
Cryptography inNC0 ∗

Benny Applebaum Yuval Ishai Eyal Kushilevitz

Computer Science Department, Technion
{abenny,yuvali,eyalk}@cs.technion.ac.il

February 13, 2006

Abstract

We study the parallel time-complexity of basic cryptographic primitives such as one-way functions (OWFs)
and pseudorandom generators (PRGs). Specifically, we study the possibility of implementing instances of these
primitives byNC0 functions, namely by functions in which each output bit depends on a constant number of input
bits. Despite previous efforts in this direction, there has been no convincing theoretical evidence supporting this
possibility, which was posed as an open question in several previous works.

We essentially settle this question by providing strong positive evidence for the possibility of cryptography
in NC0. Our main result is that every “moderately easy” OWF (resp., PRG), say computable inNC1, can be
compiled into a corresponding OWF (resp., “low-stretch” PRG) in which each output bit depends on at most 4
input bits. The existence of OWF and PRG inNC1 is a relatively mild assumption, implied by most number-
theoretic or algebraic intractability assumptions commonly used in cryptography. A similar compiler can also be
obtained for other cryptographic primitives such as one-way permutations, encryption, signatures, commitment,
and collision-resistant hashing.

Our techniques can also be applied to obtain (unconditional) constructions of “non-cryptographic” PRGs. In
particular, we obtainε-biased generators and a PRG for space-bounded computation in which each output bit
depends on only 3 input bits.

Our results make use of the machinery ofrandomizing polynomials(Ishai and Kushilevitz,41st FOCS, 2000),
which was originally motivated by questions in the domain of information-theoretic secure multiparty computa-
tion.

1 Introduction

The efficiency of cryptographic primitives is of both theoretical and practical interest. In this work, we consider the
question of minimizing theparallel time-complexityof basic cryptographic primitives such as one-way functions
(OWFs) and pseudorandom generators (PRGs) [11, 52]. Taking this question to an extreme, it is natural to ask if
there are instances of these primitives that can be computed inconstantparallel time. Specifically, the following
fundamental question was posed in several previous works (e.g., [32, 22, 16, 41, 43]):

Are there one-way functions, or even pseudorandom generators, inNC0?

Recall thatNC0 is the class of functions that can be computed by (a uniform family of) constant-depth circuits with
bounded fan-in. In anNC0 function each bit of the output depends on a constant number of input bits. We refer to
this constant as theoutput localityof the function and denote byNC0

c the class ofNC0 functions with localityc.

∗A preliminary version of this paper appeared in the proceedings of FOCS 2004. Research supported by grant no. 36/03 from the Israel
Science Foundation.

1

The above question is qualitatively interesting, since one might be tempted to conjecture that cryptographic
hardness requires some output bits to depend on many input bits. Indeed, this view is advocated by Cryan and
Miltersen [16], whereas Goldreich [22] takes an opposite view and suggests a concrete candidate for OWF inNC0.
However, despite previous efforts, there has been no convincing theoretical evidence supporting either a positive or
a negative resolution of this question.

1.1 Previous Work

Linial et al. show that pseudorandomfunctionscannot be computed even inAC0 [42]. However, no such impossi-
bility result is known for PRGs. The existence of PRGs inNC0 has been recently studied in [16, 43]. Cryan and
Miltersen [16] observe that there is no PRG inNC0

2, and prove that there is no PRG inNC0
3 achieving a superlinear

stretch; namely, one that stretchesn bits to n + ω(n) bits.1 Mossel et al. [43] extend this impossibility toNC0
4.

Viola [50] shows that a PRG inAC0 with superlinear stretch cannot be obtained from a OWF via non-adaptive
black-box constructions. Negative results for other restricted computation models appear in [20, 54].

On the positive side, Impagliazzo and Naor [36] construct a (sublinear-stretch) PRG inAC0, relying on an in-
tractability assumption related to the subset-sum problem. PRG candidates inNC1 (or even TC0) are more abundant,
and can be based on a variety of standard cryptographic assumptions including ones related to the intractability of
factoring [39, 44], discrete logarithms [11, 52, 44] and lattice problems [2, 33] (see Remark 6.6).2

Unlike the case of pseudorandom generators, the question of one-way functions inNC0 is relatively unexplored.
The impossibility of OWFs inNC0

2 follows from the easiness of 2-SAT [22, 16]. Håstad [32] constructs a fam-
ily of permutations inNC0 whose inverses are P-hard to compute. Cryan and Miltersen [16], improving on [1],
present a circuit family inNC0

3 whose range decision problem is NP-complete. This, however, gives no evidence
of cryptographic strength. Since any PRG is also a OWF, all PRG candidates cited above are also OWF candidates.
(In fact, the one-wayness of anNC1 function often serves as the underlying cryptographicassumption.) Finally,
Goldreich [22] suggests a candidate OWF inNC0, whose conjectured security does not follow from any well-known
assumption.

1.2 Our Results

As indicated above, the possibility of implementing most cryptographic primitives inNC0 was left wide open. We
present a positive answer to this basic question, showing that surprisingly many cryptographic tasks can be performed
in constant parallel time.

Since the existence of cryptographic primitives implies thatP 6= NP, we cannot expect unconditional results
and have to rely on some unproven assumptions.3 However, we avoid relying onspecificintractability assumptions.
Instead, we assume the existence of cryptographic primitives in a relatively “high” complexity class and transform
them to the seemingly degenerate complexity classNC0 without substantial loss of their cryptographic strength.
These transformations are inherently non-black-box, thus providing further evidence for the usefulness of non-
black-box techniques in cryptography.

We now give a more detailed account of our results.

A GENERAL COMPILER. Our main result is that any OWF (resp., PRG) in a relatively high complexity class, con-
taining uniformNC1 and even⊕L/poly, can be efficiently “compiled” into a corresponding OWF (resp., sublinear-
stretch PRG) inNC0

4. (The class⊕L/poly contains the classesL/poly andNC1 and is contained inNC2. In a

1From here on, we use a crude classification of PRGs into ones having sublinear, linear, or superlinear additive stretch. Note that a PRG
stretching its seed by just one bit can be invokedin parallel (on seeds of lengthnε) to yield a PRG stretching its seed byn1−ε bits, for an
arbitraryε > 0.

2In some of these constructions it seems necessary to allow acollectionof NC1 PRGs, and use polynomial-time preprocessing to pick
(once and for all) a random instance from this collection. This is similar to the more standard notion of OWF collection (cf. [23], Section
2.4.2). See Appendix A for further discussion of this slightly relaxed notion of PRG.

3This is not the case for non-cryptographic PRGs such asε-biased generators, for which we do obtain unconditional results.

2

non-uniform setting it also contains the classNL/poly [51].) The existence of OWF and PRG in this class is a mild
assumption, implied in particular by most number-theoretic or algebraic intractability assumptions commonly used
in cryptography. Hence, the existence of OWF and sublinear-stretch PRG inNC0 follows from a variety of standard
assumptions and is not affected by the potential weakness of a particular algebraic structure. A similar compiler
can also be obtained for other cryptographic primitives including one-way permutations, encryption, signatures,
commitment, and collision-resistant hashing.

It is important to note that the PRG produced by our compiler will generally have a sublinear additive stretch
even if the original PRG has a large stretch. However, one cannot do much better when insisting on anNC0

4 PRG,
as there is no PRG with superlinear stretch inNC0

4 [43].

OWF WITH OPTIMAL LOCALITY . The above results leave a small gap between the possibility of cryptography in
NC0

4 and the known impossibility of implementing even OWF inNC0
2. We partially close this gap by providing

positive evidence for the existence of OWF inNC0
3. In particular, we construct such OWF based on the intractability

of decoding a random linear code.

NON-CRYPTOGRAPHIC GENERATORS. Our techniques can also be applied to obtain unconditional constructions
of non-cryptographic PRGs. In particular, building on anε-biased generator inNC0

5 constructed by Mossel et
al. [43], we obtain a linear-stretchε-biased generator inNC0

3. This generator has optimal locality, answering an
open question posed in [43]. It is also essentially optimal with respect to stretch, since locality 3 does not allow for
a superlinear stretch [16]. Our techniques apply also to other types of non-cryptographic PRGs such as generators
for space-bounded computation [6, 45], yielding such generators (with sublinear stretch) inNC0

3.

1.3 Organization

In Section 2 we provide an overview of our techniques, which evolve around the notion of “randomized encoding”
introduced in this work. Following some preliminaries (Section 3), in Section 4 we formally define our notion of ran-
domized encoding and discuss some of its variants, properties, and constructions. We then apply randomized encod-
ings to obtainNC0 implementations of different primitives: OWFs (Section 5), cryptographic and non-cryptographic
PRGs (Section 6), and other cryptographic primitives (Section 7). In Section 8 we construct OWF with optimal lo-
cality based on specific intractability assumptions. We conclude in Section 9 with some further research directions
and open problems. We also call the reader’s attention to Appendix A which discussescollectionsof cryptographic
primitives and how they fit in the context of the current work.

2 Overview of Techniques

Our key observation is that instead of computing a given “cryptographic” functionf(x), it might suffice to compute
a functionf̂(x, r) having the following relation tof :

1. For every fixed inputx and a uniformly random choice ofr, the output distribution̂f(x, r) forms a “random-
ized encoding” off(x), from whichf(x) can be decoded. That is, iff(x) 6= f(x′) then the random variables
f̂(x, r) andf̂(x′, r′), induced by a uniform choice ofr, r′, should have disjoint supports.

2. The distribution of this randomized encoding depends only on the encoded valuef(x) and does not further
depend onx. That is, iff(x) = f(x′) then the random variableŝf(x, r) andf̂(x′, r′) should be identically
distributed. Furthermore, we require that the randomized encoding of an output valuey be efficiently sam-
plable giveny. Intuitively, this means that the output distribution off̂ on inputx reveals no information about
x except what follows fromf(x).

Each of these requirements alone can be satisfied by a trivial functionf̂ (e.g.,f̂(x, r) = x andf̂(x, r) = 0, respec-
tively). However, the combination of the two requirements can be viewed as a non-trivial natural relaxation of the

3

usual notion of computing. In a sense, the functionf̂ defines an “information-theoretically equivalent” representa-
tion of f . In the following, we refer tôf as arandomized encodingof f .

For this approach to be useful in our context, two conditions should be met. First, we need to argue that a
randomized encodinĝf can besecurelyused as a substitute forf . Second, we hope that this relaxation is sufficiently
liberal, in the sense that it allows to efficiently encode relatively complex functionsf by functionsf̂ in NC0. These
two issues are addressed in the following subsections.

2.1 Security of Randomized Encodings

To illustrate how a randomized encodingf̂ can inherit the security features off , consider the case wheref is a OWF.
We argue that the hardness of invertingf̂ reduces to the hardness of invertingf . Indeed, a successful algorithmA
for inverting f̂ can be used to successfully invertf as follows: given an outputy of f , apply the efficient sampling
algorithm guaranteed by requirement 2 to obtain a random encodingŷ of y. Then, useA to obtain a preimage(x, r)
of ŷ underf̂ , and outputx. It follows from requirement 1 thatx is indeed a preimage ofy underf . Moreover, if
y is the image of a uniformly randomx, thenŷ is the image of a uniformly random pair(x, r). Hence, the success
probability of invertingf is the same as that of invertinĝf .

The above argument can tolerate some relaxations to the notion of randomized encoding. In particular, one can
relax the second requirement to allow a small statistical variation of the output distribution. On the other hand, to
maintain the security of other cryptographic primitives, it may be required to further strengthen this notion. For
instance, whenf is a PRG, the above requirements do not guarantee that the output off̂ is pseudo-random, or
even that its output is longer than its input. However, by imposing suitable “regularity” requirements on the output
encoding defined bŷf , it can be guaranteed that iff is a PRG then so iŝf . Thus, different security requirements
suggest different variations of the above notion of randomized encoding.

2.2 Complexity of Randomized Encodings

It remains to address the second issue: can we encode a complex functionf by anNC0 function f̂? Our best
solutions to this problem rely on the machinery ofrandomizing polynomials,described below. But first, we outline
a simple alternative approach4 based on Barrington’s theorem [7], combined with a randomization technique of
Kilian [40].

Supposef is a boolean function inNC1. (Non-boolean functions are handled by repeating the following pro-
cedure for each bit of the output.) By Barrington’s theorem, evaluatingf(x), for such a functionf , reduces to
computing an iterated product of polynomially many elementss1, . . . , sm from the symmetric groupS5, where
eachsi is determined by a single bit ofx (i.e., for everyi there existsj such thatsi is a function ofxj). Now, let
f̂(x, r) = (s1r1, r−1

1 s2r2, . . . , r−1
m−2sm−1rm−1, r−1

m−1sm), where the random inputsri are picked uniformly and

independently fromS5. It is not hard to verify that the output(t1, . . . , tm) of f̂ is random subject to the constraint
thatt1t2 · · · tm = s1s2 · · · sm, where the latter product is in one-to-one correspondence tof(x). It follows thatf̂ is
a randomized encoding off . Moreover,f̂ has constant locality when viewed as a function over the alphabetS5, and
thus yields the qualitative result we are after.

However, the above construction falls short of providing a randomized encoding inNC0, since it is impossible
to sample a uniform element ofS5 in NC0 (even up to a negligible statistical distance).5 Also, thisf̂ does not satisfy
the extra “regularity” properties required by more “sensitive” primitives such as PRGs or one-way permutations.
The solutions presented next avoid these disadvantages and, at the same time, apply to a higher complexity class
thanNC1 and achieve a very small constant locality.

4In fact, a modified version of this approach has been applied for constructing randomizing polynomials in [15].
5Barrington’s theorem generalizes to apply over arbitrary non-solvable groups. Unfortunately, there are no such groups whose order is a

power of two.

4

RANDOMIZING POLYNOMIALS . The concept of randomizing polynomials was introduced by Ishai and Kushile-
vitz [37] as a representation of functions by vectors of low-degree multivariate polynomials. (Interestingly, this con-
cept was motivated by questions in the area ofinformation-theoreticsecure multiparty computation, which seems
unrelated to the current context.) Randomizing polynomials capture the above encoding question within an algebraic
framework. Specifically, a representation off(x) by randomizing polynomials is a randomized encodingf̂(x, r)
as defined above, in whichx andr are viewed as vectors over a finite fieldF and the outputs of̂f as multivariate
polynomials in the variablesx andr. In this work, we will always letF = GF(2).

The most crucial parameter of a randomizing polynomials representation is its algebraicdegree, defined as the
maximal (total) degree of the outputs (i.e., the output multivariate polynomials) as a function of the input variables
in x andr. (Note that bothx andr count towards the degree.) Quite surprisingly, it is shown in [37, 38] that every
boolean functionf : {0, 1}n → {0, 1} admits a representation bydegree-3randomizing polynomials whose number
of inputs and outputs is at mostquadratic in its branching program size.6 (Moreover, this degree bound is tight
in the sense that most boolean functions do not admit a degree-2 representation.) Note that a representation of a
non-boolean function can be obtained by concatenating representations of its output bits, using independent blocks
of random inputs. This concatenation leaves the degree unchanged.

The above positive result implies that functions whose output bits can be computed in the complexity class
⊕L/poly admit an efficient representation by degree-3 randomizing polynomials. This also holds if one requires the
most stringent notion of representation required by our applications. We note, however, that different constructions
from the literature [37, 38, 15] are incomparable in terms of their exact efficiency and the security-preserving features
they satisfy. Hence, different constructions may be suitable for different applications. These issues are discussed in
Section 4.

DEGREE VS. LOCALITY. Combining our general methodology with the above results on randomizing polynomials
already brings us close to our goal, as it enables “degree-3 cryptography”. Taking on from here, we show that any
functionf : {0, 1}n → {0, 1}m of algebraic degreed admits an efficient randomized encodingf̂ of (degreed and)
locality d + 1. That is, each output bit of̂f can be computed by a degree-d polynomial overGF(2) depending on at
mostd + 1 inputs and random inputs. Combined with the previous results, this allows us to make the final step from
degree 3 to locality 4.

3 Preliminaries

Probability notation. Let Un denote a random variable that is uniformly distributed over{0, 1}n. Different oc-
currences ofUn in the same statement refer to the same random variable (rather than independent ones). IfX is
a probability distribution, we writex ← X to indicate thatx is a sample taken fromX. If S is a set, we write
x ∈R S to indicate thatx is uniformly selected selected fromS. Thestatistical distancebetween discrete probabil-
ity distributionsX andY is defined as‖X − Y ‖ def= 1

2

∑
z |Pr[X = z] − Pr[Y = z]|. Equivalently, the statistical

distance betweenX andY may be defined as the maximum, over all boolean functionsT , of the distinguishing
advantage|Pr[T (X) = 1] − Pr[T (Y) = 1]|. A functionε(·) is said to benegligibleif ε(n) < n−c for anyc > 0
and sufficiently largen. For two distribution ensemblesX = {Xn} andY = {Yn}, we writeX ≡ Y if Xn andYn

are identically distributed, andX
s≈ Y if the two ensembles arestatistically indistinguishable; namely,‖Xn − Yn‖

is negligible inn.
We will rely on the following standard properties of statistical distance.

Fact 3.1 For every distributionsX, Y, Z we have‖X − Z‖ ≤ ‖X − Y ‖+ ‖Y − Z‖.

6By default, the notion of “branching programs” refers here to mod-2 branching programs, which output the parity of the number of
accepting paths. See Section 3.

5

Fact 3.2 For every distributionsX,X ′, Y, Y ′ we have‖(X ×X ′)− (Y × Y ′)‖ ≤ ‖X − Y ‖+ ‖X ′ − Y ′‖, where
A×B denotes the product distribution ofA,B, i.e., the joint distribution of independent samples fromA andB.

Fact 3.3 For every distributionsX, Y and every functionf we have‖f(X)− f(Y)‖ ≤ ‖X − Y ‖.

Fact 3.4 Let {Xz}z∈Z , {Yz}z∈Z be distribution ensembles. Then, for every distributionZ over Z, we have
‖(Z, XZ) − (Z, YZ)‖ = Ez←Z [‖Xz − Yz‖]. In particular, if ‖Xz − Yz‖ ≤ ε for everyz ∈ Z, then‖(Z, XZ) −
(Z, YZ)‖ ≤ ε.

