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1
Introduction

1.1 Backgrounds

After the seminal paper by Diffie and Hellman [DH76], several cryptosystems

based on the number-theoretic problems were proposed, such as the RSA encryp-

tion scheme [RSA78], the ElGamal encryption scheme [ElG85], and etc. They

have succeeded in the real life and academic world. We have used them in the real

life and have taught cryptography with exemplifying them.

Although there were several cryptosystems based on combinatorial problems,

less attentions were payed on them than to number-theoretical ones. In my opinion,

one of reasons is their fragile lives; several cryptosystems were cryptanalysed with

the proposed parameters after a few years from their proposal. For example, the

Merkle–Hellman “knapsack” encryption scheme [MH78] and their variants were

soon cryptanalysed in the realistic parameters. The other of reasons is their ineffi-

ciency; the above attacks are against the proposed parameters and, hence, they need

the larger parameter sets to bear the attacks. In addition, their inherent structures

yield huge public keys, say the quadratic or cubic order of the security parameter.

This situation was changed externally by a new threat on number-theoretical

cryptosystems, i.e., Shor’s quantum attacks [Sho97]. These schemes were shed by

the light and provided much attentions. After this new threat, many researchers

have made strenuous efforts to construct secure schemes and found several combi-

natorial problems suiting to do.

An attractive one of them is lattice-based cryptography; it appeared in 1996

to construct one-way functions with average-case/worst-case equivalence in Aj-

tai [Ajt96], which rarely appears in number-theoretic problems and other com-

binatorial problems. Lattices have already appeared as the cryptanalytic tools in

cryptography. See the surveys [Cai98a, NS01].

1



1.2. PRELIMINARIES

Lattice-based cryptography have bloomed in this two decades; we have ob-

tained hash functions, digital signatures, public-key encryptions, identity-based

primitives, and etc. and they enjoyed average-case/worst-case equivalences, that

is, their securities are based on the worst-case hardness of certain lattice problems.

In this thesis, we will review them and give some intuitions on the constructions

of them. The organization of this thesis is in Section 1.3. We first prepare the

notions and notation.

1.2 Preliminaries

In this section, we review basic notions and notation on probabilities, distributions,

hash functions, and protocols which will appear in this thesis.

1.2.1 Basic notions and notation

We define a negligible amount in n as an amount that is asymptotically smaller

than n−c for any constant c > 0. More formally, We say a function f (n) is a negli-

gible function in n if limn→∞ nc f (n) = 0 for any c > 0. Similarly, a non-negligible

amount is one which is at least n−c for some c > 0. We denote by n the security pa-

rameter of cryptographic schemes throughout this paper, which corresponds to the

rank of the underlying lattice problems. We say that a problem is hard in the worst

case if there exists no probabilistic polynomial-time algorithm solves the problem

in the worst case with non-negligible probability. We sometimes use Õ(g(n)) for

any function g in n as O(g(n)·polylog(g(n))). We assume that all random vari-

ables are independent and uniform. For a positive integer n, let [n] denote a set

{1, 2, . . . , n}.
Vectors will be denoted by bold italic, say a, b, c, etc. Polynomials are denoted

by bold roman, say a,b, c. In addition, we denote vectors of polynomials by bold

italic with a check, ǎ, b̌, č, etc. We denote matrices by upper bold italic such as

A, B,C.

To denote a column vector with elements, we write elements in parentheses;

a = (a1, . . . , am). If a row vector, we denote by [a1, . . . , am], elements in brackets.

We often compose a matrix. If we write A = [A1|A2] with A1 ∈ S n×m and A2 ∈
S n×l, A is an n by (m + l) matrix. If we write A = [A1; A2] where A1 is an n by m

and A2 is an l by m then A is an (n + l) by m matrix.

For any p ≥ 1, the lp norm of a vector x = t(x1, . . . , xn) ∈ Rn, denoted by

‖x‖p, is (
∑

i∈[n] x
p

i
)1/p. For ease of notation, we define ‖x‖ := ‖x‖2. The l∞ norm

is defined as ‖x‖∞ = limp→∞ ‖x‖p = maxi∈[n] |xi|. Let wH(x) denote the Hamming

weight of x, i.e., the number of non-zero elements in x. Let S(m,w) denote the set

of binary vectors in {0, 1}m whose Hamming weights are exactly equal to w, i.e.,

S(m,w) := {x ∈ {0, 1}m | wH(x) = w}. We denote the concatenation of two vectors

or strings v1 and v2 by v1 ◦ v2.

B
p
n (c, r) denotes an n-dimensional ball centered c ∈ Rn and with radius r ≥ 0

2



1.3. ORGANIZATION

in the lp norm. We drop n if the dimension n is not ambiguous in the context. We

drop p if p = 2 and drop c if the center is the origin, that is, c = 0.

1.2.2 Probabilities and Distributions

Let φ1 and φ2 be two probability density functions on a finite set S . We often

let φ1 indicate a distribution corresponding to probability density function φ1,

vice verse. We define the statistical distance between two distributions φ1 and

φ2 as ∆(φ1, φ2) := 1
2

∑
x∈S |φ1(x) − φ2(x)|. Given two distributions φ1 and φ2

over Rm, which are continuous, we define the statistical distance between them

as ∆(φ1, φ2) := 1
2

∑
x∈Rm |φ1(x) − φ2(x)|dx. We also use the same notation for two

arbitrary functions. Note that the acceptance probability of any algorithm on inputs

from X differs from its acceptance probability on inputs from Y by at most ∆(X, Y).

If A(·, ·, . . . ) is a randomized algorithm, then y← A(x1, x2, . . . ; r) means that y

is assigned the unique output of the algorithm on inputs x1, x2, . . . and coins r. We

often use the notation y ← A(x1, x2, . . . ) as shorthand for first picking r at random

and then setting y ← A(x1, x2, . . . , ; r). If S is a finite set then s ← S indicates

that s is chosen uniformly at random from S . If D is a distribution then x ← D

indicates that x is chosen according to the distribution D.

We say two distributions D1 and D2 are perfectly indistinguishable if D1 = D2,

denoted by D1 ≈P D2. They are statistically indistinguishable if ∆(D1,D2) is

negligible in the security parameter n, that is, ∆(D1,D2) ≤ n−ω(1). We denote them

by D1 ≈S D2. They are computationally indistinguishable if for any polynomial-

time algorithmA,

∣∣∣Pr[A(1n, X1) = 1] − Pr[A(1n, X2) = 1]
∣∣∣ ≤ n−ω(1),

where Xi is a random variable distributed according to D1 for i = 1, 2 and the

probabilities are taken by X, Y , and coins ofA. We denote them by D1 ≈C D2.

Let X be a random variable over a set S . The min-entropy of X is defined by

H∞(X) = − log max
x∈S

Pr[X = x].

If H∞(X) is log |S|, X is distributed uniformly over S.

1.3 Organization

Chapter 2 reviews lattices, lattice problems, and relations and reductions among

the problems. Chapter 3 also reviews ideal lattices, and more. In Chapter 4, we

review hash functions based lattice problems and ideal lattice problems. In Chap-

ter 5, we introduce simple string commitment schemes based on lattice problems.

Chapter 6 gives two identification schemes which are variants of Stern’s identifica-

tion schemes and based on lattice and ideal lattice problems. Based on these two

schemes, we construct ad hoc identification schemes in Chapter 8. As an interlude,

3
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we point out that Stern’s scheme yields zero-knowledge and proof-of-knowledge

protocols for NTRU in Chapter 9. Chapter 10 summarizes trapdoor generation al-

gorithms by Ajtai and by Alwen and Peikert and propose ideal versions of the trap-

door generation algorithms. Chapter 11 reviews the signature scheme by Gentry,

Peikert, and Vaikuntanathan, which employs the above trapdoor generation algo-

rithms, and constructs a compact signature scheme following them. Combining

the signature schemes and the Micciancio-Vadhan identification scheme, we ob-

tain two identity-based identification scheme in Chapter 7. Survey on public-key

encryption, key-encapsulation mechanism, and identity-based encryption schemes

based on lattice problems appear in Chapter 12, Chapter 13, and Chapter 14, re-

spectively. Chapter 15 proposes new lattice-based proxy re-encryption schemes,

which are based on several encryption schemes.

4



2
Lattices

Organization: Section 2.1 give the basic definitions and notions on lattices. Sec-

tion 2.2 reviews the problems on lattice appeared in the literature. In Section 2.3,

we briefly review the results on the hardness of lattice problems. In Section 2.4,

we give the review of the average-case/worst-case reductions.

2.1 Lattices

We first review fundamental notions of lattices.

A lattice is a discrete additive subgroup of Rm. Formally, an n-dimensional

lattice Λ in Rm is the set L(b1, . . . , bn) = {∑i∈[n] αibi | αi ∈ Z} of all integral

combinations of n linearly independent vectors b1, . . . , bn ∈ Rm. The sequence

of vectors b1, . . . , bn is called a basis of the lattice Λ = L(B) and denoted by

B = [b1, . . . , bn], where B is an m by n matrix. Using this notation, we can write

Λ = {Bx | x ∈ Zn}. Notice that a lattice has infinitely many bases. This can

be confirmed by checking that BU is also a basis of L for any unimodular matrix

U ∈ Zn×n, which is a matrix with determinant −1 or 1. In this thesis, we only

consider the full-rank lattices, an n-dimensional lattice in Rn.

The dual lattice of Λ, denoted by Λ∗, is Λ∗ = {x ∈ Rn : ∀v ∈ Λ, 〈x, v〉 ∈ Z}. It

can be verified that (Λ∗)∗ = Λ. If B is a basis of Λ, then the basis of the dual lattice

is B∗ = (B−1)T .

For any set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, let S̃ =

{s̃1, . . . , s̃n} be its Gram-Schmidt orthogonalization: for each i ∈ [n],

s̃i =


s1, if i = 1,

si −
∑

j∈[i−1]
〈si,s̃ j〉
〈s̃ j,s̃ j〉 s̃ j, otherwise

.

5



2.1. LATTICES

Note that ‖s̃i‖ ≤ ‖si‖ for any i ∈ [n].

In the l2 norm, for any full-rank set S ⊂ Λ, there is a basis T of Λ such that

‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖.

Lemma 2.1.1 (Lemma 7.1, page 129, [MG02]). There is a deterministic

polynomial-time algorithm MGReduce that, given an arbitrary basis B of an n-

dimensional lattice Λ and a full-rank set of lattice vectors S ⊂ Λ, outputs a basis

T of Λ such that ‖ t̃i‖ ≤ ‖s̃i‖ for all i ∈ [n].

Additionally, the Gram-Schmidt orthogonalization of a basis and its dual are

closely related.

Lemma 2.1.2 ([Reg04a, Lecture 8]). Let {b1, . . . , bn} be an basis of Λ and let

{d1, . . . , dn} be its dual basis in reversed order (di = b∗
n−i+1

). Then d̃i = b̃i/
∥∥∥b̃i

∥∥∥2

for all i ∈ [n].

For more details on lattices, see the textbook by Micciancio and Gold-

wasser [MG02].

2.1.1 Lattice Constants

There are several constants for lattices which are independent of representations.

The most fundamental one is the length of the shortest vector. This is generalized

as successive minima λ
p

i
(Λ) for i ∈ [n]: For every i, the i-th minimum λ

p

i
(Λ) is the

radius of the smallest sphere centered in the origin containing i linearly indepen-

dent lattice vectors, that is,

λ
p

i
(Λ) = min{r : dim(span(Λ ∩ Bp(r))) ≥ i}.

Setting i = 1, λ
p

1
(Λ) stands for the length of the shortest vector in the lattice Λ in

the lp norm.

The definition of the covering radius µ(Λ) is given by

µ(Λ) = max
xp∈Rn
{dist(x,Λ)}.

The name is from the fact that
⋃

v∈Λ Bp(v, µ(Λ)) = Rn.

Another lattice constant is the length of the shortest basis of Λ, blp(Λ). This is

defined as

blp(Λ) = min
B:a basis of Λ

‖B‖p = min
B:a basis of Λ

max
i∈[n]
‖bi‖ .

In addition, we can define the Gram-Schmidt minimum as

b̃l
p
(Λ) = min

B:a basis of Λ
‖B̃‖p = min

B:a basis of Λ
max
i∈[n]
‖b̃i‖.

This constant is introduced explicitly in [GPV08] and implicitly in [Cai98b].

The smoothing parameter was defined by Micciancio and Regev [MR07]. Let

us consider the Gaussian function with variance s and center c ∈ Rn ρs,c(x) =

6
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exp(−π ‖x − c‖2 /s2). Let us define the Gaussian distribution νs,c = ρs,c/sn. (we

have
∫

x∈Rn νs,c(x)dx = 1.) For a countable set S ⊆ Rn, we extend the definition of

ρs,c as ρs,c(S ) =
∑

x∈S ρs,c(x). If c = 0, we often drop c from ρs,c and νs,c.

Definition 2.1.3. For an n-dimensional lattice Λ, and positive real ǫ > 0, we define

its smoothing parameter ηǫ(Λ) to be the smallest s such that ρ1/s(Λ
∗ \ {0}) ≤ ǫ.

As noted in [MR07], ρ1/s(Λ
∗ \ {0}) is a continuous and strictly decreasing func-

tion of s: lims→0 ρ1/s(Λ
∗ \ {0}) = ∞ and lims→∞ ρ1/s(Λ

∗ \ {0}) = 0. Then, ηǫ(Λ) is

also a continuous and strictly decreasing function of ǫ. This parameter was named

as “smoothing,” since Ds,c mod P(B) is almost uniformly distributed over P(B).

Precisely, we have the following lemma.

Lemma 2.1.4 ([MR07]). For any s > 0, c ∈ Rn, and a lattice Λ = L(B), the

statistical distance between νs,c mod P(B) and the uniform distribution over P(B)

is at most 1
2
ρ1/s(Λ

∗ \ {0}). In particular, for any ǫ > 0 and any s ≥ ηǫ(Λ), the

statistical distance is at most

∆(νs,c mod P(B),U(P(B))) ≤ ǫ/2.

For an n-dimensional lattice Λ and a lattice vector x ∈ Λ, we define

DΛ,s,c(x) =
νs,c(x)

νs,c(Λ)
=
ρs,c(x)

ρs,c(Λ)
.

These quantities relate to each other. For example, we have the following rela-

tions.

Lemma 2.1.5 ([GPV08] etc.). For any n-dimensional lattice Λ,

λ1(Λ) ≤ b̃l(Λ) ≤ λn(Λ) ≤ 2µ(Λ) ≤
√

n · b̃l(Λ).

The following relations with the smoothing parameter play important roles in

the reductions.

Lemma 2.1.6 (Lemma 3.2 [MR07]). For any n-dimensional lattice Λ, ηǫ(Λ) ·
λ1(Λ∗) ≤

√
n, where ǫ = 2−n.

Lemma 2.1.7 (Lemma 3.1 [GPV08] and Lemma 3.2 [MR07]). For any n-

dimensional lattice Λ and positive real ǫ > 0

ηǫ(Λ) ≤ b̃l(Λ) ·
√

1

π
ln(2n(1 + 1/ǫ)) ≤ λn(Λ) ·

√
1

π
ln(2n(1 + 1/ǫ)).

In particular, for any g(n) = ω(log n), there exists a negligible function ǫ(n) such

that ηǫ(Λ) ≤
√

g(n) · b̃l(Λ) ≤
√

g(n) · λn(Λ).

Notice that, for ǫ ∈ (0, 1), we have that

√
1

π
ln(2n(1 + 1/ǫ)) ≤

√
ln(4nǫ−1).

7
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Hence, for any g(n) = ω(log n), we have that

√
ln(4nǫ−1) ≤

√
g(n)

by setting ǫ(n) = 4n−g(n)/ ln(n)+1 = n−ω(1).

The following lemma clarifies the tighter relation between ηǫ(Λ) and λ∞
1

(Λ∗).

Lemma 2.1.8 ([Pei07, Lemma 3.5] using [Ban95]). For any n-dimensional lattice

Λ and positive real ǫ > 0

ηǫ(Λ) ≤

√
1
π

ln(2n(1 + 1/ǫ))

λ∞
1

(Λ∗)
.

In particular, for any g(n) = ω(log n), there exists a negligible function ǫ(n) such

that ηǫ(Λ) ≤
√

g(n)/λ∞
1

(Λ∗).

More on the smoothing parameter and Gaussian distributions: The next im-

portant property of ηǫ is the bound on DΛ,s,c; for s ≥ ηǫ(Λ) the output has the norm

at most s
√

n with overwhelming probability.

Lemma 2.1.9 ([MR07, Lemma 4.4]). For any n-dimensional lattice Λ, point c ∈
Rn, and reals ǫ ∈ (0, 1) and s ≥ ηǫ(Λ),

Pr
x←DΛ,s,c

[‖x − c‖ > s
√

n] ≤ 1 + ǫ

1 − ǫ · 2
−n.

Micciancio and Regev also bounded ρs,c(Λ) by ρs(Λ).

Lemma 2.1.10 ([MR07] implicit in Lemma 4.4, see [GPV08]). For any n-

dimensional lattice Λ, point c ∈ Rn, and reals ǫ ∈ (0, 1) and s ≥ ηǫ(Λ),

ρs,c(Λ) ∈
[
1 − ǫ
1 + ǫ

, 1

]
· ρs(Λ).

We have another property of the smoothing parameter on DΛ,s, which was

shown in the proof of [Reg09, Lemma 3.11]. Let us consider the distribution

B−1DΛ,s mod q; (1) take a sample y from DΛ,s and (2) output B−1y mod q. Since

y is in Λ, the output lies in Zn
q.

Lemma 2.1.11 (Implicit in the proof of Lemma 3.11, [Reg09]). For any n-

dimensional lattice Λ, reals ǫ ∈ (0, 1/2) and s > qηǫ(Λ),

∆(B−1DΛ,s mod q,U(Zn
q)) ≤ ǫ

1 − ǫ .

Proof. The proof is the same as the one of Regev [Reg09]. Let A be a random

variable distributed according to B−1DΛ,s mod q. Then, for any a ∈ Zn
q,

Pr
A

[A = a] =
ρs(qΛ + Λa)∑

b∈Zn
q
ρs(qΛ + Λb)

.

8



2.2. LATTICE PROBLEMS

Suppose that we take s sufficiently large satisfying ηǫ(Λ) < s/q, that is, ηǫ(qΛ) < s.

By the claim below in [Reg09], we have that

ρs(qΛ + Λa) ∈ (1 ± ǫ)sn det((qΛ)∗) = (1 ± ǫ)(s/q)n det(Λ∗).

Hence,

Pr
A

[A = a] ∈ (1 ± ǫ)(s/q)n det(Λ∗)∑
b(1 ∓ ǫ)(s/q)n det(Λ∗)

=

[
1 − ǫ
1 + ǫ

,
1 + ǫ

1 − ǫ

]
· q−n.

