
 Open access Book Chapter DOI:10.1007/978-3-642-14706-7_4

Cryptography for network security: failures, successes and challenges
— Source link

Bart Preneel

Institutions: Katholieke Universiteit Leuven

Published on: 08 Sep 2010 - Mathematical Methods, Models, and Architectures for Network Security Systems

Topics: Cryptographic primitive, Cryptographic protocol, Security of cryptographic hash functions, Key management and
Network security

Related papers:

 Recent developments in cryptographic hash functions: Security implications and future directions

 Generalized Construction of Compression Function to Build a Cryptographic Hash

 Novel Non-cryptographic Hash Functions for Networking and Security Applications on FPGA

 Energy-Efficient cryptographic engineering paradigm

 Performance Analysis of Various Cryptographic Techniques

Share this paper:

View more about this paper here: https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-
x79vm8a41r

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-14706-7_4
https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-x79vm8a41r
https://typeset.io/authors/bart-preneel-3vie102yp4
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/mathematical-methods-models-and-architectures-for-network-r6dv7a06
https://typeset.io/topics/cryptographic-primitive-2qx1pgyy
https://typeset.io/topics/cryptographic-protocol-2ldsbqme
https://typeset.io/topics/security-of-cryptographic-hash-functions-8mj3cag4
https://typeset.io/topics/key-management-3nunhtps
https://typeset.io/topics/network-security-1qcsg9ec
https://typeset.io/papers/recent-developments-in-cryptographic-hash-functions-security-hqbqa0exnm
https://typeset.io/papers/generalized-construction-of-compression-function-to-build-a-f86ap21tjh
https://typeset.io/papers/novel-non-cryptographic-hash-functions-for-networking-and-1t38y1e2ii
https://typeset.io/papers/energy-efficient-cryptographic-engineering-paradigm-53owjua3ju
https://typeset.io/papers/performance-analysis-of-various-cryptographic-techniques-2t2h2h4zfe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-x79vm8a41r
https://twitter.com/intent/tweet?text=Cryptography%20for%20network%20security:%20failures,%20successes%20and%20challenges&url=https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-x79vm8a41r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-x79vm8a41r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-x79vm8a41r
https://typeset.io/papers/cryptography-for-network-security-failures-successes-and-x79vm8a41r

Cryptography for Network Security:

Failures, Successes and Challenges

Bart Preneel

Katholieke Universiteit Leuven and IBBT
Dept. Electrical Engineering-ESAT/COSIC,

Kasteelpark Arenberg 10 Bus 2446, B-3001 Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. This article discusses the state of the art of cryptographic al-
gorithms as deployed for securing computing networks. While it has been
argued that the design of efficient cryptographic algorithms is the “easy”
part of securing a large scale network, it seems that very often security
problems are identified in algorithms and their implementations. This
article discusses the state of the art for a broad range of cryptographic
algorithms that are used in networking applications.

Keywords: cryptographic algorithms, network security, block ciphers, stream
ciphers, MAC algorithms, hash functions

1 Introduction

The first boom in cryptography can be attributed to the introduction of wireless
data communications at the beginning of the 20th century [28]: it is clear that
wireless communications are as easy to read for an adversary as for the legitimate
receiver. There is also the mistaken perception that intercepting wired commu-
nications is really difficult; while the introduction of optical communications
has raised the threshold, a well motivated opponent can also bypass this hur-
dle. From the 1960s, dedicated or switched wired networks were introduced for
computer networks. Only military, governmental and financial communications
were encrypted; until the early 1990s this encryption was mostly implemented
in expensive hardware at the data link layer. The development of the world
wide web resulted in broad use of cryptography for e-commerce and business
applications. The underlying enabling technologies are inexpensive fast software
cryptography and open security protocols such as TLS (SSL), SSH and IPsec
as introduced in the second half of the 1990s. In spite of this development, only
a small fraction of the Internet traffic is encrypted. Most of this encryption is
situated at the network or transport layer; the communication is protected end-
to-end (e.g., from the browser in the client to the web server), from gateway to
gateway (for a VPN based on IPsec using tunnel mode) or from client to gate-
way (e.g., a VPN for remote access to company networks). In the last decade we
have witnessed an explosion of wireless data networks, including Wireless LANs

2 B. Preneel

(WLAN, IEEE 802.11), Personal Area Networks (PANs such as Bluetooth or
IEEE 802.15, Zigbee or IEEE 802.15.4, and Ultrawideband or IEEE 802.15.4a)
and Wireless Metropolitan Area Networks (WiMAX or IEEE 802.16). All these
technologies have been introduced with cryptographic security at the link layer;
the early solutions are typically not very robust. In addition mobile data com-
munication is growing on the evolving GSM mobile phones using technologies
such as GPRS and EDGE as on the third generation mobiles phones such as
3GSM.

End to end protection of voice communication is a relatively recent phe-
nomenon. The main reason has been technological limitations, but there is also
a significant legal barrier, since governments want to maintain the capability
to perform wiretaps for law enforcement and national security purposes. Ana-
log voice scramblers do not offer a very high security level. The US delegation
in the 1945 Yalta conference brought along very voluminous devices for digi-
tal voice encryption; apparently they were never used, a.o. for the poor quality.
Efficient digital coding of voice for mass market products arrive in the 1980s:
secure digital phones (e.g. the STUs) became available, but outside the govern-
ment and military environment they were never successful. However, today Voice
over IP (VoIP) technologies result in widespread end-to-end security based on
software encryption. The first analog mobile phones provided no or very weak
security, which resulted in serious embarrassment (e.g., the private conversations
of Prince Charles being exposed or the eavesdropping of the Soviet mobile com-
munication systems by the US). The European GSM system designed in the late
1980s provided already much better security, even if many flaws remain; these
flaws did not stop the system: in 2010 there are more than 4 billion GSM and
WCDMA-HSPA subscribers. The GSM security flaws have been resolved in the
3GSM system, but even there no end-to-end protection is provided. The current
generation of smart phones users can clearly run software (such as Skype) with
this capability.

This short article tends to briefly describe the situation in terms of cryp-
tographic algorithms used in communication networks. In Sect. 2 we present
an update on hash functions, stream ciphers, block ciphers and their modes.
Section 3 focuses on public key algorithms and Sect. 4 presents the conclusions.

2 Symmetric Primitives

In this section, we discuss the following symmetric primitives: block ciphers,
stream ciphers, MAC algorithms, hash functions and modes for authenticated
(or unforgeable) encryption.

2.1 Block Ciphers

Block ciphers are a flexible building block for many cryptographic applications.
This includes the original goal of encryption (in CBC, CFB, OFB or CTR mode),

Cryptography for Network Security 3

but they can also be used to construct MAC algorithms (cf. Sect. 2.3), hash
functions (cf. Sect. 2.4), pseudo-random functions and one-way functions.