Branching programs. A branching program (BP) is defined by a tupleBP = (G,φ, s, t), whereG = (V,E) is a
directed acyclic graph,φ is a labeling function assigning each edge either a positive literalxi, a negative literal̄xi or
the constant 1, ands, t are two distinguished nodes ofG. Thesizeof BP is the number of nodes inG. Each input
assignmentw = (w1, . . . , wn) naturally induces an unlabeled subgraphGw, whose edges include alle ∈ E such that
φ(e) is satisfied byw (e.g., an edge labeledxi is satisfied byw if wi = 1). BPs may be assigned different semantics:
in a non-deterministicBP, an inputw is accepted ifGw contains at least one path froms to t; in a (counting) mod-p
BP, the BP computes the number of paths froms to t modulop. In this work, we will mostly be interested in mod-2
BPs. An example of a mod-2 BP is given in Figure 3.1.

s t x1x2x2x3x311 s t

Figure 3.1: A mod-2 branching program computing the majority of three bits (left side), along with the graphG110

induced by the assignment110 (right side).

Function families and representations. We associate with a functionf : {0, 1}∗ → {0, 1}∗ a function family
{fn}n∈N, wherefn is the restriction off to n-bit inputs. We assume all functions to be length regular, namely
their output length depends only on their input length. Hence, we may writefn : {0, 1}n → {0, 1}l(n). We will
represent functionsf by families of circuits, branching programs, or vectors of polynomials (where each polynomial
is represented by a formal sum of monomials). Wheneverf is taken from a uniform class, we assume that its
representation is uniform as well. That is, the representation offn is generated in timepoly(n) and in particular is
of polynomial size. We will often abuse notation and writef instead offn even when referring to a function onn
bits.

Locality and degree. We say thatf is c-local if each of its output bits depends on at mostc input bits.7 For a
constantc, the non-uniform classNC0

c includes allc-local functions. We will sometimes view the binary alphabet
as the finite fieldF = GF(2), and say that a functionf : Fn → F l(n) has degreed if each of its outputs can be
expressed as a multivariate polynomial of degree (at most)d in the inputs.

7A boolean function depends on theith input bit if there exists an assignment such that flipping theith input bit changes the value of the
function.

6

Complexity classes. For brevity, we use the (somewhat nonstandard) convention that all complexity classes are
polynomial-time uniform unless otherwise stated. For instance,NC0 refers to the class of functions admitting
uniformNC0 circuits, whereasnon-uniformNC0 refers to the class of functions admitting non-uniformNC0 circuits.
We letNL/poly (resp.,⊕L/poly) denote the class of boolean functions computed by a polynomial-time uniform
family of nondeterministic (resp., modulo-2) BPs. (Recall that in a uniform family of circuits or branching programs
computingf , it should be possible to generate the circuit or branching program computingfn in time poly(n).)
Equivalently, the classNL/poly (resp.,⊕L/poly) is the class of functions computed byNL (resp.,⊕L) Turing
machines taking a uniform advice. (The class⊕L/poly contains the classesL/poly andNC1 and is contained in
NC2. In a non-uniform setting it also contains the classNL/poly [51].) We extend boolean complexity classes, such
asNL/poly and⊕L/poly, to include non-boolean functions by letting the representation includel(n) branching
programs, one for each output. Uniformity requires that thel(n) branching programs be all generated in time
poly(n).

4 Randomized Encoding of Functions

In this section we formally introduce our notion of randomized encoding. In Section 4.1 we introduce several
variants of randomized encoding and in Section 4.2 we prove some of their useful properties. Finally, in Section 4.3
we constructNC0

4 encodings for branching programs, building on [37, 38].

4.1 Definitions

We start by defining a randomized encoding of a finite functionf . This definition will be later extended to a (uniform)
family of functions.

Definition 4.1 (Randomized encoding)Let f : {0, 1}n → {0, 1}l be a function. We say that a function̂f :
{0, 1}n × {0, 1}m → {0, 1}s is a δ-correct,ε-privaterandomized encodingof f , if it satisfies the following:

• δ-correctness. There exists a deterministic8 algorithm C, called adecoder, such that for every inputx ∈
{0, 1}n, Pr[C(f̂(x,Um)) 6= f(x)] ≤ δ.

• ε-privacy. There exists a randomized algorithmS, called asimulator, such that for everyx ∈ {0, 1}n,
‖S(f(x))− f̂(x,Um)‖ ≤ ε.

We refer to the second input of̂f as its random inputand tom and s as therandomness complexityand output
complexityof f̂ , respectively.

Note that the above definition only refers to theinformationaboutx revealed byf̂(x, r) and does not consider
the complexity of the decoder and the simulator. Intuitively, the functionf̂ defines an “information-theoretically
equivalent” representation off . The correctness property guarantees that fromŷ = f̂(x, r) it is possible to recon-
structf(x) (with high probability), whereas the privacy property guarantees that by seeingŷ one cannot learn too
much aboutx (in addition tof(x)). The encoding isδ-correct (resp.ε-private), if it correct (resp. private) up to an
“error” of δ (resp.,ε). This is illustrated by the next example.

Example 4.2 Consider the functionf(x1, . . . , xn) = x1 ∨ x2 ∨ . . . ∨ xn. We define a randomized encodinĝf :
{0, 1}n × {0, 1}ns → {0, 1}s by f̂(x, r) = (

∑n
i=1 xiri,1, . . . ,

∑n
i=1 xiri,s), wherex = (x1, . . . , xn), r = (ri,j) for

1 ≤ i ≤ n, 1 ≤ j ≤ s, and addition is overGF(2). First, observe that the distribution of̂f(x,Uns) depends only on
the value off(x). Specifically, letS be a simulator that outputs ans-tuple of zeroes iff(x) = 0, and a uniformly

8We restrict the decoder to be deterministic for simplicity. This restriction does not compromise generality, in the sense that one can
transform a randomized decoder to a deterministic one by incorporating the coins of the former in the encoding itself.

7

chosen string in{0, 1}s if f(x) = 1. It is easy to verify thatS(f(x)) is distributed the same aŝf(x,Uns) for any
x ∈ {0, 1}n. It follows that this randomized encoding is 0-private. Also, one can obtain an efficient decoderC that
given a sampley from the distributionf̂(x,Uns) outputs 0 ify = 0s and otherwise outputs 1. Such an algorithm
will err with probability2−s, thusf̂ is 2−s-correct.

On uniform randomized encodings.The above definition naturally extends to functionsf : {0, 1}∗ → {0, 1}∗. In
this case, the parametersl, m, s, δ, ε are all viewed as functions of the input lengthn, and the algorithmsC, S receive
1n as an additional input. In our default uniform setting, we require thatf̂n, the encoding offn, be computable in
time poly(n) (givenx ∈ {0, 1}n andr ∈ {0, 1}m(n)). Thus, in this setting bothm(n) ands(n) are polynomially
bounded. We also require both the decoder and the simulator to be efficient. (This is not needed by some of the
applications, but is a feature of our constructions.) We formalize these requirements below.

Definition 4.3 (Uniform randomized encoding) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function andl(n) an output length function such that|f(x)| = l(|x|) for everyx ∈ {0, 1}∗. We say thatf̂ :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a δ(n)-correct ε(n)-private uniform randomized encoding off , if the following
holds:

• Length regularity. There exist polynomially-bounded and efficiently computable length functionsm(n), s(n)
such that for everyx ∈ {0, 1}n andr ∈ {0, 1}m(n), we have|f̂(x, r)| = s(n).

• Efficient evaluation. There exists a polynomial-timeevaluation algorithmthat, givenx ∈ {0, 1}∗ and r ∈
{0, 1}m(|x|), outputsf̂(x, r).

• δ-correctness.There exists a polynomial-timedecoderC, such that for everyx ∈ {0, 1}n we havePr[C(1n,
f̂(x,Um(n))) 6= f(x)] ≤ δ(n).

• ε-privacy. There exists a probabilistic polynomial-timesimulatorS, such that for everyx ∈ {0, 1}n we have
‖S(1n, f(x))− f̂(x,Um(n))‖ ≤ ε(n).

When saying that a uniform encodinĝf is in a (uniform) circuit complexity class, we mean that its evaluation
algorithm can be implemented by circuits in this class. For instance, we say thatf̂ is in NC0

d if there exists a
polynomial-time circuit generatorG such thatG(1n) outputs ad-local circuit computingf̂(x, r) on allx ∈ {0, 1}n

andr ∈ {0, 1}m(n).
From here on, a randomized encoding of an efficiently computable function is assumed to be uniform by default.

Moreover, we will freely extend the above definition to apply to a uniform collection of functionsF = {fz}z∈Z , for
some index setZ ⊆ {0, 1}∗. In such a case it is required that the encoded collectionF̂ = {f̂z}z∈Z is also uniform,
in the sense that the same efficient evaluation algorithm, decoder, and simulator should apply to the entire collection
when givenz as an additional input. (See Appendix A for a more detailed discussion ofcollectionsof functions and
cryptographic primitives.) Finally, for the sake of simplicity we will sometimes formulate our definitions, claims
and proofs using finite functions, under the implicit understanding that they naturally extend to the uniform setting.

We move on to discuss some variants of the basic definition. Correctness (resp., privacy) can be eitherperfect,
when δ = 0 (resp.,ε = 0), or statistical, whenδ(n) (resp.,ε(n)) is negligible. In fact, we can further relax
privacy to hold only against efficient algorithms, e.g., to require that for everyx ∈ {0, 1}n, every polynomial time
algorithmA distinguishes between the distributionsS(f(x)) andf̂(x, Um) with no more than negligible advantage.
Such an encoding is referred to ascomputationallyprivate and it suffices for the purpose of many applications
discussed in this paper. (Further details and additional applications appear in [4].) However, while for some of the
primitives (such as OWF) computational privacy and statistical correctness will do, others (such as PRGs or one-way
permutations) require even stronger properties than perfect correctness and privacy. One such additional property is
that the simulatorS, when invoked on a uniformly random string from{0, 1}l (the output domain off), will output a
uniformly random string from{0, 1}s (the output domain of̂f). We call this propertybalance. Note that the balance

8

requirement does not impose any uniformity condition on the output off , which in fact can be concentrated on a
strict subset of{0, 1}l.

Definition 4.4 (Balanced randomized encoding)A randomized encodinĝf : {0, 1}n × {0, 1}m → {0, 1}s of a
functionf : {0, 1}n → {0, 1}l is calledbalancedif it has a perfectly private simulatorS such thatS(Ul) ≡ Us. We
refer toS as abalanced simulator.

A last useful property is a syntactic one: we sometimes wantf̂ to have the same additive stretch asf . Specifically,
we say thatf̂ is stretch-preserving(with respect tof) if s− (n + m) = l − n, or equivalentlym = s− l.

We are now ready to define our two main variants of randomized encoding.

Definition 4.5 (Statistical randomized encoding)A statistical randomized encodingis a randomized encoding that
is statistically correct and statistically private.

Definition 4.6 (Perfect randomized encoding)A perfect randomized encodingis a randomized encoding that is
perfectly correct, perfectly private, balanced, and stretch-preserving.

A combinatorial view of perfect encoding. To gain better understanding of the properties of perfect encoding,
we take a closer look at the relation between a function and its encoding. Letf̂ : {0, 1}n+m → {0, 1}s be an
encoding off : {0, 1}n → {0, 1}l. The following description addresses the simpler case wheref is onto. Every
x ∈ {0, 1}n is mapped to somey ∈ {0, 1}l by f , and to a2m-size multiset{f̂(x, r)|r ∈ {0, 1}m}which is contained
in {0, 1}s. Perfect privacy means that this multiset is common to all thex’s that share the same image underf ; so
we have a mapping fromy ∈ {0, 1}l to multisets in{0, 1}s of size2m (such a mapping is defined by the perfect
simulator). Perfect correctness means that these multisets are mutually disjoint. However, even perfect privacy and
perfect correctness together do not promise that this mapping covers all of{0, 1}s. The balance property guarantees
that the multisets form a perfect tiling of{0, 1}s; moreover it promises that each element in these multisets has the
same multiplicity. If the encoding is also stretch-preserving, then the multiplicity of each element must be 1, so that
the multisets are actually sets. Hence, a perfect randomized encoding guarantees the existence of a perfect simulator
S whose2l output distributions form a perfect tiling of the space{0, 1}s by sets of size2m.

Remark 4.7 (A padding convention)We will sometimes vieŵf as a function of a single input of lengthn+m(n)
(e.g., when using it as a OWF or a PRG). In this case, we requirem(·) to be monotone non-decreasing, so that
n + m(n) uniquely determinesn. We apply a standard padding technique for definingf̂ on inputs whose length is
not of the formn + m(n). Specifically, ifn + m(n) + t < (n + 1) + m(n + 1) we definef̂ ′ on inputs of length
n + m(n) + t by applyingf̂n on the firstn + m(n) bits and then appending thet additional input bits to the output
of f̂n. This convention respects the security of cryptographic primitives such as OWF, PRG, and collision-resistant
hashing, provided thatm(n) is efficiently computable and is sufficiently dense (both of which are guaranteed by a
uniform encoding). That is, if the unpadded functionf̂ is secure with respect to its partial domain, then its padded
versionf̂ ′ is secure in the standard sense, i.e., over the domain of all strings.9 (See a proof for the case of OWF
in [23, Proposition 2.2.3].) Note that the padded functionf̂ ′ has the same locality and degree asf̂ . Moreover,f̂ ′ also
preserves syntactic properties off̂ ; for example it preserves the stretch off̂ , and if f̂ is a permutation then so iŝf ′.
Thus, it is enough to prove our results for the partially defined unpadded functionf̂ , and keep the above conventions
implicit.

Finally, we define two complexity classes that capture the power of randomized encodings inNC0.

Definition 4.8 (The classes SREN, PREN)The classSREN (resp.,PREN) is the class of functionsf : {0, 1}∗ →
{0, 1}∗ admitting a statistical (resp., perfect) uniform randomized encoding inNC0.

9This can be generally explained by viewing each slice of the padded functionf̂ ′ (i.e., its restriction to inputs of some fixed length) as a
perfectrandomized encoding of a corresponding slice off̂ .

9

4.2 Basic Properties

We now put forward some useful properties of randomized encodings. We first argue that an encoding of a non-
boolean function can be obtained by concatenating encodings of its output bits, using an independent random input
for each bit. The resulting encoding inherits all the features of the concatenated encodings, and in particular preserves
their perfectness.

Lemma 4.9 (Concatenation) Let fi : {0, 1}n → {0, 1}, 1 ≤ i ≤ l, be the boolean functions computing the
output bits of a functionf : {0, 1}n → {0, 1}l. If f̂i : {0, 1}n × {0, 1}mi → {0, 1}si is a δ-correct ε-private

encoding offi, then the function̂f : {0, 1}n × {0, 1}m1+...+ml → {0, 1}s1+...+sl defined byf̂(x, (r1, . . . , rl))
def=

(f̂1(x, r1), . . . , f̂l(x, rl)) is a (δl)-correct,(εl)-private encoding off . Moreover, if allf̂i are perfect then so iŝf .

Proof: We start with correctness. LetCi be aδ-correct decoder for̂fi. Define a decoderC for f̂ byC(ŷ1, . . . , ŷl) =
(C1(ŷ1), . . . , Cl(ŷl)). By a union bound argument,C is a(δl)-correct decoder for̂f as required.

We turn to analyze privacy. LetSi be anε-private simulator forf̂i. An (εl)-private simulatorS for f̂ can be
naturally defined byS(y) = (S1(y1), . . . , Sl(yl)), where the invocations of the simulatorsSi use independent coins.
Indeed, for everyx ∈ {0, 1}n we have:

‖S(f(x))− f̂(x, (Um1 , . . . , Uml
)‖ = ‖(S1(y1), . . . , Sl(yl))− (f̂1(x,Um1), . . . , f̂l(x,Uml

))‖

≤
l∑

i=1

‖Si(yi)− f̂i(x,Umi)‖

≤ εl,

wherey = f(x). The first inequality follows from Fact 3.2 and the independence of the randomness used for
differenti, and the second from theε-privacy of eachSi.

Note that the simulatorS described above is balanced if allSi are balanced. Moreover, if all̂fi are stretch
preserving, i.e.,si−1 = mi, then we have

∑l
i=1 si− l =

∑l
i=1 mi and hencêf is also stretch preserving. It follows

that if all f̂i are perfect then so iŝf .
We state the following uniform version of Lemma 4.9, whose proof is implicit in the above.

Lemma 4.10 (Concatenation: uniform version) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function, viewed as a uniform collection of functionsF = {fn,i}n∈N,1≤i≤l(n); that is, fn,i(x) outputs theith bit

of f(x) for all x ∈ {0, 1}n. Suppose that̂F = {f̂n,i}n∈N,1≤i≤l(n) is a perfect (resp., statistical) uniform ran-

domized encoding ofF . Then, the function̂f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ defined byf̂(x, (r1, . . . , rl(|x|)))
def=

(f̂|x|,1(x, r1), . . . , f̂|x|,l(|x|)(x, rl(|x|))) is a perfect (resp., statistical) uniform randomized encoding off .

Another useful feature of randomized encodings is the following intuitive composition property: suppose we
encodef by g, and then viewg as a deterministic function and encode it again. Then, the resulting function (parsed
appropriately) is a randomized encoding off . Again, the resulting encoding inherits the perfectness of the encodings
from which it is composed.

Lemma 4.11 (Composition) Let g(x, rg) be aδg-correct,εg-private encoding off(x) andh((x, rg), rh) be aδh-

correct,εh-private encoding ofg((x, rg)) (viewed as a single-argument function). Then, the functionf̂(x, (rg, rh)) def=
h((x, rg), rh) is a (δg + δh)-correct,(εg + εh)-private encoding off . Moreover, ifg, h are perfect (resp., statistical)
uniform randomized encodings then so isf̂ .