In addition, we have
∣∣∣1 − ( 1+ǫ

1−ǫ )
∣∣∣ = 2ǫ

1−ǫ and
∣∣∣1 − ( 1−ǫ

1+ǫ
)
∣∣∣ = 2ǫ

1+ǫ
. Therefore, the statis-

tical distance is at most

∆(A,U(Zn
q)) ≤ ǫ

1 − ǫ
and this completes the proof.

Claim 2.1.12 (Claim 3.8, [Reg09]). For any lattice Λ, point c ∈ Rn, and any reals

ǫ > 0 and s ≥ ηǫ(Λ),

(1 − ǫ)sn det(Λ∗) ≤ ρs(Λ + c) ≤ (1 + ǫ)sn det(Λ∗).

�

By the similar argument, we can show the following generalized lemma.

Lemma 2.1.13 (Corollary 2.8, [GPV08]). Let Λ and Λ′ be n-dimensional lattices

with Λ′ ⊆ Λ. Then for any ǫ ∈ (0, 1/2), any s ≥ ηǫ(Λ′), and any c ∈ Rn,

∆(DΛ,s,c mod Λ′,U(Λ mod Λ′)) ≤ 2ǫ.

The final lemma ensures the min-entropy of DΛ,s,c.

Lemma 2.1.14 ([PR06]). For any n-dimensional lattice Λ, point c ∈ Rn, reals

ǫ > 0 and s ≥ 2ηǫ(Λ), and for every x ∈ Λ,

DΛ,s,c(x) ≤ 1 + ǫ

1 − ǫ · 2
−n.

In particular, for ǫ < 1/3, the min-entropy of DΛ,s,c is at least n − 1.

2.2 Lattice Problems

We give the definitions of well-known lattice problems, the Shortest Vector Prob-

lem (SVPp) and its approximation version (SVP
p
γ):

Definition 2.2.1 (Shortest Vector Problem, SVP). The problem SVPp is, given a

basis B of a lattice Λ, finding the shortest non-zero vector v in Λ in the lp norm.

Definition 2.2.2 (Approximation version of SVP). The problem SVP
p
γ is, given a

basis B of a lattice Λ, finding a non-zero vector v in Λ such that for any non-zero

vector x in Λ, ‖v‖p ≤ γ ‖x‖p.

9
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We next give the definition of the gap version of SVP
p
γ .

Definition 2.2.3 (Gap version of SVP, GapSVP). For a gap function γ, an instance

of GapSVP
p
γ is a pair (B, d) where B is a basis of a lattice Λ and d is a rational

number. In YES input there exists a vector v ∈ Λ \ {0} such that ‖v‖p ≤ d, that is,

λ
p

1
(Λ) ≤ d. In NO input, for any vector v ∈ Λ \ {0}, ‖v‖p > γd, that is, λ

p

1
(Λ) > γd.

Apparently, the smaller γ, the harder the problems, SVPγ and GapSVPγ, are.

Peikert also define the variant of GapSVP, ζ-to-γ-GapSVP in which we are

given a lattice having a vector shorter than ζ(n).

Definition 2.2.4 (GapSVPζ,γ). For functions ζ(n) ≥ γ(n) ≥ 1, an input to ζ-to-γ-

GapSVP, GapSVPζ,γ, is a pair (B, d), where:

• B is a basis of an n-dimensional lattice Λ for which λ1(Λ) ≤ ζ(n),

• mini ‖b̃i‖ ≥ 1, and

• 1 ≤ d ≤ ζ(n)/γ(n).

It is a YES instance if λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

Note that, for any ζ(n) ≥ 2n/2, GapSVPζ,γ is at least hard as GapSVPγ, since

we can reduce the basis so that λ1(Λ) ≤ ‖bi‖ ≤ 2n/2 · mini ‖b̃i‖ by using the LLL

algorithm [LLL82].

The shortest independent vectors problem gives also the base of the crypto-

graphic scheme.

Definition 2.2.5 (Shortest Independent Vectors Problem, SIVP). The problem

SIVPp is, given a basis B of a lattice Λ, finding the shortest independent vectors S

in Λ in the lp norm. That is, finding S such that ‖S‖p = λp
n (Λ).

Definition 2.2.6 (Approximation version of SIVP). The problem SVP
p
γ is, given a

basis B of a lattice Λ, finding independent vectors S such that ‖S‖p ≤ γ · λp
n (Λ).

The above definition is generalized with some lattice constant φ.

Definition 2.2.7 (Generalized Independent Vectors Problem, GIVP). The problem

GIVP
φ,p
γ is, given a basis B of a lattice Λ, finding n linearly independent vectors

S ⊂ Λ such that ‖S‖p ≤ γ · φ(Λ).

The Closest Vector Problem (CVPp) also often appeared in the lattice-based

cryptography. We give the definitions of CVPp, the approximation version CVP
p
γ ,

and the gap version GapCVP
p
γ .

Definition 2.2.8 (Closest Vector Problem, CVP). The problem CVPp is, given a

basis B of a lattice Λ and a target vector t, finding the closest vector v in Λ to t in

the lp norm, that is, finding a vector v such that for any x ∈ Λ, ‖v − t‖p ≤ ‖x − t‖.

Definition 2.2.9 (Approximation version of CVP). The problem CVP
p
γ is, given a

basis B of a lattice Λ and a target vector t, finding a vector v in Λ such that for any

vector x in Λ, ‖v − t‖p ≤ γ ‖x − t‖p.
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Definition 2.2.10 (Gap version of CVP, GapCVP). For a gap function γ, an in-

stance of GapCVP
p
γ is a triplet (B, t, d) where B is a basis of a lattice Λ, t is a

target vector in Qm, and d is a rational number. In YES input there exists a vector

v ∈ Λ such that ‖v − t‖p ≤ d. In NO input, for any vector v ∈ Λ, ‖v − t‖p > γd.

In addition, we give the definition of Bounded Distance Decoding problem, a

promise version of CVP.

Definition 2.2.11 (Bounded Distance Decoding, BDD). The problem BDD is,

given a basis B of an n-dimensional lattice Λ, a real d > 0, and a target point

t ∈ Rn such that dist(t,Λ) ≤ d, finding the close lattice vector v ∈ Λ such that

‖v − t‖ ≤ d.

We can give a generalized version of bounded distance decoding as follows:

Definition 2.2.12 (Guaranteed Distance Decoding GDD
φ,p
γ ). The problem GDD

φ,p
γ

is, given a basis B of a lattice Λ and a target point t ∈ Rn, finding a lattice vector

v ∈ Λ such that ‖v − t‖p ≤ γφ(Λ).

Computing covering radius for any lattice is also hard problem. We give the

definitions of the covering radius problem and its gap version.

Definition 2.2.13 (Covering Radius Problem, CRP). The problem CRPp is, given

a basis B of a lattice Λ, finding the covering radius µ(Λ) of the lattice Λ.

Definition 2.2.14 (Gap version of Covering Radius Problem, GapCRPγ). For a gap

function γ, an instance of GapCRP
p
γ is a pair (B, d) where B is a basis of a lattice Λ

and d is a rational number. In YES inputs, µ(Λ) ≤ d and in NO inputs, µ(Λ) > γ ·d.

Micciancio and Regev defined a new problem, incremental guaranteed distance

decoding problem, IncGDD which is the variant of IncSIVP in Ajtai [Ajt96].

Definition 2.2.15 (Incremental Guaranteed Distance Decoding, IncGDD [MR07]).

An input to IncGDD
p,φ
γ,g is a quadruplet (B, S, t, r), where B is a basis for a full-rank

lattice Λ in Rn, S ⊂ Λ is a full-rank set of lattice vectors, t ∈ Rn is a target point,

and r is a real with r > γ · φ(Λ). The problem is finding a lattice vector v ∈ Λ such

that ‖v − t‖p ≤ 1
g
‖S‖p + r.

Gentry, Peikert, and Vaikuntanathan [GPV08] pointed out that a slightly sim-

pler problem suffices for the reductions in Micciancio and Regev [MR07]. The

problem is incremental independent vectors decoding problem IncIVD defined as

follows:

Definition 2.2.16 (Incremental Independent Vectors Decoding, IncIVD [GPV08]).

An input to IncIVD
p,φ
γ,g is a triplet (B, S, t), where B is a basis for a full-rank lattice

Λ in Rn, S ⊂ Λ is a full-rank set of lattice vectors such that ‖S‖p ≥ γ · φ(B), and

t ∈ Rn is a target point. The problem is finding a lattice vector v ∈ Λ such that

‖v − t‖p ≤ ‖S‖p /g.

Finally, we review the discrete Gaussian Sampling problem (DGS) in [Reg09].
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Definition 2.2.17 (Discrete Gaussian Sampling, DGS [Reg09]). The problem

DGSφ is, given a basis B of an n-dimensional lattice Λ and a real s > φ(Λ), sam-

pling from DΛ,s.

Reductions from lattice problems to IncIVD

The basic reductions appeared in the textbook of Micciancio and Gold-

wasser [MG02]. We here show reductions from several lattice problems, GIVP,

GDD, GapCRP, and GapSVP to IncIVD. These problems will be the underlying

problems of several cryptographic primitives in this thesis through IncIVD.

Micciancio [Mic07] and Micciancio and Regev [MR07] showed these reduc-

tions to IncGDD. Gentry et al. [GPV08] improved the average-case/worst-case re-

ductions and noted that there are reductions from GIVP, GDD, GapCRP to IncIVD,

but they omitted the proofs. For completeness, we prove them by modifying the

proofs (or the proof sketches) in [Mic07, MR07].

Lemma 2.2.18. There is a lattice-preserving polynomial-time reduction from

GIVP
φ,p

4γ
to IncIVD

φ,p

γ,4
.

Proof. The proof is an adapted version of the one in [Mic07, Lemma 4.6]. We

define the reduction algorithm as follows:

1. Scan i ∈ [n] such that ‖si‖p = ‖S‖p.

2. Let t be an orthogonal vector of length ‖S‖p /2 to the hyperplane

span(s1, . . . , si−1, si+1, . . . , sn).

3. Invoke the oracle O on (B,S, t) and obtain v ∈ Λ.

4. If O fails output S.

5. Replace S with S′ = [s1, . . . , si−1, v, si+1, . . . , sn] and go to Step 1.

Suppose that v is a valid solution of IncIVD
φ,p

γ,4
on input (B, S, t). Then, we have

that ‖v − t‖p ≤ ‖S‖p /4 and, hence, v is not included in the hyperplane spanned by

s1, . . . , si−1, si+1, . . . , sn, which shows the linear independence of S′ ⊂ Λ. We also

have that ‖v‖p ≤ ‖v − t‖p + ‖t‖p ≤ ‖S‖p /4 + ‖S‖ /2 = 3
4 ‖S‖p.

Hence, by repeating the above procedure until the oracle O fails, that is,

‖S‖p /4 ≤ γφ(Λ), and we obtain the short linearly independent vectors S ⊂ Λ
with ‖S‖p ≤ 4γ · φ(Λ). �

Lemma 2.2.19. There is a lattice-preserving polynomial-time reduction from

GDD
φ

2γ
to IncIVD

φ

γ,4
.

Proof. As in the proof in [Mic07, Lemma 4.7], by applying the reduction algorithm

in the previous proof, we obtain a full-rank sets S ⊂ Λ such that ‖S‖p ≤ 4γ · φ(Λ).

Since Micciancio’s proof for the reduction to IncGDD exploited r, we give another

reduction algorithm for a reduction to IncIVD, which exploits S.

After obtaining S, we then run the following algorithm:

1. Scan i ∈ [m] such that ‖si‖p = ‖S‖p and set j← 1.

12
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2. Repeat the following procedure.

(a) S( j) ← [s1, . . . , si−1, 2
jsi, si+1, . . . , sn].

(b) Invoke the oracle O on input (B, S( j), t) and obtain v.

(c) If v ∈ Λ and ‖v − t‖p ≤ ‖S( j)‖p/4 then output v.

(d) Otherwise, increment j and go to step (a).

Notice that S( j) is full-rank (since det(S( j)) = 2 j det(S) , 0) and ‖S( j)‖p =
2‖S( j−1)‖p. We now consider the final step j. Then, the check must fail in the

( j − 1)-th repeat and we have that ‖S( j−1)‖p ≤ 4γ · φ(Λ). Thus, ‖S( j)‖p ≤ 8γ · φ(Λ)

and we can upper bound ‖v − t‖p ≤ ‖S( j)‖p/4 ≤ 2γ · φ(Λ), as required. �

Lemma 2.2.20 ([MR07, Lemma 5.12]). For any γ = γ(n), there exists a lattice-

preserving randomized reduction from GapCRPγ to GDDλn

γ/4
. In particular, there

is a lattice-preserving randomized reduction from GapCRP8γ to IncIVDλn

γ,4
.

The proof is in [MR07].

2.3 Hardness of Lattice Problems

We discuss the hardness results on lattice problems.

The NP-hardness of CVPp for any p was shown by van Emde Boas [vEB81].

Arora, Babai, Stern, and Sweedyk [ABSS97] showed the NP-hardness of CVP
p
c

for any constant c. Dinur, Kindler, Raz, and Safra [DKRS03] improved the ap-

proximation factor to 2O(log n/ log log n) = n1/ log log n. On CVPγ, the major problem is

showing NP-hardness for approximation factor nǫ for small constant ǫ > 0.

The first result of the NP-hardness of SVP is van Emde Boas [vEB81] which

showed for the l∞ norm. Later, Ajtai [Ajt98] showed that SVPγ is NP-hard

under randomized reductions for γ = 1 + 2−cn for some constant c. Cai and

Nerurkar [CN97] improved the approximation factor 1 + 1/nǫ for any fixed ǫ > 0.

Micciancio gave the proof for approximation factor
√

2 under RUR-reductions

in [Mic00]. Khot [Kho06] showed that, assuming NP * ZPP, SVP
p
γ for γ = p1−ǫ

is intractable for all integers p ≥ p(ǫ). Khot [Kho05] proved that SVPc is NP-hard

under the assumption NP * RP for any constant c. He also proved that SVPγ for

γ = 2O((log n)1/2−ǫ ) is NP-hard within under the assumption NP * RTIME(2poly(log n)).

Haviv and Regev [HR07] improved the approximation factor to γ = 2(log n)1−ǫ
for

any ǫ under the same assumption.

Even within a polynomial approximation factor, it is unknown whether there

exists a polynomial-time algorithm for the approximation version of SVP. The

most well-known solution to this approximation problem is the so-called LLL algo-

rithm proposed in [LLL82]. This algorithm can solve SVP2n/2 in polynomial time.

Schnorr [Sch87] generalized the LLL algorithm which solves SVPγ for γ = (1+c)n

for any constant c > 0.

There are several exponential-time algorithms for SVP and CVP. For the old

results, see the survey [AEVZ02]. Ajtai, Kumar, and Sivakumar [AKS01] pro-

13
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posed the randomized algorithm for SVP which runs in exponential time of the di-

mension. Nguyen and Vidick [NV08] implemented this and clarified the time and

space complexity of this algorithm, the time is Õ(25.9n) and the space is Õ(22.95n),

which improved the analysis by Regev [Reg04a, Lecture 8]. This is improved

by Micciancio and Voulgaris [MV09], whose probabilistic algorithm runs in time

23.199n and space 21.325n. (Very recently, they also proposed a deterministic algo-

rithm running within time 2O(n) [MV10], which will be verified by peer reviews.)

On the other hand, there are several non-NP-hardness results on the approx-

imation version of SVP with a polynomial approximation factor. Goldreich and

Goldwasser [GG00] showed SVP
Ω(
√

n/ log n)
is in NP ∩ coAM. Aharonov and

Regev [AR05] showed that SVPΩ(
√

n) is in NP ∩ coNP.

The unique shortest vector problem (uSVP) is also well known as a hard lattice

problem applicable to cryptographic constructions. We say the shortest vector v of

a lattice Λ is f -unique if for any non-zero vector x ∈ Λ which is not parallel to v,

f ‖v‖ ≤ ‖x‖. The definition of uSVP is given as follows.

Definition 2.3.1 ( f -uSVP). Given a basis B of a lattice Λ whose shortest vector is

f -unique, find a non-zero vector v ∈ Λ such that for any non-zero vector x ∈ Λ
which is not parallel to v, f ‖v‖ ≤ ‖x‖.

Similarly to the case of SVP, the exact version of uSVP is shown to be in NP-hard

by Kumar and Sivakumar [KS01]. Cai [Cai98b] showed that Ω(n1/4)-uSVP is in

NP ∩ coAM.

In addition, recent results by Lyubashevsky and Micciancio [LM09] indi-

cates the relations on GapSVP, BDD, and uSVP. They showed, up to a small

polynomial factor
√

n/ log n, the equivalence of the uSVP, BDD, and GapSVP;

GapSVPγ ≥ uSVPγ for any γ ≥ 1, BDD 1
γ

√
n/ log n

≥ GapSVPγ for γ > 2
√

n/ log n,

and uSVPγ ≥ BDD1/(2γ) for γ ≥ 1.

2.4 Average-Case/Worst-Case Reductions

Before giving the reviews of the reductions, we first review lattices, q-ary lattices,

which are relevant to linear codes.

2.4.1 Linear Codes and q-Ary Lattices

Linear Codes: We start with the definition of codes and linear codes. Let Σ be a

finite alphabet of size q and let m be a block length. Then a code is a subset of Σm.

Let F = Fq be a field of cardinality q. Then a linear code C is a subspace of Fm
q .

The dimension of the code C is naturally defined.

We say G as a generator matrix of C if C = {GT s ∈ Fm | s ∈ Fn}. We say H as

a parity-check matrix of C if C = {e ∈ Fm | He = 0 ∈ Fn}.
For a matrix A ∈ Fn×m, a code having a generator matrix A is denoted by

CG(A), that is, {AT s ∈ Fm | s ∈ Fn}. A code having a parity-check matrix A is

14



2.4. AVERAGE-CASE/WORST-CASE REDUCTIONS

denoted by CH(A), that is, {e ∈ Fm | Ae = 0}.

q-ary lattices: For a matrix A ∈ Zn×m
q , we define two sublattices of Zm,

Λq(A) = {p ∈ Zm | ∃s, AT s ≡ p (mod q)},
Λ⊥q (A) = {e ∈ Zm | Ae ≡ 0 (mod q)}.

It is obvious that two sets are lattices because they are discrete and additive sub-

group of Zm. It is also obvious that qI ⊂ Λq(A),Λ⊥q (A). Hence, they are super-

lattices of qZm and thus full-rank.

In addition, you can confirm that they are relevant to linear codes. The former

latticeΛq(A) is qZ+CG(A), where + denotes the Minkowski sum. The latter lattice

Λ⊥q (A) is also qZ + CH(A). By a simple calculation, we confirm that (Λq(A))∗ =
1
q
Λ⊥q (A).

Lemma 2.4.1. For any matrix A ∈ Zn×m
q , (Λq(A))∗ = 1

q
Λ⊥q (A).