The DES algorithm was published by the US government in the 1970s; it is a
block cipher with a 64-bit block length and a 56-bit key. In spite of initial contro-
versy around its design, the deciding factors in the success of the DES algorithm
were the standardization by the US government and the generous licensing con-
ditions. However, in the 1990s it became obvious that the 56-bit key size was
no longer adequate.1 The financial world started moving towards two key triple-
DES in the late 1990s; this move was completed around 2006, a few years later
than planned. In 2004 NIST (National Institute of Standards and Technology,
US) announced that DES was no longer adequate and published a triple-DES
specification [72]; two-key triple-DES is approved until 2009, while three-key
triple-DES is deemed to be adequate until 2030. The modes for triple-DES have
been defined in ANSI X9.52 [2]. The main reason for the limited lifetime of the
two-key triple-DES variant is the attack by Wiener and van Oorschot [95] that
requires 280 time when 240 known plaintexts are available; this is not a concern
for the financial sector, as keys are typically changed frequently and messages
are very short. On the other hand, three-key triple-DES is very vulnerable to a
related-key attack [58]; in this attack an opponent obtains the encryption of a
plaintext P under a key K and a key K ⊕∆ for a constant ∆. In most contexts
such an attack is not feasible, but an exception is applications that use control
vectors [68].

In 1997, NIST started an open competition to find a replacement for the DES.
The AES algorithm has a block of length of 128 bits, and should support keys
lengths of 128, 192 and 256 bits. In October 2000 NIST selected the Rijndael
algorithm (designed by the Belgian cryptographers Vincent Rijmen and Joan
Daemen) as the AES algorithm [24, 39]. In 2003, the US government announced
that it would also allow the use of AES for secret data, and even for top secret
data; the latter applications require key lengths of 192 or 256 bits. AES is a
rather elegant and mathematical design, that among the five finalists offered
the best combination of security, performance, efficiency, implementability and
flexibility. AES allows for compact implementations on 8-bit smart cards (36
bytes of RAM), but also highly efficient implementations on 32-bit architectures
(15 cycles/byte on a Pentium III and 7.6 cycles/byte on a Core 2 [55]). Moreover,
hardware implementations of AES offer good trade-offs between size and speed.
AES has been taken up quickly by many standards and implementations; in
May 2010 more than 1300 AES implementations have been validated by the US
government.

So far, AES has resisted all shortcut attacks, including algebraic attacks. In
2009, it was demonstrated by Biryukov and Khovratovich [11] that AES-192 and
AES-256 are vulnerable to related-key attacks: the attack on AES-256 requires
4 related keys and 2119 encryptions, which is much less than 2256. These attacks
indicate that they key schedule of AES should have been stronger; on the other

1 A US$ 1 million machine today would recover a DES key in a few seconds – the
same design would have taken 3 hours in 1993 [103].

4 B. Preneel

hand, they clearly do not form a practical threat and one can easily defend
against them by not allowing any key manipulations or by hashing a key before
use. It is also worth to point out that it is not possible to design a cipher that
is secure against any related key attack.

In 2010 Dunkelman et al. [31] have published a related key attack on the 64-
bit block cipher KASUMI (that is standardized for GSM under the name A5/3
and that is also used for encryption in 3GPP); the attack requires 4 related keys,
226 plaintexts, 230 bytes of memory and time 232; while these complexities are
rather low, the attack cannot be applied to KASUMI as deployed in current
mobile networks.

The most powerful attacks against AES and other block ciphers have not been
pure mathematical attacks, but timing attacks based on cache effects – this kind
of attack applies in principle to any cryptographic algorithm implementation
that uses tables (see e.g. [9, 76, 94]). This attack is one of the reasons why Intel
has to add dedicated AES instructions to its processors from 2010 onwards [44];
these instructions also boost the performance of AES to about 0.75 cycles/byte
(in decryption mode). Note that the fast implementation of AES of Kas̈per and
Schwabe [55] is bitsliced and hence not vulnerable to cache-based attacks.

2.2 Stream Ciphers

Because of their low implementation cost, additive stream ciphers have been the
work horse of symmetric cryptography until the 1980s. They take as input a
short secret key and a public initialization value IV and stretch this to a long
string that can be simply added to the plaintext to yield the ciphertext. This
implies that the encryption transformation is very simple but depends on the
location in the plaintext. Hardware oriented stream ciphers typically operate on
short data units (bits or bytes) and have a small footprint. The initialization
value IV serves for resynchronization purposes. Both the IV and the internal
memory need to be sufficiently large to resist time-memory-data tradeoffs (see
for example [46, 62]).

From the 1960s to the late 1980s, most stream ciphers were based on Linear
Feedback Shift Registers (LFSRs) that are optimal for hardware implementa-
tions (see for example Rueppel [87] and Menezes et al. [71]). However, it has
become clear that most LFSR-based stream ciphers are much less secure than
expected; powerful new attacks include fast correlation attacks [70] and alge-
braic attacks [23]. Notable cryptanalytic successes are the attack by Barkan and
Biham [3] on A5/1 (the stream cipher used in GSM) and the attack by Lu et

al. [65] on E0 (the stream cipher used in Bluetooth). Both attacks are realistic
attacks on widely used algorithms.

RC4 has been designed in 1987 by Rivest for efficient software encryption
on 8-bit machines. RC4 was a trade secret, but leaked out in 1994; it is cur-
rently still implemented in browsers (SSL/TLS protocol). While several statisti-
cal weaknesses have been identified in RC4 [40, 77], the algorithm seems to resist
key recovery attacks.

Cryptography for Network Security 5

In the last decade, fast stream ciphers have been proposed that are oriented
towards 32-bit and 64-bit processors. Two stream ciphers that have been in-
cluded into the ISO standard are MUGI [100] and SNOW [33]; a strengthened
variant of SNOW has been selected as backup algorithm for 3GSM. Between
2004 and 2008 the EU Network of Excellence ECRYPT [32] has organized an
open competition eSTREAM with as goal to identify promising stream ciphers
that are either very fast in software (128-bit key and 64 or 128-bit IV) or that
offer a low footprint in hardware (80-bit key and 32 or 64-bit IV). During the
four years of the competition, dozens of stream ciphers have been broken. The
competition has resulted in a portfolio with four software-oriented ciphers with a
performance of 3-10 cycles/byte (HC-128, Rabbit, Salsa20/12 and Sosemanuk);
three hardware-oriented ciphers are recommended (Grain, Mickeyv2, and Triv-
ium). An important conclusion from the eSTREAM project is that for very low
footprint implementations, 64-bit block ciphers are more efficient; however, if
one desires a very high performance implementation with a low hardware cost,
the hardware-oriented stream ciphers offer an improvement with a factor of two
to four over block ciphers. More details on the eSTREAM competition can be
found in [84].

2.3 Message Authentication Codes (MACs)

Message Authentication Codes are used to authenticate messages between par-
ties that share a secret key. MACs are widely use in networks, because they
are more efficient in terms of performance and memory than digital signature
schemes. The most widely used constructions are derived from block ciphers or
hash functions.

The most popular MAC algorithm for financial transactions is still CBC-
MAC. Initially, variants based on DES were used; these have been migrated to
triple-DES variants. AES is gradually replacing DES for this application (cf.
Sect. 2.1).

The CBC-MAC construction based on an n-bit block cipher can be described
as follows. First the input string is padded to a multiple of the block length, and
the resulting string is divided into t n-bit blocks x1 through xt.

c1 := Ek(x0) (1)

ci := Ek(xi ⊕ ci−1), 1 < i ≤ t . (2)

Here ⊕ denotes the bitwise exclusive-or operation. Note that – unlike in CBC
encryption – no IV value should be used. The recommended variant for use with
DES is the ANSI retail MAC [1]: it computes the MAC value with two inde-
pendent keys k and k′: MACk(x0 . . . xt) = Ek (Ek′(ct)). For AES, EMAC is the
preferred construction: MACk(x0 . . . xt) = Ek′(ct). Here k′ is a key derived from
k. An even simpler scheme is LMAC; it uses the key k′ for the last encryption
(i = t).