10

Proof: We start with correctness. LetCg be aδg-correct decoder forg andCh a δh-correct decoder forh. Define
a decoderC for f̂ by C(ŷ) = Cg(Ch(ŷ)). The decoderC errs only if eitherCh or Cg err. Thus, by the union bound
we have for everyx,

Pr
rg ,rh

[C(f̂(x, (rg, rh))) 6= f(x)] ≤ Pr
rg ,rh

[Ch(h((x, rg), rh)) 6= g(x, rg)] + Pr
rg

[Cg(g(x, rg)) 6= f(x)]

≤ δh + δg,

as required.
Privacy is argued similarly. LetSg be anεg-private simulator forg andSh an εh-private simulator forh. We

define a simulatorS for f̂ by S(y) = Sh(Sg(y)). Letting mg,mh denote the randomness complexity ofg, h,
respectively, we have for everyx,

‖S(f(x))− f̂(x, (Umg , Umh
))‖ = ‖Sh(Sg(f(x)))− h((x,Umg), Umh

)‖
≤ ‖Sh(Sg(f(x)))− Sh(g(x,Umg))‖+ ‖Sh(g(x,Umh

))− h((x,Umg), Umh
)‖

≤ εg + εh,

where the first inequality follows from the triangle inequality (Fact 3.1), and the second from Facts 3.3 and 3.4.
It is easy to verify that ifSg andSh are balanced then so isS. Moreover, ifg preserves the additive stretch off

andh preserves the additive stretch ofg thenh (hence alsôf) preserves the additive stretch off . Thusf̂ is perfect
if both g, h are perfect. All the above naturally carries over to the uniform setting, from which the last part of the
lemma follows.

Finally, we prove two useful features of aperfectencoding.

Lemma 4.12 (Unique randomness)Supposef̂ is a perfect randomized encoding off . Then, (a)f̂ satisfies the
followingunique randomnessproperty: for any inputx, the functionf̂(x, ·) is injective, namely there are no distinct
r, r′ such thatf̂(x, r) = f̂(x, r′). Moreover, (b) iff is a permutation then so iŝf .

Proof: Let f : {0, 1}n → {0, 1}l and f̂ : {0, 1}n × {0, 1}m → {0, 1}s. To prove part (a), assume towards a
contradiction that̂f does not satisfy the unique randomness property. Then, by perfect privacy, we have|Im(f̂)| <
|Im(f)| · 2m. On the other hand, lettingS be a balanced simulator, we have

|Im(f̂)| · 2−s = Pr
y←Ul

[S(y) ∈ Im(f̂)]

≥ Pr
y←Ul

[S(y) ∈ Im(f̂)|y ∈ Im(f)] · Pr
y←Ul

[y ∈ Im(f)]

= 1 · |Im(f)|
2l

,

where the last equality follows from perfect privacy. Sinceg is stretch preserving (s − l = m), we get from the
above that|Im(f̂)| ≥ |Im(f)| · 2m, and derive a contradiction.

If f is a permutation thenn = l and sincef̂ is stretch preserving, we can writêf : {0, 1}s → {0, 1}s. Thus, to
prove part (b), it is enough to prove thatf̂ is injective. Suppose that̂f(x, r) = f̂(x′, r′). Then, sincef is injective
andf̂ is perfectly correct it follows thatx = x′; hence, by part (a),r = r′ and the proof follows.

4.3 Constructions

In this section we construct randomized encodings inNC0. We first review a construction from [38] of degree-
3 randomizing polynomials based on mod-2 branching programs and analyze some of its properties. Next, we
introduce a general locality reduction technique, allowing to transform a degree-d encoding to a(d + 1)-local
encoding. Finally, we discuss extensions to other types of BPs.

11

1 r
(1)
1 r

(1)
2 · · r

(1)
`−2

0 1 · · · ·
0 0 1 · · ·
0 0 0 1 · ·
0 0 0 0 1 r

(1)

(`−1
2)

0 0 0 0 0 1

∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗ ∗

0 −1 ∗ ∗ ∗ ∗
0 0 −1 ∗ ∗ ∗
0 0 0 −1 ∗ ∗
0 0 0 0 −1 ∗

1 0 0 0 0 r
(2)
1

0 1 0 0 0 r
(2)
2

0 0 1 0 0 ·
0 0 0 1 0 ·
0 0 0 0 1 r

(2)
`−2

0 0 0 0 0 1

Figure 4.1: The matricesR1(r(1)), L(x), R2(r(2)) (from left to right). The symbol∗ represents a degree-1 polyno-
mial in an input variable.

DEGREE-3 RANDOMIZING POLYNOMIALS FROM MOD-2 BRANCHING PROGRAMS[38]. Let BP = (G, φ, s, t) be
a mod-2 BP of size`, computing a boolean10 functionf : {0, 1}n → {0, 1}; that is,f(x) = 1 if and only if the
number of paths froms to t in Gx equals1 modulo2. Fix some topological ordering of the vertices ofG, where
the source vertexs is labeled1 and the terminal vertext is labeled`. Let A(x) be the` × ` adjacency matrix of
Gx viewed as a formal matrix whose entries are degree-1 polynomials in the input variablesx. Specifically, the
(i, j) entry of A(x) contains the value ofφ(i, j) on x if (i, j) is an edge inG, and 0 otherwise. (Hence,A(x)
contains the constant 0 on and below the main diagonal, and degree-1 polynomials in the input variables above the
main diagonal.) DefineL(x) as the submatrix ofA(x) − I obtained by deleting columns and rowt (i.e., the first
column and the last row). As before, each entry ofL(x) is a degree-1 polynomial in a single input variablexi;
moreover,L(x) contains the constant−1 in each entry of its second diagonal (the one below the main diagonal) and
the constant0 below this diagonal. (See Figure 4.1.)

Fact 4.13 ([38]) f(x) = det(L(x)), where the determinant is computed overGF(2).

Proof sketch: SinceG is acyclic, the number ofs− t paths inGx mod2 can be written as(I + A(x) + A(x)2 +
. . . + A(x)`)s,t = (I − A(x))−1

s,t whereI denotes aǹ × ` identity matrix and all arithmetic is overGF(2). Recall
thatL(x) is the submatrix ofA(x) − I obtained by deleting columns and rowt. Hence, expressing(I − A(x))−1

s,t

using the corresponding cofactor ofI −A(x), we have:

(I −A(x))−1
s,t = (−1)s+t det(−L(x))

det(I −A(x))
= detL(x).

Let r(1) andr(2) be vectors overGF(2) of length
∑`−2

i=1 i =
(
`−1
2

)
and` − 2, respectively. LetR1(r(1)) be an

(`−1)×(`−1) matrix with1’s on the main diagonal,0’s below it, andr(1)’s elements in the remaining
(
`−1
2

)
entries

above the diagonal (a unique element ofr(1) is assigned to each matrix entry). LetR2(r(2)) be an(`− 1)× (`− 1)
matrix with 1’s on the main diagonal,r(2)’s elements in the rightmost column, and0’s in each of the remaining
entries. (See Figure 4.1.)

Fact 4.14 ([38]) LetM,M ′ be(`− 1)× (`− 1) matrices that contain the constant−1 in each entry of their second
diagonal and the constant0 below this diagonal. Then,det(M) = det(M ′) if and only if there existr(1) andr(2)

such thatR1(r(1))MR2(r(2)) = M ′.
10The following construction generalizes naturally to a (counting) mod-p BP, computing a functionf : {0, 1}n → Zp. In this work,

however, we will only be interested in the casep = 2.

12

Proof sketch: Suppose thatR1(r(1))MR2(r(2)) = M ′ for somer(1) andr(2). Then, sincedet(R1(r(1))) =
det(R2(r(2))) = 1, it follows thatdet(M) = det(M ′).

For the second direction assume thatdet(M) = det(M ′). We show that there there existr(1) andr(2) such
that R1(r(1))MR2(r(2)) = M ′. Multiplying M by a matrixR1(r(1)) on the left is equivalent to adding to each
row of M a linear combination of the rows below it. On the other hand, multiplyingM by a matrixR2(r(2)) on
the right is equivalent to adding to the last column ofM a linear combination of the other columns. Observe that a
matrix M that contains the constant−1 in each entry of its second diagonal and the constant0 below this diagonal
can be transformed, using such left and right multiplications, to a canonic matrixHy containing−1’s in its second
diagonal, an arbitrary valuey in its top-right entry, and0’s elsewhere. Sincedet(R1(r(1))) = det(R2(r(2))) = 1,
we havedet(M) = det(Hy) = y. Thus, whendet(M) = det(M ′) = y we can writeHy = R1(r(1))MR2(r(2)) =
R1(s(1))M ′R2(s(2)) for somer(1), r(2), s(1), s(2). Multiplying both sides byR1(s(1))−1, R2(s(2))−1, and observing
that each set of matricesR1(·) andR2(·) forms a multiplicative group finishes the proof.

Lemma 4.15 (implicit in [38]) Let BP be a mod-2 branching program computing the boolean functionf . Define
a degree-3 function̂f(x, (r(1), r(2))) whose outputs contain the

(
`
2

)
entries on or above the main diagonal of the

matrixR1(r(1))L(x)R2(r(2)). Then,f̂ is a perfect randomized encoding off .

Proof: We start by showing that the encoding is stretch preserving. The length of the random input off̂ is
m =

(
`−1
2

)
+ `− 2 =

(
`
2

)− 1 and its output length iss =
(

`
2

)
. Thus we haves = m + 1, and sincef is a boolean

function its encodinĝf preserves its stretch.
We now describe the decoder and the simulator. Given an output off̂ , representing a matrixM , the decoderC

simply outputsdet(M). (Note that the entries below the main diagonal of this matrix are constants and therefore
are not included in the output of̂f .) By Facts 4.13 and 4.14,det(M) = det(L(x)) = f(x), hence the decoder is
perfect.

The simulatorS, on inputy ∈ {0, 1}, outputs the
(

`
2

)
entries on and above the main diagonal of the matrix

R1(r(1))HyR2(r(2)), wherer(1), r(2) are randomly chosen, andHy is the(`−1)× (`−1) matrix that contains−1’s
in its second diagonal,y in its top-right entry, and0’s elsewhere.

By Facts 4.13 and 4.14, for everyx ∈ {0, 1}n the supports of̂f(x, Um) and ofS(f(x)) are equal. Specifically,
these supports include all strings in{0, 1}s representing matrices with determinantf(x). Since the supports ofS(0)
andS(1) form a disjoint partition of the entire space{0, 1}s (by Fact 4.14) and sinceS usesm = s−1 random bits,
it follows that|support(S(b))| = 2m, for b ∈ {0, 1}. Since both the simulator and the encoding usem random bits,
it follows that both distributions,̂f(x,Um) andS(f(x)), are uniform over their support and therefore are equivalent.
Finally, since the supports ofS(0) andS(1) halve the range of̂f (that is,{0, 1}s), the simulator is also balanced.

REDUCING THE LOCALITY. It remains to convert the degree-3 encoding into one inNC0. To this end, we show how
to construct for any degree-d function (whered is constant) a(d+1)-local perfect encoding. Using the composition
lemma, we can obtain anNC0 encoding of a function by first encoding it as a constant-degree function, and then
applying the locality construction.

The idea for the locality construction is to represent a degree-d polynomial as a sum of monomials, each having
locality d, and randomize this sum using a variant of the method for randomizing group product, described in
Section 2.2. (A direct use of the latter method over the groupZ2 gives a(d + 2)-local encoding instead of the
(d + 1)-local one obtained here.)

Construction 4.16 (Locality construction) Let f(x) = T1(x) + . . . + Tk(x), wheref, T1, . . . , Tk : GF(2)n →
GF(2) and summation is overGF(2). The local encodinĝf : GF(2)n+(2k−1) → GF(2)2k is defined by:

f̂(x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1))

def= (T1(x)− r1, T2(x)− r2, . . . , Tk(x)− rk,

r1 − r′1, r
′
1 + r2 − r′2, . . . , r

′
k−2 + rk−1 − r′k−1, r

′
k−1 + rk).

13

For example, applying the locality construction to the polynomialx1x2 +x2x3 +x4 results in the encoding(x1x2−
r1, x2x3 − r2, x4 − r3, r1 − r′1, r

′
1 + r2 − r′2, r

′
2 + r3).

Lemma 4.17 (Locality lemma) Letf and f̂ be as in Construction 4.16. Then,f̂ is a perfect randomized encoding
of f . In particular, if f is a degree-d polynomial written as a sum of monomials, thenf̂ is a perfect encoding off
with degreed and localitymax(d + 1, 3).

Proof: Sincem = 2k − 1 ands = 2k, the encodingf̂ is stretch preserving. Moreover, givenŷ = f̂(x, r) we
can decode the value off(x) by summing up the bits of̂y. It is not hard to verify that such a decoder never errs.
To prove perfect privacy we define a simulator as follows. Giveny ∈ {0, 1}, the simulatorS uniformly chooses
2k− 1 random bitsr1, . . . , r2k−1 and outputs(r1, . . . , r2k−1, y− (r1 + . . .+ r2k−1)). Obviously,S(y) is uniformly
distributed over the2k-length strings whose bits sum up toy overGF(2). It thus suffices to show that the outputs
of f̂(x,Um) are uniformly distributed subject to the constraint that they add up tof(x). This follows by observing
that, for anyx and any assignmentw ∈ {0, 1}2k−1 to the first2k − 1 outputs off̂(x,Um), there is a unique way
to set the random inputsri, r

′
i so that the output of̂f(x, (r, r′)) is consistent withw. Indeed, for1 ≤ i ≤ k, the

values ofx,wi uniquely determineri. For 1 ≤ i ≤ k − 1, the valueswk+i, ri, r
′
i−1 determiner′i (wherer′0

def= 0).

Therefore,S(f(x)) ≡ f̂(x,Um). Moreover,S is balanced since the supports ofS(0) andS(1) halve{0, 1}s and
S(y) is uniformly distributed over its support fory ∈ {0, 1}.

In Appendix B we describe a graph-based generalization of Construction 4.16, which in some cases can give rise
to a (slightly) more compact encodinĝf .

We now present the main theorem of this section.

Theorem 4.18⊕L/poly ⊆ PREN . Moreover, anyf ∈ PREN admits a perfect randomized encoding inNC0
4.

Proof: The first part of the theorem is derived by combining the degree-3 construction of Lemma 4.15 together
with the Locality Lemma (4.17), using the Composition Lemma (4.11) and the Concatenation Lemma (4.10).

To prove the second part, we first encodef by a perfect encodinĝf in NC0 (guaranteed by the fact thatf is in
PREN). Then, sincef̂ is in⊕L/poly, we can use our constructions (Lemmas 4.15, 4.17, 4.11, 4.10) to perfectly
encodef̂ by a functionf̂ ′ in NC0

4. By the Composition Lemma (4.11),̂f ′ perfectly encodes the functionf .

Remark 4.19 An alternative construction of perfect randomized encodings inNC0 can be obtained using a ran-
domizing polynomials construction from [38, Sec. 3], which is based on an information-theoretic variant of Yao’s
garbled circuit technique [53]. This construction yields an encoding with a (large) constant locality, without requir-
ing an additional “locality reduction” step (of Construction 4.16). This construction is weaker than the current one in
that it only efficiently applies to functions inNC1 rather than⊕L/poly. For functions inNC1, the complexity of this
alternative (in terms of randomness and output length) is incomparable to the complexity of the current construction.

There are variants of the above construction that can handle non-deterministic branching programs as well, at the
expense of losing perfectness [37, 38]. For instance, it is shown in [37] that iff is represented by a non-deterministic
BP of sizè , then the function̂f(x, (R1, R2))

def= R1L(x)R2 is a perfectly-private, statistically-correct encoding off
provided thatR1, R2 are uniformly random(`−1)×(`−1) matrices overGF(p), wherep is prime andp > ``. (The
matrix L(x) is as defined above, except that here it is interpreted as a matrix overGF(p).) To obtain an encoding
over a binary alphabet, we rely on the facts that one can sample an almost-uniform element ofGF(p) (up to a
negligible statistical distance) as well as perform multiplications inGF(p) usingNC1 boolean circuits. Thus, we
get a statisticalbinary encoding inNC1, which can be converted (using Theorem 4.18 and the composition lemma)
to a statistical encoding inNC0

4. Based on the above, we get the following theorem:

Theorem 4.20 NL/poly ⊆ SREN . Moreover, anyf ∈ SREN admits a statistical randomized encoding inNC0
4.

Note that the second part of Theorem 4.20 can be proved similarly to the second part of Theorem 4.18.

14

5 One-Way Functions inNC0

A one-way function(OWF) f : {0, 1}∗ → {0, 1}∗ is a polynomial-time computable function that is hard to invert;
namely, every polynomial time algorithm that tries to invertf on inputf(x), wherex is picked fromUn, succeeds
only with a negligible probability. Formally,

Definition 5.1 (One-way function) A functionf : {0, 1}∗ → {0, 1}∗ is called aone-way function(OWF) if it
satisfies the following two properties:

• Easy to compute: There exists a deterministic polynomial-time algorithm computingf(x).

• Hard to invert : For every probabilistic polynomial-time algorithm,B, the probabilityPrx←Un [B(1n, f(x)) ∈
f−1(f(x))] is negligible inn (where the probability is taken over a uniform choice ofx and the internal coin
tosses ofB).

The functionf is calledweakly one-wayif the second requirement is replaced with the following (weaker) one:

• Slightly hard to invert : There exists a polynomialp(·), such that for every probabilistic polynomial-time
algorithm,B, and all sufficiently largen’s Prx←Un [B(1n, f(x)) /∈ f−1(f(x))] > 1

p(n) (where the probability
is taken over a uniform choice ofx and the internal coin tosses ofB).

The above definition naturally extends to functions whose domain is restricted to some infinite subsetI ⊂ N
of the possible input lengths, such as ones defined by a randomized encodingf̂ . As argued in Remark 4.7, such a
partially defined OWF can be augmented into a fully defined OWF provided that the setI is polynomially-dense and
efficiently recognizable (which is a feature of functionsf̂ obtained via a uniform encodings).

5.1 Key Lemmas

In the following we show that a perfectly correct and statistically private randomized encodingf̂ of a OWFf is also
a OWF. The idea, as described in Section 2.1, is to argue that the hardness of invertingf̂ reduces to the hardness of
invertingf . The case of a statistical randomized encoding that does not enjoy perfect correctness is more involved
and will be dealt with later in this section.

Lemma 5.2 Suppose thatf : {0, 1}∗ → {0, 1}∗ is hard to invert andf̂(x, r) is a perfectly correct, statistically
private uniform encoding off . Thenf̂ , viewed as a single-argument function, is also hard to invert.

Proof: Let s = s(n),m = m(n) be the lengths of the output and of the random input off̂ respectively. Note that
f̂ is defined on input lengths of the formn+m(n); we prove that it is hard to invert on these inputs. Assume, towards
a contradiction, that there is an efficient algorithm̂B invertingf̂(x, r) with success probabilityφ(n + m) > 1

q(n+m)

for some polynomialq(·) and infinitely manyn’s. We useB̂ to construct an efficient algorithmB that invertsf with
similar success. On input(1n, y), the algorithmB runsS, the statistical simulator of̂f , on the input(1n, y) and gets
a stringŷ as the output ofS. Next,B runs the inverter̂B on the input(1n+m, ŷ), getting(x′, r′) as the output of̂B
(i.e.,B̂ “claims” that f̂(x′, r′) = ŷ). B terminates with outputx′.