Proof. (⊇) Consider any vector e ∈ Λ⊥q (A). We show that, for any vector y ∈
Λq(A)∗, 〈 1

q
e, y〉 ∈ Z. Since y is in Λq(A), there is some vector s ∈ Zn such that

y ≡ AT s (mod q). Hence,

〈e, y〉 ≡ eT AT s ≡ 0T s ≡ 0 (mod q).

This shows that 〈 1
q
e, y〉 ∈ Z and (Λq(A))∗ ⊇ 1

q
Λ⊥q (A).

(⊆) Instead of the statement, we show the tautological statement q(Λq(A))∗ ⊆
Λ⊥q (A). Consider any vector x in (Λq(A))∗ and suppose that qx is not in Λ⊥q (A).

By this hypothesis, we have that qAx . 0 (mod q), which indicates Ax < Zn.

However, the transposes of the rows of A is in Λq(A) and Ax must be in Zn. This

means a contradiction and we complete the proof. �

The reason of why we need these lattices is clarified in the follow-on sections.

2.4.2 From the Small Integer Solution Problem

We define the Small Integer Solution problem SIS (in the lp norm), which is often

considered in the context of average-case/worst-case connections and a source of

lattice-based hash functions as we see later.

Definition 2.4.2 (SIS
p

q,m,β
[MR07]). For a fixed integer q and a real β, given a

matrix A ∈ Zn×m
q , the problem is finding a non-zero integer vector e ∈ Zm such that

Ae ≡ 0 (mod q) and ‖e‖p ≤ β.

Definition 2.4.3 (ISIS
p

q,m,β
[MR07]). For a fixed integer q and a real β, given a

matrix A ∈ Zn×m
q and u ∈ Zn

q, the problem is finding an integer vector e ∈ Zm such

that Ae ≡ u (mod q) and ‖e‖p ≤ β.

15



2.4. AVERAGE-CASE/WORST-CASE REDUCTIONS

The former problem SIS
p

q,m,β
is indeed lattice problem for the q-ary lattices:

Given a matrix A, find the short non-zero vector e in the lattice Λ⊥q (A) such that

‖e‖p ≤ β. This problem is firstly appeared with no explicit name in the seminal

paper of Ajtai [Ajt96]. The latter problem ISIS
p

q,m,β
is also lattice problem for the

q-ary lattices similar to CVP; Consider the lattice Λ⊥q (A) and find a vector t ∈ Zm

such that At ≡ u (mod q) by using the linear algebra. Then, find the lattice vector

v ∈ Λ⊥q (A) such that ‖v − t‖p ≤ β. Finally, set e = v − t.

In this thesis, we review the average-case/worst-case reductions to SIS, which

is initiated by Ajtai [Ajt96] and followed several improvements [GGH96, CN97,

Mic04, MR07, GPV08], especially, the reduction by Gentry, Peikert, and Vaikun-

tanathan [GPV08].

Ajtai originally proposed the reduction from IncSIVP to SIS, Cai and

Nerurkar [CN97] and Micciancio [Mic04] followed this. This is simplified by

Micciancio and Regev introducing the new problem IncGDD. Finally, Gentry et

al. improved it by showing the reduction from IncIVD. In this thesis, we use the

intermediate problem IncIVD, instead of IncSIVP and IncGDD to reduce the dis-

cussions.

Gentry et al.’s reduction

Using the direct sampling of lattice points, they make a simpler reduction. We

quickly introduce a sampler algorithm SampleD which, given a basis T of a lattice

Λ such that ‖T̃‖ ≤ L, a real s > L·ω(
√

log n), and a center c, samples a vector y on a

lattice Λ. The distribution of output is within a negligible distance from DΛ,s,c. For

the details of SampleD, see Section 10.4. To simplify notation, we consider that

we can directly sample y from DΛ,s,c instead of using SampleD, which introduces

negligible errors.

The reduction algorithm of Gentry et al. is as follows:

1. (Setup.) Choose an index j ← [m] and α ← {−β, . . . ,−1, 1, . . . , β} uniformly

at random. Let c j =
q

α
t ∈ Rn and let ci = 0 ∈ Rn other i ∈ [m] \ { j}. For

reducing to ISIS, choose u ← Zn
q uniformly at random. For reducing to SIS,

set u = 0. Let x j = α
−1u mod q and xi = 0 for i ∈ [m] \ { j}. Define the matrix

X = [x1, . . . , xm] ∈ Zn×m
q . Using MGReduce, obtain a basis T of Λ(B) such

that ‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖.
2. (Sampling.) Let s =

q

γ
‖S‖. For each i ∈ [m], sample yi ← DΛ(B),s,ci

. Define

the matrix Y = [y1, . . . , ym] ∈ Rn×m. Define A = (B−1Y + X) mod q.

3. (Invoking and Combining.) Invoke the oracle O on (q, A,u, β) and obtain e ∈
Zm. Output the vector v = 1

q
Ye.

Theorem 2.4.4 ([GPV08]). Let m = m(n), q = q(n), β = β(n), γ = γ(n) be

polynomially-bounded functions. For any q ≥ γ·ω(
√

log n), The above reduction is

a probabilistic polynomial-time reduction from solving IncIVD
ηǫ
γ,g for γ = gβ

√
n in

16
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the worst case to solving either SISq,m,β or ISISq,m,β on average with non-negligible

probability.

In a typical case we often set m = O(n log q), β =
√

m, and g constant and

obtain γ = O(n
√

log q) and q = Õ(n).

Combining the above with Lemma 2.2.18 and Lemma 2.1.7, the following

corollary holds.

Corollary 2.4.5 (Implicit in [GPV08]). Let m, q, β, γ be as in the above. There is a

probabilistic polynomial-time reduction from GIVP
ηǫ
4γ

in the worst case to SISq,m,β

or ISISq,m,β on average.

In particular, let ǫ = ǫ(n) be some negligible function in n. Then, we have a

probabilistic polynomial-time reduction from SIVPγ′ in the worst case to SISq,m,β

or ISISq,m,β on average, where γ′ = γ(n) · ω(
√

log n) = 4β
√

n · ω(
√

log n).

Proof: We include the proof of theorem to consistency. The following sequence

of claims show the correctness of the reduction.

Claim 2.4.6. For any values j and α, the distribution of A is statistically close to

uniform over Zn×m
q . In particular, O outputs a non-zero solution e ∈ Zm such that

e j = α with non-negligible probability.

Proof. We have s = ‖S‖ q/γ ≥ ‖T̃‖ · ω(
√

log n) and the output of the sampling

algorithm SampleD is distributed within negligible distance from DL(B),s,ci
.

We also have ‖S‖ ≥ γ · ηǫ(L(B)), so s ≥ q · ηǫ(L(B)) = ηǫ(qL(B)). Thus,

the distribution yi mod qB is statistically close to uniform over L(B)/qL(B). This

shows the statistical closeness of ai = (B−1yi + xi) mod q to the uniform over Zn
q.

Since yi are independent and m = poly(n), the matrix A is also distributed within

negligible distance of the uniform over Zn×m
q . Hence, O outputs a valid solution e

with non-negligible probability.

We can assume that the solution e , 0, e has non-zero coordinate ek ∈
{−β, . . . ,−1, 1, . . . , β} for some k ∈ [m]. This indicates the probability that j = k

and α = ek is negligibly close to 1/(2βm) = 1/ poly(n) since the reduction algo-

rithm chooses j and α uniformly at random. �

Claim 2.4.7. If e is a valid solution and e j = α, the output v is a lattice vector of

L(B).

Proof. Notice that v ∈ L(B) if and only if B−1v ∈ Zm. Thus, it suffices to show that
1
q

B−1Ye ∈ Zm, that is, B−1Ye ∈ qZm. By the definition, B−1Y ≡ A − X (mod q).

Hence, we only need to show that Ae ≡ Xe (mod q). If e j = α, Xe = α · x j =

u mod q. In addition, Ae mod q = u if e is valid. This completes the proof. �

Claim 2.4.8. If e is valid and e j = α, then ‖v − t‖ ≤ 1
g(n) ‖S‖ with overwhelming

probability.

Proof. From the hypothesis, we have that t = 1
q
Ce, where C = [c1, . . . , cm]. For
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each yi, let wi = yi mod qB and define W = [w1, . . . ,wm]. Notice that yi is dis-

tributed as wi +DqL(B),s,ci−wi
. Note also that the input (q, A,u, β) is dependent only

W and X. Hence, the vector v − t = 1
q
(Y − C)e is distributed as

1

q
(W − C)e +

1

q

∑

i∈[m]

ei · DqL(B),s,ci−wi
=

1

q

∑

i∈[m]

ei

(
DqL(B),s,ci−wi

+ wi − ci

)
.

Let zi be a sample from DqL(B),s,ci−wi
. So, the vector v − t = 1

q

∑
i∈[m] ei zi. Since

s ≥ q · ηǫ(L(B)), we can use the lemma 2.1.11 and obtain that the probability

Pr
zi←DqL(B),s,ci−wi

[‖zi − (ci − wi)‖ > s
√

n]

is negligible. Thus, we have each length of zi = yi − ci is at most s
√

n and by the

norm bound, the sum is with overwhelming probability

‖v − t‖ ≤ 1

q

∑

i∈[m]

ei ‖zi‖ ≤
1

q
‖e‖ s

√
n ≤ β

√
n ‖S‖
γ

≤ ‖S ‖
g(n)

.

Hence, the norm is upper bounded by ‖S‖ /g with overwhelming probability. �

The reduction of Micciancio and Regev

In [MR07], Micciancio and Regev gave another reduction from GapSVP to SIS

through GapCVP and a variant SIS′ of SIS. Notice that q is slightly larger than the

the reduction from SIVP to SIS.

Theorem 2.4.9 (Lemma 5.5 and Theorem 5.23, [MR07]). For any polynomially

bounded functions β = β(n), m = m(n), odd integer q = q(n), with q ≥ 4
√

mn3/2β

and γ = γ(n) = 14π
√

nβ, there exists a probabilistic polynomial-time reduction

from solving GapSVPγ in the worst case to solving SISq,m,β on average with non-

negligible probability. In particular, for any m(n) = Θ(n log n), there exist odd

integer q(n) = O(n2.5 log n) and γ(n) = O(n
√

log n) such that solving SISq,m,
√

m on

average is at least as hard as solving GapSVPγ in the worst case.

Peikert examined the reduction to GapSVP
p

Õ(n)
and it succeeded. For details,

see [Pei08]. We note that we have not examined Gentry et al.’s technique can be

applied to this reduction and this is an open issue.

2.4.3 From the Learning With Errors

The learning with errors (LWE) problem is a generalization of the learning parity

noise (LPN) problem, proposed by Regev [Reg09].

To start the review, we recall the definitions of the distributions appearing the

definition of the LWE problem. Later, we define several versions of the LWE

problem.
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Gaussians: The Gaussian distribution with mean 0 and variance σ2, denoted by

N(0, σ2), is defined by the density function 1

σ
√

2π
· exp(−x2/2σ2) over R. By

the tail inequality, we have Pr[|x| ≥ tσ] ≤ 1
t
· exp(−t2/2), where x← N(0, σ2).

Folded Gaussians: For α ∈ (0, 1), Ψα denotes the folded Gaussian distribution

over T = R/Z [Reg09], obtained by (1) take a sample x from N(0, α2/2π) and

(2) output x mod 1. We have Prx←Ψα[|x| ≥ t] ≤ α√
2πt
· exp(−πt2/α2) by simple

calculations. Often, we set t a constant and α = 1/ω(
√

log n) to ensure that

the right hand side is negligible in n.

Discretized distributions: For any probability distribution φ over T and a pos-

itive integer q ∈ N, φ̄ denotes the discretization of φ over Zq; the distribution

is defined by the following procedure, (1) take a sample x← φ and (2) output

⌊qx⌉ mod q.

The LWE oracle for χ: For s ∈ Zn
q and a distribution χ over T, let As,χ be a

distribution over Zn
q × T defined as follows: (1) take samples a ← Zn

q and

x← χ and (2) output (a, aT s/q + x).

The LWE oracle for χ̄: For s ∈ Zn
q and a distribution χ̄ over Zq, let As,χ̄ be a

distribution over Zn
q × Zq defined as follows: (1) take samples a ← Zn

q and

x← χ̄ and (2) output (a, aT s + x).

For simplifying expressions, we define AS,χ̄ for a matrix S ∈ Zn×l
q as follows:

(1) take samples a← Zn
q and x← χ̄l and (2) output (a, aT S + x).

We define the learning with errors (LWE) problem as follows:

Definition 2.4.10 ((Search) Learning With Errors). The (search) LWE problem

with respect to q and χ, denoted by sLWE(q, χ), is finding s ∈ Zn
q given oracle

access to As,χ. The (search) LWE problem with respect to q and χ̄, denoted by

sLWE(q, χ̄), is finding s ∈ Zn
q given oracle access to As,χ̄.

Definition 2.4.11 ((Decisional) Learning With Errors). For an integer q = q(n) and

a distribution χ̄ over Zq, the (decision) learning with errors problem dLWE(q, χ̄) is

distinguishing the oracle As,χ from the oracle U(Zn
q × Zq) for a uniformly random

s ∈ Zn
q.

In addition, for an integer q = q(n) and a distribution χ over T, the (decision)

learning with errors problem dLWE(q, χ̄) is distinguishing the oracle As,χ from the

oracle U(Zn
q × Zq) for a uniformly random s ∈ Zn

q.

These problems are closely related to the decoding problem with a random

linear code [Reg09]. Consider m samples (ai, pi = 〈ai, s〉+xi) from As,χ̄. These can

be considered as (A, p), where A = [a1, . . . , am] and p = AT s+ x. The sLWE(q, χ̄)

problem can be stated as coding problem as follows: Given a random generator

matrix A ∈ Zn×m
q and p = AT s + x, where x ← χ̄l, the problem is decoding s.

In addition, the dLWE(q, χ̄) also can be stated as coding problem; given a random

generator matrix A ∈ Zn×m
q and p, the problem is deciding p is random or not.
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Note that an adversaryA distinguishing As,χ and U(Zn
q ×Zq) with advantage ǫ

implies an adversary distinguishing AS,χ and U(Zn
q×Zl

q) for S← Zl
q with advantage

ǫ/l. The proof is simply obtained by the hybrid lemma [PVW08].

Main Reduction

These LWE problems already has the average-case/worst-case reductions. We

start with the reduction from the worst case of dLWE(q, χ̄) to the average case

of dLWE(q, χ̄).

Lemma 2.4.12 (Average case to Worst case [Reg09]). Suppose that there is an al-

gorithmA that distinguishes As,χ̄ from U in time T and with noticeable advantage

ǫ, where the probability is taken over the coin of the algorithm, the samples from

the oracle, and s ← Zn
q. Then, there is an algorithm B that, for any s ∈ Zn

q, distin-

guishes As,χ̄ from U in time poly(T, n, log q, 1/ǫ) with overwhelming probability.

Proof Sketch. For s′ ∈ Zn
q, we define the mapping Ts′ : Zn

q × Zq → Zn
q × Zq by

Ts′(a, p) = (a, 〈a, s′〉 + p). Obviously, Ts′ maps As,χ̄ and U to As+s′,χ̄ and U,

respectively. The lemma immediately follows from this random self reducibility.

�

Lemma 2.4.13 (Decision to Search [Reg09]). Suppose that q = poly(n). Then, if

there is an algorithm that, for any s ∈ Zn
q, distinguishes As,χ̄ from U in time T and

with overwhelming probability , then there exists an algorithm that, for any s ∈ Zn
q,

finds s from As,χ̄ in time poly(T, n, q) and with overwhelming probability.

Proof Sketch. We construct an indicator I which outputs the j-th coordinate s j of

s from As,χ̄ with oracle access to the distinguisher D. For any k ∈ Zq, we define a

random mapping Tk defined by

Tk(a, p) = (a + l · i j, p + lk)

where l ← Zq. If k = s j, Tk maps As,χ̄ to itself. Otherwise, Tk maps As,χ̄ to

U since q is a prime. Since q is polynomially-bounded by n, the finding s j is

straightforward; examine all k ∈ Zq. �

The following reduction is obvious if we take a precision with ω(log n).

Lemma 2.4.14 (Discrete to Continuous [Reg09]). For any q and χ, if there exists

an algorithm that, for any s ∈ Zn
q, finds s from As,χ̄ in time T and with overwhelming

probability, then there exists an algorithm that, for any s ∈ Zn
q, finds s from As,χ in

time O(T, log q, n) and with overwhelming probability.

Even if q is not polynomially-bounded, there is a decision-to-search reduction

when q is a product of distinct polynomially-bounded primes.

Lemma 2.4.15 (Decision to Search [Pei08]). Suppose that q =
∏

i∈[t] qi is a prod-

uct of distinct primes in n. Suppose also α = α(n) ∈ (0, 1) be a real such that
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qi ≥ ω(
√

log n)/α for any i ∈ [t]. Then, if there is an algorithm that, for any

s ∈ Zn
q, distinguishes As,Ψα from U in time T and with overwhelming probability

, then there exists an algorithm that, for any s ∈ Zn
q, finds s from As,Ψα in time

poly(T, n, t,maxi qi) and with overwhelming probability.

The proof appeared in [Pei08] and he wrote that the idea is due to Regev.

Proof. Obviously, we can factor q into
∏

i qi in time poly(t,maxi qi). By shifting s

as in the average-to-worst reduction, we only need a power to decide s j ≡ 0 mod qi

for any i ∈ [t] and j ∈ [n].

Define the random mapping

T : (a, p) 7→ (a − r · (q/qi) · i j, p)

where r ← Zqi
. If s j ≡ 0 mod qi, T maps As,Ψ̄α

to itself. Suppose that s j . 0

mod qi. Then, obviously a′ = a − r · (q/qi) · i j is uniformly random. We have that

p′ = p = 〈a, s〉/q + x = 〈a′, s〉/q + (rs j/qi + x) ∈ T,

where x ← Ψα. Since qi is a prime, rs j is uniformly distributed over Zqi
. Since

α ≥ ω(
√

log n)/qi ≥ ηǫ(
1
qi
Z) for some negligible ǫ, the distribution of rs j/qi +

e mod 1 is within ǫ/2 statistical distance from uniform over T by Lemma 2.1.4.

This completes the proof. �

Finally, we recall the theorems by Regev [Reg09] and Peikert [Pei08].

Theorem 2.4.16 (Regev [Reg09] and Peikert [Pei08]). Let n, m = m(n), q = q(n)

be integers and α = α(n) ∈ (0, 1) be such that αq > 2
√

n, m = poly(n), and

q = 2O(n). If there exists an efficient algorithm that solves sLWE(q,m,Ψα), then

there exists an efficient quantum algorithm that solves GapSVPγ and SIVPγ with

γ = Õ(n/α) in the worst case.

Alternatively, let n and m = m(n) = poly(n) be integers. Let α = α(n) be a

real number and γ = γ(n) ≥ n/(α
√

log n). Let ζ = ζ(n) ≥ γ and q = q(n) ≥
(ζ/
√

n) · ω(
√

log n). Then, there is a probabilistic polynomial-time reduction from

solving GapSVPζ,γ in the worst case to solving sLWE(q,m,Ψα).