NIST has published yet another variant under the name of CMAC [73]
(CMAC was previously called OMAC [53], which is an optimization of XCBC [14]).

6 B. Preneel

CMAC modifies the last computation in CBC-MAC by exoring k2 or k3 to xt.
The key k2 is chosen when the last block xt requires no padding (i.e., it is of
length n), while k3 is chosen otherwise. The keys k2 and k3 are computed as
k2 = ‘2’ · Ek(0n) and k3 = ‘4’ · Ek(0n) where 0n denotes the n-bit all zero
string, ‘2’ and ‘4’ are two elements of the finite field F2n , and “·” represents
multiplication in the finite field F2n .

On the Internet, HMAC is by far the most popular construction [5]; in the
light of the attacks on MD4 and MD5 (cf. Sect. 2.4), the HMAC security analysis
has been refined by Bellare [4]. The state of the art in cryptanalysis is that
HMAC-MD4 has been broken by Leurent et al. [41]; their attack requires 288

chosen texts and 295 computations. Some doubts have been cast on HMAC-
MD5 [21, 59]; the best known attack on HMAC-MD5 is a related key attack that
requires 251 chosen plaintexts and 2100 time (see also [99]). For the time the
security margin offered by HMAC-SHA-1 is acceptable.

In the past five years there has been a growing interest in unconditionally
secure MAC algorithms. They were introduced as authentication codes by Sim-
mons [92] and more practical constructions were known as universal hash func-
tions (following Carter and Wegman [101]). If they are combined with a block
cipher (such as AES) or a pseudo-random function (such as HMAC), the un-
conditional security is lost, but they result in MAC algorithms that are very
efficient and elegant. UMAC [13] is about 10 times faster than CBC-MAC based
on AES or HMAC-SHA-1, but it offers a limited key agility and has a rather
large Random Access Memory (RAM) requirement; moreover, Handschuh and
Preneel have demonstrated [45] that for a large class of MAC algorithms based
on universal hash functions (including UMAC) a few forgeries lead to efficient
key recovery. Bernstein’s Poly1305-AES [9] is one of the constructions based
on polynomial universal hashing. It is only three times faster than AES, but it
has a better key agility than UMAC and requires less RAM; it seems also less
vulnerable to key recovery attacks.

2.4 Hash Functions

Cryptographic hash functions are a widely deployed primitive for message au-
thentication. They compress strings of arbitrary lengths to strings of fixed lengths
(typically between 128 and 256 bits). Cryptographic hash functions need to sat-
isfy the following three security properties [71, 79]:

– preimage resistance: it should be hard to find a preimage for a given hash
result;

– 2nd preimage resistance: it should be hard to find a 2nd preimage for a given
input;

– collision resistance: it should be hard to find two different inputs with the
same hash result.

For an ideal hash function with an n-bit result, finding a (2nd) preimage re-
quires approximately 2n hash function evaluations. On the other hand, finding

Cryptography for Network Security 7

a collision requires only 2n/2 hash function evaluations (as a consequence of
the birthday paradox). Collision resistance implies 2nd preimage resistance, but
the formal relation between these definitions is more complex and subtle than
one would expect (see Rogaway and Shrimpton [86]). In practice on requires
also other properties such as indifferentiability from a random oracle [22], and
pseudo-randomness (this assumes that a secret key is part of the input).

The main application of hash function is digital signature schemes, in which
one signs the hash value of a message rather than the message itself. Digital
signatures are used in some key establishment protocols to bind a protocol mes-
sage to an entity. Hash functions can also be used to construct MAC algorithms;
the most popular construction of this type is HMAC (cf. Sect. 2.3). HMAC
constructions are also used for deriving symmetric keys in protocols such as
Diffie-Hellman. In practice HMAC is used with hash functions such as MD5,
SHA-1 and RIPEMD-160. In the SSL/TLS protocol, a hash function is used at
the end of the handshake protocol (in which the cipher suites are negotiated) to
confirm the integrity (TLS version 1.0/1.1 uses the concatenation of MD5 and
SHA-1, while in TLS version 1.2 a single hash function is used).

In the last decade, a number of structural weaknesses have been identified
in hash functions; these weaknesses are related to the way cryptographic hash
functions are constructed from smaller building blocks. Most constructions use
a simple iteration, and are therefore called iterated hash functions. The most
remarkable attack is a result by Joux [54] who shows that if finding a collision for
an iterated hash function takes time T (for an ideally secure hash function T =
2n/2), one can find 2s strings hashing to a single value in time s·T . As an example,
finding a billion messages that all hash to the same result requires only thirty
times the effort to find a single collision. This result has the surprising corollary
that the concatenation of two iterated hash functions (g(x) = h1(x)||h2(x))
is only as strong as the strongest of the two hash functions (even if both are
independent). If hi is a hash function with an ni-bit result (i = 1, 2 and w.l.o.g.
n1 ≥ n2), finding a collision for g requires time at most n1 · 2n2/2 + 2n1/2 ≪
2(n1+n2)/2 and finding a preimage or 2nd preimage for g requires time at most
n1 · 2n2/2 + 2n1 + 2n2 ≪ 2n1+n2 . If either of the functions is weak, the attacks
may work better. This attack is particularly relevant since weaknesses have been
discovered in several widely used hash functions (cf. infra) and the concatenation
construction has been proposed as a robust solution (e.g. in SSL/TLS). It seems
that once the collision resistance of our current iterated hash functions breaks
down, the other security properties are also undermined.

Until recently, the most widely used hash functions were MD5 and SHA-1.
MD5 is a 128-bit hash function designed by Rivest in 1991 [82]; it is a strength-
ened version of MD4. MD5 was one of the first cryptographic algorithms that
was designed to be fast on 32-bit processors in software. Early cryptanalytic re-
sults by den Boer and Bosselaers [26] and Dobbertin [30] indicated that finding
collisions for MD5 would require less than 264 operations; in spite of the fact that
cryptographers advised against using MD5, the algorithm has been widely de-
ployed. The first collisions for MD5 were announced in 2004 by Wang et al. [98],

8 B. Preneel

who were able to push the limits on differential attacks by introducing some
innovative cryptanalytic techniques; their attack required time 239, which corre-
sponds to a few hours on a PC. Since then the attack has been further optimized;
the best collision search algorithm known today requires milliseconds [93]. While
this represents a major breakthrough, it is important to note that with about
US$100 000 of hardware, a brute-force collision search for MD5 (or any 128-bit
hash function of comparable cost) should take a few days with the design of van
Oorschot and Wiener [96].

In 1995, NIST has published SHA-1 [37]; it is a strengthened version of SHA,
which was standardized two years earlier [36] (SHA is now called SHA-0 by some
researchers). Both SHA(-0) and SHA-1 have a 160-bit result. While SHA-1 is
slower but more secure than MD5, it became very popular for applications that
require long term security. In 2005, Wang et al. [97] have published a collision
search algorithm for SHA-1 that requires only 269 steps, which is 2000 times
faster than a brute force collision search. Five years later, several researchers
have announced improvements (sometimes even very spectacular ones), but so
far none of these attacks has materialized. In 2005 Joux et al. [54] found collisions
for SHA(-0) with complexity 251. Today the best collision attack for SHA-0 by
Manuel and Peyrin [67] takes only 233 steps. The implications of the attack on
SHA(-0) are limited, since this algorithm is not deployed.