COMPLEXITY: SinceS andB̂ are both polynomial-time algorithms, and sincem(n) is polynomially bounded, it
follows thatB is also a polynomial-time algorithm.

CORRECTNESS: We analyze the success probability ofB on input(1n, f(x)) wherex ← Un. Let us assume for
a moment that the simulatorS is perfect. Observe that, by perfect correctness, iff(x) 6= f(x′) then the support
sets off̂(x,Um) andf̂(x′, Um) are disjoint. Moreover, by perfect privacy the stringŷ, generated bŷB, is always in
the support off̂(x,Um). Hence, ifB̂ succeeds (that is, indeed̂y = f̂(x′, r′)) then so doesB (namely,f(x′) = y).

15

Finally, observe that (by Fact 3.4) the inputŷ on whichB invokesB̂ is distributed identically tôfn(Un, Um(n)), and
thereforeB succeeds with probability≥ φ(n + m). Formally, we can write,

Pr
x←Un

[B(1n, f(x)) ∈ f−1(f(x))] ≥ Pr
x←Un,ŷ←S(1n,f(x))

[B̂(1n+m, ŷ) ∈ f̂−1(ŷ)]

= Pr
x←Un,r←Um(n)

[B̂(1n+m, f̂n(x, r)) ∈ f̂−1(f̂(x, r))]

≥ φ(n + m).

WhenS is only statistically private, we lose negligible success probabilities in the first and second transitions.
The first loss is due to the fact that the simulator invoked ony = f(x) might output (with negligible probability)̂y
which is not in the support of̂f(x,Um). The second loss is due to the fact that the inputŷ on whichB invokesB̂ is
not distributed identically tôf(Un, Um), on whichB̂ is guaranteed to succeed with probabilityφ(n+m). However,
it follows from Fact 3.4 that the second loss is also negligible. Thus, ifS is ε(n)-private for a negligible function
ε(·), we have

Pr
x←Un

[B(1n, f(x)) ∈ f−1(f(x))] ≥ Pr
x←Un,ŷ←S(1n,f(x))

[B̂(1n+m, ŷ) ∈ f̂−1(ŷ)] − ε(n)

≥ Pr
x←Un,r←Um(n)

[B̂(1n+m, f̂n(x, r)) ∈ f̂−1(f̂(x, r))] − ε(n) − ε(n)

≥ φ(n + m)− 2ε(n) >
1

q(n + m)
− 2ε(n) >

1
q′(n)

,

for some polynomialq′(·) and infinitely manyn’s. It follows thatf is not hard to invert, in contradiction to the
hypothesis.

The efficiency of the simulatorS is essential for Lemma 5.2 to hold. Indeed, without this requirement one could
encode any one-way permutationf by the identity functionf̂(x) = x, which is obviously not one-way. (Note that
the output off̂(x) can be simulated inefficiently based onf(x) by invertingf .)

The perfect correctness requirement is also essential for Lemma 5.2 to hold. To see this, consider the following
example. Supposef is a one-way permutation. Consider the encodingf̂(x, r) which equalsf(x) except ifr is the
all-zero string, in which casêf(x, r) = x. This is a statistically-correct and statistically-private encoding, butf̂ is
easily invertible since on valuêy the inverter can always return̂y itself as a possible pre-image. Still, we show below
that such an̂f (which is only statistically correct) is adistributionallyone-way function. We will later show how to
turn a distributionally one-way function inNC0 into a OWF inNC0.

Definition 5.3 (Distributionally one-way function [35]) A polynomial-time computable functionf : {0, 1}∗ →
{0, 1}∗ is calleddistributionally one-wayif there exists a positive polynomialp(·) such that for every probabilistic
polynomial-time algorithm,B, and all sufficiently largen’s, ‖(B(1n, f(Un)), f(Un))− (Un, f(Un))‖ > 1

p(n) .

Before proving that a statistical randomized encoding of a OWF is distributionally one-way, we need the follow-
ing lemma.

Lemma 5.4 Letf, g : {0, 1}∗ → {0, 1}∗ be two functions that differ on a negligible fraction of their domain; that is,
Prx←Un [f(x) 6= g(x)] is negligible inn. Suppose thatg is slightly hard to invert (but is not necessarily computable
in polynomial time) and thatf is computable in polynomial time. Then,f is distributionally one-way.

Proof: Let fn and gn be the restrictions off and g to n-bit inputs, that isf = {fn} , g = {gn}, and
define ε(n) def= Prx←Un [f(x) 6= g(x)]. Let p(n) be the polynomial guaranteed by the assumption thatg is
slightly hard to invert. Assume, towards a contradiction, thatf is not distributionally one-way. Then, there ex-
ists a polynomial-time algorithm,B, such that for infinitely manyn’s, ‖(B(1n, fn(Un)), fn(Un))− (Un, fn(Un))‖

16

≤ 1
2p(n) . Since(Un, fn(Un)) ≡ (x′, fn(Un)) wherex′ ← f−1

n (fn(Un)), we get that for infinitely manyn’s

‖(B(1n, fn(Un)), fn(Un))− (x′, fn(Un))‖ ≤ 1
2p(n) . It follows that for infinitely manyn’s

Pr[B(1n, f(Un)) ∈ g−1
n (fn(Un))] ≥ Pr

x′←f−1
n (fn(Un))

[x′ ∈ g−1
n (fn(Un))]− 1

2p(n)
. (5.1)

We show thatB invertsg with probability greater than1 − 1
p(n) and derive a contradiction. Specifically, for

infinitely manyn’s we have:

Pr[B(1n, gn(Un)) ∈ g−1
n (gn(Un))] ≥ Pr[B(1n, fn(Un)) ∈ g−1

n (fn(Un))]− ε(n) (sincef, g areε-close)

≥ Pr
x′←f−1

n (fn(Un))
[x′ ∈ g−1

n (f(Un))]− 1
2p(n)

− ε(n) (by Eq. 5.1)

= Pr
x′←f−1

n (fn(Un))
[gn(x′) = fn(Un)]− 1

2p(n)
− ε(n)

= Pr
x′←f−1

n (fn(Un))
[gn(x′) = fn(x′)]− 1

2p(n)
− ε(n) (sincef(Un) = f(x′))

= 1− ε(n)− 1
2p(n)

− ε(n) (sincex′ ≡ Un)

≥ 1− 1
p(n)

(sinceε is negligible).

We now use Lemma 5.4 to prove the distributional one-wayness of a statistically-correct encodingf̂ based on
the one-wayness of a related, perfectly correct, encodingg.

Lemma 5.5 Suppose thatf : {0, 1}∗ → {0, 1}∗ is a one-way function and̂f(x, r) is a statistical randomized
encoding off . Thenf̂ , viewed as a single-argument function, is distributionally one-way.

Proof: Let C andS be the decoder and the simulator off̂ . Define the function̂g(x, r) in the following way:
if C(f̂(x, r)) 6= f(x) then ĝ(x, r) = f̂(x, r′) for somer′ such thatC(f̂(x, r′)) = f(x) (such anr′ exists by
the statistical correctness); otherwise,ĝ(x, r) = f̂(x, r). Obviously,ĝ is a perfectly correct encoding off (asC
perfectly decodesf(x) from ĝ(x, r)). Moreover, by the statistical correctness ofC, we have that̂f(x, ·) andĝ(x, ·)
differ only on a negligible fraction of ther’s. It follows that ĝ is also a statistically-private encoding off (because
ĝ(x,Um)

s≈ f̂(x,Um)
s≈ S(f(x))). Sincef is hard to invert, it follows from Lemma 5.2 thatĝ is also hard to invert.

(Note thatĝ might not be computable in polynomial time; however the proof of Lemma 5.2 only requires that the
simulator’s running time and the randomness complexity ofĝ be polynomially bounded.) Finally, it follows from
Lemma 5.4 that̂f is distributionally one-way as required.

5.2 Main Results

Based on the above, we derive the main theorem of this section:

Theorem 5.6 If there exists a OWF inSREN then there exists a OWF inNC0
4.

Proof: Let f be a OWF inSREN . By Lemma 5.5, we can construct a distributional OWFf̂ in NC0, and
then apply a standard transformation (cf. [35, Lemma 1], [23, p. 96], [52]) to convertf̂ to a OWFf̂ ′ in NC1. This
transformation consists of two steps: Impagliazzo and Luby’sNC1 construction of weak OWF from distributional

17

OWF [35], and Yao’sNC0 construction of a (standard) OWF from a weak OWF [52] (see [23, Section 2.3]).11 Since
NC1 ⊆ PREN (Theorem 4.18), we can use Lemma 5.2 to encodef̂ ′ by a OWF inNC0, in particular, by one with
locality 4.

Combining Lemmas 5.2, 4.12 and Theorem 4.18, we get a similar result for one-way permutations (OWPs).

Theorem 5.7 If there exists a one-way permutation inPREN then there exists a one-way permutation inNC0
4.

In particular, using Theorems 4.18 and 4.20, we conclude that a OWF (resp., OWP) inNL/poly (resp.,⊕L/poly)
implies a OWF (resp., OWP) inNC0

4.

Theorem 5.7 can be extended to trapdoor permutations (TDPs) provided that the perfect encoding satisfies the
following randomness reconstructionproperty: givenx andf̂(x, r), the randomnessr can be efficiently recovered.
If this is the case, then the trapdoor off can be used to invert̂f(x, r) in polynomial time (but not inNC0). Firstly,
we computef(x) from f̂(x, r) using the decoder; secondly, we use the trapdoor-inverter to computex from f(x);
and finally, we use the randomness reconstruction algorithm to computer from x and f̂(x, r). The randomness
reconstruction property is satisfied by the randomized encodings described in Section 4.3 and is preserved under
composition and concatenation. Thus, the existence of trapdoor permutations computable inNC0

4 follows from their
existence in⊕L/poly.

More formally, a collection of permutationsF = {fz : Dz → Dz}z∈Z is referred to as a trapdoor permutation if
there exist probabilistic polynomial-time algorithms(I, D, F, F−1) with the following properties. AlgorithmI is an
index selector algorithm that on input1n selects an indexz from Z and a corresponding trapdoor forfz; algorithm
D is a domain sampler that on inputz samples an element from the domainDz; F is a function evaluator that given
an indexz andx returnsfz(x); andF−1 is a trapdoor-inverter that given an indexz, a corresponding trapdoort
andy ∈ Dz returnsf−1

z (y). Additionally, the collection should be hard to invert, similarly to a standard collection
of one-way permutations. (For formal definition see [23, Definition 2.4.4].) By the above argument we derive the
following theorem.

Theorem 5.8 If there exists a trapdoor permutationF whose function evaluatorF is in⊕L/poly then there exists
a trapdoor permutation̂F whose function evaluator̂F is in NC0

4.

Remarks on Theorems 5.6, 5.7 and 5.8.

1. (Constructiveness) In Section 4.3, we give a constructive way of transforming a branching program represen-
tation of a functionf into anNC0 circuit computing its encodinĝf . It follows that Theorems 5.6, 5.7 can be
made constructive in the following sense: there exists a polynomial-timecompilertransforming a branching
program representation of a OWF (resp., OWP)f into anNC0 representation of a corresponding OWF (resp.,
OWP) f̂ . A similar result holds for other cryptographic primitives considered in this paper.

2. (Preservation of security, a finer look) Loosely speaking, the main security loss in the reduction follows from
the expansion of the input. (The simulator’s running time only has a minor effect on the security, since it
is added to the overall running-time of the adversary.) Thus, to achieve a level of security similar to that
achieved by applyingf onn-bit inputs, one would need to applŷf onn+m(n) bits (the random input part of
the encoding does not contribute to the security). Going through our constructions (bit-by-bit encoding of the
output based on some size-`(n) BPs, followed by the locality construction), we getm(n) = l(n) · `(n)O(1),
wherel(n) is the output length off . If the degree of all nodes in the BPs is bounded by a constant, the
complexity ism(n) = O(l(n) · `(n)2). It is possible to further reduce the overhead of randomized encoding
for specific representation models, such as balanced formulas, using constructions of randomizing polynomials
from [38, 15].

11We will later show a degree preserving transformation from a distributional OWF to a OWF (Lemma 8.2); however, in the current context
the standard transformation suffices.

18

3. (Generalizations) The proofs of the above theorems carry over to OWF whose security holds against efficient
non-uniformadversaries (inverters). The same is true for all cryptographic primitives considered in this work.
The proofs also naturally extend to the case ofcollectionsof OWF and OWP (see Appendix A for discussion).

4. (Concrete assumptions) The existence of a OWF inSREN (in fact, even inNC1) follows from the intractabil-
ity of factoring and lattice problems [2]. The existence of a OWFcollectionin SREN follows from the in-
tractability of the discrete logarithm problem. Thus, we get OWFs inNC0

4 under most standard cryptographic
assumptions. In the case of OWP, we can get a collection of OWPs inNC0

4 based on discrete logarithm [11, 52]
(see also Appendix A) or RSA with a small exponent [49].12 The latter assumption is also sufficient for the
construction of TDP inNC0

4.

6 Pseudorandom Generators inNC0

A pseudorandom generatoris an efficiently computable functionG : {0, 1}n → {0, 1}l(n) such that: (1)G has a
positive stretch, namelyl(n) > n, where we refer to the functionl(n) − n as thestretchof the generator; and (2)
any “computationally restricted procedure”D, called adistinguisher, has a negligible advantage in distinguishing
G(Un) from Ul(n). That is,|Pr[D(1n, G(Un)) = 1]− Pr[D(1n, Ul(n)) = 1]| is negligible inn.

Different notions of PRGs differ mainly in the computational bound imposed onD. In the default case ofcrypto-
graphicPRGs,D can be any probabilistic polynomial-time algorithm (alternatively, polynomial-size circuit family).
In the case ofε-biasedgenerators,D can only compute a linear function of the output bits, namely the exclusive-or
of some subset of the bits. Other types of PRGs, e.g. for space-bounded computation, have also been considered.
The reader is referred to [21, Chapter 3] for a comprehensive and unified treatment of pseudorandomness.

We start by considering cryptographic PRGs. We show that aperfectrandomized encoding of such a PRG is
also a PRG. We then obtain a similar result for other types of PRGs.

6.1 Cryptographic Generators

Definition 6.1 (Pseudorandom generator)A pseudorandom generator (PRG) is a polynomial-time computable
function,G : {0, 1}n → {0, 1}l(n), satisfying the following two conditions:

• Expansion: l(n) > n, for all n ∈ N.

• Pseudorandomness: For every probabilistic polynomial-time algorithm,D, the distinguishing advantage
|Pr[D(1n, G(Un)) = 1]− Pr[D(1n, Ul(n)) = 1]| is negligible inn.

Remark 6.2 (PRGs with sublinear stretch)An NC0 PRG,G, that stretches its input by a single bit can be trans-
formed into anotherNC0 PRG,G′, with stretchl′(n)− n = nc for an arbitrary constantc < 1. This can be done by
applyingG onnc blocks ofn1−c bits and concatenating the results. Since the output of any PRG is computationally-
indistinguishable from the uniform distribution even by a polynomial number of samples (see [23, Theorem 3.2.6]),
the block generatorG′ is also a PRG. This PRG gains a pseudorandom bit from every block, and therefore stretches
ncn1−c = n input bits ton + nc output bits. Obviously,G′ has the same locality asG.

Remark 6.2 also applies to other types of generators considered in this section, and therefore we only use a crude
classification of the stretch as being “sublinear”, “linear” or “superlinear”.

Lemma 6.3 SupposeG : {0, 1}n → {0, 1}l(n) is a PRG andĜ : {0, 1}n × {0, 1}m(n) → {0, 1}s(n) is a uniform
perfect randomized encoding ofG. ThenĜ, viewed as a single-argument function, is also a PRG.

12Rabin’s factoring-based OWP collection [47] seems insufficient for our purposes, as it cannot be defined over the set ofall strings of a
given length. The standard modification (cf. [24, p. 767]) does not seem to be in⊕L/poly.

19

Proof: SinceĜ is stretch preserving, it is guaranteed to expand its seed. To prove the pseudorandomness of
its output, we again use a reducibility argument. Assume, towards a contradiction, that there exists an efficient
distinguisherD̂ that distinguishes betweenUs andĜ(Un, Um) with some non-negligible advantageφ; i.e., φ such
thatφ(n + m) > 1

q(n+m) for some polynomialq(·) and infinitely manyn’s. We useD̂ to obtain a distinguisherD

betweenUl andG(Un) as follows. On inputy ∈ {0, 1}l, run the balanced simulator of̂G ony, and invokeD̂ on the
resultingŷ. If y is taken fromUl then the simulator, being balanced, outputsŷ that is distributed asUs. On the other
hand, ify is taken fromG(Un) then, by Fact 3.4, the output of the simulator is distributed asĜ(Un, Um). Thus, the
distinguisherD we get forG has the same advantage as the distinguisherD̂ for Ĝ. That is, the advantage ofD is
φ′(n) = φ(n + m). Sincem(n) is polynomial, this advantageφ′ is not only non-negligible inn + m but also inn,
in contradiction to the hypothesis.

Remark 6.4 (The role of balance and stretch preservation)Dropping either the balance or stretch preservation
requirements, Lemma 6.3 would no longer hold. To see this consider the following two examples. LetG be a PRG,
and letĜ(x, r) = G(x). Then,Ĝ is a perfectly correct, perfectly private, and balanced randomized encoding ofG
(the balanced simulator isS(y) = y). However, whenr is sufficiently long,Ĝ does not expand its seed. On the
other hand, we can definêG(x, r) = G(x)0, wherer is a single random bit. Then,̂G is perfectly correct, perfectly
private and stretch preserving, but its output is not pseudorandom.

Using Lemma 6.3 and Theorem 4.18, we get:

Theorem 6.5 If there exists a pseudorandom generator inPREN (in particular, in⊕L/poly) then there exists a
pseudorandom generator inNC0

4.

As in the case of OWF, an adversary that breaks the transformed generatorĜ can break, in essentially the same
time, the original generatorG. Therefore, again, although the new PRG uses extram(n) random input bits, it is not
more secure than the original generator applied ton bits. Moreover, we stress that the PRĜG one gets from our
construction has a sublinear stretch even ifG has a large stretch. This follows from the fact that the lengthm(n) of
the random input is typically superlinear in the input lengthn.