Regev’s Reduction

We first review Regev’s reduction from DGS to sLWE(q,Ψα). The reduction is

divided into twofolds. The classical reduction is from sLWE(q,Ψα) and a sampling

problem with respect to DΛ,s to CVP onΛ∗. The quantum reduction is from CVP to

the sampling problem with respect to DΛ,s. We only give intuitions on the quantum

part of the reduction.

Classical part: More precisely, the former reduction is described as follows:
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2.4. AVERAGE-CASE/WORST-CASE REDUCTIONS

Theorem 2.4.17. Let ǫ = ǫ(n) be a negligible function, q = q(n) ≥ 2 be an integer,

α = α(n) ∈ (0, 1). If there exist algorithms that solve sLWEq,Ψα and DGSφ for

φ =
√

2q · ηǫ , then there exists an algorithm that solves BDD
αq/(

√
2r)

.

Precisely, there is a classical probabilistic polynomial-time algorithm

R(B, r, x) that, given a basis B of an n-dimensional lattice Λ, a number r ≥√
2q ·ηǫ(Λ∗), and a target point x within distance αq/(

√
2r) of Λ, and given access

to

1. an oracleW that solves sLWEq,Ψα using poly(n) samples, and

2. an oracle S that generates samples from DΛ∗,r,

finds v ∈ Λ closest to x with overwhelming probability.

We start by defining a technical problem BDD(q) which has a connection to

sLWE.

Definition 2.4.18. For q ≥ 2, the problem BDD(q) is, given a basis B of an n-

dimensional lattice Λ and a number d < λ1(Λ)/2, finding w mod q ∈ Zn
q such that

Bw is the unique closest vector to x.

Regev showed the following reduction.

Lemma 2.4.19 (Lemma 3.5, [Reg09]). There is a lattice-preserving reduction from

BDDd to BDD
(q)

d
if d < λ1(Λ)/2.

Since αq/(
√

2r) ≤ λ1(Λ)/2, it is suffices to construct R′ that solves

BDD
(q)

αq/(
√

2r)
with help of the oracles S andW.

Let v be a solution of (B, r, x). We let s denote B−1v mod q. In order to generate

a sample from As,Ψα , take a sample y from DΛ∗,r, lets a = (B∗)T y mod q, and

outputs

(a, p = 〈y, x〉/q + x mod 1),

where x← N(0, α2/4π). By the construction, we have that

〈y, x〉/q + x = 〈y, v〉/q + 〈y, x − v〉/q + x

= 〈BT y, B−1v〉 + 〈y, x − v〉/q + x

≡ 〈a, s〉 + 〈y, x − v〉/q + x mod 1.

As we already seen in the reduction to SIS, a is almost uniformly distributed

over Zn
q, since r ≥

√
2q · ηǫ(Λ∗).

To ensure that 〈y, x − v〉/q + x mod 1 distributes as a continuous Gaussian, we

use the following claim that says that the sum of a Gaussian over a lattice and a

continuous Gaussian distributes statistically close to another continuous Gaussian.

Claim 2.4.20 (Claim 3.9, [Reg09]). Let Λ be a lattice and u ∈ Rn. Let r and s be

two positive integers, and let t denote
√

r2 + s2. Suppose that rs/t =≥ ηǫ(Λ) for

some ǫ ∈ (0, 1/2). Consider the distribution Y on Rn defined as follows: (1) take

22
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a sample y ← DΛ+u,r, (2) take a noise x ← νs, and (3) output y + x. Then, the

statistical distance between Y and νt is at most 4ǫ.

Following the claim, we obtain the corollary below.

Corollary 2.4.21 (Corollary 3.10, [Reg09]). Let Λ be a lattice and u, z ∈ Rn vec-

tors. Let r, α > 0 be two reals. Suppose that

1√
1
r2 +

( ‖z‖
α

)2
≥ ηǫ(Λ)

for some ǫ ∈ (0, 1/2). Let B denote the distribution sampled as follows: (1) v ←
u + DΛ,r,−u, (2) x← N(0, α2/2π), and (3) output 〈z, v〉 + x. Then, we have

∆(B,N(0, (r2 ‖z‖2 + α2)/2π)) ≤ 4ǫ.

In particular,

∆(B mod 1,Ψβ) ≤ 4ǫ,

where β =
√

(r ‖z‖)2 + α2.

Conditioned on a, the distribution of y is Ba + DqΛ,r,−Ba. In addition, we have

that

1√
1
r2 +

( √
2‖x−v‖
qα

)2
=

rqα√
q2α2 + 2r2 ‖x − v‖2

≥ r
√

2
> q · ηǫ(Λ) = ηǫ(qΛ),

where we use ‖x − v‖ ≤ qα/(
√

2r). Now, by the corollary, 〈y, x − v〉/q + x mod 1

is statistically close to Ψα′ for some α′ =
√

(r ‖x − v‖ /q)2 + α2/2 ≤ α. Since the

solverW also solves sLWEq,Ψα′ when α′ ≤ α (see [Reg09, Lemma 3.7]), we can

recover s by the oracleW for sLWE(q,Ψα).

Quantum part: Turning into the latter reduction, Regev constructed the quan-

tum sampler S for D
Λ,
√

n/(
√

2d)
from BDDd.

Theorem 2.4.22 ([Reg09, Lemma 3.14]). There exists an efficient quantum algo-

rithm that, given a basis B of an n-dimensional lattice Λ, a number d < λ1(Λ∗)/2,

and an oracle that solves BDDd on a dual lattice Λ∗, outputs a sample from

D
Λ,
√

n/(
√

2d)
.

Intuitively, BDDd can be used to uncompute; that is, |x〉|x + e〉 7→ |0〉|x + e〉
for any x ∈ Λ∗ and e with norm at most d. We note that this reduction is lattice-

preserving. This will be exploited in Section 3.4.2.
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Combining them: The bootstrapping step is done by the LLL algorithm and the

sampler SampleD (see Section 10.4). Given a basis B of Λ, we obtain a new basis

T that ‖T‖ ≤ 2nλn(Λ) applying the LLL algorithm. Hence, if r ≥ ‖T‖ · ω(
√

log n),

we can use the sampler SampleD to sample from DΛ,r.

The whole reduction from sLWE to DGS is summarized as follows: Suppose

that the algorithm R needs m samples from S to invokeW.

1. (bootstrapping) Apply the LLL algorithm to an input basis B of a lattice Λ

and obtain T. Set r ≥ ‖T‖ ·ω(
√

log n). Construct S for DΛ,r by SampleD with

T and r.

2. (iterative step)

(a) Construct the algorithm R for BDDd on Λ∗ and d = αq/(
√

2r) by using

the oracleW and the algorithm S for DΛ,r.

(b) Construct the quantum sampler S′ for D
Λ,
√

n/(
√

2d)
by using the algorithm

R for BDDd on Λ∗ and d = αq/
√

2r. Note that
√

n/(
√

2d) =
√

nr/αq ≤
r/2 since αq > 2

√
n.

When r <
√

2q · ηǫ(Λ), the algorithm will fail.

To connect DGSφ and SIVPγ is somewhat simpler task than the aboves.

See [Reg09] for the proof.

Lemma 2.4.23 ([Reg09, Lemma 3.17]). For any ǫ = ǫ(n) ≤ 1/10 and any φ ≥√
2ηǫ , there is a lattice-preserving polynomial-time reduction from GIVP2

√
nφ to

DGSφ.

Peikert’s Reduction

The classical part of Regev’s reduction is from sLWEq,Ψα and the sampler S for

DΛ∗,r to BDDd over Λ, where d = αq/(
√

2r) ≤ λ1(Λ)/2.

Peikert pointed out the existence of the sampler SampleD for DΛ∗,r when r is

slightly larger than the norm of a basis B. In addition, he recalled the result of Gold-

reich and Goldwasser [GG00] that GapCVPγ is in coAM when γ = O(
√

n/ log n).

The nutshell of [GG00] is the observation on two balls:

Lemma 2.4.24. For any constants c, d > 0, and any u ∈ Rn of length d, and

d′ = d ·
√

n/(c log n),

∆(U(B(0, d′)),U(B(u, d′))) ≤ 1 − 1/ poly(n).

This lemma states that if x ← B(0, d′), it will be contained in B(u, d′) with

probability at least 1/ poly(n). Hence, one cannot distinguish x is chosen from

B(0, d′) or B(u, d′) conditioned on that x is in both balls. In addition, notice that, if

d′ ≥ λ1(Λ)/2, the two balls do not overlap.

We give the details of the Peikert reduction [Pei09c]. The input is (B, d) where

mini ‖b̃i‖ ≥ 1, λ1(Λ) ≤ ζ, and 1 ≥ d ≥ ζ/γ.
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1. Set r = q ·
√

2n/(γd).

2. Implement the oracle S for DΛ∗,r by the sampler SampleD with the dual basis

B∗.

3. Repeat the following procedure N = poly(n) times.

(a) Choose a point w ← B(0, d′), where d′ = d ·
√

n/(4 log n), and let x =

w mod B.

(b) Invoke the reduction R on (B, r, x) and obtain v.

4. If v , x − w in any of the N iterations, then accept. Otherwise, reject.

Notice that maxi ‖b̃∗i ‖ = 1/mini ‖b̃i‖ ≤ 1. Notice also that

r =
q
√

2n

γd
≥ q
√

2n

ζ
≥ ω(

√
log n),

since q ≥ (ζ/
√

2n) · ω(
√

log n).

If (B, d) is a NO instance, then, λ1(Λ) > γ · d. Lemma 2.1.6 tells us that

ηǫ(Λ
∗) ≤

√
n/λ1(Λ) <

√
n/(γd)

for ǫ = 2−n. Thus, we have that
√

2q · ηǫ(Λ∗) <
√

2nq/(γd) ≤ r. Additionally, we

have that

dist(x,Λ) ≤ d′ = d

√
n

4 log n
≤ d · αγ√

4n
=

q
√

2n

r · γ ·
αγ
√

4n
=

αq
√

2r
,

where we use the hypothesis γ ≥ n/(α
√

log n). From these two facts, the reduction

R correctly works. Since λ1(Λ) > γd > 2d′, the reduction must return the unique

solution v = x − w in any iterations.

Next, consider the case when (B, d) is a YES instance (λ1(Λ) ≤ d). Notice that

in the case, we cannot ensure that the reduction R correctly works. However, we

can show the reduction R fails to finds the solution v = x − w by the argument

on the statistical distance. Let z ∈ Λ be the shortest vector, that is, ‖z‖ = λ1(Λ).

Consider an alternate game in which of w← B(0, d′) is replaced by w′ ← B(z, d′).
We then replace x = w mod B with x′ = w′ mod B. In this alternate game, R is

invoked on x′. Then, we have that

|Pr[R(x) = x − w] − Pr[R(x′) = x′ − w′]| ≤ 1 − 1

poly(n)
.

Hence,

Pr[R(x) = x−w] ≤ 1− 1

poly(n)
+Pr[R(x′) = x′−w′] ≤ 2− 1

poly(n)
−Pr[R(x′) = x′−w′].

Notice that B(z, d′) ≡ B(0, d′) (mod B) since z ∈ Λ. Thus, x′ is distributed identi-

cally to x and we can replace x with x′ in the probabilities. Therefore,

Pr[R(x) = x − w] ≤ 1 − 1

2 · poly(n)
.
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Taking N = poly(n) sufficiently large, we have v , x − w in at least one iteration.
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3
Cyclic and Ideal Lattices

Several families of lattice-based hash functions [Mic07, PR06, LM06] are known

to have small description sizes. Originally, Micciancio [Mic07] gave a com-

pact version of the lattice-based hash functions and proved the one-wayness of

the version. After that, Peikert and Rosen [PR06] and Lyubashevsky and Mic-

ciancio [LM06] proposed the modified versions of the version of Micciancio and

showed their collision-resistance property, independently. The underlying prob-

lems are lattice problems whose instances are lattices has certain algebraic struc-

ture and compact description, cyclic or ideal lattices. We employ the notions, the

notations, the definitions, and the results in Lyubashevsky and Micciancio [LM06],

since its generality of the descriptions.

Organization: Section 3.1 prepares basic notions, notation, and facts of poly-

nomials. Section 3.2 reviews and defines several lattices. Section 3.3 lists up the

problems for ideal lattices. Section 3.4 reviews the average-case/worst-case reduc-

tions from ideal-lattice versions of SIS and LWE to ideal lattice problems.

3.1 Preliminaries

Let f(x) = f0 + f1x+ · · ·+ fn−1xn−1 + xn ∈ Z[x] be a monic polynomial of degree n.

Consider the quotient ring Rf = Z[x]/〈f〉. We use the standard set of representatives

{(g mod f) | g ∈ Z[x]} for Rf . Hence, we identify an integral polynomial a of

degree at most n − 1 with the corresponding representative (a mod f). In addition,

we identify a polynomial a(x) = a0+a1x+· · ·+an−1xn−1 ∈ Rf with an n-dimensional

integer vector a = (a0, . . . , an−1) ∈ Zn in this thesis. More precisely, consider the
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following mapping σ : Rf → Zn:

σ : a0 + a1x + · · · + an−1xn−1 7→ (a0, a1, . . . , an−1).

We call this embedding as the normal embedding of Rf into Zn. We omit this σ

unless we need it explicitly.

Let us define some useful functions and examine these properties. A function

rotf : Rf → Rf is defined by rotf(a) = a⊗ x (naturally extended to rotf : Q[x]/〈f〉 →
Q[x]/〈f〉 and rotf : Qn → Qn by σ). This function is linear because the map is

represented by the matrix

Rf =



0 0 . . . 0 − f1
1 0 . . . 0 − f2

0 1 0
...

0 0
. . . 0 − fn−2

0 0 . . . 1 − fn−1



.

By the identification σ, we have

rotf(a) = Rf · a.

A function Rotf : Rf → Zn×n is defined by Rotf(a) =

[σ(a), σ(rotf(a)), . . . , σ(rotn−1
f

(a))]. For example, if f = xn−1 or f = xn+1, Rotf(a)

is a circulant or nega-circulant matrix, respectively. We next define a ring of

matrices corresponding to polynomials in Rf . LetM = {Rotf(a) ∈ Zn×n | a ∈ Rf}.
Then, Rotf : Rf → M is a ring isomorphism, since Rotf is homomorphic and one

to one. Additionally, notice that

a ⊗ b = Rotf(a) · b.

In addition, we note that the above arguments are also applied if Z is replaced with

Zq for any integer q ≥ 2.

We define a norm with respect to f as follows: For g ∈ Z[x], ‖g + 〈f〉‖f =
‖(g mod f)‖∞. We write ‖g‖f instead of ‖g + 〈f〉‖f .

The property of f is defined as that the ring norm ‖g‖f is not much bigger than

‖g‖∞ for any polynomial g. Formally, they captured this property as the expansion

factor of f:

EF∞(f, k) = max
g∈Z[x],deg(g)≤k(deg(f)−1)

‖g‖f / ‖g‖∞ .

For example, a simple calculation shows that EF(xn±1, k) ≤ k and EF(xn−1+xn−2+

· · · + 1, k) ≤ 2k. We say a polynomial f is suitable if f is a monic and irreducible

in Z[x] and there is a constant c such that EF(f, k) ≤ ck for any natural number k.

See [LM06, Section 3.1] for more details. They employed a family of polynomials

such as xn+1 and xn−1+xn−2+· · ·+1 for n such that the polynomials are irreducible

in Z[x].

Note that the relation of f = xn + 1 and q, which will be exploited later.
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Lemma 3.1.1. Let f = xn + 1 and n = 2k, where k ≥ 2. If q is a prime with

2n|(q − 1), then f =
∏

i∈[n](x − w2i+1) over Zq, where w ∈ Z∗q is a generator of a

subgroup {w0,w1, . . . } ⊆ Z∗qof cardinality 2k.

Lemma 3.1.2 ([BGM93]). Let f = xn + 1 and n = 2k, where k ≥ 2. If q is a prime

with q ≡ 3 (mod 8), f = f1 · f2 over Zq, where each fi is irreducible in Zq[x] and

can be written fi = xn/2 + tix
n/4 − 1 with ti ∈ Zq.

3.2 Cyclic and Ideal Lattices

We say a lattice Λ of dimension n is cyclic if for any vector x in Λ, rotxn−1(x) is

also in Λ.

We say a lattice Λ of dimension n is ideal if it is an ideal I ⊆ Rf for some

monic and irreducible polynomial f ∈ Z[x] of degree n, that is, there exist f and

I ⊆ R such that σ(I) = Λ. We also say a lattice Λ of dimension n is f-ideal if it

corresponds to an ideal I ⊆ Rf under the mapping σ.

Precisely, the lattice Λ(I) corresponding I is obtained as follows: Since I is an

ideal, there exists a set of polynomial g1, . . . , gl of degree at most n − 1 such that

I = 〈g1, . . . , gl〉. Then, consider G = [Rotf(g1)| . . . |Rotf(gl)]. The Λ(I) is written

by {v = Ge ∈ Zn | e ∈ Zln}. By using the standard technique, we have a matrix

B ∈ Zn×n such that Λ(I) = {v = Be ∈ Zn | e ∈ Zn}.
In addition, we note that any ideal I ⊆ Rf defines the corresponding full-rank

lattice Λ(I) ⊆ Zn:

Lemma 3.2.1 (Lemma 3.2 [LM06]). Every ideal I ⊆ Rf , where f ∈ Z[x] is a monic

and irreducible polynomial of degree n, is isomorphic to a full-rank lattice in Zn.

Proof. Let I = 〈g1, . . . , gl〉, where gi , 0 and they are of degree at most n − 1. It is

obvious that the polynomials g1, g1x, . . . , g1xn−1 are linearly independent over Z.

We show that the polynomials g1, g1⊗ x, . . . , g1⊗ xn−1 are also linearly independent

over Z. This shows the corresponding lattice Λ(I) contains n linearly independent

vectors σ(g1), σ(rotf(g1)), . . . , σ(rotn−1
f

(g1)) and completes the proof.

If the polynomials are linearly dependent, then there exists a non-zero polyno-

mial a = (a0 + a1x + · · · + an−1xn − 1) ∈ Z[x] of degree at most n − 1 such that

g1 ⊗ a =
∑n

i=0 ai(g1 ⊗ xi) = 0. Then, g1 · a = f · h ∈ 〈f〉 for some polynomial

h ∈ Z[x]. Since f is irreducible over Z and Z[x] is a unique factorization domain,

f is a prime. Thus, f | g or f | a. Both of g1 and a have degree at most n − 1, this

cannot occur unless g1 or a is 0. This completes the proof. �

We note that Ding and Lindner [DL07] gave a polynomial-time algorithm

which identifies a given basis is a basis spans a lattice or an ideal lattice by em-

ploying the Hermite normal form.

Lemma 3.2.2 (Lemma 1 [DL07]). Let B ∈ Zn×n be a basis of a lattice Λ. Then Λ

corresponds to some ideal I ⊆ Rf if and only if there exists a matrix T ∈ Zn×n such
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that

Rf B = BT.