The collision attacks on MD4 and MD5 are quite unusual in the sense that
they are extremely efficient. However, so far their practical implications have
been limited, as very few applications use digital signatures and very few appli-
cations require collision resistance. In December 2008, Sotirov et al. [93] created
a rogue CA certificate using MD5, which allows them to impersonate any web-
site on the Internet. This attack required cryptanalytic improvements beyond
simple collision search. Only after this attack, several Certification Authorities
decided to remove MD5 from their offerings. While there is substantial progress
with preimage attacks on MD4 and MD5, these attacks are far from practical.
Leurent [64] has shown that preimages for MD4 can be found in 2102 steps, and
the preimage attack by Sasaki and Aoki [89] on MD5 has complexity 2123.

RIPEMD-160 [19] could act as a replacement for SHA-1; it seems to resist all
cryptanalytic efforts. NIST has also a series of standards that offer longer hash
results: SHA-256, SHA-224, SHA-384 and SHA-512 [38], which are known under
the common name SHA-2. Cryptanalysis of the SHA-2 family suggests that this
second generation functions has a substantial security margin against collision
attacks (the results by Indesteege et al. [48] and Sanadhya and Sarkar [88] can
only break 24 out of 64 steps of SHA-256). A third alternative is Whirlpool, a
design by Rijmen and Barreto [51] based on the design principles of AES. For
the most recent status of attacks on Whirlpool, see [61]. All these hash functions
have been standardized by ISO in IS 10118–3 [51], together with SHA-1.

NIST is currently running an open competition for a new hash function
standard that will be called SHA-3. Sixty-four submissions have been received,
14 of which are currently being evaluated in the second round. It is expected

Cryptography for Network Security 9

that NIST will announce the winner by mid 2012. For more details on the SHA-3
competition and on the state of hash functions, see [79].

2.5 Authenticated or Unforgeable Encryption

Most applications need a secure channel between sender and receiver; such a
channel requires both confidentiality and data authentication. In the 1980s and
1990s, separate primitives were introduced for each of these properties. However,
it is not so hard to show that confidentiality protection without data authenti-
cation can lead to serious problems; in particular, such a scheme is vulnerable
to a chosen ciphertext attack in which the opponent uses decryption queries to
learn information on the plaintext. Practical chosen ciphertext attacks have been
demonstrated by several authors; we must mention the attack by Canvel et al.

on SSL/TLS [20] and the attack by Degabriele and Paterson on IPsec [25].

The first approach to achieve both properties was to introduce redundancy
to the plaintext before encryption in order to achieve both goals, but this is
clearly not adequate. A first formalization of unforgeable encryption was pub-
lished by Katz and Yung [56]. Bellare and Namprempre [6] showed that if the
MAC algorithm satisfies a strong security requirement (namely strong unforge-
ability), the best generic solution is to apply a MAC algorithm to the ciphertext
(the so-called Encrypt-then-MAC model), which is the option chosen by IPsec.
Other alternatives (MAC-then-Encrypt of SSL/TLS and Encrypt and MAC of
SSH) can also be shown to be secure, but they require a specific rather than a
generic analysis (e.g., taking into account the specific encryption mode).

The above schemes require both an encryption algorithm and a MAC al-
gorithm. Jutla showed that it was possible to achieve both properties at a
much lower cost; for this purpose he introduced in 2000 two modes, the IACBC
(Integrity-Aware Cipher Block Chaining) and IAPM (Integrity-Aware Paralleliz-
able Mode). Gligor and Donescu proposed the XCBC and XECB schemes in [43].
Rogaway et al. [85] introduced an optimized version of IAPM called the OCB
mode (Offset CodeBook). These schemes require an overhead of less than 10%
over CBC encryption and offer some attractive features; for example, some of
them are fully parallellizeable. An important non-technical disadvantage is that
all these schemes are encumbered by patents, which has been a barrier to their
adoption.

As a consequence of this patent issue, several alternative schemes have been
introduced that are slower than these schemes, but that are free. NIST and ISO
have standardized a combination of the counter mode with a polynomial based
authentication (the Galois Counter Mode or GCM [69, 75]) and with CBC-MAC
(the Counter with CBC-MAC mode [102, 74]). For a more detailed overview of
authenticated encryption schemes, see the overview article by Black [12] and the
ECRYPT II report [32].

10 B. Preneel

3 Public Key Algorithms

In network security, public key algorithms are only used for the establishment
of session keys and for the mutual authentication of the parties. The main rea-
son is that public key operations are two or three orders of magnitude slower
than symmetric key primitives. Moreover, the block lengths and overhead are
substantially larger. Public key algorithms need to be integrated into a protocol
such as the Station-to-Station protocol [29]; more elaborate variants of this pro-
tocol have been standardized for SSL/TLS (RFC 5246) and for IPsec (IKEv2 in
RFC 4306). The details of these protocols fall outside the scope of this article.

3.1 RSA

RSA, invented by Rivest, Shamir and Adleman in 1978 [83] is by far the most
widely used public key algorithm (the RSA patent has expired in 2000). The
RSA encryption operation is written as C = P e mod N and the decryption is
computed as P = Cd mod N . Here the encryption and decryption exponent are
related by e · d = 1 mod lcm(p − 1, q − 1), with N = p · q. The security of RSA
is based on the fact that it is relatively easy to find two large prime numbers p

and q, but no efficient methods are known to factor their product N . Note that
the security of RSA is based on the fact that extracting random modular eth
roots modN is hard. This problem could be easier than factoring N (it cannot
be harder); surprisingly, whether or not it is easier is still an open problem.

The best known algorithm to factor an RSA modulus N is the General Num-
ber Field Sieve (GNFS). Lenstra and Verheul have related the complexity of
GNFS to breaking symmetric keys and computing discrete logarithms in [63]
(see also the ECRYPT II report on this topic [32]). The current factoring record
(achieved in January 2010) is 768 bits [60]. The recommended minimum size
for an RSA modulus today is 1024 bits; factoring such a modulus requires ap-
proximately 272 steps. Shamir and Tromer [90] proposed in 2003 a hardware
design that would need an R&D effort of US$20 M. The hardware cost to fac-
tor a 512-bit modulus in ten minutes would be US$ 10 000; a 768-bit modulus
could be factored with a similar budget in 95 days; factoring a 1024-bit modulus
in 1 year would require a hardware investment of US$ 10 M. Note that these
cost estimates do not include the linear algebra step. These estimates show that
for long-term security (10-15 years), an RSA modulus of 2048 bits or more is
recommended.

Textbook RSA has other weaknesses (see [18] for details). For example, RSA
for small arguments is not secure: −1, 0 and 1 are always fixed points and if
P e < N extracting a modular eth root simplifies to extracting a natural eth
root, which is an easy problem. In addition, RSA is multiplicative, which means
that the product modN of two ciphertexts will decrypt to the product of the
corresponding plaintexts.

