authenticates all
seed’s shares, regenerates the seed and determines by himself whether the iter-
ation is meaningful. If it is, he decrypts the ciphertexts and uses the extracted
shares of the secret to reconstruct the secret. Otherwise, the protocol proceeds
to the next iteration.

Recall that players have only a small chance of discovering whether the key is
meaningful before the seed’s shares are revealed, since there is no efficient way of
checking it. Thus, they are motivated to participate in the Exchange step. The
complete protocol is described in Figure 1.

4.2 Scheme Analysis

We next argue that the suggested scheme is a computational rational secret
sharing scheme. We first claim that clean-slate satisfies the following property,
leading to its name: assuming that all players except (maybe) players in the
coalition C are following the protocol, then no information about the secret
is revealed before the last iteration (that is, every iteration “starts off with a
clean slate”). The reason is that players’ shares and authentications are only
used by the protocol to create the encrypted messages. However, all iterations
before the last one are meaningless, thus previous ciphertexts were created using
meaningless keys and are simply random.

To show that no coalition C of size at most m − 1 has an incentive to deviate
after any sequence of iterations, we note that for any joint strategy players in
C may follow, they cannot be worse-off (up to an exponentially small factor) by
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clean-slatei(share, authen)

Let P be the set of players participating in the reconstruction, and denote p = |P |.

Repeat

If one of the following tests fail, or if a deviation was detected in one of the cryptographic
schemes, quit.

Key Generation: Players run an SMPC of the function GenarateKey:

GenarateKey

– Choose p random strings, (ri)i∈P , of length k + t where t is the iteration number
and k is the initial security parameter.

– Generate public and private keys pub key, priv key, for E using ⊕i∈P ri as a seed.
– Choose p random strings, (rand ri)i∈P , of length k + t and set com ri =

Commit(ri, rand ri).
– Public Output : The public key pub key, and the commitments (com ri)i∈P .
– Private Output : The values ri and rand ri are given to player i.

Encryption: Encrypt share and authen using E with parameter β and with the public
key pub key, and broadcast the encrypted message Ci.

Verification: Players run an SMPC of the function V erify that takes (ri, rand ri)i∈P

as inputs:

V erify

– Check that each input pair is a valid opening of the corresponding commitment.
That is, verify com ri = Commit(ri, rand ri).

– Regenerate priv key using ⊕i∈P ri as a seed, and use it to check whether pub key
is meaningful.

– If so, decrypt each Ci using priv key, and get the shares of the secret and authen-
tication information of each player. Check that the shares are consistent with the
authentications by verifying that all the tags and hash functions match.

Exchange:

– Broadcast ri and rand ri.
– Evaluate the first two stages of V erify by yourself.
– If the pub key is meaningful, reconstruct the secret using the retrieved shares (as

done in the last step of V erify). Quit and Output the reconstructed secret.

Fig. 1. The rational secret sharing reconstruction protocol

always following the Key Generation, Encryption, and Verification steps: Key
Generation and Verification are done via an SMPC, and therefore cannot be bro-
ken with a non-negligible probability. As to broadcasting a valid ciphertext - in a
meaningless iteration no information can be gained anyway, and in a meaningful
iteration the verification step detects invalid ciphertexts with high probability.
Thus, we may assume that players only deviate during the Exchange step by
broadcasting a seed share that does not open the commitment published in the
Key Generation step. Such deviations are always detected, since the commit-
ments to the shares are perfectly binding.
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We argue that a coalition can only gain from deviating in the Exchange step
of a meaningful iteration: if it deviates in a meaningless iteration, then no infor-
mation about the secret is revealed due to the clean slate property, and thus the
players are forced to guess the secret. Recall that a coalition cannot efficiently
distinguish between meaningful and meaningless iterations before the Exchange
step, if all its players have broadcasted valid encryptions (which is what we as-
sume). Therefore, if the coalition deviates in meaningful iterations with a certain
probability, it must deviate in meaningless ones with almost the same probabil-
ity. As before, for a sufficiently small β, the risk of deviating in a meaningless
iteration and causing the game to end is too great.

Theorem 1. Let 2 ≤ m ≤ n, Y be a finite set of secrets, and dealer be an algo-
rithm assigning m-out-of-n information-theoretic authenticatable shares. Assume
that α < α0 and β < β0. The scheme (dealer, clean-slate) is a computa-
tional rational m-out-of-n secret sharing scheme for Y with expected number of
iterations O(1/β).