We found the extended definitions of ideal lattices in Peikert and Rosen [PR07]

and Buchmann and Lindner [BL09]. Let K = Q(ζ) be a number field of degree n

for some algebraic number ζ (or you can consider K = Q[x]/〈f〉, there is a monic

and irreducible polynomial f ∈ Q[x] of degree n such that f(ζ) = 0). Let O be an

order of K.

In [BL09], Buchmann and Lindner said that a lattice Λ is O-ideal if Λ corre-

sponds to some ideal I ⊆ O. This definition equals to the one by Lyubashevsky and

Micciancio if O = Z(ζ) ≃ Z[x]/〈f〉 and f ∈ Z[x].

In [PR07], Peikert and Rosen said that a lattice Λ is ideal if it corresponds to

an ideal I ⊆ OK through another embedding (the canonical embedding).

3.3 Problems

First of all, we extend the notation of successive minima. For any ideal I of Rf ,

define λ
p

i
(I) to be λ

p

i
(Λ(I)). In the following, we assume that f ∈ Z[x] is a monic

polynomial of degree n.

Definition 3.3.1 (f-SPP
p
γ). Given an ideal I ⊆ Rf , the problem is finding a non-zero

polynomial g ∈ I such that ‖g‖ ≤ γ · λp

1
(I).

Definition 3.3.2 (f-SVP
p
γ). Given a basis B of a lattice Λ(I), where I ⊆ Rf , the

problem is finding a non-zero vector v ∈ Λ(I) such that ‖v‖ ≤ γ · λp

1
(Λ(I)).

These two problems essentially equals and the difference is only notation.

Naturally, we can define the version of SIVP as follows:

Definition 3.3.3 (f-SIVP
p
γ). Given a basis B of a lattice Λ(I), where I ⊆ Rf , the

problem is finding a set of linearly independent vectors S ⊂ Λ(I) such that ‖S‖p ≤
γ · λp

n (Λ(I)).

Lyubashevsky and Micciancio gave the following lemma that states the relation

of λ∞
1

(Λ(I)) and λ∞n (Λ(I)). By this, we have the simple reductions from f-SIVP∞γ to

f-SVP∞γ and from f-SVP∞E2·γ to f-SIVP∞γ if f is irreducible, where E2 = EF∞(f, 2).

Lemma 3.3.4 (Lemma 4.2 [LM06]). Assume that f is irreducible. For all ideals

I ⊆ Rf , we have

λ∞n (Λ(I)) ≤ EF∞(f, 2) · λ∞1 (Λ(I)).

Proof. Let g ∈ Zn be a shortest vector of Λ(I), that is, ‖g‖∞ = λ∞1 (Λ(I)). Then, let

us consider g, g ⊗ x, . . . , g ⊗ xn−1. By Lemma 3.2.1, these polynomials are linearly

independent. The maximum degree of gxi is 2n − 2. Hence,
∥∥∥gxi

∥∥∥
f
≤ EF∞(f, 2) ·∥∥∥g ⊗ xi

∥∥∥∞ ≤ EF∞(f, 2) · ‖g‖∞ = EF∞(f, 2)λ∞
1

(Λ(I)) for all 0 ≤ i ≤ n − 1. �

Corollary 3.3.5. Assume that f is irreducible. There exist reductions from f-SIVP∞γ
to f-SVP∞γ and from f-SVP∞E2·γ to f-SIVP∞γ , where E2 = EF∞(f, 2).
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Proof. We describe the reduction algorithms for these two reductions.

(From f-SIVP∞γ to f-SVP∞γ ) The algorithm, given a basis B of a lattice Λ(I), in-

vokes the solver of f-SVP∞γ and obtains a non-zero vector g ∈ Λ(I) such that

‖g‖∞ ≤ γ · λ∞1 (Λ(I)). Then, it outputs S = Rotf(g) as the solution of the instance B

of f-SIVP∞γ . The vectors of S are linearly independent and the norm of S is at most

E2 · γ · λ∞1 (Λ(I)) ≤ γ · λ∞n (Λ(I)).

(From f-SVP∞E2·γ to f-SIVP∞γ ) The algorithm, given a basis B of a lattice Λ(I),

invokes the solver of f-SIVP∞E2·γ and obtains a set of linearly independent vectors

S = [s1, . . . , sn] ∈ Λ(I) such that ‖S‖∞ ≤ γ · λ∞n (Λ(I)). Then, it outputs the one of

vectors in S as the solution of the instance B of f-SVP∞E2γ
. The norm of S is at most

γ · λ∞n (Λ(I)) ≤ E2γ · λ∞n (Λ(I)) and this completes the proof. �

In order to show the average-case/worst-case reductions, we define the internal

problem as in Section 2.4.

Definition 3.3.6 (f-IncSPPγ). Given an ideal I ⊆ Rf and a polynomial g ∈ I such

that ‖g‖f > γλ∞
1

(I), the problem is finding a polynomial h ∈ I such that ‖h‖f , 0

and ‖h‖f ≤ ‖g‖f /2.

Definition 3.3.7 (f-IncSVP
p
γ). Given a basis B of a lattice Λ(I) and a vector g ∈

Λ(I) such that ‖g‖p > γλ∞
1

(Λ(I)), where I ⊆ Rf , the problem is finding a non-zero

vector h ∈ Λ(I) such that ‖h‖p ≤ ‖g‖p /2.

Lemma 3.3.8 (Lemma 4.4 [LM06]). There is a polynomial-time reduction from

f-SVP∞γ to f-IncSVP∞γ .

Note on the Hardness: There were no results on the NP-hardness of the above

problems. This is the one of main open problems in this area.

3.4 Average-Case/Worst-Case Reductions

3.4.1 From Small Integer Solution Problems

We first extend the definition of the norm ‖·‖p. Let us denote a vector of polynomi-

als in Rf or Rf,q by ǎ. For ě = (e1, . . . , em) ∈ Rm
f

, we write by ‖ě‖p the lp norm of

e = σ(e1) ◦ . . . ◦ σ(em) ∈ Zmn.

We give the definitions of f-SIS and f-ISIS as analogies of SIS and ISIS.

Definition 3.4.1 (f-SIS
p

q,m,β
). For a monic polynomial f ∈ Z[x] of degree n, integers

m = m(n) and q = q(n), a real β = β(n), given an m-dimensional row vector ǎ =

[a1, . . . , am] ∈ Rm
f,q

, the problem is finding a non-zero vector ě = (e1, . . . , em) ∈ Rm
f

such that ǎT ě =
∑

i∈[m] ai ⊗ ei = 0 in Rf,q and ‖ě‖p ≤ β.

Definition 3.4.2 (f-ISIS
p

q,m,β
). For a monic polynomial f ∈ Z[x] of degree n, inte-

gers m = m(n) and q = q(n), a real β = β(n), given an m-dimensional row vector
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ǎ = [a1, . . . , am] ∈ Rm
f,q

and a polynomial u ∈ Rf,q, the problem is finding a vector

ě = (e1, . . . , em) ∈ Rm
f

such that ǎ · ě = ∑
i∈[m] ai ⊗ ei = u in Rf,q and ‖ě‖p ≤ β.

The problem f-SIS is finding the short non-zero element in the Rf-module

M⊥(ǎ) = {ě ∈ Rm
f
| ǎ · ě ≡ 0 (mod q)}. In addition, Λ⊥q (ǎ) = {e ∈ Zmn | Rotf(ǎ) ·e ≡

0 (mod q)} is a lattice because this is additive and discrete subgroup of Zmn. Hence,

solving f-SIS on ǎ is finding a short non-zero vector in the lattice Λ⊥q (ǎ).

Micciancio [Mic07] gave the first average-case/worst-case reductions on cyclic

lattices. Lyubashevsky and Micciancio [LM06] gave the average-case/worst-case

reduction from the ideal-lattice version of the small integer solution problem to

f-SVP∞γ . We note that the reduction is to the search problem rather than the gap

problem.

Lyubashevsky and Micciancio showed the following theorem in [LM06]. Note

that m should be larger than log q/ log 2β to ensure the instance of f-SIS∞q,m,β
has a solution. Note also that the reduction is similar to that of Micciancio and

Regev [MR07] and the underlying problem is now f-SVP∞γ since λ∞n (Λ(I)) ≤
EF∞(f, 2) · λ∞

1
(Λ(I)) by Lemma 3.3.4.

Theorem 3.4.3 ([LM06]). Assume that f is irreducible. Let E3 = EF∞(f, 3). Let

m > log q/ log 2β and q > 2E3βmn3/2 log n. Then for γ = 8E2
3
βmn log2 n, there

exists an polynomial-time reduction from the worst case of f-SVP∞γ to the average

case of f-SIS∞q,m,β.

Stehlé, Steinfeld, Tanaka, and Xagawa gave a variant of the above theorem to

save
√

m = O(
√

n) factor in the reduction from SIS∞q,m,β to SIS2
q,m,β

√
m

.

Theorem 3.4.4 ([SSTX09]). Suppose that f ∈ Z[x] is a monic and irreducible

polynomial of degree n. Let Ek = EF∞(f, k). Let m = poly(n) be larger than

log q/ log 2β and q = q(n) = Ω̃(E3βm2n). Then if there exists a polynomial-

time (resp. subexponential-time) algorithm solving f-SISq,m,β with probability

1/ poly(n) (resp. 2−o(n)), then there exists a polynomial-time (resp. subexponential-

time) algorithm solving f-SVPγ with γ = Õ(E2
2
βmn1/2) (resp. γ = Õ(E2βmn)).

The proof is essentially the same as one by Lyubashevsky and Micciancio.

To apply the technique of Gentry et al., we need that Rf,q be a principal ideal

domain. This idea is due to Peikert and Regev [Pei09a].

3.4.2 From Learning With Errors

We next define the parameterized version of the LWE problem.

Definition 3.4.5 (f-sLWEm,q,χ, the average case). Let χ be a distribution over T.

Given ǎ ∈ Rm
f,q

and 1
q

Rotf(ǎ)T s + x ∈ Tmn, where ǎ ← Rm
f,q

s ← Zn
q and x ← χmn,

the problem is finding s ∈ Zn
q.

You can consider the problem as f-analogue of sLWEq,χ with m samples.

For simplicity, we denote Λq(Rotf(ǎ)) by Λq(ǎ) if f is apparent in the context.
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Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09] showed the following theo-

rem.

Theorem 3.4.6 (Theorem 3 [SSTX09]). If there exists an algorithm solving

sLWEq,m,Ψα in time T and with probability ǫ ≥ 4m exp(−π/4α2), then there exists a

quantum algorithm that solves SISq,m,
√

m/2α in time poly(T, n) and with probability

ǫ3/64−O(ǫ5)− 2−Ω(n). The result still holds when replace sLWE with f-sLWE and

SIS with f-SIS for f = xn + 1 with n = 2k ≥ 32, m ≥ 41 log q, and q ≡ 3 (mod 8).

The proof is due to Stehlé and Steinfeld [SS09]. The reduction consists of

two reductions, from sLWE to the variant of BDD and from the variant to SIS.

The former requires only classical reductions, however, the latter is a quantum

reduction.

The variant of BDD is defined as follows:

Definition 3.4.7 (Bounded Distance Decoding with χ, [SSTX09, Definition 3]).

For a distribution χ, the problem BDD(χ) is defined as follows: Given a basis B of

an n-dimensional lattice Λ and a vector t = b + e where b ∈ Λ and e ← χ. The

goal is to find b.

We say that a randomized algorithm A solves BDD(χ) for a lattice Λ with

success probability ǫ if, for every b ∈ Λ,

Pr
e←χ,A

[A(B, t = b + e) = b] ≥ ǫ.

In addition, a randomized algorithmA solving BDD(χ) for a lattice Λ is said to be

strongly solution-independent if, for every fixed error vector e, the probability

Pr
A

[A(B, t = b + e) = b]

is independent of b.

The first part of the reduction is formally stated as follows:

Lemma 3.4.8 ([SSTX09, Lemma 7]). Let n, q, and m be integers and α ∈
(0, 1) with m and log q are polynomially bounded by n. Suppose that there ex-

ists an algorithm A that solves sLWEm,q,Ψqα
, in time T , and with probability

ǫ ≥ 4m exp(−π/4α2). Then there exists S ⊆ Zn×m
q of cardinality ǫqnm/2 and an

strongly solution-independent algorithm B such that if A ∈ S, the algorithm B
solves BDD(νqα) for Λq(A) in time T + poly(n) and with probability at least ǫ/4.

The above algorithm B is used to construct BDD(DΛ,s).

Lemma 3.4.9 ([SSTX09, Lemma 8]). Let s > 0 and B be a basis of an n-

dimensional latticeΛ. Suppose that there exists a strongly solution-independent al-

gorithmA that solves BDD(νs) for Λ in time T and with probability ǫ. Then, there

exists an integer R such that |R| = poly(T, n, | log s|, |B|) and a strongly solution-

independent algorithm B that solves BDD(DΛ/R,s) within a polynomial time in

log R and with probability at least ǫ − 2−Ω(n).
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Regev’s quantum reduction is the worst-case/worst-case reduction; That is, if

there exists an algorithm A that solves BDD in the worst case, then there exists a

sampler for DΛ∗,s. Stehlé and Steinfeld observed that the reduction still works even

if the algorithmA only solves the average case.

Lemma 3.4.10 ([SSTX09, Lemma 9]). Suppose we are given a basis B of an

n-dimensional lattice Λ, an integer R > 22nλn(Λ), and a real s < λ1(Λ)/
√

8n.

Suppose that there exists a strongly solution-independent algorithm A that solves

BDD(DΛ/R,s) for Λ with time T and success probability ǫ. Then there exists a

quantum algorithm B which outputs a vector b ∈ Λ∗ whose distribution is within

distance 1 − ǫ2/2 + O(ǫ4) + 2−Ω(n) of DΛ∗,1/2s. Its run-time is poly(T, log R).

We omit the proof and the details, since it deeply relates to quantum computa-

tions. Anyway, combining these lemmas, we obtain Theorem 3.4.6.
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4
Hash Functions

In this chapter, we give descriptions of one-way and collision-resistant hash func-

tions based on lattice and ideal lattice problems.

Organization: Section 4.1 defines model and security notions on hash schemes.

Section 4.2 gives a review on properties of hash functions. Section 4.3 reviews

the construction of lattice-based hash functions. We also give the review of ideal-

lattice-based hash functions in Section 4.4.

4.1 Definitions

We first give the functional model of a family of hash functions. Let Hn = {hk :

Dn → Rn | k ∈ Kn} be a family of hash functions with the security parameter n, a

message space Dn, a digest space Rn, and a key space Kn. Define H = {Hn}n. We

call H a hash family instead of a family of families of hash functions. (Recall the

SHA2 family including SHA-224, SHA-256, SHA-384, and SHA-512.)

4.1.1 Model of Hash Schemes

A (cryptographic) hash scheme Hash is a pair of algorithms (Setup,Eval).

Setup(1n): A setup algorithm, given the security parameter 1n, outputs a key k.

Eval(k,msg): An evaluation algorithm, given k and a message msg ∈ Dn, returns

a digest d ∈ Rn.

We define hk(msg) = Eval(k,msg). By this definition, we can identify a hash

scheme Hash with a hash familyH .
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LEFTOVER HASH LEMMA

4.1.2 Security Notions

Roughly speaking, we say that Hash is one-way if any polynomial-time adversary

cannot, given k and a random image u, output a preimage of y under the hash

function indexed by k. We say that Hash is collision resistant if any polynomial-

time adversary cannot, given k, output a collision (msg,msg′) of the hash function

indexed by k. Formally, we define the following experiments Expow
Hash,A(n) and

Expcr
Hash,A(n) between the challenger C and the adversary A for the one-way and

the collision-resistant properties of a hash scheme.

Experiment Expow
Hash,A(n):

Setup Phase: The challenger C runs Setup with 1n and obtains k. Next, C
generates a random element msg ← Dn and computes u ← Eval(k,msg).

C feeds k and msg to the adversaryA.

Challenge Phase: A outputs msg′. If msg′ ∈ Dn and Eval(k,msg′) = u

then the challenger returns 1, otherwise, 0.

Experiment Expcr
Hash,A(n):

Setup Phase: The challenger C runs Setup with 1n and obtains k. C feeds

k to the adversaryA.

Challenge Phase: A outputs msg and msg′. If msg,msg′ ∈ Dn, msg ,

msg′, and Eval(k,msg) = Eval(k,msg′) then the challenger returns 1, oth-

erwise, 0.

Definition 4.1.1. Let Hash = (Setup,Eval) be a hash scheme. Let A be an ad-

versary. Let the advantage of A against one-way property be Advow
Hash,A(n) :=

Pr
[
Expow

Hash,A(n) = 1
]
. We say that Hash is one-way if, for any probabilistic

polynomial-time adversaryA, Advcr
Hash,A(n) is negligible in n.

Let the advantage of A against collision-resistance property be

Advcr
Hash,A(n) := Pr

[
Expcr

Hash,A(n) = 1
]
. We say that Hash is collision resis-

tant if, for any probabilistic polynomial-time adversary A, Advcr
Hash,A(n) is

negligible in n.

There are several security notions on (cryptographic) hash schemes: one-

wayness (first-preimage resistance), second-preimage resistance, etc. On the defi-

nitions of them and the relations between them, see [RS04].

4.2 Probabilistic Notions on Hash Functions and the Left-

over Hash Lemma

In addition to the above security notions, we often discuss other notions on hash

families in this thesis and the leftover hash lemma.

First of all, we recall the probabilistic notions on a family of hash functions (see

Shoup’s textbook [Sho08, Section 8.7]). Again, letHn = {hk : Dn → Rn | k ∈ Kn}
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be a family of hash functions with the security parameter n, a message space Dn, a

digest space Rn, and a key space Kn.

• We sayHn is ǫ-almost universal if for all x , x′ ∈ Dn,

Pr
k←Kn

[hk(x) = hk(x′)] ≤ ǫ.

• We also say thatHn is universal if it is 1/ |Rn|-almost universal.

• We sayHn is ǫ-almost strongly universal if hk(x) is uniformly distributed over

Rn, that is Prh←Kn
[hk(x) = y] = 1/ |Rn| for any x ∈ Dn and y ∈ Rn, and for all

distinct x, x′ ∈ Dn and for all y, y′ ∈ Rn,

Pr
k←Kn

[hk(x) = y ∧ hk(x′) = y′] =
ǫ

|Rn|
.

• We also say that Hn is pairwise independent if it is 1/ |Rn|-almost strongly

universal.

We naturally extend these notions of a family of hash functions to a hash family

H = {Hn}n.

The Leftover Hash Lemma: The leftover hash lemma appears anywhere of ar-

eas in the computer science and cryptography.

We follow the presentation by Shoup [Sho08]. Let |Dn| = N and |Rn| = M.

Let K be a random variable uniformly distributed over Kn and let X be a ran-

dom variable distributed over Dn. The collision probability of X is defined as

β =
∑

x∈Dn
Pr[X = x]2. The quantity log (1/γ) is the min entropy of X (see Sec-

tion 1.2).