The standard PKCS#1v1.5 specifies a padding method for encryption and
signing with the RSA algorithm. For encryption, the format consists of the fol-
lowing sequence: a byte equal to 00, a byte equal to 02, at least 8 non-zero

Cryptography for Network Security 11

padding bytes, a byte 00, and the plaintext. Note that the RSA assumption
states that extracting random modular eth roots is hard, which means that one
should map the plaintext space in a uniform way to the interval [0, n[; it is clear
that PKCS#1v1.5 is quite far from this goal. This has been exploited by Ble-
ichenbacher [15] to recover the plaintext corresponding to a selected ciphertext
using a chosen ciphertext attack (in which encryptions of different but related
ciphertexts are obtained); more specifically, Bleichenbacher’s attack only needs
to know whether the plaintext is of the right format (it is based on the error
messages). In 1993, Bellare and Rogaway published the OAEP (Optimal Asym-
metric Encryption) transform, together with a security proof [7]. This proof
essentially states that if someone can decrypt a challenge ciphertext without
knowing the secret key, he can extract random modular eth roots. The proof
is in the random oracle model, which means that the hash functions used in
the OAEP construction are assumed to be perfectly random. However, seven
years later Shoup pointed out that the proof was wrong [91]; the error has been
corrected for by Fujisaki et al. in [42], but the resulting reduction is not very
meaningful, that is, the coupling between the two problems is not very tight
in this new proof. Moreover, Manger showed that a careful implementation is
necessary, since otherwise a chosen ciphertext attack based on error messages
may still apply [66]. Currently the cryptographic community believes that the
best way of using RSA is the RSA-KEM mode [80]: this is a so-called hybrid

mode in which RSA is only used to transfer a session key, while the plaintext is
encrypted using a symmetric algorithm with this key.

For RSA PKCS#1v1.5 signatures, no practical attack is known, even if this
padding format is again very far from random. The RSA signing operation is
applied to the following sequence: a byte equal to 00, a byte equal to 01, a
series of bytes equal to FF, a byte 00, and the hash value (with some ASN.1
prepended). At the rump session of Crypto 2006, Bleichenbacher showed that
many implementations of RSA signature verifications stop at the end of the
hash value. This opens the possibility to append a large random string S (and
shorten the series of FF bytes accordingly). It is very easy to choose S such that
the complete string is a perfect cube, and extracting cube roots over the integers
is easy. This means that one can forge any signature for e = 3 without knowing
the private key; even better, this forged signature works for any modulus N

that is large enough. A variant of the attack is based on the fact that some
verification software ignores the content of the ASN.1 string. These attacks can
be precluded by implementing a correct verification, which consists of checking
that the hash value is right aligned or alternatively by re-generating the whole
block as the signer does and checking that it is correct. The problem is however
that as a signer may not be able to influence the verification software, hence it
is better to increase the verification exponent to 216 + 1. Implementations that
were reported to be vulnerable to this problem include OpenSSL, Mozilla NSS,
and GnuTLS. A better solution is to use RSA-PSS [8], which has been included
together with OAEP in PKCS#1 v2.1. Even if the scheme dates back to 1996

12 B. Preneel

and the standard to 2002, so far implementors seem to be reluctant to upgrade
to the more robust algorithms.

For performance reasons, the RSA private key operations (decryption and
signing) are often executed using the Chinese remainder theorem. This means
that they are computed mod p and mod q and that both results are combined to
recover the result modN . One of the most important vulnerabilities of RSA in
practice is the observation by Boneh et al. [17]: if a transient fault is introduced in
the calculation modp or modp (but not both), one can recover p and q. Making
an implementation robust against these powerful fault attacks is non-trivial.

An important lesson that can be drawn from this is that it is surprisingly
difficult to use RSA correctly: it has taken the cryptographic community more
than 20 years to learn how to do this. The most efficient solutions still rely on
the random oracle model, and it is an important problem how one can use RSA
efficiently without this assumption.

3.2 Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography (ECC) is a public-key primitive that is increasingly
important as alternative to RSA. The standards (e.g., [52, 47]) support both
elliptic curves over Fp with p prime and F2m with m prime. The first curves can
take advantage from an arithmetic coprocessor for RSA if available, while the
latter allow for very compact hardware implementations.

An important advantage of elliptic curves are the shorter key lengths. Based
on the best known algorithms today, one can estimate that 160-bit elliptic curves
correspond to 1248-bit RSA, and 224-bit elliptic curves correspond to 2432-bit
RSA (see the ECRYPT II report [32]). For these bit-lengths, signing is about five
(resp. 20) times faster with elliptic curves, but verifying a signature is seven (resp.
five) times faster with RSA. Moreover, very compact hardware implementations
of ECC have been developed.

ECC was proposed in 1985; for the first 15 years the market was reluctant
to adopt this new and more complex primitive. However, in the past five years
ECC has been selected by the governments of Austria, Germany, Switzerland
and the USA and are gaining more widespread acceptance. The main attraction
lies clearly in the shorter key lengths; this advantage over RSA will grow larger
over time.

4 Conclusions

During the past decade, the AES has become the de facto standard for encrypting
network data. HMAC-MD5 and HMAC-SHA-1 are the most common algorithms
used for message authentication. We see a gradual evolution towards using mech-
anisms for authenticated or unforgeable encryption, which combine encryption
and data authentication in one operation. Those modes require a redesign of the
protocol. In this context, HMAC is increasingly replaced by CBC-MAC based

Cryptography for Network Security 13

on AES or a polynomial hash function; the latter is substantially faster but per-
haps a bit less robust. Wireless networks still use older block ciphers or stream
ciphers; 3G networks offer data authentication based on MAC algorithms.

For public key algorithms the evolution has been much slower. RSA and
Diffie-Hellman based protocols over Fp are getting more and more competition
from ECC, in particular for low footprint or low power environments. The rela-
tively smaller keys for ECC is a key factor in this development.

Side channel attacks have become an important area of research: they cur-
rently strongly influence hardware and software implementations, but at the
cost of a decreased performance. One can expect that in the future some algo-
rithms will be re-designed from scratch so that implementing these algorithms
in a secure way is easier.

In addition to new attacks, new security proofs and models have been devel-
oped, that increase our understanding in areas such as modes for confidentiality
and authenticated encryption and padding methods for RSA and ECC.

In both cases (new attacks and new models and designs), there is a need for
efficient and secure procedures to upgrade and retire cryptographic algorithms.
However, even if we live in a world in which the environment can change in days
or months, replacing a cryptographic algorithm still takes many years. System
designers need to build systems that are agnostic to the cryptographic algorithm
and that allow for fast and secure key length and algorithm upgrades.

Acknowledgements. This work was partially funded by the European Com-
mission through the IST Programme under Contract ICT-2007-216676 ECRYPT II
and by the Belgian Government through the IUAP Programme under contract
P6/26 BCRYPT.

References

1. ANSI X9.19, Financial Institution Retail Message Authentication, American
Bankers Association, August 13, 1986.

2. ANSI X9.52, Triple Data Encryption Algorithm Modes of Operation, American
Bankers Association, 1998.

3. E. Barkan, E. Biham, N. Keller, Instant ciphertext-only cryptanalysis of GSM
encrypted communication, Advances in Cryptology, Proceedings Crypto’03,
LNCS 2729, D. Boneh, Ed., Springer, Heidelberg, 2003, pp. 600–616.

4. M. Bellare, New proofs for NMAC and HMAC: Security without collision-
resistance, Advances in Cryptology, Proceedings Crypto’06, LNCS 4117, C. Dwork,
Ed., Springer, Heidelberg, 2006, pp. 602–619.

5. M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authen-
tication, Advances in Cryptology, Proceedings Crypto’96, LNCS 1109, N. Koblitz,
Ed., Springer, Heidelberg, 1996, pp. 1–15.