Remark 6.6 (On the existence of a PRG inPREN) The existence of PRGs inPREN follows from most standard
concrete intractability assumptions. In particular, using Theorem 6.5 (applied to PRG collections) one can construct
a collection of PRGs inNC0

4 based on the intractability of factoring [39, 44] and discrete logarithm [11, 52]. The
existence of PRGs inPREN also follows from the existence inPREN of anyregularOWF; i.e., a OWFf = {fn}
that maps the same (polynomial-time computable) number of elements in{0, 1}n to every element inIm(fn). (This
is the case, for instance, for any one-to-one OWF.) Indeed, the PRG construction from [33] (Theorem 5.4), when
applied to a regular OWFf , involves only the computation of universal hash functions and hard-core bits, which can
all be implemented inNC1.13 Thus a regular OWF inPREN can be first transformed into a regular OWF inNC0

and then, using [33], to a PRG inNC1. Combined with Theorem 6.5, this yields a PRG inNC0
4 based on any regular

OWF inPREN .14 This way, for example, one can construct a (single) PRG inNC0
4 based on the intractability of

13In the general case (when the OWFf is not regular) the construction of Håstad et al. (see [33, Construction 7.1]) is not in uniformNC1, as
it requires an additional nonuniform advice of logarithmic length. This (slightly) non-uniformNC1 construction translates into apolynomial-
timeconstruction by applying the following steps: (1) construct a polynomial number of PRG candidates (each using a different guess for
the non-uniform advice); (2) increase the stretch of each of these candidates using the standard transformation of Goldreich and Micali
(cf. [23, Theorem 3.3.3]); (3) take the exclusive-or of all PRG candidates to obtain the final PRG. The second step requires polynomially
many sequential applications of the PRGs, and therefore this construction is not inNC1. (If we skip the second step the resulting generator
will not stretch its input.)

14 In fact, the same result can be obtained under a relaxed regularity requirement. Specifically, for eachn andy ∈ Im(fn) define the
valueDf,n(y) = log |f−1

n (y)| and the random variableRn = Df,n(f(Un)). TheNC1 construction of [33, Construction 7.1] needs to
approximate, inpoly(n) time, the expectations of bothRn andR2

n. This is trivially possible whenf is regular in the strict sense defined
above, since in this caseRn is concentrated on a single (efficiently computable) value. Using a recentNC1 construction from [30], only the
expectation ofR2

n needs to be efficiently approximated. We finally note that in a non-uniform computation model one can rely on [33] (which
gives a nonuniform-NC1 construction of a PRG from any OWF) and get a PRG innonuniform-NC0

4 from anyOWF inSREN .

20

lattice problems [33, 2].

Remark 6.7 (On unconditional NC0 reductions from PRG to OWF) Our machinery can be used to obtain an
NC0 reduction from a PRG to any regular OWF (in particular, to any one-to-one OWF), regardless of the com-
plexity of f .15 Moreover, this reduction only makes ablack-boxuse of the underlying regular OWFf (given its
regularity parameter|Im(fn)|). The general idea is to encode theNC1 construction of [33, Construction 7.1] into a
correspondingNC0 construction. Specifically, supposeG(x) = g(x, f(q1(x)), . . . , f(qm(x))) defines a black-box
construction of a PRGG from a OWFf , whereg is inPREN and theqi’s are inNC0. (The functionsg, q1, ..., qm

are fixed by the reduction and do not depend onf .) Then, lettingĝ((x, y1, . . . , ym), r) be a perfectNC0 encoding
of g, the functionĜ(x, r) = ĝ((x, f(q1(x)), . . . , f(qm(x))), r) perfectly encodesG, and hence defines a black-box
NC0 reduction from a PRG to a OWF. The construction of [33, Construction 7.1] is of the form ofG(x) above,16

assuming thatf is regular. Thus,̂G defines anNC0 reduction from a PRG to a regular OWF.

Comparison with lower bounds. The results of [43] rules out the existence of a superlinear-stretch cryptographic
PRG inNC0

4. Thus ourNC0
4 cryptographic PRGs are not far from optimal despite their sublinear stretch. In addition,

it is easy to see that there is no PRG with degree1 or locality 2 (since we can easily decide whether a given string
is in the range of such a function). It seems likely that a cryptographic PRG with locality3 and degree2 can be
constructed (e.g., based on its existence in a higher complexity class), but our positive result is one step far in terms
of both locality and degree. (See also Table 6.1.)

6.2 ε-Biased Generators

The proof of Lemma 6.3 uses the balanced simulator to transform a distinguisher for a PRGG into a distinguisher
for its encodingĜ. Therefore, if this transformation can be made linear, then the security reduction goes through
also in the case ofε-biased generators.

Definition 6.8 (ε-biased generator)Anε-biased generatoris a polynomial-time computable function,G : {0, 1}n →
{0, 1}l(n), satisfying the following two conditions:

• Expansion: l(n) > n, for all n ∈ N.

• ε-bias: For every linear functionL : {0, 1}l(n) → {0, 1} and all sufficiently largen’s

|Pr[L(G(Un)) = 1]− Pr[L(Ul(n)) = 1]| < ε(n)

(where a functionL is linear if its degree overGF(2) is 1). By default, the functionε(n) is required to be negligible.

Lemma 6.9 LetG be anε-biased generator and̂G a perfect randomized encoding ofG. Assume that the balanced
simulatorS of Ĝ is linear in the sense thatS(y) outputs a randomized linear transformation ofy (which is not
necessarily a linear function of the simulator’s randomness). Then,Ĝ is also anε-biased generator.

Proof: Let G : {0, 1}n → {0, 1}l(n) and letĜ : {0, 1}n × {0, 1}m(n) → {0, 1}s(n). Assume, towards a
contradiction, that̂G is notε-biased; that is, for some linear functionL : {0, 1}s(n) → {0, 1} and infinitely many
n’s, |Pr[L(Ĝ(Un+m)) = 1] − Pr[L(Us) = 1]| > 1

p(n+m) > 1
p′(n) , wherem = m(n), s = s(n), andp(·), p′(·) are

polynomials. Using the balance property we get,

|Pr[L(S(G(Un))) = 1]− Pr[L(S(Ul)) = 1]| = |Pr[L(Ĝ(Un+m)) = 1]− Pr[L(Us) = 1]| > 1
p′(n)

,

15Viola, in a concurrent work [50], obtains anAC0 reduction of this type.
16The functionsq1, ..., qm are simply projections there. Interestingly, the recentNC1 construction from [30] is not of the above form and

thus we cannot encode it into an (unconditional)NC0 construction.

21

whereS is the balanced simulator of̂G and the probabilities are taken over the inputs as well as the randomness
of S. By an averaging argument we can fix the randomness ofS to some stringρ, and get|Pr[L(Sρ(G(Un))) =
1] − Pr[L(Sρ(Ul(n))) = 1]| > 1

p′(n) , whereSρ is the deterministic function defined by using the constant stringρ

as the simulator’s random input. By the linearity of the simulator, the functionSρ : {0, 1}l → {0, 1}s is linear;
therefore the composition ofL andSρ is also linear, and so the last inequality implies thatG is not ε-biased in
contradiction to the hypothesis.

We now argue that the balanced simulators obtained in Section 4.3 are all linear in the above sense. In fact,
these simulators satisfy a stronger property: for every fixed random input of the simulator, each bit of the simulator’s
output is determined by a single bit of its input. This simple structure is due to the fact that we encode non-boolean
functions by concatenating the encodings of their output bits. We state here the stronger property as it will be needed
in the next subsection.

Observation 6.10 LetS be a simulator of a randomized encoding (of a function) that is obtained by concatenating
simulators (i.e.,S is defined as in the proof of Lemma 4.9). Then, fixing the randomnessρ of S, the simulator’s
computation has the following simple form:Sρ(y) = σ1(y1)σ2(y2) · · ·σl(yl), where eachσi mapsyi (i.e., theith bit
of y) to one of two fixed strings. In particular,S computes a randomized degree-1 function of its input.

Recall that the balanced simulator of theNC0
4 encoding for functions in⊕L/poly (promised by Theorem 4.18)

is obtained by concatenating the simulators of boolean functions in⊕L/poly. By Observation 6.10, this simulator
is linear. Thus, by Lemma 6.9, we can construct a sublinear-stretchε-biased generator inNC0

4 from anyε-biased
generator in⊕L/poly. In fact, one can easily obtain a nontrivialε-biased generator even inNC0

3 by applying the
locality construction to each of the bits of the degree-2 generator defined byG(x, x′) = (x, x′, 〈x, x′〉), where
〈·, ·〉 denotes inner product modulo 2. Again, the resulting encoding is obtained by concatenation and thus, by
Observation 6.10 and Lemma 6.9, is alsoε-biased. (This generator actually fools a much larger class of statistical
tests; see Section 6.3 below.) Thus, we have:

Theorem 6.11 There is a (sublinear-stretch)ε-biased generator inNC0
3.

Building on a construction of Mossel et al., it is in fact possible to achieve linear stretch inNC0
3. Namely,

Theorem 6.12 There is a linear-stretchε-biased generator inNC0
3.

Proof: Mossel et al. present anε-biased generator inNC0 with degree2 and linear stretch ([43], Theorem 13).17

Let G be theirε-biased generator. We can apply the locality construction (4.16) toG (using concatenation) and get,
by Lemma 6.9 and Observation 6.10, anε-biased generator̂G in NC0

3. We now relate the stretch of̂G to the stretch
of G. Let n, n̂ be the input complexity ofG, Ĝ (resp.), lets, ŝ be the output complexity ofG, Ĝ (resp.), and letc · n
be the stretch ofG, wherec is a constant. The generatorĜ is stretch preserving, henceŝ− n̂ = s− n = c · n. Since
G is in NC0, each of its output bits can be represented as a polynomial that has a constant number of monomials and
thus the locality construction adds only a constant number of random bits for each output bit ofG. Therefore, the
input length ofĜ is linear in the input length ofG. Hence,̂s − n̂ = s − n = c · n = ĉ · n̂ for some constant̂c and
thusĜ has a linear stretch.

17In fact, the generator of [43, Theorem 13] is innonuniformNC0
5 (and it has a slightly superlinear stretch). However, a similar construction

gives anε-biased generator inuniformNC0 with degree 2 and linear stretch. (The locality of this generator is large but constant.) This can be
done by replacing the probabilistic construction given in [43, Lemma 12] with a uniform construction of constant-degree bipartite expander
with some “good” expansion properties – such a construction is given in [13, Theorem 7.1].

22

Comparison with lower bounds. It is not hard to see that there is noε-biased generator with degree1 or locality
2.18 In [16] it was shown that there is no superlinear-stretchε-biased generator inNC0

3. Thus, our linear-stretch
NC0

3 generator (building on the one from [43]) is not only optimal with respect to locality and degree but is also
essentially optimal with respect to stretch.

6.3 Generators for Space-Bounded Computation

We turn to the case of PRGs for space-bounded computation. A standard way of modeling a randomized space-
bounded Turing machine is by having a random tape on which the machine can access the random bits one by one
but cannot “go back” and view previous random bits (i.e., any bit that the machine wishes to remember, it must store
in its limited memory). For the purpose of derandomizing such machines, it suffices to construct PRGs that fool any
space-bounded distinguisher having a similar one-way access to its input. Following Babai et al. [6], we refer to
such distinguishers asspace-bounded distinguishers.

Definition 6.13 ([6]) (Space-bounded distinguisher)A space-s(n) distinguisheris a deterministic Turing machine
M , and an infinite sequence of binary stringsa = (a1, . . . , an, . . .) called the advice strings, where|an| = 2O(s(n)).
The machine has the following tapes: read-write work tapes, a read-only advice tape, and a read-only input tape
on which the tested input string,y, is given. The input tape has a one-way mechanism to access the tested string;
namely, at any point it may request the next bit ofy. In addition, onlys(n) cells of the work tapes can be used. Given
an n-bit input, y, the output of the distinguisher,Ma(y), is the (binary) output ofM wherey is given on the input
tape andan is given on the advice tape.

This class of distinguishers is a proper subset of the distinguishers that can be implemented by a space-s(n) Turing
machine with a two-way access to the input. Nevertheless, even log-space distinguishers are quite powerful, and
many distinguishers fall into this category. In particular, this is true for the class oflinear distinguishers considered
in Section 6.2.

Definition 6.14 (PRG for space-bounded computation)We say that a polynomial-time computable functionG :
{0, 1}n → {0, 1}l(n) is a PRG for spaces(n) if l(n) > n andG(Un) is indistinguishable fromUl(n) to any space-
s(n) distinguisher. That is, for every space-s(n) distinguisherMa, the distinguishing advantage|Pr[Ma(G(Un)) =
1]− Pr[Ma(Ul(n)) = 1]| is negligible inn.

Several constructions of high-stretch PRGs for space-bounded computation exist in the literature (e.g., [6, 45]).
In particular, a PRG for logspace computation from [6] can be computed using logarithmic space, and thus, by
Theorem 4.18, admits an efficient perfect encoding inNC0

4. It can be shown (see proof of Theorem 6.15) that this
NC0

4 encoding fools logspace distinguishers as well; hence, we can reduce the security of the randomized encoding
to the security of the encoded generator, and get anNC0

4 PRG that fools logspace computation. However, as in
the case ofε-biased generators, constructing such PRGs with a low stretch is much easier. In fact, the same “inner
product” generator we used in Section 6.2 can do here is well.

Theorem 6.15 There exists a (sublinear-stretch) PRG for sublinear-space computation inNC0
3.

Proof: Consider the inner product generatorG(x, x′) = (x, x′, 〈x, x′〉), wherex, x′ ∈ {0, 1}n. It follows from the
average-case hardness of the inner product function for two-party communication complexity [14] thatG fools all
sublinear-space distinguishers. (Indeed, a sublinear-space distinguisher implies a sublinear-communication protocol
predicting the inner product ofx andx′. Specifically, the party holdingx runs the distinguisher until it finishes
readingx, and then sends its configuration to the party holdingx′.)

18A degree1 generator contains more thann linear functions overn variables, which must be linearly dependent and thus biased. The
non-existence of a2-local generator follows from the fact that every nonlinear function of two input bits is biased.

23

Applying the locality construction toG, we obtain a perfect encodinĝG in NC0
3. (In fact, we can apply the

locality construction only to the last bit ofG and leave the other outputs as they are.) We argue thatĜ inherits the
pseudorandomness ofG. As before, we would like to argue that if̂M is a sublinear-space distinguisher breaking
Ĝ andS is the balanced simulator of the encoding, thenM̂(S(·)) is a sublinear-space distinguisher breakingG.
Similarly to the proof of Lemma 6.9, the fact that̂M(S(·)) can be implemented in sublinear space will follow from
the simple structure ofS. However, in contrast to Lemma 6.9, here it does not suffice to requireS to be linear and
we need to rely on the stronger property guaranteed by Observation 6.10.19

We now formalize the above. As argued in Observation 6.10, fixing the randomnessρ of S, the simulator’s
computation can be written asSρ(y) = σ1(y1)σ2(y2) · · ·σl(yl), where eachσi maps a bit ofy to one of two
fixed strings. We can thus useS to turn a sublinear-space distinguisherM̂a breakingĜ into a sublinear-space
distinguisherMa′ breakingG. Specifically, let the advicea′ include, in addition toa, the2l stringsσi(0), σi(1)
corresponding to a “good”ρ which maintains the distinguishing advantage. (The existence of suchρ follows from
an averaging argument.) The machineMa′(y) can now emulate the computation of̂Ma(Sρ(y)) using sublinear
space and a one-way access toy by applyingM̂a in each step to the corresponding stringσi(yi).

6.4 Pseudorandom Generators - Conclusion

We conclude this section with Table 6.1, which summarizes some of the PRGs constructed here as well as previous
ones from [43] and highlights the remaining gaps.

Type Stretch Locality Degree

ε-biased superlinear 5 2 X
ε-biased nΩ(

√
k) largek Ω(

√
k)

ε-biased Ω(n2)X Ω(n) 2 X
ε-biased linearX 3 X 2 X

space sublinearXr 3 X 2 X
cryptographic * sublinearXr 4 3

Table 6.1: Summary of known pseudorandom generators. Results of Mossel et al. [43] appear in the top part and
results of this paper in the bottom part. A parameter is marked as optimal (X) if when fixing the other parameters
it cannot be improved. A stretch entry is marked withXr if the stretch is sublinear and cannot be improved to be
superlinear (but might be improved to be linear). The symbol * indicates a conditional result.

7 Other Cryptographic Primitives

In this section, we describe extensions of our results to other cryptographic primitives. Aiming atNC0 implementa-
tions, we can use our machinery in two different ways: (1) compile a primitive in a relatively high complexity class
(sayNC1) into its randomized encoding and show that the encoding inherits the security properties of this primitive;
or (2) use knownreductionsbetween cryptographic primitives, together withNC0 primitives we already constructed
(e.g., OWF or PRG), to obtain newNC0 primitives. Of course, this approach is useful only when the reduction itself

19Indeed, in the current model of (non-uniform) space-bounded computation withone-wayaccess to the input (and two-way access to
the advice), there exist a boolean function̂M computable in sublinear space and a linear functionS such that the composed function
M̂(S(·)) is not computable in sublinear space. For instance, letM̂(y1, . . . , y2n) = y1y2 + y3y4 + . . . + y2n−1y2n andS(x1, . . . , x2n) =
(x1, xn+1, x2, xn+2, . . . , xn, x2n).

24

is in NC0.20 We mainly adopt the first approach, since most of the known reductions between primitives are not in
NC0. (An exception in the case of symmetric encryption will be discussed below.)

7.1 Collision-Resistant Hashing inNC0

We start with a formal definition of collision-resistant hash-functions (CRHFs).

Definition 7.1 (Collision-resistant hashing)Let `, `′ : N → N be such that̀ (n) > `′(n) and letZ ⊆ {0, 1}∗. A
collection of functions{hz}z∈Z is said to becollision-resistantif the following holds:

1. There exists a probabilistic polynomial-timekey-generationalgorithm,G, that on input1n outputs anindex
z ∈ Z (of a functionhz). The functionhz maps strings of length̀(n) to strings of length̀ ′(n).