The following versions are somewhat generalized versions of the leftover hash

lemma.

Lemma 4.2.1 (Thm.8.37, [Sho08]). LetHn be a (1+α)/M-almost universal family

of hash functions from Dn to Rn. Then,

∆((K, hK(X)), (K,U)) ≤ 1

2

√
Mβ + α.

Lemma 4.2.2 (Thm.8.38, [Sho08]). LetHn be a (1+α)/M-almost universal family

of hash functions from Dn to Rn. Then,

∆((K, hK(X1), . . . , hK(Xl)), (K,U1, . . . ,Ul)) ≤
1

2
l
√

Mβ + α.

Lemma 4.2.3 (Leftover Hash Lemma (a min-entropy version)). Let Hn = {hk :

Dn → Rn | k ∈ Kn} be a family of hash functions, where Dn and Rn are finite

sets. Let K be the uniform distribution over Kn. and let X be a random variable

distributed according to D. Then,

∆((K, hK(X)), (K,U)) ≤ 2−
1
2 (H∞(X)−log |Rn |+2)
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where U is a random variable distributed uniformly over Rn. In particular, if X is

distributed uniformly over Dn, we have

∆((K, hK(X)), (K,U)) ≤ 1

2

√
|Rn|
|Dn|

.

4.3 Lattice-based hash functions

We review the lattice-based hash functions. For two integers q = q(n) and m =

m(n), we define a family of hash functions,

Hn(q,m) = {hA : Dn → Zn
q | A ∈ Zn×m

q },

where hA(x) = Ax mod q and Dn ⊆ Zm.

The definition of the hash scheme is as follows:

Scheme 4.3.1 (LHash). This scheme is parametrized by integers m = m(n) and

q = q(n), and a space Dn ⊆ Zm. The key space is Zn×m
q . The message space is Dn

and the digest space is Rn = Z
n
q.

Setup(1n): Given 1n, output A← Zn×m
q .

Eval(A, e): Given A and e ∈ Dn, output Ae mod q.

We can identifyH(q,m) = {Hn(q,m)} with LHash = (Setup,Eval).

It is easily verified that the collision resistance and the one-wayness is directly

connected to the average-case hardness of SIS
p

q,m,2β
and ISIS

p

q,m,β
, respectively,

where β is the upperbound of the lp norm of x ∈ Dn. If we set Dn = {0, 1}m,

the underlying problem is SISq,m,
√

m. Hence, as we review in Section 2.4.2, the

hash scheme is collision resistance if GapSVPγ or SIVPγ is hard in the worst case.

Below we give the brief history and the precise security on this LHash.

Originally, Ajtai [Ajt96] showed that the worst-case hardness of GapSVPγ for

some polynomial γ(n) is reduced to the average-case hardness of SISq,m,n for suit-

able q(n) and m(n). It is known thatH(q,m) is indeed collision resistant for suitably

chosen q and m by Goldreich, Goldwasser, and Halevi [GGH96]. They observed

that finding a collision (x, x′) for hA ∈ H(q,m) implies finding a short non-zero

vector z = x− x′ such that ‖z‖ ≤
√

m and Az ≡ 0 (mod q), i.e., solving SISq,m,
√

m.

Cai and Nerurkar [CN97] and Micciancio [Mic04] improved an approximation

factor of the underlying lattice problems, where γ = Õ(n4) and Õ(n3), respec-

tively. Micciancio and Regev showed that H(q,m) is collision resistant under the

assumption that GapSVPÕ(n) is hard in the worst case [MR07], which is a drastic

improvement. There were another reductions from the gap version of the covering

radius problem GapCRPγ, the shortest independent vector problem SIVPγ, and the

guaranteed distance decoding problem GDDγ by adjusting the parameters [MR07].

Following it, Peikert [Pei08] showed the reductions from the same problems in any

lp norms for p ≥ 2. A recent paper [GPV08, Section 9] by Gentry, Peikert, and
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Vaikuntanathan showed that the modulus q in SIS can be Õ(n) as we already noted

in Section 2.4.2.

Theorem 4.3.2 (Implicit in [GPV08]). Let m = m(n), q = q(n), β = β(n), γ =

γ(n) be polynomially-bounded functions. For any g(n) = ω(log n), there exists

a negligible function ǫ = ǫ(n) such that, for any q ≥ γ · ω(
√

log n) and γ =

β
√

n ·ω(
√

log n), there is a probabilistic polynomial-time reduction from SIVPγ in

the worst case to SISq,m,β or ISISq,m,β on average.

4.3.1 Regularity

In the literature, Ajtai firstly showed the regularity of the hash function. Regev

improved the analysis of the regularity.

Lemma 4.3.3 (Claim 5.3, adapted [Reg09]). Let G be some finite Abelian group

of cardinality Q and let m be some integer. For any m element g1, . . . , gm, consider

∆(
∑

i∈[m] bigi, u), where bi ← {0, 1} and u ← G. Then, the expectation of this

statistical distance over a uniform choice of g1, . . . , gm is at most (Q/2m)1/2. In

particular, the probability that this statistical distance is more than (Q/2m)1/4 is at

most (Q/2m)1/4.

A strategy to obtain the bound on the statistical distance is showing the family

of hash functions Hn,G = {hg : {0, 1}m → G | g ∈ Gm}, where hg(b) =
∑

i∈[m] bigi,

is universal and applying the leftover hash lemma. In [Reg09], Regev essentially

showed that the hash is universal. In addition, he also gave the bound of expecta-

tion. We review his proof closer.

Proof. For g = (g1, . . . , gm) ∈ Gm, let us define Pg(h) =
1

2m

∣∣∣{b ∈ {0, 1}m | ∑i bigi = h}
∣∣∣. Notice that for any b , b′, Prg←Gm[

∑
i bigi =∑

i b′
i
gi] = Prg←Gm[

∑
i(bi − b′

i
)gi] = 1/Q, since G is Abelian. This already showed

that the family of hash functions Hn,G is universal. In particular, we obtain that,

by applying the leftover hash lemma,

∆((g,
∑

i bigi), (g, u)) ≤ 1

2

√
Q

2m

since the collision probability of b is 1/2m.

Next, we bound the collision probability for fixed g ∈ Gm, that is, the square

of the l2 norm of the function Pg over RQ. We can upper bound this by as follows:

∑

h∈G
Pg(h)2 = Pr

b,b′←{0,1}m


∑

i

bigi =
∑

i

b′igi



≤ 1

2m
+ Pr

b,b′←{0,1}m


∑

i

bigi =
∑

i

b′igi | b , b′
 .
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Hence, taking g as a random variable, we obtain that

Exp
g←Gm


∑

h∈G
Pg(h)2

 ∈
1

2m
± 1

Q
.

By using the norm bound ‖x‖∞ ≤
√

Q ‖x‖2 for any x ∈ RQ, we have that

Exp
g


∑

h

∣∣∣∣∣Pg(h) − 1

Q

∣∣∣∣∣

 ≤ Exp
g

Q
1/2


∑

h

(
Pg(h) − 1

Q

)2


1/2

= Q1/2 Exp
g




∑

h

(
Pg(h) − 1

Q

)2


1/2

≤ Q1/2

Exp
g


∑

h

Pg(h)2

 −
1

Q


1/2

≤ Q1/2 · 2−m/2.

Hence,

Exp
g

[∆(
∑

i bigi, u)] ≤ 1
2
Q1/22−m/2.

By using the average argument, we have that

Pr
g

[
∆(

∑
i bigi, u) ≥ Q1/42−m/4

]
≤ Q1/42−m/4.

�

Notice that this argument can be applied to any G = Zn+l
q . In particular, for

A← Z(n+l)×m
q , e← {0, 1}m, and u← Zn+l

q , we have that

∆((A, Ae), (A, u)) ≤ 2−
1
2 (m+1−(n+l) log q).

Hence, taking m ≥ ((1 + δ)n + l) log q for some constant δ > 0, we obtain the

(statistical) regularity of the lattice-based hash family.

4.4 Ideal-Lattice-Based Hash Functions

For a1, . . . , am ∈ Rf,q, let ǎ represent an m-dimensional row vector [a1, . . . , am].

Let us define a family of hash functions.

Hn(f, q,m) =
{
hǎ : Dn → Rf,q ≃ Zn

q | ǎ ∈ Rm
f,q

}
,

where hǎ(ě) = ǎ· ě and ě = (e1, . . . , em) ∈ Dn. We define a hash familyH(f, q,m) =

{Hn(f, q,m)}n. We note that this hash function is a special version of the lattice-

based hash functions. To confirm this, verify the following relations: Let e =

e1 ◦ . . . ◦ em for em ∈ Zn. Then, we identify e with ě = (e1, . . . , em) ∈ Rm
f

. So, we

have that ǎ · ě = Rotf(ǎ)e.
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Scheme 4.4.1 (ILHash). The hash scheme ILHash = (Setup,Eval) is parametrized

by monic polynomials f ∈ Z[x] of degree n, integers m = m(n) and q = q(n), and

a space Dn ⊆ Rm
f
≃ Zmn. The key space is Rm

f,q
. The message space is Dn and the

digest space is Rn = Rf,q ≃ Zn
q.

Setup(1n): Given 1n, output ǎ← Rm
f,q

.

Eval(ǎ, ě): Given ǎ and ě ∈ Dn, output ǎ · ě mod q.

The first compact hash function is by Micciancio [Mic07] and with parameters

f = xn − 1 and Dn = ([D]n)m for a small integer D. He proved that this hash

functions are one-way if (xn − 1)-SVP∞γ is hard in the worst-case for certain γ and

parameter settings. He left the open problem deciding whether this functions are

collision resistant or not.

This problem is solved negatively by Peikert and Rosen [PR06] and Lyuba-

shevsky and Micciancio [LM06] with demonstration of the attacks finding the col-

lision. The polynomial xn − 1 has the small factor x − 1 over Z and, thus, over Zq.

Hence, a1 is divisible by x − 1 with probability 1/q over the choice of a1. Suppose

that happens. Then, we set z1 = (xn − 1)/(x − 1) = xn−1 + xn−2 + · · · + x + 1 ∈ Dn

and zi = 0 for i = 2, . . . ,m. Obviously, we have that a1 ⊗ z1 = 0 even over Z. The

pair (ě, ě′) = ((z1, 0, . . . , 0), (0, 0, . . . , 0)) is collision if a1 is divisible by x − 1.

The point is that the ring Z[x]/〈xn − 1〉 is not an integral domain.1 To fix the

weak point, Peikert and Rosen [PR06], and Lyubashevsky and Micciancio [LM06]

proposed the technique, use of an integral domain. Peikert and Rosen gives an

algebraic constraint to Dn to avoid the weak point. Lyubashevsky and Micciancio

set the polynomial f to be irreducible over Z, in order to ensure Rf = Z[x]/〈f〉 an

integral domain, (hence, Q[x]/〈f〉 is a field). Their techniques are essentially same.

We adopt the latter for generalization.

Applying Theorem 3.4.3 by Lyubashevsky and Micciancio [LM06], we obtain

the following security theorem.

Theorem 4.4.2 ([LM06]). Let f ∈ Z[x] be a monic and irreducible polynomial of

degree n and let E3 = EF∞(f, 3). Let β be the upperbound of the l∞ norm of vectors

in Dn. Let m > log q/ log 2β and q > 2E3βmn3/2 log n. Then for γ = 8E2
3
mn log2 n,

if f-SVP∞γ is hard in the worst case then ILHash is collision resistant.

4.4.1 Computational Tricks

Hereafter, we describe why ILHash is attractive on computational issues (see also

the original papers [Mic07, PR06, LM06, LMPR08]).

Notice that we can set m = Θ(log n) and q = poly(n) in the above ILHash.

Hence, ILHash enjoys the compactness of the parameter ǎ ∈ Rm
f,q

rather than A ∈
Zn×m

q . The computation of ILHash.Eval is also reduced to Õ(n) by a careful choice

of the parameters.

1 We say that a ring R is an integral domain if ab , 0 for any non-zero elements a, b ∈ R.
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Given a parameter ǎ = (a1, . . . , am) and a message ě = (e1, . . . , em), the hash

value is
∑

i∈[m] ai ⊗ ei. Since m can be set as Θ(log n) = Õ(1), it is suffice to

show that the multiplication in Rf,q = Zq[x]/〈f〉 costs only Õ(n) if we take f and q

carefully.

The Fourier transformation: First, assume that f splits Zq completely, that is,

f(x) =
∏

i∈[n](x −wi) over Zq. In this case we can use, to compute a ⊗ e in Rf,q, the

discrete Fourier transformation (or the number theoretic transformation) which is

an isomorphism from Rf,q to Zn
q. By using the Chinese reminder theorem, we have

that

Rf,q = Zq[x]/〈f〉 ≃
∏

i∈[n]

Zq[x]/〈x − wi〉,

where the isomorphism φ is given by φ(a) = (a mod x − w1, . . . , a mod x − wn).

Notice that a(w1) = a mod x − w1. Henceforth,
∏

i∈[n] Zq[x]/〈x − wi〉 ≃ Zn
q, where

addition and multiplication is defined by the pairwise ones. We rename φ by DFT

in the following and write â = DFT(a) for any polynomial a ∈ Rf,q. Define the

matrix WDFT by {w j−1
i
}i, j∈[n]. Notice that

DFT(a) =WDFT · a =



w0
1

w1
1

. . . wn
1

w0
2

w1
2

. . . wn
2

...
...

. . .
...

w0
n w1

n . . . wn
n


·



a1

a2

...

an


=



a(w1)

a(w2)
...

a(wn)


.

To compute a ⊗ e in Rf,q, we compute as follows: (1) compute â = DFT(a) =

(a(w1), . . . , a(wn)) and ê = DFT(e)(e(w1), . . . , e(wn)), (2) compute â ⊗ e = â · ê =
(a(w1) · e(w1), . . . , a(w1) · e(wn)), and (3) we obtain a ⊗ e by applying DFT−1.

To fasten the convolutions a ⊗ e, we possibly take f = x2k − 1 and a prime

q such that 2k | q − 1. By this choice, there is an element w ∈ Z∗q such that the

cardinality of the subgroup generated by w is 2k. Then, f(x) =
∏

i∈[n](x − wi−1)

and WDFT = {w(i−1)( j−1)}i, j∈[n]. This enables us to use of the fast Fourier transform

(FFT).

The another choice is f = x2k

+ 1 and a prime q such that 2k+1 | q − 1. In this

choice, we have an element w ∈ Z∗q such that the cardinality of the subgroup gen-

erated by w is 2k+1. Then, f(x) =
∏

i∈[n](x − w2i+1) and WDFT = {w(2i+1)( j−1)}i, j∈[n].

Despite of some differences, again, this matrix WDFT allows us to use of the tech-

niques in the FFT. See the below.

The Fast Fourier Transform (FFT) over Zq[x]/〈x2k

+ 1〉: It is well-known that

DFT(f) can be computed by O(n log n) additions and multiplications. Let us define
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Wn,w = {w(i−1)( j−1)}i, j∈[n]. From the definition of Wn,w, in this case we have hat

DFT(a) =Wn,w · a =



w0 w1 w2 · · · wn−1

w0 w3 w6 · · · w3(n−1)

...
...

...
. . .

...

w0 w2n−1 w4(n−1) · · · w(n−1)(n−1)


·



a0

a1

...

an−1


.

Let us consider the simple case that n = 4. In the case, the order of w is 8 and

we have that

W4,w · a =



w0 w1 w2 w3

w0 w3 w6 w1

w0 w5 w2 w7

w0 w7 w6 w5


·



a0

a1

a2

a3


.

Swapping the right hand side by the permutation π = (0, 2, 1, 3) over {0, 1, 2, 3},

W4,w · a =



w0 w2 w1 w3

w0 w6 w3 w1

w0 w2 w5 w7

w0 w6 w7 w5


·



a0

a2

a1

a3


=



w2·0 w2·1 w1 · w2·0 w1 · w2·1

w2·0 w2·3 w3 · w2·0 w3 · w2·3

w2·0 w2·1 w5 · w2·0 w5 · w2·1

w2·0 w2·3 w7 · w2·0 w7 · w2·3


·



a0

a2

a1

a3


.

Since the order of w is 8, then w4 = −1 in Zq. Hence, we have that

W4,w · a =
(
W2,w2 · ae + (w,w3) ⊙ (W2,w2 · ao)

W2,w2 · ae − (w,w3) ⊙ (W2,w2 · ao)

)
,

where ae = (a0, a2), ao = (a1, a3), and ⊙ denotes the pairwise multiplication in Z2
q.

This holds also any n = 2k and w a generator of a 2k+1 subgroup of Z∗q. Gener-

ally we have that

Wn,w · a =
(
Wn/2,w2 · ae + (w,w3, . . . ,w2n−1) ⊙ (Wn/2,w2 · ao)

Wn/2,w2 · ae − (w,w3, . . . ,w2n−1) ⊙ (Wn/2,w2 · ao)

)
.

Computing recursively, we can obtain DFT(a) =Wn,w · a with O(n log n) additions

and multiplications in Zq if we precompute (w,w2,w3, . . . ,w2n). See [LMPR08]

for the implementation issues.

Choices of a polynomial f: We can use the FFT even if f is not split Zq com-

pletely. The idea is embedding Rf,q into another Rf′,q′ . Let f′ = xn′ − 1 with

n′ = 2k′ > 2(n− 1) and q′ be a prime such that q′ > nq2 and n′ | q′ − 1. Then, Rf′,q′

admits the fast Fourier transformation. For a,b ∈ Rf,q, consider a · b in Z[x]. By

the hypothesis on f′ and q′, a · b equals to a ⊗ b in Rf′,q′ . Hence, we first compute

a ⊗ b in Rf′,q′ and reduce it modulo f and q.

If f is x2k ± 1 but not split Zq completely, we have no need to choose another

f′. We embed Rf,q into Rf,q′ which admits the fast Fourier transformation (to do so,

q′ > nq2 is a prime such that 2k | q′ − 1 or 2k+1 | q′ − 1).
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4.4.2 Micciancio’s Regularity Lemma

In this section, we examine the regularity of the hash familyH(f, q,m).

Micciancio proved the regularity of the hash family H(xn − 1, q,m) with a

message space Dn = [D]mn. The proof can be applied to the hash familyH(f, q,m)

with closer look of the proof in [Mic07].

Lemma 4.4.3 (Lemma 6 in [SSTX09], adapted version of Theorem 4.2

in [Mic07]). Let F be a finite field and f ∈ F[x] be monic and of degree n. Let R be

the ring F[x]/〈f〉. Let D ⊆ F. For a row vector of polynomials ǎ = [a1, . . . , am] ∈
Rm, we denote by hǎ(ě) the random variable ǎ · ě =

∑
i∈[l] ai ⊗ ei ∈ R, where

ě = (e1, . . . , em) ← Dmn. If ǎ is chosen from Rm uniformly at random, then the

statistical distance to uniformity of (ǎ,Hǎ(ě)) is at most

1

2

√√√∏

i∈[t]

1 +
(
|F|
|D|l

)deg(fi)
 − 1,

where f =
∏

i∈[t] fi is the factorization of f over F.