6. M. Bellare, C. Namprempre, Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm, Advances in Cryptology, Pro-
ceedings Asiacrypt’00, LNCS 1976, T. Okamoto, Ed. (Springer, Heidelberg, 2000)
531–545.

14 B. Preneel

7. M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing ef-
ficient protocols, Proceedings ACM Conference on Computer and Communications
Security (ACM Press 1993) 62–73.

8. M. Bellare, P. Rogaway, The exact security of digital signatures – How to sign with
RSA and Rabin, Advances in Cryptology, Proceedings Eurocrypt’96, LNCS 1070,
U. Maurer, Ed., Springer, Heidelberg, 1996, pp. 399–416.

9. D.J. Bernstein, The Poly1305-AES message-authentication code, Fast Software
Encryption, LNCS 3557, H. Gilbert and H. Handschuh, Eds. (Springer, Heidelberg,
2005) 32–49.

10. D.J. Bernstein, Cache-timing attacks on AES, preprint, 2005, http://cr.yp.to/
papers.html#cachetiming

11. A. Biryukov, D. Khovratovich, “Related-key cryptanalysis of the full AES-192
and AES-256,” Advances in Cryptology, Proceedings Asiacrypt’09, LNCS 5912,
M. Matsui, Ed., Springer, Heidelberg, 2009, pp. 1–18.

12. J. Black, Authenticated encryption, Encyclopedia of Cryptography and Security
H. van Tilborg, Ed., Springer, Heidelberg, 2005, pp. 11–21.

13. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, UMAC: Fast and
secure message authentication, Advances in Cryptology, Proceedings Crypto’99,
LNCS 1666, M.J. Wiener, Ed., Springer, Heidelberg, 1999, pp. 216–233.

14. J. Black, P. Rogaway, CBC-MACs for arbitrary length messages, Advances in
Cryptology, Proceedings Crypto’00, LNCS 1880, M. Bellare, Ed. (Springer, Heidel-
berg, 2000) 197–215.

15. D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1, Advances in Cryptology, Proceedings Crypto’98,
LNCS 1462, H. Krawczyk, Ed., Springer, Heidelberg, 1998, pp. 1–12.

16. D. Bleichenbacher, Forging some RSA signatures with pencil and paper, Presented
at the Rump Session of Crypto 2006.

17. D. Boneh, R. DeMillo, R. Lipton, On the importance of checking cryptographic pro-
tocols for faults, Advances in Cryptology, Proceedings Eurocrypt’97, LNCS 1233,
W. Fumy, Ed., Springer, Heidelberg, 1997, pp. 37–51.

18. D. Boneh, A. Joux, P.Q. Nguyen, Why textbook ElGamal and RSA encryp-
tion are insecure, Advances in Cryptology, Proceedings Asiacrypt’00, LNCS 1976,
T. Okamoto, Ed. (Springer, Heidelberg, 2000) 30–43.

19. A. Bosselaers, H. Dobbertin, B. Preneel, The RIPEMD-160 cryptographic hash
function, Dr. Dobb’s Journal, Vol. 22, No. 1, January 1997, pp. 24–28.

20. B. Canvel, A.P. Hiltgen, S. Vaudenay, M. Vuagnoux, “Password interception in a
SSL/TLS Channel,” Advances in Cryptology, Proceedings Crypto’03, LNCS 2729,
D. Boneh, Ed., Springer, Heidelberg, 2003, pp. 583–599.

21. S. Contini, Y.L. Lin, Forgery and partial key recovery attacks on HMAC and
NMAC using hash collisions Advances in Cryptology, Proceedings Asiacrypt’06,
LNCS 4284, X. Lai and K. Chen, Eds., Springer, Heidelberg, 2006, pp. 37–53.

22. J.-S. Coron, Y Dodis, C. Malinaud, and P. Puniya, “Merkle-Damg̊ard revisited:
how to construct a hash function,” Advances in Cryptology, Proceedings Crypto’05,
LNCS 3621, V. Shoup, Ed., Springer, Heidelberg, 2005, pp. 430–448.

23. N. Courtois, W. Meier, Algebraic attacks on stream ciphers with linear feedback,
Advances in Cryptology, Proceedings Eurocrypt’03, LNCS 2656, E. Biham, Ed.
(Springer, Heidelberg, 2003) 345–359.

24. J. Daemen, V. Rijmen, The Design of Rijndael. AES – The Advanced Encryption
Standard, Springer, Heidelberg (2001).

Cryptography for Network Security 15

25. J.P. Degabriele, K.G. Paterson, “Attacking the IPsec standards in encryption-
only configurations,” in IEEE Symposium on Security and Privacy, IEEE, 2007,
pp. 335–349.

26. B. den Boer, A. Bosselaers, Collisions for the compression function of MD5, Ad-
vances in Cryptology, Proceedings Eurocrypt’93, LNCS 765, T. Helleseth, Ed.,
Springer, Heidelberg, 1994, pp. 293–304.

27. T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2”, RFC 5246, August 2008.

28. W. Diffie, S. Landau, “Privacy on the Line. The Policy of Wiretapping and En-
cryption (2nd edition),” MIT Press, 2007.

29. W. Diffie, P.C. van Oorschot, M.J. Wiener, “Authentication and authenticated key
exchanges,” Designs, Codes, and Cryptography, 2(2) 107–125 (1992)

30. H. Dobbertin, The status of MD5 after a recent attack, CryptoBytes, Vol. 2, No. 2,
Summer 1996, pp. 1–6.

31. O. Dunkelman, N. Keller, A. Shamir, “A practical-time attack on the KASUMI
cryptosystem used in GSM and 3G telephony,” Advances in Cryptology, Proceed-
ings Crypto’10, LNCS, T. Rabin, Ed., Springer, Heidelberg, 2010, in print.

32. EU Network of Excellence ECRYPT II, Yearly Report on Algorithms and Keysizes,
2009–2010, http://www.ecrypt.eu.org

33. P. Ekdahl, T. Johansson, A new version of the stream cipher SNOW, Selected Areas
in Cryptography, SAC’02, LNCS 2595, K. Nyberg and H.M. Heys, Eds. (Springer,
Heidelberg, 2003) 47–61.

34. Electronic Frontier Foundation, Cracking DES, Secrets of Encryption Research,
Wiretap Politics & Chip Design, (O’Reilly & Associates, Sebastopol, 1998). Source
code of the implementation described in the book can be downloaded from
https://www.cosic.esat.kuleuven.ac.be/des/.

35. EU Directive 1999/93/EC, Community framework for electronic signatures, 13
December 1999.

36. FIPS 180, Secure Hash Standard, Federal Information Processing Standard (FIPS),
Publication 180, NIST, U.S. Dept. of Commerce, May 11, 1993.

37. FIPS 180-1, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-1, NIST, U.S. Dept. of Commerce, April 17, 1995.

38. FIPS 180-2, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-2, NIST U.S. Dept. of Commerce, August 26, 2002
(Change notice 1 published on December 1, 2003).

39. FIPS 197, Advanced Encryption Standard, Federal Information Processing Stan-
dard, NIST, U.S. Dept. of Commerce, November 26, 2001.

40. S. Fluhrer, I. Mantin, A. Shamir, Weaknesses in the key scheduling algorithm
of RC4, Selected Areas in Cryptography, SAC’01, LNCS 2259, S. Vaudenay and
A. Youssef, Eds. (Springer, Heidelberg 2001) 1–24.