2. There exists a polynomial-timeevaluationalgorithm that on inputz ∈ G(1n), x ∈ {0, 1}`(n) computeshz(x).

3. Collisions are hard to find. Formally, a pair(x, x′) is called acollision for a functionhz if x 6= x′ buthz(x) =
hz(x′). The collision-resistance requirement states that every probabilistic polynomial-time algorithmB, that
is given input(z = G(1n), 1n), succeeds in finding a collision forhz with a negligible probability inn (where
the probability is taken over the coin tosses of bothG andB).

Lemma 7.2 SupposeH = {hz}z∈Z is collision resistant andĤ = {ĥz}z∈Z is a uniform perfect randomized
encoding ofH. ThenĤ is also collision resistant.

Proof: Sinceĥz is stretch preserving, it is guaranteed to shrink its input ashz. The key generation algorithmG
of H is used as the key generation algorithm ofĤ. By the uniformity of the collectionĤ, there exists an efficient
evaluation algorithm for this collection. Finally, any collision((x, r), (x′, r′)) underĥz (i.e., (x, r) 6= (x′, r′) and
ĥz(x, r) = ĥz(x′, r′)), defines a collision(x, x′) underhz. Indeed, perfect correctness ensures thathz(x) = hz(x′)
and unique-randomness (see Lemma 4.12) ensures thatx 6= x′. Thus, an efficient algorithm that finds collisions for
Ĥ with non-negligible probability yields a similar algorithm forH.

By Lemma 7.2 and Theorem 4.18, we get:

Theorem 7.3 If there exists a CRHFH = {hz}z∈Z such that the functionh′(z, x) def= hz(x) is in PREN (in
particular, in⊕L/poly), then there exists a CRHF̂H = {ĥz}z∈Z such that the mapping(z, y) 7→ ĥz(y) is in NC0

4.

Using Theorem 7.3, we can construct CRHFs inNC0 based on the intractability of factoring [17], discrete
logarithm [46], or lattice problems [25, 48]. All these candidates are computable inNC1 provided that some pre-
computation is done by the key-generation algorithm. Note that the key generation algorithm of the resultingNC0

CRHF is not inNC0. For more details onNC0 computation of collections of cryptographic primitives see Ap-
pendix A.

7.2 Encryption in NC0

We turn to the case of encryption. Suppose thatE = (G,E,D) is a public-key encryption scheme, whereG is a key
generation algorithm, the encryption functionE(e, x, r) encrypts the messagex using the keye and randomnessr,
andD(d, y) decrypts the ciphery using the decryption keyd. As usual, the functionsG,E, D are polynomial-time
computable, and the scheme provides correct decryption and satisfies indistinguishability of encryptions [29]. LetÊ

20If the reduction is inNC1 one can combine the two approaches: first apply theNC1 reduction to anNC0 primitive of typeX that
was already constructed (e.g., OWF or PRG) to obtain a newNC1 primitive of typeY , and then use the first approach to compile the latter
primitive into anNC0 primitive (of typeY). As in the first approach, this construction requires to prove that a randomized encoding of a
primitive Y preserves its security.

25

be a randomized encoding ofE, and letD̂(d, ŷ) def= D(d,C(ŷ)) be the composition ofD with the decoderC of Ê.
We argue that the schemêE def= (G, Ê, D̂) is also a public-key encryption scheme. The efficiency and correctness of
Ê are guaranteed by the uniformity of the encoding and its correctness. Using the efficient simulator ofÊ, we can
reduce the security of̂E to that ofE . Namely, given an efficient adversarŷA that distinguishes between encryptions
of x andx′ underÊ , we can breakE by using the simulator to transform original ciphers into “new” ciphers, and
then invokeÂ. The same argument holds in the private-key setting. We now formalize this argument.

Definition 7.4 (Public-key encryption) A secure public-key encryption scheme(PKE) is a triple (G,E, D) of
probabilistic polynomial-time algorithms satisfying the following conditions:

• Viability: On input 1n the key generation algorithm,G, outputs a pair of keys(e, d). For every pair(e, d)
such that(e, d) ∈ G(1n), and for every plaintextx ∈ {0, 1}∗, the algorithmsE, D satisfy

Pr[D(d,E(e, x)) 6= x)] ≤ ε(n)

whereε(n) is a negligible function and the probability is taken over the internal coin tosses of algorithmsE
andD.

• Security: (Indistinguishability of encryptions of a single message) For every (non-uniform) polynomial-
time distinguisherB, every polynomialp(·), all sufficiently largen’s, and pair of plaintextsx, x′ such that
|x| = |x′| ≤ p(n), the distinguisher cannot distinguish between encryptions ofx andx′ with more than 1

p(n)
advantage; namely,

| Pr
(e,d)←G(1n)

[B(e,E(e, x)) = 1]− Pr
(e,d)←G(1n)

[B(e,E(e, x′)) = 1]| ≤ 1
p(n)

,

where the probabilities are taken over the coin tosses ofG, E.

The definition of aprivate-keyencryption scheme is similar, except that the distinguisher does not get the the en-
cryption keye as an additional input. An extension to multiple-message security, where the indistinguishability
requirement should hold for encryptions of polynomially many messages, follows naturally (see [24, chapter 5] for
formal definitions). In the public-key case, multiple-message security is implied by single-message security as de-
fined above, whereas in the private-key case it is a strictly stronger notion. In the following we explicitly address
only the (single-message) public-key case, but the treatment easily holds for the case of private-key encryption with
multiple-message security.

Lemma 7.5 LetE = (G,E, D) be a secure public-key encryption scheme, whereE(e, x, r) is viewed as a polynomial-
time computable function that encrypts the messagex using the keye and randomnessr. Let Ê((e, x), (r, s)) =
Ê((e, x, r), s) be a uniform statistical randomized encoding ofE and letD̂(d, ŷ) def= D(d,C(ŷ)) be the composition

of D with the decoderC of Ê. Then, the schemêE def= (G, Ê, D̂) is also a secure public-key encryption scheme.

Proof: The uniformity of the encoding guarantees that the functionsÊ andD̂ can be efficiently computed. The
viability of Ê follows in a straightforward way from the correctness of the decoderC. Indeed, if(e, d) are in the
support ofG(1n), then for any plaintextx we have

Pr
r,s

[D̂(d, Ê(e, x, r, s)) 6= x] = Pr
r,s

[D(d, C(Ê(e, x, r, s))) 6= x]

≤ Pr
r,s

[C(Ê((e, x, r), s)) 6= E(e, x, r)] + Pr
r

[D(d,E(e, x, r)) 6= x]

≤ ε(n),

26

whereε(·) is negligible inn and the probabilities are also taken over the coin tosses ofD; the first inequality follows
from the union bound and the second from the viability ofE and the statistical correctness ofÊ.

We move on to prove the security of the construction. Assume, towards a contradiction, thatÊ is not secure.
It follows that there exists an efficient (nonuniform) distinguisherB̂ and a polynomialp(·), such that for infinitely
manyn’s there exist two plaintextsx, x′ such that|x| = |x′| ≤ p(n), and

| Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x, r, s)) = 1]− Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x′, r, s)) = 1]| > 1
p(n)

,

wherer, s are uniformly chosen random strings of an appropriate length. We useB̂ to construct a distinguisher
B that distinguishes between encryptions ofx andx′ underE and derive a contradiction. Define a (non-uniform)
distinguisherB by B(e, y) def= B̂(e, S(y)), whereS is the efficient (statistical) simulator of̂E. Then, for some
negligibleε,

| Pr
(e,d)←G(1n),r

[B(e,E(e, x, r)) = 1]− Pr
(e,d)←G(1n),r

[B(e,E(e, x′, r)) = 1]|

= | Pr
(e,d)←G(1n),r

[B̂(e, S(E(e, x, r))) = 1]− Pr
(e,d)←G(1n),r

[B(e, S(E(e, x′, r))) = 1]|

≥ | Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x, r, s)) = 1]− Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x′, r, s)) = 1]| − ε(n)

>
1

p(n)
− ε(n) >

1
q(n)

,

for some polynomialq(·) and infinitely manyn’s. The first inequality is due to statistical privacy and the second
follows from our hypothesis. Hence, we derive a contradiction to the security ofE and the lemma follows.

In particular, if the schemeE = (G,E, D) enables errorless decryption and the encodingÊ is perfectly correct,
then the schemêE also enables errorless decryption. Additionally, the above lemma is easily extended to case of
private-key encryption with multiple-message security. Thus we get,

Theorem 7.6 If there exists a secure public-key encryption scheme (respectively, a secure private-key encryption
scheme)E = (G,E,D), such thatE is in SREN (in particular, in NL/poly), then there exists a secure public-key
encryption scheme (respectively, a secure private-key encryption scheme)Ê = (G, Ê, D̂), such thatÊ is in NC0

4.

Specifically, one can construct anNC0 PKE based on either factoring [47, 28, 10], the Diffie-Hellman Assump-
tion [19, 28] or lattice problems [3, 48]. (These schemes enable anNC1 encryption algorithm given a suitable
representation of the key.)

On decryption in NC0. Our construction provides anNC0 encryption algorithm but does not promise anything
regarding the parallel complexity of the decryption process. This raises the question whether decryption can also be
implemented inNC0. In Appendix C.1, we argue that, in many settings, decryption inNC0 is impossible regardless
of the complexity of encryption. In contrast, if the scheme is restricted to asinglemessage of a bounded length (even
larger than the key) we can use our machinery to construct a private-key encryption scheme in which both encryption
and decryption can be computed inNC0. This can be done by using the output of anNC0 PRG to mask the plaintext.
Specifically, letE(e, x) = G(e)⊕x andD(e, y) = y⊕G(e), wheree is a uniformly random key generated by the key
generation algorithm andG is a PRG. Unfortunately, the resulting scheme is severely limited by the low stretch of
our PRGs. This approach can be also used to give multiple message security, at the price of requiring the encryption
and decryption algorithms to maintain a synchronizedstate. In such a stateful encryption scheme the encryption
and decryption algorithms take an additional input and produce an additional output, corresponding to their state
before and after the operation. The seed of the generator can be used, in this case, as the state of the scheme. In

27

this setting, we can obtain multiple-message security by refreshing the seed of the generator in each invocation;
e.g., when encrypting the current bit the encryption algorithm can randomly choose a new seed for the next session,
encrypt it along with current bit, and send this encryption to the receiver (alternatively, see [24, Construction 5.3.3]).
In the resulting scheme both encryption and decryption areNC0 functions whose inputs include the inner state of
the algorithm.

Theorem 7.6 can be easily extended to stronger notions of security. In particular, randomized encoding preserves
security against chosen plaintext attacks (CPA) as well as a-priory chosen ciphertext attacks (CCA1). However,
randomized encoding does not preserve security against a-posteriori chosen ciphertext attack (CCA2). Still, it can
be shown that the encoding of a CCA2-secure scheme enjoys a relaxed security property that suffices for most
applications of CCA2-security. See Appendix C.2 for further discussion.

7.3 Signatures, Commitments, and Zero-Knowledge Proofs

The construction that was used for encryption can be adapted to other cryptographic primitives including (non-
interactive) commitments, signatures, message authentication schemes (MACs), and non-interactive zero-knowledge
proofs (for definitions see [23, 24]). In all these cases, we can replace the sender (i.e., the encrypting party, commit-
ting party, signer or prover, according to the case) with its randomized encoding and let the receiver (the decrypting
party or verifier) use the decoding algorithm to translate the output of the new sender to an output of the original
one. The security of the resulting scheme reduces to the security of the original one by using the efficient simulator
and decoder. In fact, such a construction can also be generalized to the case of interactive protocols such as zero-
knowledge proofs and interactive commitments. As in the case of encryption discussed above, this transformation
results in anNC0 sender but does not promise anything regarding the parallel complexity of the receiver. An inter-
esting feature of the case of commitment is that we can also improve the parallel complexity at the receiver’s end
(see below). The same holds for applications of commitment such as coin-flipping and ZK proofs. We now briefly
sketch these constructions and their security proofs.

SIGNATURES. Let S = (G,S, V) be a signature scheme, whereG is a key-generation algorithm that generates the
signing and verification keys(s, v), the signing functionS(s, α, r) computes a signatureβ on the documentα using
the keys and randomnessr, and the verification algorithmV (v, α, β) verifies thatβ is a valid signature onα using
the verification keyv. The scheme is secure (unforgeable) if it is infeasible to forge a signature in a chosen message
attack. Namely, any polynomial-time adversary that gets the verification key and an oracle access to the signing
processS(s, ·) fails to produce a valid signatureβ on a documentα (with respect to the corresponding verification
key v) for which it has not requested a signature from the oracle. LetŜ be a statistical randomized encoding ofS,
and letV̂ (v, α, β̂) def= V (v, α, C(β̂)) be the composition ofV with the decoderC of the encodinĝS. We claim that
the schemêS def= (G, Ŝ, V̂) is also a signature scheme. Given an adversaryÂ that breaksŜ, we can breakS by
invoking Â and emulating the oraclêS using the simulator of the encoding and the signature oracleS. If the forged
signature(α, β̂) produced byÂ is valid underŜ, then it is translated into a valid signature(α, β) underS by using
the decoder, i.e.,β = C(β̂). A similar argument holds also in the private-key setting (i.e., in the case of MACs).

COMMITMENTS. A commitment scheme enables one party (a sender) to commit itself to a value while keeping it
secret from another party (the receiver). Later, the sender can reveal the committed value to the receiver, and it is
guaranteed that the revealed value is equal to the one determined at the commit stage. We start with the simple case
of a perfectly binding, non-interactive commitment. Such a scheme can be defined by a polynomial-time computable
functionSEND(b, r) that outputs a commitmentc to the bitb using the randomnessr. We assume, w.l.o.g., that the
scheme has a canonical decommit stage in which the sender revealsb by sendingb andr to the receiver, who verifies
thatSEND(b, r) is equal to the commitmentc. The scheme should be both (computationally) hiding and (perfectly)
binding. Hiding requires thatc = SEND(b, r) keepsb computationally secret (as formalized in Definition 7.4 for the
case of encryption). Binding means that it is impossible for the sender to open its commitment in two different ways;
that is, there are nor0 andr1 such thatSEND(0, r0) = SEND(1, r1). Let ˆSEND(b, r, s) be some randomized encoding

28

of SEND(b, r). It can be shown that if ˆSEND is a perfectly correct (and statistically private) encoding ofSEND, then
ˆSEND defines a computationally hiding perfectly binding, non-interactive commitment: Hiding follows from the

privacy of the encoding, as argued for the case of encryption in Section 7.2. The binding property ofˆSEND follows
from the perfect correctness; namely, given a cheating senderŜ∗ for ˆSEND that produces ambiguous commitment
(r0, r

′
0), (r1, r

′
1) such that ˆSEND(0, r0, s0) = ˆSEND(1, r1, s1), we construct a cheating senderS∗ for the original

scheme that invokeŝS∗ and outputsr0, r1. By perfect correctness it holds thatSEND(0, r0) = SEND(1, r1) and
hence the new adversary succeeds with the same probability as the original one.21

Using a standard construction ([9], [23, Construction 4.4.2]), it follows that commitments inNC0 are implied by
the existence of a 1-1 OWF inPREN . It is important to note that in contrast to the non-interactive perfectly binding
primitives described so far, here we also improve the parallel complexity at the receiver’s end. Indeed, on input
ĉ, b, r, s the receiver’s computation consists of computinĝSEND(b, r, s) and comparing the result tôc. Assuming

ˆSEND is in NC0, the receiver can be implemented by anNC0 circuit augmented with a single (unbounded fan-in)
AND gate. We refer to this special type ofAC0 circuit as anNC0[AND] circuit. As an immediate application, we
get a 3-round protocol for flipping a coin [9] between anNC0 circuit and anNC0[AND] circuit.

One can apply a similar transformation to other variants of commitment schemes, such as unconditionally hiding
(and computationally binding) interactive commitments. Schemes of this type require some initialization phase,
which typically involves a random key sent from the receiver to the sender. We can turn such a scheme into a similar
scheme between anNC0 sender and anNC0[AND] receiver, provided that it conforms to the following structure:
(1) the receiver initializes the scheme bylocally computing a random keyk (say, a prime modulus and powers of
two group elements for schemes based on discrete logarithm) and sending it to the sender; (2) the sender responds
with a single message computed by the commitment functionSEND(b, k, r) which is inPREN (actually, perfect
correctness and statistical privacy suffice); (3) as in the previous case, the scheme has a canonical decommit stage
in which the sender revealsb by sendingb andr to the receiver, who verifies thatSEND(b, k, r) is equal to the
commitmentc. Using the CRHF-based commitment scheme of [18, 31], one can obtain schemes of the above type
based on the intractability of factoring, discrete logarithm, and lattice problems. Given such a scheme, we replace
the sender’s function by its randomized encoding, and get as a result an unconditionally hiding commitment scheme
whose sender is inNC0. The new scheme inherits the round complexity of the original scheme and thus consists
of only two rounds of interaction. (The security proof is similar to the previous case of perfectly binding, non-
interactive commitment.) If the random keyk cannot be computed inNC0[AND] (as in the case of factoring and
discrete logarithm based schemes), one can computek once and for all during the generation of the receiver’s circuit
and hardwire the key to the receiver’s circuit. (See Appendix A.)

ZERO-KNOWLEDGE PROOFS. We end this section by addressing the case of zero-knowledge protocols. Suppose
that the prover’s computations are inSREN . Then, similarly to the case of encryption, we can compile the prover
into its (statistical) randomized encoding, and obtain a prover whose local computations (viewed as a function of
its randomness, the common instance of the language, the private witness, and previously received messages) are in
NC0. The new verifier uses the decoder to translate the prover’s encoded messages to the corresponding messages
of original protocol, and then invokes the original verifier. The completeness and soundness of the new protocol
follow from the correctness of the encoding, and its zero-knowledge property from the privacy of the encoding. (The
verifier can produce transcripts of the new protocol by composing the simulator of the encoding with the simulator
of the original protocol.) A similar transformation applies to zero-knowledgearguments.

As before, this general approach does not parallelize the verifier; in fact, the verifier is now required to “work
harder” and decode the prover’s messages. However, we can improve the verifier’s complexity by relying on specific,
commitment-based, zero-knowledge protocols from the literature. For instance, in the constant-round protocol for

21A modification of this scheme remains secure even if we replaceSEND with a statistical randomized encoding. However, in this
modification we cannot use the canonical decommitment stage. Instead, the receiver should verify the decommitment by applying the decoder
C to ĉ and comparing the result to the computation of the original sender; i.e., the receiver checks whetherC(ĉ) equals toSEND(b, r). A
disadvantage of this alternative decommitment is that it does not enjoy the enhanced parallelism feature discussed below.