To show this, we need the following lemma.

Lemma 4.4.4 (Lemma 4.4 in [Mic07]). Let R be a finite ring, and z =

(z1, . . . , zm) ∈ Rm a vector of arbitrary ring elements. If a = [a1, . . . , am] ← Rm,

then a · z = ∑
i∈[m] ai · zi ∈ R is uniformly distributed over the ideal 〈z1, . . . , zm〉. In

particular, for any z,

Pr
a←Rm


∑

i∈[m]

ai · zi = 0

 =
1

|〈z1, . . . , zm〉|
.

To contain itself, we give the proof.

Proof. We start the proof following Micciancio’s proof [Mic07]. For simplicity, we

let q be the cardinality of F. In order to show the theorem, we bound the collision

probability of (ǎ,Hǎ(ě)).

Pr
ǎ,ǎ′,ě,ě′

[
ǎ = ǎ′ ∧ Hǎ(ě) = Hǎ′(ě

′)
]
= Pr

ǎ,ǎ

[
ǎ = ǎ′

] · Pr
ǎ,ǎ′,ě,ě′

[
Hǎ(ě) = Hǎ′(ě

′) | ǎ = ǎ′
]

=
1

qmn
· Pr

ǎ,ě,ě′


∑

i∈[m]

ai ⊗ (ei − e′i) = 0

 .

Fix ě and ě′. Then, by the above lemma (Lemma 4.4.4), the probability that∑
i∈[m] ai ⊗ (ei − e′

i
) = 0 equals to 1/

∣∣∣〈e1 − e′
1
, . . . , em − e′m〉

∣∣∣. Let I be the set
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of all ideals of R = F[x]/〈f〉. Hence, conditioning on the ideals, we have that

1

qmn
· Pr

ǎ,ě,ě′


∑

i∈[m]

ai ⊗ (ei − e′i) = 0

 =
1

qmn
·
∑

I∈I

1

|I| · Pr
ě,ě′

[
〈e1 − e′1, . . . , em − e′m〉 = I

]

≤ 1

qmn
·
∑

I∈I

1

|I| · Pr
ě,ě′

[
〈e1 − e′1, . . . , em − e′m〉 ⊆ I

]

=
1

qmn · qn
·
∑

I∈I

qn

|I| ·
∏

i∈[m]

Pr
ei,e
′
i

[ei − e′i ∈ I].

Since F is a field, F[x] is a principal ideal domain. Then, any ideal I ∈ I of

R = F[x]/〈f〉 ≃ F[x]/〈f1〉 × · · · × F[x]/〈ft〉 are of the form 〈p〉 where p is a factor of

f. For any subset S ⊆ [t], let pS =
∏

i∈S fi. The ideals of R are I = {〈pS 〉 | S ⊆ [t]}.
(Micciancio restricted the argument in the case where f = xn −1, but this argument

can be applied to any monic polynomial f as in the above.) In addition, note that

the ideal 〈pS 〉 ≃
∏

i∈[t]\S F[x]/〈fi〉. Hence, we have |〈pS 〉| = qn−deg(pS ). Therefore,

we have that

Pr
ei,e
′
i

[ei − e′i ∈ 〈pS 〉] = Pr
ei,e
′
i

[ei ≡ e′i (mod pS )]

≤ max
e

Pr
ei

[ei ≡ e (mod pS )] (4.1)

≤ 1

|D|deg(pS )
, (4.2)

where e ranges over Fdeg(pS−1).

Using this bound, we obtain

qn

|〈pS 〉|
∏

i∈[m]

Pr
ei,e
′
i

[ei − e′i ∈ 〈pS 〉] ≤
qn

qn−deg(pS )

(
1

|D|deg(pS )

)m

=

(
q

|D|m
)deg(pS )

.

By summing up, we have that

∑

〈pS 〉∈I

qn

|〈pS 〉|
∏

i∈[m]

Pr
ei,e
′
i

[ei − e′i ∈ 〈pS 〉] ≤
∑

S⊆[t]

(
q

|D|m
)deg(pS )

=
∏

i∈[t]

1 +
(

q

|D|m
)deg(fi)

 .

Combining them, we obtain that

Pr
ǎ,ǎ′,ě,ě′

[
(ǎ,Hǎ(ě)) = (ǎ′,Hǎ′(ě

′))
] ≤ 1

qmn+n

∏

i∈[t]

1 +
(

q

|D|m
)deg(fi)

 .

Applying the bound lemma, we conclude that

∆((ǎ,Hǎ(ě)), (ǎ′,u)) ≤ 1

2

√√√∏

i∈[t]

1 +
(

q

|D|m
)deg(fi)

 − 1,

where ǎ′ ← Rm and u← R. �
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We let apply the regularity lemma to several cases. Let

∆(q, f, d) =

√√∏

i∈[t]

(
1 +

(
q

dm

)deg(fi)
)
− 1.

1. If f is irreducible over F, we have that ∆(q, f, d) =
√

(q/dm)n = 2
1
2 (log q−mn log d).

By setting, m > (1 + δ) log q/ log d for δ > 0, we obtain the upper bound

2−
1
2 δn log q = 2−Ω(n). It indicates if we set m = O(1) and q = poly(n) satisfying

the above then we have ∆(q, f, d) is negligible even if d = 2 or 3.

2. If f = f1 · f2, where deg(fi) = n/2, we have that ∆(q, f, d) =√
(1 + (q/dm)n/2)2 − 1 =

√
2(q/dm)n/2 + (q/dm)n. By setting, m > (1 +

δ) log q/ log d for δ > 0, we obtain the upper bound

√
3 · (q/dm)n/4 ≤ 2−

1
4 δn log q+ 1

2 log 3 = 2−Ω(n).

3. If f is completely split over F, we have that ∆(q, f, d) =
√

(1 + q/dm)n − 1.

Suppose that m = (1+δ) log q/ log d for some δ > 0 to set q/dm < 1 sufficiently

small. Suppose that q = na for some a > 0. Then, we have the upper bound√
2nq/dm = 2

1
2 (1+(a+1) log n−m log d), since (1 + q/dm)n ≤ 1 + 2nq/dm. To set

the upper bound negligible in n, we need to have m log d = ω(log n), e.g.,

m = ω(log n) and d = O(1) or m = O(1) and d = ω(log n), which sacrifices

the efficiency of ILHash.

In particular, we have the following lemma for f = xn + 1 and q ≡ 3 (mod 8)

by Lemma 3.1.2 and the discussion (2).

Lemma 4.4.5 ([SSTX09]). Let f = xn + 1 and n = 2k, where k ≥ 2. Let m >

(1 + δ) log q/ log d for some constant δ > 0. If q is a prime with q ≡ 3 (mod 8),

the statistical distance 1
2
∆(q, xn + 1, d) of (ǎ, hǎ(ě)) from the uniform is at most

2−
1
4 δn log q.

The analysis of the last case (3) is improved if we improve the inequality (4.1),

which is not tight and overkills to obtain a good bound. Some experiments by the

author indicates there is more tight bound for the case where f splits F completely.

However, we fail to prove the good bound. In addition, the above regularity lemma

states only the case F or Zq for a prime q. Another possible extension is for Zq,

where q is a composite. We leave obtaining these bound results as an open prob-

lem.
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5
Commitment

In this chapter, we construct simple string commitment schemes based on lattice

problems: They are statistically hiding and computationally binding (see the def-

inition below). We only consider string commitment schemes in the trusted setup

model.

Organization: Section 5.1 defines model and the security notions on non-

interactive commitment schemes. In Section 5.2, we review the Halevi–Micali

commitment scheme as the general construction from a collision-resistant hash

scheme. Section 5.3 and Section 5.4 reviews the lattice-based commitment scheme

which is proposed by Kawachi et al. [KTX08].

In addition, Fujisaki [Eii08] pointed out that our commitment scheme can be

converted into a chameleon hash scheme or a trapdoor commitment scheme, by

adjusting the parameters and replacing some functions. This construction also

appears in Peikert [Pei09b, Section 2.2]. We will argue this as trapdoor hash in

Section 10.10.

5.1 Definitions

We consider a non-interactive string commitment scheme in the trusted setup

model. The trusted setup model is often required to construct practically efficient

cryptographic schemes such as non-interactive string commitment schemes. In this

model, we assume that a trusted party T honestly sets up a system parameter for

the sender and the receiver.

Let us specify how it works. First T generates public parameters and distribute

them to users. Both parties, the sender and the receiver, then share public param-
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eters. The scheme runs in two phase, called committing and revealing phases. In

the committing phase, the sender commits his/her message, say a string s. He/she

generates a commitment string cmt and an open value ov, and sends cmt to the re-

ceiver. In the revealing phase, the sender gives the receiver the decision s and the

open string ov. The receiver verifies the validity of cmt with msg and ov.

We require two security notions of the string commitment schemes,

statistically-hiding and computationally-binding properties. Intuitively, we say that

the commitment scheme is statistically hiding, if any computationally unbounded

adversarial receiver cannot distinguish two commitment strings generated from two

distinct strings. Also, it is computationally binding, if any polynomial-time adver-

sarial sender cannot change the committed string after sending the commitment.

5.1.1 Model of Non-Interactive Commitment Schemes

Let NIC = (Setup,Com,Ver) over a message space Mn be a non-interactive com-

mitment scheme. Notation of the algorithms are below:

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param.

Com(param,msg): A commitment algorithm, given param and a value msg ∈
Mn, outputs a commitment cmt and a value ov.

Ver(param, cmt,msg, ov): A verification algorithm, given param, cmt, msg, and

ov, returns 0 (reject) or 1 (accept).

Often, we say NIC is a bit commitment scheme if Mn = {0, 1}. We say NIC is a

string commitment scheme if Mn = {0, 1}l(n) for l(n) , ω(1).

The correctness of the commitment is defined as follows: For any msg ∈ Mn,

param generated by Setup(1n) and (cmt, ov) generated by a valid committee , the

verifier always accepts param, cmt,msg, ov. Formally, it holds that for any msg ∈
Mn,

Pr

b
′ = 1 :

param← Setup(1n);

(cmt, ov)← Com(param,msg);

b← Ver(param, cmt,msg, ov);

 = 1,

where the probability is taken over coins of Setup and Com.

5.1.2 Security Notions

To define the security notion, consider the experiments Expbind
NIC,A(n) and

Exphide
NIC,A(n) between the challenger C and the adversaryA.

Experiment Expbind
NIC,A(n):

Setup Phase: The challenger C runs Setup(1n) and obtains param. The

adversaryA is given the security parameter 1n and the parameters param.
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Challenge Phase: The adversary outputs cmt, (msg, ov), and (msg′, ov′).
If msg,msg′ ∈ Mn, msg , msg′, Ver(param, cmt,msg, ov) = 1, and

Ver(param, cmt,msg′, ov′) = 1 then C returns 1. Otherwise, it returns

0.

Experiment Exphide
NIC,A(n):

Setup Phase: The challenger C runs Setup(1n) and obtains param. The

adversaryA is given the security parameter 1n and the parameters param.

Challenge Phase: The adversary outputs msg0 and msg1. If msg0,msg1 ∈
Mn and msg0 , msg1, the challenger flips a fair coin b← {0, 1}, generates

cmt∗ ← Com(param,msgb), and sends cmt∗ to the adversary. Otherwise,

C returns 0 and halts.

Decision Phase: Finally, the adversary outputs its decision b′. If b = b′ the

challenger returns 1, otherwise 0.

Here, the security notions of the non-interactive commitment schemes we re-

quire can be formalized as follows:

Definition 5.1.1 (Hiding property). Consider a non-interactive commitment

scheme NIC = (Setup,Com,Ver).

We say NIC is perfectly hiding if any two messages msg,msg′ ∈ Mn,

(param, cmtmsg) and (param, cmtmsg′) are equally distributed, where param ←
Setup(1k), (cmtmsg, ovmsg) ← Com(param,msg), and (cmtmsg′ , ovmsg′) ←
Com(param,msg′).

We say NIC is statistically hiding if any two messages msg,msg′ ∈ Mn, the

statistical distance between (param, cmtmsg) and (param, cmtmsg′) is negligible in

n.

LetA be an adversary. We define the advantage ofA as

Advhide
NIC,A(n) :=

∣∣∣∣∣Pr
[
Exphide

NIC,A(n) = 1
]
− 1

2

∣∣∣∣∣ .

We say NIC is computationally hiding if for any polynomial-time adversary A,

Advhide
NIC,A(n) is negligible in n.

Definition 5.1.2 (Binding property). Let NIC = (Setup,Com,Ver) be a non-

interactive commitment scheme. Let A be an adversary. We define the advantage

ofA as

Advbind
NIC,A(n) := Pr

[
Expbind

NIC,A(n) = 1
]
.

We say a non-interactive commitment scheme NIC is computationally binding

if Advbind
NIC,A(n) is negligible in n for any polynomial-time adversaryA.

5.1.3 Special Property

In addition, we define a special property of non-interactive commitment. We say

a non-interactive commitment NIC is special if the scheme can be modeled as fol-
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lows:

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param. The parameter param defined the function Comparam :

Mn × Dn → Rn.

Com(param,msg): A commitment algorithm, given param and a value msg ∈
Mn, first generate a randomness r ∈ Dn, and outputs a commitment cmt =

Comparam(msg, r) and a value ov = (msg, r).

Ver(param, cmt,msg, ov): A verification algorithm, given param, cmt, msg, and

ov, returns 1 if cmt = Comparam(msg, ov) and 0 otherwise.

5.2 Example: The Halevi–Micali Commitment Scheme

General constructions of statistically-hiding and computationally-binding string

commitment schemes are known from a family of collision-resistant hash func-

tions [DPP97, HM96]. Their constructions used universal hash functions for the

statistically-hiding property and very similar to each others. For simplicity, we

decide to review the Halevi-Micali construction.

The Halevi–Micali commitment scheme: Halevi and Micali proposed a sim-

ple string commitment scheme based on the collision-resistance hash func-

tion [HM96], which is very similar to one in [DPP98].

Let n denote the security parameter and let l be a positive integer at least 6n+4.

Let Hn = {hk : {0, 1}∗ → {0, 1}n}k∈Kn
be a family of collision-free hash functions

and H = {Hn} a hash family. Let Hash = (Setup,Eval) be a corresponding hash

scheme. Let Fn = { f : {0, 1}l → {0, 1}n} be a family of universal hash functions.

For example, we can use { fa1,...,a6
: GF(2n)7 → GF(2n) : ai ∈ GF(2n)}, where

fa1,...,a6
(s0, . . . , s6) = s0 + a1s1 + · · · + a6s6 and each n-bit string si is interpreted as

an element in GF(2n).

The Halevi–Micali commitment scheme (Setup′,Com′,Ver′) is defined as fol-

lows:

Scheme 5.2.1. For simplicity, we set l = 7n.

Setup′(1n): The setup algorithm obtains a← Setup(1n) and outputs param = a.

Com′(a,msg): The commitment algorithm computes s← ha(msg), picks a ran-

dom r ∈ {0, 1}l, computes y ← ha(r), and picks a random function f ∈ F for

which f (r) = s. Then it outputs (cmt, ov) = (( f , y), r).

Ver′(a, ( f , y),msg, r): The verification algorithm accepts if y = ha(r) and f (r) =

ha(msg). Otherwise, rejects.

To pick a random function fa1,...,a6
such that r0+a1r1+· · ·+a6r6 = s, it computes

as follows: Choose random elements a1, . . . , a5 and compute a6 = r−1
6

(s − (r0 +

a1r1 + · · · + a5r5)) if r6 , 0. If r6 = 0, choose a6 at random.
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Halevi and Micali showed that the scheme is computationally binding if H

is collision resistant and statistically hiding with the distance 2−n. Note that the

length of commitment is |y| + | f | = n + 6n = 8n and the length of decommitment is

|m| + |r| = |m| + 7n if we use the above universal hash functions. We will employ

this commitment scheme in Chapter 9.

5.3 A Lattice-based String Commitment Scheme

Here, we review a more direct and simpler construction from the lattice-based hash

functions without the universal hash functions [KTX08]. The input of the com-

mitment function is an m-bit vector x obtained by concatenating a random string

ρ = (ρ1, . . . , ρm/2) ∈ {0, 1}m/2 and a message string s = (s1, . . . , sm/2) ∈ {0, 1}m/2,

i.e., x = ρ ◦ s ∈ {0, 1}m. We then define the commitment function on inputs s and

ρ as

ComA(s; ρ) := hA(x).

We define our non-interactive string commitment scheme LNIC by using the above

commitment function:

Scheme 5.3.1 (LNIC, [KTX08]).

Setup(1n): Given input 1n, the algorithm samples A ∈ Zn×m
q and outputs

param = A.

Com(A,msg = s; ρ): Given inputs A and s ∈ {0, 1}m/2, the algorithm samples

ρ← {0, 1}m/2. It computes c← ComA(s; ρ), and outputs cmt = c and ov = ρ.

Ver(A, c, s, ρ): The algorithm checks that s, ρ ∈ {0, 1}m/2 and ComA(s; ρ) = c.

It outputs 1 if the checks are passed, 0 otherwise.

Lemma 5.3.2. If q is a prime and m > 2n(1 + δ) log q for some constant δ,

if SISq,m,
√

m is hard on the average, then ComA is a statistically-hiding and

computationally-binding string commitment scheme in the trusted set up model.

Proof. The computationally-binding property immediately follows from the

collision-resistant property. We now show the statistically-hiding property.

Let A = [a1 · · · am]. We then have ComA(s; ρ) =
∑m/2

i=1
ρiai +

∑m/2
i=1

siai+m/2.

Applying the leftover hash lemma, we can say that a random subset sum of ai is

statistically close to the uniform distribution for almost all choices of ai.

In our proof, we consider Zn
q as a finite Abelian group G. Since m > 2n(1 +

δ) log q, we have that (
|G|

2m/2

)1/4

≤ q−δn/4.

Thus, by Lemma 4.3.3, for all but an at most q−δn/4 fraction of A = [a1, . . . , am] ∈
Zn×m

q , we have that ∆(u,
∑

i∈[m/2] ρiai) ≤ q−δn/4, where u ∈ Zn
q is uniform random

variable. Assume that we have such A. So, we have ∆(u,ComA(0m/2; ρ)) ≤ q−δn.
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By the definition of ComA, for any s ∈ {0, 1}m/2, we have ∆(u,ComA(s; ρ)) ≤
q−δn/4. By the triangle inequality, we obtain

∆(ComA(s1; ρ1),ComA(s2; ρ2)) ≤ ∆(u,ComA(s1; ρ2)) + ∆(u,ComA(s2; ρ2))

≤ 2q−δn/4,

for any message s1 and s2. This shows that, for all but negligible fraction of choice

of A, distributions of two commitments are statistically close.

�

5.3.1 Extending the Domain

Notice that the message space of commitment function is simply extended by the

using combining collision-resistant hash function h : {0, 1}∗ → {0, 1}m/2 [KR00].