5 The Rational SMPC Protocol

5.1 The Protocol

We present the protocol secure-clean-slate, a rational SMPC protocol for the
SBC model, based on protocol suggested in Section 4. The new protocol, like the
previous one, ensures that no information is leaked until the final iteration (in
an information theoretical sense). However, it additionally protects the inputs
(in a computational sense) during the last iteration. This is done by composing
the meaningful/meaningless technique with Yao’s Circuit Garbling method.8

Recall that a Garbled Circuit is an encrypted form of an original circuit. It
allows the circuit to be evaluated, but reveals no information except the result
of the evaluation. A Garbled Circuit consists of: two random (garbled) strings
assigned to each input wire (the first corresponds to a 0 value, and the other to
a 1), gates tables, and translation tables for outputs. To evaluate the original
circuit on a specific input, the Garbled Circuit is evaluated for the corresponding
garbled strings using the gates tables. Then, the output is translated using the
outputs translation tables. For a detailed description of Garbled Circuits see
[22]. The clean-slate protocol in changed in the following way:

Adding the step of Creating Garbled Circuit. In every iteration the proto-
col constructs a new Garbled Circuit from the circuit representing f . The gates
tables and translation tables are made public, and commitments to both garbled
strings corresponding to each input wire are published in an arbitrary order (the
reason for the arbitrary order will be made clear later). However, players are not

8 General techniques for (non-rational) SMPC do not offer information-theoretic pro-
tection for both sides, thus cannot be used directly. In models in which such proto-
cols can be constructed, we can use the secret sharing scheme from the last section
in order to allow players to fairly exchange the last messages sent by the protocols.
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given both garbled strings assigned to each of their input wires, since this will
allow player i to learn f(x−i, x

′
i) for every x′

i. Instead, a share of an n-out-of-n
secret sharing of each garbled string assigned to an input wire is given to every
player, and commitments to all shares are published.

Adding the step of Obtaining Garbled Inputs. Each player obtains one
of the garbled strings chosen for each of his input wires according to the value
assigned to the wire by his input. Player i gets all the shares of each such garbled
string by engaging in a 1-out-of-2 OT protocol with every player j. When running
the OT protocol, player j is the sender and his values are the shares of the two
garbled strings chosen for i’s input wire. Player i is the receiver, and his goal is
to learn the value corresponding to his input bit. As discussed in Section 3, the
OTs give information-theoretic protection to the receiver regarding the value he
received, and computational security to the sender about the other value. This
kind of protection is crucial, since we want to ensure that no information about
i’s input is leaked during meaningless iterations.

For ease of exposition we say that the sender (player j) sends encryptions
of his two values to the receiver (player i) when the OT protocol is carried
out. We require j to supply an additional ZK proof to convince i that both
encryptions are valid. That is, after sending the encryptions, j must prove to i
that each encryption contains a value that opens the corresponding commitment
published during the Creating Garbled Circuit step.

Revising the steps of Encryption and Verification . Players encrypt their
garbled strings, instead of their original inputs, using the β - meaningful/ mean-
ingless encryption with the public key generated in the Key Generation step.

The verification process is changed: in a meaningful iteration it decrypts the
ciphertexts and retrieves the garbled strings for each input bit. It then verifies
that each extracted garbled string indeed opens one of the corresponding com-
mitments. Note that since the commitments to the garbled strings corresponding
to the same input wire were published in an arbitrary order when the Garbled
Circuit was created, no information about the real value of this input wire is
revealed to the other players.

During the Exchange step of a meaningful iteration the garbled strings are
retrieved from the ciphertexts, allowing all players to learn the function’s value,
but protecting the original inputs. In a meaningless iteration, no information
about the garbled strings encoding the real inputs is revealed, and hence no
information about the real inputs is disclosed either. The complete protocol is
described in Figure 2.

5.2 Protocol Analysis

We next argue that secure-clean-slate is a computational rational SMPC
protocol. As discussed before, the protocol is secure (in the cryptographic sense),
since no information about the inputs is revealed before the last iteration, and
due to the fact that the Garbled Circuit created in the last iteration protects
players’ inputs computationally. To show that the protocol is also C-immune, we
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secure-clean-slatei(input)

Repeat

If one of the following tests fail, or if a deviation was detected in one of the cryptographic
schemes, quit.

Key Generation: As in clean-slatei (with P = N).

Creating Garbled Circuit: Players run an SMPC of the function:
CreateGarbledCiruit

– Create a Garbled Circuit of the evaluated function f . The garbled string assigned
to wire q and bit b is denoted W b

q .
– Choose random strings rand W b

q of length k + t where t is the iteration number
and k is the initial security parameter. Denote V b

q = (W b
q , rand W b

q ).
– Randomly select shares V b,1

q , ..., V b,n
q such that V b

q = ⊕V b,i
q , and strings rand V b,i

q

of length k + t.
– Public Output : (i) Tables for the garbled gates and translation tables for the

outputs. (ii) The commitments com W b
q = Commit(W b

q , rand W b
q ). For every input

wire q, the commitments com W 0
q , com W 1

q are output in an arbitrary order. (iii)
The commitments com V b,i

q = Commit(V b,i
q , rand V b,i

q ).
– Private Output : The values V b,i

q and rand V b,i
q are given to player i.

Obtaining Garbled Inputs: If player i holds the qth input bit of f and its value is
b, he engages in a 1-of-2 OTs (perfectly protecting player i) with every other player
j, in order to get V b,j

q and rand V b,j
q . When running an OT protocol, after player j

sends encryptions of his two pair of values, (V 0,j
q , rand V 0,j

q ) and (V 1,j
q , rand V 1,j

q ), to
player i, he supplies a ZK proof to convince i that each encryption contains a pair that
is a valid opening the corresponding commitment (comm V 0,j

q or comm V 1,j
q ). Player

i then reconstructs V b
q using the received shares.