29

Graph 3-Colorability of [26], the computations of the prover and the verifier consist of invoking two commitments
(of both types, perfectly binding as well as statistically hiding), in addition to someAC0 computations. Hence, we
can use the parallel commitment schemes described before to construct a constant-round protocol for 3-Colorability
between anAC0 prover and anAC0 verifier. Since 3-Colorability isNP complete underAC0-reductions, we get
constant-round zero-knowledge proofs inAC0 for every language inNP.

7.4 Summary and Discussion

Table 7.1 summarizes the properties of randomized encoding that suffice for encoding different cryptographic prim-
itives. (In the case of trapdoor permutations, efficient randomness recovery is also needed.) We note that in some
cases it suffices to use acomputationally-privaterandomized encoding, in which the simulator’s output should only
be computationally indistinguishable from that of the encoding. This relaxation, recently studied in [4], allows to
construct (some) primitives inNC0 under more general assumptions.

Primitive Encoding Efficient simulator Efficient decoder

One-way function statistical required —
One-way permutation perfect required —
Trapdoor permutation perfect required required
Pseudorandom generator perfect required —
Collision-resistant hashing perfect — —
Encryption (pub., priv.) statistical required required
Signatures, MAC statistical required required
Commit + Decommit perfectly correct required —
Zero-knowlege proof statistical required required

Table 7.1: Sufficient properties for preserving the security of different primitives.

THE CASE OFPRFS. It is natural to ask why our machinery cannot be applied to pseudorandom functions (PRFs)
(assuming there exists a PRF inPREN), as is implied from the impossibility results of Linial et al. [42]. Suppose
that a PRF familyfk(x) = f(k, x) is encoded by the function̂f(k, x, r). There are two natural ways to interpretf̂ as
a collection: (1) to incorporate the randomness into the key, i.e.,gk,r(x) def= f̂(k, x, r); (2) to append the randomness

to the argument of the collection, i.e.,hk(x, r) def= f̂(k, x, r). To rule out the security of approach (1), it suffices to
note that the mappinĝf(·, r) is of degree one whenr is fixed; thus, to distinguishgk,r from a truly random function,
one can check whether the given function is affine (e.g., verify thatgk,r(x) + gk,r(y) = gk,r(x + y) + gk,r(0)). The
same attack applies to the functionhk(x, r) obtained by the second approach, by fixing the randomnessr. More
generally, the privacy of a randomized encoding is guaranteed only when the randomness is secret and is freshly
picked, thus our methodology works well for cryptographic primitives which employ fresh secret randomness in
each invocation. PRFs do not fit into this category: while the key contains secret randomness, it is not freshly picked
in each invocation.

We finally note that by combining the positive results regarding the existence of various primitives inNC0 with
the negative results of [42] that rule out the possibility of PRFs inAC0, one can derive a separation between PRFs
and other primitives such as PRGs. In particular, we conclude that it is unlikely that a PRF isAC0-reducible to a
PRG.

30

8 One-Way Functions with Optimal Locality

The results presented so far leave a small gap between the strong positive evidence for cryptography inNC0
4 and

the known impossibility of even OWF inNC0
2. In this section we attempt to close this gap for the case of OWF,

providing positive evidence for the existence of OWF inNC0
3.

A natural approach for closing the gap would be to reduce the degree of our general construction of randomized
encodings from 3 to 2. (Indeed, the locality construction transforms a degree-2 encoding into one inNC0

3.) However,
the results of [37] provide some evidence against the prospects of this general approach, ruling out the existence
of degree-2 perfectly private encodings for most nontrivial functions. We thus take the following two alternative
approaches: (1) seekdirect constructions of degree-2 OWF based on specific intractability assumptions; and (2)
employ degree-2 randomized encodings with a weak (but nontrivial) privacy property (calledsemi-privacy), which
enables the representation of general functions.

In Section 8.1, we use approach (1) to construct a OWF with optimal locality based on the presumed intractability
of decoding a random linear code. In Section 8.2 we briefly demonstrate the usefulness of approach (2) by sketching
a construction of a OWF with optimal locality based on a OWF that enjoys a certain strong “robustness” property,
which is satisfied by a variant of a OWF candidate suggested in [22]. We note that neither of the above approaches
yields a general result in the spirit of the results of the previous sections. Thus, we happen to pay for optimal degree
and locality with the loss of generality.

8.1 OWF in NC0
3 from the Intractability of Decoding Random Linear Codes

Several cryptographic schemes are based on hard problems from the theory of error-correcting codes. In particular,
the problem of decoding random linear codes, which is a longstanding open question in coding theory, was suggested
as a basis for one-way functions [27]. An(n, k, δ) binary linear codeis ak-dimensional linear subspace ofGF(2)n

in which the Hamming distance between each two distinct vectors (codewords) is at leastδn. We refer to the ratio
k/n as therate of the code and toδ as its (relative)distance. Such a code can be defined by ak × n generator
matrix whose rows span the space of codewords. It follows from the Gilbert–Varshamov bound that whenever
k/n < 1−H2(δ)−ε (whereH2 is the binary entropy function andε is an arbitrarily small positive constant), almost
all k × n generator matrices form(n, k, δ)-linear codes.

Before defining our intractability assumption imagine the following “decoding game”. Letk/n < 1−H2(1
3)−ε

for some constantε > 0. Pick a randomk × n matrix C representing a linear code (which is with overwhelming
probability an(n, k, 1

3 + ε) code) and a random information wordx. Encodex with C and transmit the resulting
codewordy = xC over a binary symmetric channel in which every bit is flipped with probability1

4 . If more than1
3 of

the bits were flipped, output the zero word; otherwise, output the noisy codewordỹ along with the code’s description
C. In the former event the adversary always wins (however, note that the probability of this event is negligible). In
the latter event, the adversary’s task is to find some codewordy which is at most(n/3)-far from ỹ. The fact that
the noise is random (rather than adversarial) guarantees, by Shannon’s coding theorem, thaty will be unique with
overwhelming probability.

The intractability assumption on which we rely asserts that every polynomial-time adversary lose in the above
game with noticeable probability. That is, roughly speaking, we assume that it is intractable to correctn/4 random
errors in a random linear code of relative distance1

3 . More precisely:

Intractability Assumption 8.1 (Decoding a random linear code)There exists a constantc < 1−H2(1
3) such that

the following functionfcode is a weak OWF:22

fcode(C, x, e) def=

{
0 weight(e1e2, . . . , e2n−1e2n) ≥ n/3,

(C, xC + (e1e2, . . . , e2n−1e2n)) otherwise

22In fact, it seems likely that the functionfcode is even strongly one-way.

31

whereC is ak × n binary generator matrix withk = bcnc, x ∈ {0, 1}k, e ∈ {0, 1}2n, weight(·) denotes Hamming
weight, and arithmetic is overGF(2).

Namely, invertingfcode on a uniformly chosen input corresponds to winning in the above decoding game. (Two
random bits,ei andei+1, are multiplied to emulate a noise rate of1

4 .) The plausibility of Assumption 8.1 is supported
by the fact that a successful inverter would imply a major breakthrough in coding theory. Similar assumptions were
put forward in [27, 8, 23]. It is possible to base our construction on different variants of this assumption (e.g., one in
which the number of errors is bounded by half the minimal distance, as in [27]); the above formulation is preferred
for simplicity (and seems even weaker than the one in [27]).

We now construct a degree-2 OWF assuming the (weak) one-wayness offcode. Consider the degree-2 function
f ′code defined byf ′code(C, x, e) def= (C, xC + (e1e2, . . . , e2n−1e2n)). The functionf ′code by itself is not one-way;
indeed, as there is no restriction on the choice ofe, an inverter can arbitrarily pickx and then fixe to be consistent
with C, x, andỹ. However,f ′code is still distributionally one-way. This follows by noting thatf ′code differs from
fcode only on a negligible fraction of their domain and by using Lemma 5.4. To conclude the proof we need the
following lemma.

Lemma 8.2 A degree-2 distributional OWF implies a degree-2 OWF inNC0
3.

Proof: First observe that a degree-2 weak OWF can be transformed into a degree-2 (standard) OWF (cf. [52],[23,
Theorem 2.3.2]). Combined with the locality construction, we get that the existence of a degree-2 weak OWF implies
the existence of a degree-2 OWF inNC0

3. Hence it is enough to show how to transform a degree-2 distributional
OWF into a degree-2 weak OWF.

Let f be a degree-2 distributional OWF. Consider the functionF (x, i, h) = (f(x), hi(x), i, h), wherex ∈
{0, 1}n, i ∈ {1, . . . , n}, h : {0, 1}n → {0, 1}n is a pairwise independent hash function, andhi denotes thei-
bit-long prefix ofh(x). This function was defined by Impagliazzo and Luby [35], who showed that in this case
F is weakly one-way (see also [23, p. 96]). Note thath(x) can be computed as a degree-2 function ofx and (the
representation of)h by using the hash familyhM,v(x) = xM + v, whereM is ann × n matrix andv is a vector
of lengthn. However,hi(x) is not of degree 2 when considered as a function ofh, x and i, since “chopping”
the lastn − i bits of h(x) raises the degree of the function wheni is not fixed. We get around this problem by
applyingn copies ofF on independent inputs, where each copy uses a differenti. Namely, we define the function
F ′((x(i), h(i))n

i=1)
def= (F (x(i), i, h(i)))n

i=1. Since each of thei’s is now fixed, the resulting functionF ′ can be
computed by degree-2 polynomials overGF(2). Moreover, it is not hard to verify thatF ′ is weakly one-way ifF
is weakly one-way. We briefly sketch the argument. Given an efficient inverting algorithmB for F ′, one can invert
y = F (x, i, h) = (f(x), hi(x), i, h) as follows. For everyj 6= i, uniformly and independently choosex(j), h(j), set
zj = F (x(j), j, h(j)) andzi = y, then invokeB on (zj)n

j=1 and output theith block of the answer. This inversion
algorithm forF has the same success probability asB on a polynomially related input.

Applying Lemma 8.2 tof ′code we get:

Theorem 8.3 If Assumption 8.1 holds, there is a degree-2 OWF inNC0
3.

8.2 OWF in NC0
3 Using Semi-Private Encoding

In this section we briefly address the possibility of obtaining optimal locality for OWF (i.e., locality 3 rather than 4)
by relaxing the privacy requirement of the encoding. Further details appear in [5].

We start by sketching an alternative approach for constructing OWF inNC0
3 based on Assumption 8.1. The basic

idea is the following. Consider the degree-2 functionf ′code defined above. This function is not one-way. However,
it is possible to augment it to a (weakly) one-way function by appending to its output a single bit,φ(e), indicating
whether the error vectore exceeds the weight threshold. That is,φ(e) = 1 iff weight(e1e2, . . . , e2n−1e2n) ≥ n/3.

32

(This ensures that, with high probability, the inverter will be forced to pick a low-weight error.) While we cannot
encode the predicateφ(e) using degree-2 polynomials, it turns out that we can achieve this using the following type
of semi-privateencoding. Specifically, we relax the simulation requirement to hold only whenφ(e) = 0. Thus, the
encodingφ̂(e, r) keepse private only whenφ(e) = 0, i.e., whene defines a low-weight error vector. It is possible to
efficiently construct such a degree-2 semi-private encoding from the branching program representation ofφ. (This
can be done by using a variant of the BP construction described in Section 4.3.) Hence, under Assumption 8.1, the
degree-2 encodinĝfcode((C, x, e), r) def= (f ′code(C, x, e), φ̂(e, r)) is weakly one-way.

Given any OWFf , one could attempt to apply a semi-private encoding as described above to every output bit of
f , obtaining a degree-2 function̂f . However,f̂ will typically not be one-way: every output bit off that evaluates
to 1 might reveal the entire input (through the corresponding block in the output off̂). This motivates the following
notion of arobustOWF. Loosely speaking, a OWFf is said to be robust if it remains (slightly) hard to invert even if
a random subset of its output bits are “exposed”, in the sense that all input bits leading to these outputs are revealed.
Intuitively, the purpose of the robustness requirement is to guarantee that the information leaked by the semi-private
encoding leaves enough uncertainty about the input to make inversion difficult. It can be shown that: (1) every
robust OWF with a low locality (say, logarithmic in the number of inputs) can be turned into a OWF inNC0

3; and
(2) a variant of a OWF candidate from [22] satisfies the latter property, assuming that it is indeed one-way. Thus, an
intractability assumption of the flavor of the one suggested in [22] implies the existence of OWF inNC0

3.

9 Conclusions and Open Problems

Our results provide strong evidence for the possibility of cryptography inNC0. They are also close to optimal in
terms of the exact locality that can be achieved. Still, several questions are left for further study. In particular:

• What are the minimal assumptions required for cryptography inNC0? For instance, does the existence of an
arbitrary OWF imply the existence of OWF inNC0? We show that a OWF inNL/poly implies a OWF in
NC0.

• Is there a PRG with linear stretch or even superlinear stretch inNC0? In particular, is there a PRG with linear
stretch inNC0

4? (The possibility of PRG with superlinear stretch inNC0
4 is ruled out in [43].) We show that

there exists a PRG withsublinearstretch inNC0
4, assuming the existence of a PRG in⊕L/poly.

• Can the existence of a OWF (or PRG) inNC0
3 be based on more general assumptions? We construct such a

OWF under the intractability of decoding a random linear code.

• Is it possible to obtain constantinput locality, i.e., construct primitives in which each input influences only
a constant number of outputs? (A candidate OWF of this type is given in [22].) Note that the results of this
work only address the case of a constantoutputlocality, which does not imply a constant input locality.

• Can our paradigm for achieving better parallelism be of any practical use?

The above questions motivate a closer study of the complexity of randomized encodings, which so far was only
motivated by questions in the domain of secure multiparty computation. In [4] we continue this study by considering
a relaxed variant of randomized encoding referred to ascomputationally-privateencoding. We show that, under
relatively mild assumptions, one can encode every polynomial-time computable function by a computationally-
private encoding inNC0. This gives new sufficient conditions for cryptography inNC0, as well as newNC0

reductions between different cryptographic primitives.

33

Acknowledgments We are grateful to Oded Goldreich for many useful suggestions and comments that helped
improve this writeup, and in particular for simplifying the proof of Lemma 5.4. We also thank Iftach Haitner and
Emanuele Viola for enlightening us about old and new constructions of PRGs from OWFs and for sharing with us
the results of [30] and [50]. Finally, we thank Moni Naor and Amir Shpilka for helpful comments.

References

[1] M. Agrawal, E. Allender, , and S. Rudich. Reductions in circuit complexity: An isomorphism theorem and a
gap theorem.J. Comput. Syst. Sci., 57(2):127–143, 1998.

[2] M. Ajtai. Generating hard instances of lattice problems. InProc. 28th STOC, pages 99–108, 1996. Full version
in Electronic Colloquium on Computational Complexity (ECCC).

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. InProc. 29th
STOC, pages 284–293, 1997.

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials and their
applications. InProc. 20th Conference on Computational Complexity (CCC), pages 260–274, 2005.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. On one-way functions with optimal locality. Unpublished
manuscript available at http://www.cs.technion.ac.il/∼abenny, 2005.

[6] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard pseudorandom sequences. In
Proc. 21st STOC, pages 1–11, 1989.

[7] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in
NC1. In Proc. 18th STOC, pages 1–5, 1986.

[8] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning problems.
In Advances in Cryptology: Proc. of CRYPTO ’93, volume 773 ofLNCS, pages 278–291, 1994.

[9] M. Blum. Coin flipping by telephone: a protocol for solving impossible problems.SIGACT News, 15(1):23–27,
1983.

[10] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption scheme which hides all partial
information. InAdvances in Cryptology: Proc. of CRYPTO ’84, volume 196 ofLNCS, pages 289–302, 1985.

[11] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits.SIAM J.
Comput., 13:850–864, 1984. Preliminary version in FOCS 82.

[12] R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen ciphertext security of encryption schemes. In
Advances in Cryptology: Proc. of CRYPTO ’03, volume 2729 ofLNCS, pages 565–582, 2003.

[13] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-degree lossless
expanders. InProc. 34th STOC, pages 659–668, 2002.

[14] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication
complexity.SIAM J. on Computing, 17(2):230–261, 1988.

[15] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over rings. InProc.
EUROCRYPT ’03, pages 596–613, 2003.

[16] M. Cryan and P. B. Miltersen. On pseudorandom generators inNC0. In Proc. 26th MFCS, 2001.

34

[17] I. Damg̊ard. Collision free hash functions and public key signature schemes. InProc. Eurocrypt’87, pages
203–216, 1988.

[18] I. Damg̊ard, T. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment schemes
and fail-stop signatures. InAdvances in Cryptology: Proc. of CRYPTO ’93, volume 773 ofLNCS, pages
250–265, 1994.

[19] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. InAdvances
in cryptology: Proc. of CRYPTO ’84, volume 196 ofLNCS, pages 10–18, 1985. or IEEE Transactions on
Information Theory, v. IT-31, n. 4, 1985.

[20] A. V. Goldberg, M. Kharitonov, and M. Yung. Lower bounds for pseudorandom number generators. InProc.
30th FOCS, pages 242–247, 1989.

[21] O. Goldreich.Modern Cryptography, Probabilistic Proofs and Pseudorandomness, volume 17 ofAlgorithms
and Combinatorics. Springer-Verlag, 1998.

[22] O. Goldreich. Candidate one-way functions based on expander graphs.Electronic Colloquium on Computa-
tional Complexity (ECCC), 7(090), 2000.

[23] O. Goldreich.Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[24] O. Goldreich.Foundations of Cryptography: Basic Applications. Cambridge University Press, 2004.

[25] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems.Electronic Collo-
quium on Computational Complexity, 96(042), 1996.

[26] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems forNP. J. of
Cryptology, 9(2):167–189, 1996.

[27] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators.SIAM J. Comput.,
22(6):1163–1175, 1993. Preliminary version in Proc. 29th FOCS, 1988.

[28] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. InProc. 21st STOC, pages 25–32,
1989.

[29] S. Goldwasser and S. Micali. Probabilistic encryption.JCSS, 28(2):270–299, 1984. Preliminary version in
Proc. STOC ’82.

[30] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate. manuscript, 2005.