41. P.-A. Fouque, G. Leurent, P.Q. Nguyen, “Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5,” Advances in Cryptology, Proceedings
Crypto’07, LNCS 4622, A. Menezes, Ed., Springer, Heidelberg, 2007, pp. 13–30.

42. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, RSA-OAEP is secure under the
RSA assumption, Advances in Cryptology, Proceedings Crypto’01, LNCS 2139,
J. Kilian, Ed., Springer, Heidelberg, 2001, pp. 260–274.

43. V.D. Gligor, P. Donescu, Fast encryption and authentication: XCBC encryption
and XECB authentication modes, Fast Software Encryption’01, LNCS 2355,
M. Matsui, Ed., Springer, Heidelberg, 2002, pp. 92–108.

16 B. Preneel

44. S. Gueron, “Intel’s new AES instructions for enhanced performance and security,”
Fast Software Encryption’09, LNCS 5665, O. Dunkelman, Ed., Springer, Heidel-
berg, 2009, pp. 51–66.

45. H. Handschuh, B. Preneel, “Key-Recovery Attacks on Universal Hash Func-
tion Based MAC Algorithms,” Advances in Cryptology, Proceedings Crypto’08,
LNCS 5157, D. Wagner, Ed., Springer, Heidelberg, 2008, pp. 144–161.

46. J. Hong, P. Sarkar, New applications of time memory data tradeoffs, Advances
in Cryptology, Proceedings Asiacrypt’05, LNCS 3788, B.K. Roy, Ed. (Springer,
Heidelberg, 2005) 353–372.

47. IEEE P1363, Standard Specifications for Public Key Cryptography, 2000.

48. S. Indesteege, F. Mendel, B. Preneel, C. Rechberger, “Collisions and other non-
random properties for step-reduced SHA-256,” Selected Areas in Cryptology –
SAC 2008, LNCS 5381, R. Avanzi, L. Keliher, and F. Sica, Eds., Springer, Heidel-
berg, 2009, pp. 276–293.

49. ISO/IEC 7816, Information technology – Identification cards – Integrated circuit(s)
cards with contacts – Part 4: Interindustry commands for interchange, 1997.

50. ISO/IEC 9797, Information technology – Security techniques – Message Authen-
tication Codes (MACs), Part 1: Mechanisms using a block cipher, 1999, Part 2:
Mechanisms using a hash-function, 2000.

51. ISO/IEC 10118, Information technology – Security techniques – Hash-functions,
Part 1: General, 2000, Part 2: Hash-functions using an n-bit block cipher algorithm,
2000, Part 3: Dedicated hash-functions, 2003. Part 4: Hash-functions using modular
arithmetic, 1998.

52. ISO/IEC 14888-3, Information technology – Security techniques – Digital signa-
tures with appendix, Part 3: Certificate-based mechanisms, 1998.

53. T. Iwata, K. Kurosawa, OMAC: One key CBC MAC, Fast Software Encryption,
LNCS 2887, T. Johansson, Ed. (Springer, Heidelberg, 2003) 129–153.

54. A. Joux, “Multicollisions in iterated hash functions. Application to cascaded
constructions,” Advances in Cryptology, Proceedings Crypto’04, LNCS 3512,
M.K. Franklin, Ed., Springer, Heidelberg, 2004, pp. 306–316.

55. E. Käsper, P. Schwabe, “Faster and Timing-Attack Resistant AES-GCM,” C Cryp-
tographic Hardware and Embedded Systems, CHES 2009, LNCS 5747, C. Clavier
and K. Gaj, Eds., Springer, Heidelberg, 2009, pp. 1–17.

56. J. Katz, M. Yung, Unforgeable encryption and chosen ciphertext secure modes
of operation, Fast Software Encryption, LNCS 1978, B. Schneier, Ed. (Springer,
Heidelberg, 2001) 284–299.

57. C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” RFC 4306, December
2005.

58. J. Kelsey, B. Schneier, D. Wagner, “Key-Schedule Cryptoanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES,” Advances in Cryptology, Proceedings Crypto’96,
LNCS 1109, N. Koblitz, Ed., Springer, Heidelberg, 1996, pp. 237–251.

59. J. Kim, A. Biryukov, B. Preneel, S. Hong, On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 Security in Communication
Networks, LNCS 4116, R. De Prisco, M. Yung, Eds., Springer, Heidelberg, 2006,
pp. 242–256.

60. T. Kleinjung, K. Aoki, J. Franke, A.K. Lenstra, E. Thomé, J.W. Bos, P. Gaudry,
A. Kruppa, P.L. Montgomery, D.A. Osvik, H. te Riele, A. Timofeev, P. Zimmer-
man, Factorization of a 768-bit RSA modulus, Advances in Cryptology, Proceedings
Crypto’10, LNCS, T. Rabin, Ed., Springer, Heidelberg, 2010, in print.

Cryptography for Network Security 17

61. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, M. Schläffer, “Rebound
distinguishers: results on the full Whirlpool compression function,” Advances in
Cryptology, Proceedings Asiacrypt’09, LNCS 5912, M. Matsui, Ed., Springer, Hei-
delberg, 2009, pp. 126–143.

62. J. Lano, Cryptanalysis and Design of Synchronous Stream Ciphers, PhD Thesis,
COSIC, K.U.Leuven, June 2006.

63. A.K. Lenstra, E.R. Verheul, Selecting cryptographic key sizes, J. Cryptology, 14(4)
255–293 (2001)

64. G. Leurent, “MD4 is not one-way,” Fast Software Encryption’08, LNCS 5086,
K. Nyberg, Ed., Springer, Heidelberg, 2008, pp. 412–428.

65. Yi Lu, W. Meier, S. Vaudenay, The conditional correlation attack: A practical
attack on Bluetooth encryption, Advances in Cryptology, Proceedings Crypto’05,
LNCS 3621, V. Shoup, Ed., Springer, Heidelberg, 2005, pp. 97–117.

66. J. Manger, A chosen ciphertext attack on RSA optimal asymmetric encryption
padding (OAEP) as standardized in PKCS#1 v2.0, Advances in Cryptology, Pro-
ceedings Crypto’01, LNCS 2139, J. Kilian, Ed., Springer, Heidelberg, 2001, pp. 230–
238.

67. S. Manuel, T. Peyrin, “Collisions on SHA-0 in one hour,” Fast Software Encryp-
tion’08, LNCS 5086, K. Nyberg, Ed., Springer, Heidelberg, 2008, pp. 16–35.

68. S.M. Matyas, “Key Processing with Control Vectors,” J. Cryptology, 3(2) 113–136
(1991)

69. D. McGrew, J. Viega, The security and performance of the Galois/Counter Mode
(GCM) of operation, Progress in Cryptology – Indocrypt 2004, LNCS 3348, A Can-
teaut and K. Viswanathan, Eds., Springer, Heidelberg, 2004, pp. 343–355. Full
paper http://eprint.iacr.org/2004/193/

70. W. Meier, O. Staffelbach, Fast correlation attacks on stream ciphers, J. Cryptology,
1(3) 159–176 (1989)

71. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptogra-
phy (CRC Press, 1997).

72. NIST Special Publication 800-67, Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher, May 2004

73. NIST Special Publication 800-38B, Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication, May 2005.

74. NIST Special Publication 800-38C, Recommendation for Block Cipher Modes of
Operation: The CCM Mode for Authentication and Confidentiality, May 2004.

75. NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, November 2007.

76. D. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures: The case of
AES, Topics in Cryptology – The Cryptographers’ Track at the RSA Conference
2006, LNCS 3860, D. Pointcheval, Ed. (Springer, Heidelberg 2006) 1–20. Extended
version at www.wisdom.weizmann.ac.il/~tromer/papers/cache.pdf

77. S. Paul, B. Preneel, Analysis of non-fortuitous predictive states of the RC4 key
stream Generator, Progress in Cryptology, Indocrypt’04, LNCS 2904, T. Johans-
son, S. Maitra, Eds., Springer, Heidelberg, 2003, pp. 30–47.

78. E. Petrank, C. Rackoff, CBC MAC for real-time data sources, J. Cryptology, 13(3)
315–338 (2000)

79. B. Preneel, “The First 30 Years of Cryptographic Hash Functions and the
NIST SHA-3 Competition,” Topics in Cryptology – CT-RSA 2010, LNCS 5985,
J. Pieprzyk, Ed., Springer, Heidelberg, 2010, pp. 1–14.

18 B. Preneel

80. B. Preneel, A. Biryukov, C. De Cannière, S.B. Örs, E. Oswald, B. Van Rompay,
L. Granboulan, E. Dottax, G. Martinet, S. Murphy, A. Dent, R. Shipsey, C. Swart,
J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf, E. Biham, E. Barkan,
Y. Braziler, O. Dunkelman, V. Furman, D. Kenigsberg, J. Stolin, J-J. Quisquater,
M. Ciet, F. Sica, H. Raddum, L. Knudsen, M. Parker, Final report of NESSIE,
New European Schemes for Signatures, Integrity, and Encryption, LNCS Springer,
Heidelberg, in print.

81. B. Preneel, P.C. van Oorschot, MDx-MAC and building fast MACs from hash
functions, Advances in Cryptology, Proceedings Crypto’95, LNCS 963, D. Copper-
smith, Ed., Springer, Heidelberg, 1995, pp. 1–14.

82. R.L. Rivest, The MD5 message-digest algorithm, RFC 1321, April 1992.
83. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and

public-key cryptosystems, Communications ACM, Vol. 21, No. 2, 1978, pp. 120–
126.

84. New Stream Cipher Designs – The eSTREAM Finalists, LNCS 4986 M.J.B. Rob-
shaw, O. Billet, Eds., Springer, Heidelberg, 2008.

85. P. Rogaway, M. Bellare, J. Black, T. Krovetz, OCB: A block-cipher mode of op-
eration for efficient authenticated encryption, ACM Conference on Computer and
Communications Security, ACM Press 2001, pp. 195–205.

86. P. Rogaway, T. Shrimpton, Cryptographic hash function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance,
and collision resistance, Fast Software Encryption’04, LNCS 3017, B.K. Roy and
W. Meier, Eds., Springer, Heidelberg, 2004, pp. 371–388.

87. R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer, Heidelberg, 1986.
88. S.K. Sanadhya, P. Sarkar, “New collision attacks against up to 24-step SHA-2,”

Progress in Cryptology – Indocrypt 2008, LNCS 5365, D. Roy Chowdhury, V. Rij-
men, and A. Das, Eds., Springer, Heidelberg, 2008, pp. 91–103.

89. Y. Sasaki, K. Aoki, “Finding preimages in full MD5 faster than exhaustive search,”
Advances in Cryptology, Proceedings Eurocrypt’09, LNCS 5479, A. Joux, Ed.,
Springer, Heidelberg, 2009, pp. 134–152.

90. A. Shamir, E. Tromer, Factoring large numbers with the TWIRL device Advances
in Cryptology, Proceedings Crypto’03, LNCS 2729, D. Boneh, Ed., Springer, Hei-
delberg, 2003, pp. 1–26.

91. V. Shoup, OAEP reconsidered, Advances in Cryptology, Proceedings Crypto’01,
LNCS 2139, J. Kilian, Ed., Springer, Heidelberg, 2001, pp. 239–259.

92. Contemporary Cryptology: The Science of Information Integrity, G.J. Simmons,
Ed. (IEEE Press, 1991).

93. A. Sotirov, M. Stevens, J. Appelbaum, A.K. Lenstra, D. Molnar, D.A. Osvik, B. de
Weger, “Short chosen-prefix collisions for MD5 and the creation of a rogue CA cer-
tificate,” Advances in Cryptology, Proceedings Crypto’09, LNCS 5677, S. Halevi,
Ed., Springer, Heidelberg, 2009, pp. 55–69.

94. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, H. Miyauchi, Cryptanalysis of DES
implemented on computers with cache, C Cryptographic Hardware and Embedded
Systems, CHES 2003, LNCS 2779, C.D. Walter, Ç.K. Koç, and C. Paar, Eds.,
Springer, Heidelberg, 2003, pp. 62–76.

95. P.C. van Oorschot, M.J. Wiener, “A Known Plaintext Attack on Two-Key Triple
Encryption,” Advances in Cryptology, Proceedings Eurocrypt’90, LNCS 473,
I.B. Damg̊ard, Ed., Springer, Heidelberg, 1991, pp. 318–325.

96. P.C. van Oorschot, M. Wiener, Parallel collision search with cryptanalytic appli-
cations, J. Cryptology, 12(1) 1–28 (1999)

Cryptography for Network Security 19

97. X. Wang, Y.L. Lin, H. Yu, Finding collisions in the ful SHA-1, Advances in Cryp-
tology, Proceedings Crypto’05, LNCS 3621, V. Shoup, Ed., Springer, Heidelberg,
2005, pp. 17–36.

98. X. Wang, H. Yu, How to break MD5 and other hash functions, Advances in
Cryptology, Proceedings Eurocrypt’05, LNCS 3494, R. Cramer, Ed., Springer, Hei-
delberg, 2005, pp. 19–35.

99. X. Wang, H. Yu, W. Wang, H. Zhang, T. Zhan, “Cryptanalysis on HMAC/NMAC-
MD5 and MD5-MAC,” Advances in Cryptology, Proceedings Eurocrypt’09,
LNCS 5479, A. Joux, Ed., Springer, Heidelberg, 2009, pp. 121–133.

100. D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, B. Preneel, A new keystream
generator MUGI, Fast Software Encryption, LNCS 2365, J. Daemen, V. Rijmen,
Eds. (Springer, Heidelberg, 2002) 179–194.

101. M.N. Wegman, J.L. Carter, New hash functions and their use in authentication
and set equality, Journal of Computer and System Sciences, Vol. 22, No. 3, 1981,
pp. 265–279.

102. D. Whiting, R. Housley, N. Ferguson, “Counter with CBC-MAC (CCM),” RFC
3610, September 2003.

103. M.J. Wiener, Efficient DES key search, Presented at the Rump Session
of Crypto’93. Reprinted in Practical Cryptography for Data Internetworks,
W. Stallings, Ed., IEEE Computer Society, 1996, pp. 31–79.

104. H. Yu, G. Wang, G. Zhang, X. Wang, The Second-Preimage Attack on MD4,
Cryptology and Network Security, CANS 2005, LNCS 3810, Y. Desmedt, H. Wang,
Y. Mu, Y. Li, Eds., Springer, Heidelberg, 2005, pp. 1–12.