Encryption: Player i encrypts all V b
q acquired during the previous step using E with

parameter β and public key pub key, and broadcasts the ciphertext Ci.

Verification: As in done in clean-slatei, a V erify procedure is run via an SMPC.
The previous procedure is changed: if the key is meaningful, it decodes every Ci and
checks that for every input bit q, the retrieved value V b

q = (W b
q , rand W b

q ) is an opening
of one of the commitments com W 0

q or com W 1
q .

Exchange: As in clean-slatei with the exception that if the public key is meaningful,
the function’s value is obtained by evaluating the garbled circuit using the gates tables
on the garbled strings extracted from the ciphertexts, and then translating the output
using the outputs translation tables.

Fig. 2. The rational SMPC protocol

must first assume that players in every coalition C ∈ C have an initial incentive
to use their true inputs when running a protocol that computes f . Note that
although non-rational SMPC protocols allow players to change their inputs, we
must rule out such behaviors since our utility functions only reward players for
learning the value of f evaluated on the original inputs.

One way of ensuring such incentives is to assume that players in C would have
reported their true inputs had a trusted mediator been running the computation.
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That is, by using fictitious inputs, players in C are unlikely to be able to change
the output of the calculation and still deduce the designated value (see discussion
in [29]).9 An alternative way is to assume the presence of an authenticator that
produces authentication information for the inputs (as was done in the secret
sharing scheme of Section 4). If one of the above options holds, we say that
players in C have an initial incentive to use their true shares. When such an
incentive is assumed, the described protocol can be shown to be C-immune using
the arguments made for the clean-slate protocol.

Theorem 2. Let f be a polynomial time computable function, and let C be a
set of coalitions. Assume that players in every coalition C ∈ C have an initial
incentive to use their true shares, and that α < α0 and β < β0. The proto-
col secure-clean-slate is a computational rational SMPC protocol for f with
expected number of iterations O(1/β).

6 The Rational SMPC Protocol for the NSBC Model

We describe the protocol NSBC-secure-clean-slate, a rational SMPC protocol
for the NSBC model, based on the protocol suggested in Section 5. We first note
that the trivial way of dividing every simultaneous round of the previous protocol
into n non-simultaneous rounds fails: the last player to broadcast his share of
the seed in the Exchange step of the meaningful iteration has already learned
the value, and thus has no incentive to cooperate. We construct a new protocol
in which players can retrieve the value even if the last player deviated, since the
needed information is revealed by the number of the round he deviated in. The
previous protocol is changed in the following way:

Revising the step of Key Generation . The new Key Generation step gen-
erates |Y | pairs of keys, instead of just one. The set of public keys generated in
every iteration has the property that at most one is meaningful. An iteration
containing a meaningful key is called meaningful, and the others are called mean-
ingless. As before, no information about the inputs is revealed in meaningless
iterations, and players uncover the value during the first meaningful iteration.

Revising the steps of Encryption and Verification . In the Encryption
step, players are required to encrypt their inputs |Y | times using each of the
public keys, and broadcast the ciphertexts one-by-one.

The verifications process is changed: in addition to validating the ciphertexts,
it also outputs a permutation of the public keys. In a meaningless iteration the
published permutation is completely random. But, in a meaningful iteration the
permutation places the (only) meaningful key in position y, where y is the desig-
nated value, and randomly orders the rest of the keys. Note that the verification

9 For example, suppose that the players’ inputs are bit strings and they wish to
calculate the strings’ XOR. A player benefits from using a fictitious input string,
even if the computation is done by a trusted mediator: the other players will get a
false value, but the deviating player will be able retrieve the real value by XORing
the result with both his fictitious and real strings.
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process can obtain y by evaluating the Garbled Circuit on the garbled strings
retrieved from the ciphertexts, and then translating the output.

Revising the step of Exchange. The Exchange step is partitioned to |Y | · n
non-simultaneous communication rounds in which shares of the seeds used to
generate the keys are revealed one by one. First the shares of seed 1 are revealed
in the first n rounds (call it cohort 1) with player j sending his share in round j,
and so on for each of the |Y | seeds. If a player deviates (e.g. refuses to reveal his
share of the seed), and this is the last round of the yth cohort, the other players
conclude that he already learned f ’s value, and hence it must be y.

Note 1. The described protocol is susceptible to existence of a malicious player:
such a player can cause the others to output a wrong value by simply aborting
prematurely. However, the deviating player will not be able to learn the secret
himself. Since we assume that all players are rational individuals that prefer to
learn above all else, there will never be an incentive to such behavior.

Theorem 3. Let f be a polynomial time computable function, and let C be a
set of coalitions. Assume that players in every coalition C ∈ C have an initial
incentive to use their true shares, and that α < α0 and β < β0. The protocol
NSBC-secure-clean-slate is a computational rational SMPC protocol for f

with expected number of communication rounds O
(

|Y |n
β

)
.
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