[31] S. Halevi and S. Micali. Practicle and provably-secure commitment schemes from collision-free hashing. In
Advances in Cryptology: Proc. of CRYPTO ’96, volume 1109 ofLNCS, pages 201–215, 1996.

[32] J. Håstad. One-way permutations inNC0. Information Processing Letters, 26:153–155, 1987.

[33] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364–1396, 1999.

[34] C. Y. Hsiao and L. Reyzin. Finding collisions on a public road, or do secure hash functions need secret coins?
In Advances in Cryptology: Proc. of CRYPTO ’04, volume 3152 ofLNCS, pages 92–105, 2004.

[35] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. InProc. of
the 30th FOCS, pages 230–235, 1989.

35

[36] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset sum.Journal of
Cryptology, 9:199–216, 1996.

[37] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to round-
efficient secure computation. InProc. 41st FOCS, pages 294–304, 2000.

[38] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect randomizing polynomials.
In Proc. 29th ICALP, pages 244–256, 2002.

[39] M. Kharitonov. Cryptographic hardness of distribution-specific learning. InProc. 25th STOC, pages 372–381,
1993.

[40] J. Kilian. Founding cryptography on oblivious transfer. InProc. 20th STOC, pages 20–31, 1988.

[41] M. Krause and S. Lucks. On the minimal hardware complexity of pseudorandom function generators (extended
abstract). InProc. 18th STACS, volume 2010 ofLNCS, pages 419–430, 2001.

[42] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learnability.J. ACM,
40(3):607–620, 1993. Preliminary version in Proc. 30th FOCS, 1989.

[43] E. Mossel, A. Shpilka, and L. Trevisan. Onε-biased generators inNC0. In Proc. 44th FOCS, pages 136–145,
2003.

[44] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions.J. ACM,
51(2):231–262, 2004. Preliminary version in Proc. 38th FOCS, 1997.

[45] N. Nisan. Pseudorandom generators for space-bounded computation.Combinatorica, 12(4):449–461, 1992.

[46] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. InAdvances in Cryp-
tology: Proc. of CRYPTO ’91, volume 576 ofLNCS, pages 129–149, 1991.

[47] M. Rabin. Digitalized signatures and public key functions as intractable as factoring. Technical Report 212,
LCS, MIT, 1979.

[48] O. Regev. New lattice based cryptographic constructions. InProc. 35th STOC, pages 407–416, 2003.

[49] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryp-
tosystems.Comm. of the ACM, 21(2):120–126, 1978.

[50] E. Viola. On constructing parallel pseudorandom generators from one-way functions. InProc. 20th Conference
on Computational Complexity (CCC), pages 183– 197, 2005.

[51] A. Wigderson.NL/poly ⊆ ⊕L/poly. In Proc. 9th Structure in Complexity Theory Conference, pages 59–62,
1994.

[52] A. C. Yao. Theory and application of trapdoor functions. InProc. 23rd FOCS, pages 80–91, 1982.

[53] A. C. Yao. How to generate and exchange secrets. InProc. 27th FOCS, pages 162–167, 1986.

[54] X. Yu and M. Yung. Space lower-bounds for pseudorandom-generators. InProc. 9th Structure in Complexity
Theory Conference, pages 186–197, 1994.

36

A On Collections of Cryptographic Primitives

In most cases, we view a cryptographic primitive (e.g., a OWF or a PRG) as a single functionf : {0, 1}∗ → {0, 1}∗.
However, it is often useful to consider more general variants of such primitives, defined by acollectionof functions
{fz}z∈Z , whereZ ⊆ {0, 1}∗ and eachfz is defined over a finite domainDz. The full specification of such a
collection usually consists of a probabilistic polynomial time key-generation algorithm that chooses an indexz of a
function (given a security parameter1n), a domain sampler algorithm that samples a random element fromDz given
z, and a function evaluation algorithm that computesfz(x) given z andx ∈ Dz. The primitive should be secure
with respect to the distribution defined by the key-generation and the domain sampler. (See a formal definition for
the case of OWF in [23, Definition 2.4.3].)

Collections of primitives arise naturally in the context of parallel cryptography, as they allow to shift “non-
parallelizable” operations such as prime number selection and modular exponentiations to the key-generation stage
(cf. [44]). They also fit naturally into the setting of P-uniform circuits, since the key-generation algorithm can be
embedded in the algorithm generating the circuit. Thus, it will be convenient to assume thatz is a description of
a circuit computingfz. When referring to a collection of functions from a given complexity class (e.g.,NC1,NC0

4,
or PREN , cf. Definition 4.8) we assume that the key generation algorithm outputs a description of a circuit from
this class. In fact, one can view collections in our context as a natural relaxation of uniformity, allowing the circuit
generator to be randomized. (The above discussion also applies to other P-uniform representation models we use,
such as branching programs.)

Our usage of collections differs from the standard one in that we insist onDz being the set ofall strings of a
given length (i.e., the set of all possible inputs for the circuitz) and restrict the domain sampler to be a trivial one
which outputs a uniformly random string of the appropriate length. This convention guarantees that the primitive can
indeed be invoked with the specified parallel complexity, and does not implicitly rely on a (possibly less parallel)
domain sampler.23 In most cases, it is possible to modify standard collections of primitives to conform to the
above convention. We illustrate this by outlining a construction of anNC1 collection of one-way permutations
based on the intractability of discrete logarithm. The key-generator, on input1n, samples a random primep such
that 2n−1 ≤ p < 2n along with a generatorg of Z∗p , and letsz be a description of anNC1 circuit computing
the functionfp,g defined as follows. On ann-bit input x (viewed as an integer such that0 ≤ x < 2n) define
fp,g(x) = gx mod p if 1 ≤ x < p andfp,g(x) = x otherwise. It is easy to verify thatfp,g indeed defines a
permutation on{0, 1}n. Moreover, it can be computed by anNC1 circuit by incorporatingp, g, g2, g4, . . . , g2n

into
the circuit. Finally, assuming the intractability of discrete logarithm, the above collection isweaklyone way. It can
be augmented into a collection of (strongly) one-way permutations by using the standard reduction of strong OWF
to weak OWF (i.e., usingf ′p,g(x1, . . . , xn) = (fp,g(x1), . . . , fp,g(xn))).

When defining the cryptographic security of a collection of primitives, it is assumed that the adversary (e.g.,
inverter or distinguisher) is given the keyz, in addition to its input in the single-function variant of the primitive.
Here one should make a distinction between “private-coin collections”, where this is all of the information available
to the adversary, and “public-coin collections” in which the adversary is additionally given the internal coin-tosses
of the key-generator. (A similar distinction has been recently made in the specific context of collision-resistant
hash-functions [34]; also, see the discussion of “enhanced TDP” in [24, App. C.1].) The above example for a OWP
collection is of the public-coin type. Any public-coin collection is also a private-coin collection, but the converse
may not be true.

Summarizing, we consider cryptographic primitives in three different settings:

1. (Single function setting.) The circuit family{Cn}n∈N that computes the primitive is constructed by a deter-
ministic polynomial time circuit generator that, given an input1n, outputs the circuitCn. This is the default
setting for most cryptographic primitives.

23Note that unlike the key-generation algorithm, which can be applied “once and for all”, the domain sampler should be invoked for each
application of the primitive.

37

2. (Public-coin collection.) The circuit generator is a probabilistic polynomial time algorithm that, on input1n,
samples a circuit from a collection of circuits. The adversary gets as an input the circuit produced by the
generator, along with the randomness used to generate it. The experiments defining the success probability of
the adversary incorporate the randomness used by the generator, in addition to the other random variables. As
in the single function setting, this generation step can be thought of as being done “once and for all”, e.g., in
a pre-processing stage. Public-coin collections are typically useful for primitives based on discrete logarithm
assumptions, where a large prime group should be set up along with its generator and precomputed exponents
of the generator.

3. (Private-coin collection.) Same as (2) except that the adversary does not know the randomness that was used by
the circuit generator. This relaxation is typically useful for factoring-based constructions, where the adversary
should not learn the trapdoor information associated with the public modulus (see [39, 44]).

We note that our general transformations apply to all of the above settings. In particular, given anNC1 primitive
in any of these settings, we obtain a correspondingNC0 primitive in the same setting.

B A Generalization of the Locality Construction

In the Locality Construction (4.16), we showed how to encode a degreed function by anNC0
d+1 encoding. We now

describe a graph based construction that generalizes the previous one. The basic idea is to view the encodingf̂ as a
graph. The nodes of the graph are labeled by terms off and the edges by random inputs off̂ . With each node we
associate an output of̂f in which we add to its term the labels of the edges incident to the node. Formally,

Construction B.1 (General locality construction)Letf(x) = T1(x)+. . .+Tk(x), wheref, T1, . . . , Tk : GF(2)n →
GF(2) and summation is overGF(2). Let G = (V, E) be a directed graph withk nodesV = {1, . . . , k} andm
edges. The encodinĝfG : GF(2)n+m → GF(2)k is defined by:

f̂G(x, (ri,j)(i,j)∈E) def=

Ti(x) +

∑

j|(j,i)∈E

rj,i −
∑

j|(i,j)∈E

ri,j

k

i=1

.

From here on, we will identify with the directed graphG its underlying undirected graph. The above construction
yields a perfect encoding whenG is a tree (see Lemma B.2 below). The locality of an output bit off̂G is the
locality of the corresponding term plus the degree of the node in the graph. The locality construction described
in Construction 4.16 attempts to minimize the maximal locality of a node in the graph; hence it addsk “dummy”
0 terms tof and obtains a tree in which all of thek non-dummy terms off are leaves, and the degree of each
dummy term is at most 3. When the terms off vary in their locality, a more compact encodingf̂ can be obtained by
increasing the degree of nodes which represent terms with lower locality.

Lemma B.2 (Generalized locality lemma)Letf and f̂G be as in Construction B.1. Then,

1. f̂G is a perfectly correct encoding off .

2. If G is connected, then̂fG is also a balanced encoding off (and in particular it is perfectly private).

3. If G is a tree, thenf̂G is also stretch preserving; that is,̂fG perfectly encodesf .

38

Proof: (1) Given ŷ = f̂G(x, r) we decodef(x) by summing up the bits of̂y. Since each random variableri,j

appears only in theith andjth output bits, it contributes 0 to the overall sum and therefore the bits ofŷ always add
up tof(x).

To prove (2) we use the same simulator as in the locality construction (see proof of Lemma 4.17). Namely, given
y ∈ {0, 1}, the simulatorS choosesk−1 random bitsr1, . . . , rk−1 and outputs(r1, . . . , rk−1, y−(r1+ . . .+rk−1)).
This simulator is balanced since the supports ofS(0) andS(1) halve{0, 1}k andS(y) is uniformly distributed over
its support fory ∈ {0, 1}. We now prove that̂fG(x,Um) ≡ S(f(x)). Since the support ofS(f(x)) contains exactly
2k−1 strings (namely, allk-bit strings whose bits sum up tof(x)), it suffices to show that for any inputx and output
w ∈ support(S(f(x))) there are2m/2k−1 random inputsr such thatf̂G(x, r) = w. (Note thatm ≥ k − 1 sinceG
is connected.) LetT ⊆ E be a spanning tree ofG. We argue that for any assignment to them − (k − 1) random
variables that correspond to edges inE \T there exists an assignment to the other random variables that is consistent
with w andx. Fix some assignment to the edges inE \ T . We now recursively assign values to the remaining
edges. In each step we make sure that some leaf is consistent withw by assigning the corresponding value to the
edge connecting this leaf to the graph. Then, we prune this leaf and repeat the above procedure. Formally, leti be
a leaf which is connected toT by an edgee ∈ T . Assume, without loss of generality, thate is an incoming edge
for i. We setre to wi − (Ti(x) +

∑
j|(j,i)∈E\T rj,i −

∑
j|(i,j)∈E\T ri,j), and removei from T . By this we ensure

that theith bit of f̂G(x, r) is equal towi. (This equality will not be violated by the following steps asi is removed
from T .) We continue with the above step until the tree consists of one node. Since the outputs off̂G(x, r) always
sum up tof(x) it follows that this last bit off̂G(x, r) is equal to the corresponding bit ofw. Thus, there are at least
2|E\T | = 2m−(k−1) values ofr that lead tow as required.

Finally, to prove (3) note that whenG is a tree we havem = k − 1, and therefore the encoding is stretch
preserving; combined with (1) and (2)̂fG is also perfect.

C More on Encryption Schemes inNC0

We consider two issues regarding encryption, briefly mentioned in Section 7.2.

C.1 On the Impossibility of NC0 Decryption

In this section we show that, in many settings, decryption inNC0 is impossible regardless of the complexity of
encryption. Here we consider standardstatelessencryption schemes in contrast to the discussion at the end of
Section 7.2. We begin with the case of multiple-message security (in either the private-key or public-key setting).
If a decryption algorithmD(d, y) is in NC0

k, then an adversary that getsn encrypted messages can correctly guess
the first bits ofall the plaintexts (jointly) with at least2−k probability. To do so, the adversary simply guesses at
random thek (or less) bits of the keyd on which the first output bit ofD depends, and then computes this first
output bit (which is supposed to be the first plaintext bit) on each of then ciphertexts using the subkey it guessed.
Whenever the adversary guesses thek bits correctly, it succeeds to find the first bits ofall n messages. Whenn > k,
this violates the semantic security of the encryption scheme. Indeed, for the encryption scheme to be secure, the
adversary’s success probability (when the messages are chosen at random) can only be negligibly larger than2−n.
(That is, an adversary cannot do much better than simply guessing these first bits.)

Even in the case of a single-message private-key encryption, it is impossible to implement decryption inNC0
k

with an arbitrary (polynomial) message length. Indeed, when the message length exceeds(2|d|)k (where|d| is the
length of the decryption key), there must be more than2k bits of the output ofD which depend on the samek bits of
the key, in which case we are in the same situation as before. That is, we can guess the value of more than2k bits of
the message with constant success probability2−k. Again, if we consider a randomly chosen message, this violates
semantic security.

39

C.2 Security against CPA, CCA1 and CCA2 Attacks

In this section we address the possibility of applying our machinery to encryption schemes that enjoy stronger
notions of security. In particular, we consider schemes that are secure against chosen plaintext attacks (CPA), a-
priory chosen ciphertext attacks (CCA1), and a-posteriori chosen ciphertext attacks (CCA2). In all three attacks the
adversary has to win the standard indistinguishability game (i.e., given a ciphertextc = E(e,mb) find out which of
the two predefined plaintextsm0,m1 was encrypted), and so the actual difference lies at the power of the adversary.
In a CPA attack the adversary can obtain encryptions of plaintexts of his choice (under the key being attacked),
i.e., the adversary gets an oracle access to the encryption function. In CCA1 attack the adversary may also obtain
decryptions of his choice (under the key being attacked), but he is allowed to do so onlybeforethe challenge is
presented to him. In both cases, the security is preserved under randomized encoding. We briefly sketch the proof
idea.

Let B̂ be an adversary that breaks the encodingÊ via a CPA attack (resp. CCA1 attack). We useB̂ to obtain
an adversaryB that breaks the original schemeE . As in the proof of Lemma 7.5,B uses the simulator to translate
the challengec, an encryption of the messagemb underE , into a challengêc, which is an encryption of the same
message under̂E . Similarly, B answers the encryption queries ofB̂ (to the oracleÊ) by directing these queries
to the oracleE and applying the simulator to the result. Also, in the case of CCA1 attack, wheneverB̂ asks the
decryption oraclêD to decrypt some ciphertext̂c′, the adversaryB uses the decoder (of the encoding) to translate
ĉ′ into a ciphertextc′ of the same message under the schemeE , and then uses the decryption oracleD to decryptc′.
This allowsB to emulate the oracleŝD andÊ, and thus to translate a successful CPA attack (resp. CCA1 attack) on
the new scheme into a similar attack on the original scheme.

The situation is different in the case of a CCA2 attack. As in the case of a CCA1 attack, a CCA2 attacker has
an oracle access to the decryption function corresponding to the decryption key in use; however, the adversary can
query the oracleeven afterthe challenge has been given to him, under the restriction that he cannot ask the oracle to
decrypt the challengec itself.

We start by observing that when applying a randomized encoding to a CCA2-secure encryption scheme, CCA2
security may be lost. Indeed, in the resulting encryption one can easily modify a given ciphertext challengeĉ =
Ê(e, x, r) into a ciphertext̂c′ 6= ĉ which is also an encryption of the same message under the same encryption
key. This can be done by applying the decoder (of the randomized encodingÊ) and then the simulator on̂c, that is
ĉ′ = S(C(ĉ)). Hence, one can break the encryption by simply asking the decryption oracle to decryptĉ′.

It is instructive to understand why the previous arguments fail to generalize to the case of CCA2 security. In the
case of CCA1 attacks we transformed an adversaryB̂ that breaks the encodinĝE into an adversaryB for the original
scheme in the following way: (1) we used the simulator to convert a challengec = E(e,mb) into a challengêc which
is an encryption of the same message underÊ ; (2) whenB̂ asksD̂ to decrypt a ciphertext̂c′, the adversaryB uses
the decoder (of the encoding) to translateĉ′ into a ciphertextc′ of the same message under the schemeE , and then
asks the decryption oracleD to decryptc′. However, recall that in a CCA2 attack the adversaries are not allowed to
ask the oracle to decrypt the challenge itself (after the challenge is presented). So ifc′ = c but ĉ′ 6= ĉ, the adversary
B cannot answer the (legitimate) query ofB̂.

To complement the above, we show that when applying a randomized encoding to a CCA2-secure encryption
scheme not all is lost. Specifically, the resulting scheme still satisfiesReplayable CCA security (RCCA), a relaxed
variant of CCA2 security that was suggested in [12]. Loosely speaking, RCCA security captures encryption schemes
that are CCA2 secure except that they allow anyone to generate new ciphers that decrypt to the same value as a given
ciphertext. More precisely, an RCCA attack is a CCA2 attack in which the adversary cannot ask the oracle to decrypt
any cipherc′ that decrypts to eitherm0 or m1 (cf. [12, Figure 3]). This limitation prevents the problem raised in
the CCA2 proof, in which a legitimate query for̂D translates by the decoder into an illegitimate query forD. That
is, if ĉ′ does not decrypt under̂E to neitherm0 norm1, then (by correctness) the ciphertextc′ obtained by applying
the decoder tôc′ does not decrypt to any of these messages either. Hence, randomized encoding preserves RCCA
security. As argued in [12], RCCA security suffices in most applications of CCA2 security.

40