New commitment function Com′ is defined by

Com′(s; ρ) = Com(h(s); ρ).

We here take more direct way to extend the domain. The spirit of the proof

is essentially same as that of Krawczyk and Rabin [KR00]. Using the Merkle–

Damgård technique [Mer89, Dam89], we obtain a string commitment scheme

whose commitment function is ComA : {0, 1}∗ × {0, 1}m/2 → Zn
q rather than

ComA : {0, 1}m/2 × {0, 1}m/2 → Zn
q as the following.

Assume that m = 2r. Let A = [B|C], where B,C ∈ Zn×r
q . For X ∈ Zn×r

q , we

define fX : {0, 1}r → Zn
q as the hash function fX(s) = Xs mod q.

To apply the Merkle–Damgård technique, we need two utility functions in our

case. Let l be
⌈
n log q

⌉
and let t : Zn

q → {0, 1}l be some one-to-one function

that we compute t and t−1 efficiently, say t(a) outputs a binary string representing∑
i∈[n] aiq

i−1. Next, let pad : {0, 1}∗ → {0, 1}∗ be the padding function for the

Merkle-Damgård construction. We employ Merkle’s padding function pad pads

with 0 and adds the length information to the original message. Let 0 < b <

r − l be the length parameter. Formally, if we have a block compression function

f : {0, 1}r → {0, 1}l the padding function works on input s ∈ {0, 1}∗ of length

0 < a < 2b as follows.

pad(s) = s ◦ 10d ◦ lenb(a),

where d is the smallest non-negative integer such that a+ d + b+ 1 is a multiple of

r − l, b is some fixed integer lenb(a) denotes the b-bit representation of the integer

a.

Applying the Merkle–Damgård construction to fC, we obtain new hash func-

tion hC : {0, 1}∗ → Zn
q. The precise definition of hC is as follows:

1. On input s, obtain a padded message S ← pad(s)

2. Chop it into (S 0, . . . , S k), where S i ∈ {0, 1}r−l

3. Let H0 = 0 (more generally, some fixed IV can be used)
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4. For i = 1 to k + 1 do Hi ← fC(t(Hi−1) ◦ S i−1)

5. Output Hk+1

Our new commitment scheme is defined as follows: for s ∈ {0, 1}∗ and ρ ∈
{0, 1}r,

ComA(s; ρ) := hC(s) + fB(ρ) mod q.

Lemma 5.3.3. If there exists a polynomial-time machine outputting a collision for

ComA, then there exists a polynomial-time machine outputting a collision for fA.

Proof. Let us assume that we obtain a collision (s, ρ), (s̃, ρ̃) ∈ {0, 1}∗ × {0, 1}r for

ComA. By the assumption, we have

hC(s) + fB(ρ) ≡ hC(s̃) + fB(ρ̃) (mod q).

If ρ = ρ̃, we have s , s̃ and hC(s) = hC(s̃). Using the reduction for the Merkle-

Damgård construction (see e.g., [KL07, Thm. 4.14]), we obtain u , ũ ∈ {0, 1}r
such that fC(u) = fC(ũ). Thus, we have a collision u ◦ ρ, ũ ◦ ρ ∈ {0, 1}2r for fA.

Next, we assume that ρ , ρ̃. Let S and S̃ be padded messages of s and s̃,

respectively. Assume that S and S̃ are chopped into (S 0, . . . , S k) and (S̃ 0, . . . , S̃ k′),

respectively. Let Hk and H̃k′ be inner hash values for s and s̃ in the algorithm,

respectively. By the definition of Hk and H̃k′ , we obtain

hC(s) = fC(t(Hk) ◦ S k),

hC(s̃) = fC(t(H̃k′) ◦ S̃ k′).

Combining the above equations with the assumption, we obtain

fA(t(Hk) ◦ S k ◦ ρ) = fA(t(H̃k′) ◦ S̃ k′ ◦ ρ̃).

So, we have a collision t(Hk) ◦ S k ◦ ρ and t(H̃k′) ◦ S̃ k′ ◦ ρ̃ ∈ {0, 1}2r for fA. �

We use this commitment scheme in the rest of the paper. We often abuse

the notation of ComA. For example ComA(v1, v2; ρ) denotes ComA(string(v1) ◦
string(v2); ρ), where string(v) is a binary representation of v.

5.4 An Ideal-Lattice-Based String Commitment Scheme

Using ILHash in Section 4.4 we also obtain a simple string commitment scheme.

We first extend the notation of Com: For ǎ ∈ Rm
f,q

,

Comǎ(·) = ComRotf (ǎ)(·).

We define our non-interactive string commitment scheme ILNIC.

Scheme 5.4.1 (ILNIC, [KTX08]).

53



5.4. AN IDEAL-LATTICE-BASED STRING COMMITMENT SCHEME

Setup(1n): Given input 1n, the algorithm samples ǎ ∈ Rm
f,q

and outputs param =

ǎ.

Com(ǎ,msg = s; ρ): Given inputs A and s ∈ {0, 1}mn/2, the algorithm samples

ρ ← {−1, 0,+1}mn/2. It computes c ← Comǎ(s; ρ), and outputs cmt = c and

ov = ρ.

Ver(ǎ, c, s, ρ): The algorithm checks that s ∈ {0, 1}mn/2, ρ ∈ {−1, 0,+1}mn/2 and

Comǎ(s; ρ) = c. It outputs 1 if the checks are passed, 0 otherwise.

We apply Micciancio’s regularity lemma to ILHash and obtain the statistically-

hiding property of a string commitment scheme. Straightforwardly, the

computational-binding property follows from the collision-resistant property of

the underlying hash function. Formally, we obtain the following lemma as in

Lemma 5.3.2.

Lemma 5.4.2. Let f ∈ Z[x] be a monic and irreducible polynomial of degree n.

Let q be a prime polynomially bounded by n. Let f =
∏

i∈[t] fi is the factorization

of f over Zq. Let

∆ =
1

2
∆(q, f, 3) =

1

2

√√∏

i∈[t]

(
1 +

(
q

3m

)deg(fi)
)
− 1,

defined in Section 4.4.2. The scheme ILNIC is a statistically-hiding and

computationally-binding string commitment scheme in the trusted setup model if

f-SIS∞q,m,1 is hard on average and if ∆ is negligible in n.

Furthermore, let E3 = EF∞(f, 3). Let m > 4 log q and q > 3E3mn3/2 log n.

Then, for γ = 8E2
3
mn log2 n, if f-SVP∞γ is hard in the worst case and ∆ is negligible

in n, the scheme ILNIC is a statistically-hiding and computationally-binding string

commitment scheme.

In particular, let f = x2k

+ 1 with k ≥ 2 and q ≡ 3 mod 8, the scheme is

statistically hiding by Lemma 4.4.5.

Using the Merkle-Damgård technique, we obtain the string commitment scheme

whose commitment function is ComA : {0, 1}∗×{0, 1}mn/2 → Zn
q rather than ComA :

{0, 1}mn/2 × {0, 1}mn/2 → Zn
q.
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6
Identification

This chapter contains identification (ID) schemes based on lattice problems and

new security proofs for the variants of the Micciancio-Vadhan ID scheme.

Organization: Section 6.1 introduces public-key identification, the construc-

tion idea, and comparisons. Section 6.2 reviews the definitions of identification

schemes. We review the several identification schemes in this chapter. In Sec-

tion 6.3, we review the Micciancio and Vadhan protocol. The ID schemes based

on them are in Section 6.4. Section 6.5 reviews the identification scheme given by

Lyubashevsky. Section 6.6 reviews Stern’s protocol and, based on it, we review the

Kawachi–Tanaka–Xagawa identification scheme Section 6.7. Finally, we review

the new Lyubashevsky identification in Section 6.8.

6.1 Introduction

We have already noted hash schemes and commitment schemes in the previous

chapters (Chapter 4 and Chapter 5). We next describe the identification (ID)

schemes based on lattice problems, which are directly based on the lattice-based

hash schemes.

Roughly speaking, in a public-key ID scheme, a user registers its public key

to a server. When the user wants to log in the server, the user proves its identity

to the server by using a protocol. The security is captured by any polynomial-

time adversary cannot impersonate the user. For the details of model and security

notions, see Section 6.2.

Micciancio and Vadhan [MV03] proposed ID schemes based on lattice prob-

lems, such as GapSVP or GapCVP. These schemes are obtained from their sta-
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tistical zero-knowledge protocol with efficient provers for the lattice problems.

Lyubashevsky also constructed lattice-based ID schemes secure against active at-

tack [Lyu08a]. Kawachi, Tanaka, and Xagawa [KTX08] proposed the ID schemes

which are based on Stern’s ID scheme [Ste96]. Finally, Lyubashevsky gave an

efficient ID scheme based on the ideal-lattice-based hash functions [Lyu09].

These ID schemes (except the one of the Micciancio and Vadhan ID schemes)

are secure against concurrent attack1 under the assumptions on the worst-case

hardness of lattice problems.

6.1.1 Main Ideas

In this section, we only discuss the ID schemes based on lattice problems rather

than ideal-lattice-based ones, which is mainly same to the lattice-based one.

Quick remainder of the lattice-based hash family: We use the above rela-

tionship for our security reduction. Hence we mainly deals with SIS instead of

GapSVP. Recall the lattice-based hash family H(q,m) = LHash with a domain

Dn ⊆ Zm. A key is a random matrix A ∈ Zn×m
q . For e ∈ Dn, a hash value is

hA(e) := Ae mod q. Let d2 be the maximum length of vectors in Dn. A collision

(e, e′) of the hash function hA implies a solution z = e − e′ of SISq,m,2d2
. Thus, the

security of the hash family is based on the worst-case hardness of GapSVP with

approximation factor Õ(d2 ·
√

n) by Theorem 2.4.9.

Strategy to obtain concurrent security: The rough idea to obtain the concur-

rent security is summarized as follows: Fix the security parameter n and letHn be a

family of collision-resistant hash functions. Let ha be the hash function with a key

a. The secret key is e ∈ Dn and the public key is u = ha(e). The prover proves its

possession of e by a witness-indistinguishable and proof-of-knowledge (WIPoK)

protocol. (The properties are defined later. See Section 6.2.) In a proof, a simu-

lator simulates the prover oracle by using a secret key e. By using the knowledge

extractor of the protocol, the simulator extracts a secret key e′ such that ha(e′) = u.

Then, it outputs e and e′ as the collision of the hash functions. The witness indis-

tinguishability ensures that e , e′ with certain probability.

Applying this strategy to the lattice-based hash functions, we can consider the

following general construction: The public parameter is A ∈ Zn×m
q . The secret

key is e ∈ Dn and the public key is u ← Ae mod q. The protocol is a WIPoK

protocol for NP problem. The obtained scheme is less efficient because it employs

the general WIPoK protocol.

1 In passive attack, an adversary could only eavesdrop the transaction between the prover and

the verifier. In active attack, an adversary could interact with the prover prior to impersonation.

In concurrent attack, an adversary could interact with many different prover “clones” concurrently

prior to impersonation. Each clone has the same secret key, but has independent random coins and

maintains its own state. After interacting with many clones, the adversary tries impersonation. See

the definition in Section 6.2.
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To make a scheme efficient, the researchers tailored the protocols in the

scheme. There are several difficulties to construct the protocol. We describe them

and how to overcome them in each sections.

6.2 Definitions

In order to define models and security notions, we need to define protocols. In

addition, we define properties of them.

6.2.1 Protocols

Provers and verifiers: An interactive algorithm A is a stateful algorithm that,

given an incoming message Min and state information st, outputs an outgoing mes-

sage Mout and updated state st′ (we will write (Mout, st′) ← A(Min, st)). We say

that A accepts if st′ = 1 and rejects if st′ = 0.

An interaction between a prover P and a verifier V ends when V either accepts

or rejects. We will write

(tr, dec)← Run[P(p1, . . . )
OP1,... ↔ V(v1, . . . )

OV1,...]

to indicate that we let P having the accesses to the oracles OP1, . . . interact with

V having the accesses to the oracles OV1, . . . , having provided both P and V with

fresh random coins, to get a transcript tr and a boolean decision dec.

Properties of Protocols

We first review the definition of a view of the verifier.

Definition 6.2.1. Let (P,V) be an interactive protocol. V’s view of (P,V) on com-

mon input x, P’s input w, V’s input z is the random variable 〈P(w),V(z)〉(x) =

(r; m1, . . . ,mt), where m1, . . . ,mt are exchanged messages between P and V and r

is a random tape of V. That is, a random tape and a transcript between P and V.

We say an interactive protocol is an interactive proof system if the prover

proves the validity of the instance x with the language L with completeness at

least 2/3 and soundness at least 1/3.

Definition 6.2.2 (interactive proof system). Let (P,V) be an interactive protocol.

(P,V) is said to be an interactive proof system for a language L, if V is probabilistic

polynomial-time algorithm and the followings hold:

1. For every x ∈ L,

Pr
P,V

[dec = 1 : (tr, dec)← Run[P(x)↔ V(x)]] ≥ 2/3.

57



6.2. DEFINITIONS

2. For every x < L and for every P∗,

Pr
P,V

[dec = 1 : (tr, dec)← Run[P∗(x)↔ V(x)]] ≤ 1/3.

The quantities 2/3 and 1/3 can be replaced with c and c − 1/ poly(n), where c ∈
(0, 1) is a constant and n is the security parameter.

Zero knowledge: The zero-knowledge property captures the interaction to the

prover P does not provide a knowledge with even a cheating verifier V∗ computa-

tionally. (The interaction may give a knowledge to the verifier but this knowledge

is useless for the polynomial-time algorithm V∗.) The idea is formulated by a sim-

ulator. If there is a simulator having no knowledge on witness and interacting with

V∗, the provided knowledge is useless for V∗. We employ the black-box simulator

definition for simplicity. See [Gol01, Section 4] for the details and the discussions

on strength of definitions.

Definition 6.2.3 (black-box simulation zero knowledge). We say an interactive

proof system (P,V) for L is a perfect/statistical/computational-zero-knowledge

protocol if there exists a probabilistic polynomial-time algorithm Sim such that

1. for all x ∈ L, Pr[SimV∗(x) = ⊥] ≤ 1/2,

2. for every probabilistic polynomial-time V∗ and for any x ∈ L

S̃im
V∗

(1n, x) ≈P/S/C 〈P,V〉(1n, x),

where S̃im
V∗

(s) denotes the output distribution of Sim having the oracle access

to V∗ on input s, conditioned on Sim(s) , ⊥.

Witness indistinguishability: Let L be an NP language, that is, there exist a

polynomial QL(·) and a polynomial-time algorithm ML such that,

1. For every x ∈ L, there exists w ∈ {0, 1}QL(|x|) such that ML(x,w) = 1.

2. For every x < L and for any w ∈ {0, 1}QL(|x|), ML(x,w) = 0.

Then, we can define the binary relation RL = {(x,w)|w ∈
{0, 1}QL(|x|) such that ML(x,w) = 1}. Suppose that x has two witnesses w and

w′ such that (x,w) and (x,w′) in RL. The witness indistinguishability says that the

verifier cannot distinguish which witness the prover uses even if the verifier knows

both witnesses. The formal definition is given below.

Definition 6.2.4. Let L be an NP language. Let (P,V) be an interactive proof sys-

tem for L. We say that (P,V) is (perfectly/statistically/computationally) witness-

indistinguishable if for every probabilistic verifier V∗ running in time poly(n) and

for any fixed x ∈ L and z ∈ {0, 1}∗, for any two witnesses w1 and w2 for x

〈P(w1),V∗(z)〉(1n, x) ≈P/S/C 〈P(w2),V∗(z)〉(1n, x).
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If the protocol is (perfectly/statistically/computationally) zero knowledge

then the protocol is (perfectly/statistically/computationally) witness indistinguish-

able [FS90]. We omit the definition of witness hiding because we do not exploit

this property explicitly. See [FS90] for the definition.

6.2.2 Model of Identification Schemes

We adopt the definition of identification schemes given in [AABN02]. An identifi-

cation scheme SID is a quadruplet of algorithms (Setup,KG,P,V).

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param.

KG(param): A key-generation algorithm, given the public parameter param,

outputs a key pair of a public key and a secret key (pk, sk).

P(param, pk, sk), V(param, pk): (P,V) is an interactive protocol. A prover algo-

rithm P takes param, pk, and sk as inputs. A verifier algorithm V takes param

and pk as inputs. At the end of interaction, V outputs 0 (reject) or 1 (accept).

We require the natural correctness condition; For any param and (pk, sk) gen-

erated by Setup(1n) and KG(param), the decision of V(param, pk) interacting with

P(param, pk, sk) is 1 with probability 1. That is,

Pr

dec = 1 :

param← Setup(1n);

(pk, sk)← KG(param, i);

(tr, dec)← Run[P(param, pk, sk)↔ V(param, pk)];

 = 1.

An ID scheme is said to be canonical if the protocol is 3-move and public coin,

that is,

P = (P1,P2): A prover algorithm consists of two algorithms P1 and P2.

P1(param, pk, sk): A first prover algorithm, given param, pk, and sk, out-

puts a commitment cmt and its state information stP.

P2(ch, stP): A second prover algorithm, given a challenge ch and a state

information stP, outputs a response rsp.

V = (V1,V2): A verifier algorithm consists of two algorithms V1 and V2.

V1(): A first verifier algorithm choose ch ← C uniformly at random and

outputs ch.

V2(param, pk, cmt, ch, rsp): A second verifier algorithm, given param, pk,

cmt, ch, and rsp, returns 0 (reject) or 1 (accept).

In the first move, the prover invokes P1 and sends cmt to the verifier. In the second

move, the verifier invokes V1 with its randomness and sends ch, where this is the

public coin since V1 is the identity algorithm. In the third move, the prover invokes

P2 and sends rsp to the verifier.
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6.2.3 Security Notions

We are interested in concurrent attack, which is stronger than active and passive

attack. We employ the definition of concurrent security in [BP02]. In concur-

rent attack, the adversary will play the role of a cheating verifier prior to imper-

sonation and can interact many different prover clones concurrently. Each clone

has the same secret key, but has independent random coins and maintains its own

state. We say SID is secure against impersonation under concurrent attack, if

any polynomial-time adversary cannot, given a random public key of a legitimate

prover, impersonate the legitimate prover.

We describe the formal definition as follows. Consider the experiment

Exp
imp-atk

SID,A (n) between the challenger C and the impersonatorA = (CV,CP), where

atk ∈ {pa, aa, ca}.

Experiment Exp
imp-atk

SID,A (n):

Setup Phase: The challenger C obtains param ← Setup(1n). Next, C ob-

tains (pk, sk) ← KG(param) and sets PS ← ∅, where PS denotes the set

of prover’s sessions. The impersonator CV is given the security parameter

1n, the system parameter param, and the target public key pk.

Learning Phase: The impersonator CV can query to the prover oracle

Prov.

• The oracle Prov receives inputs s,Min. This oracle changes its be-

havior in three attacks.

– If atk = pa, it obtains (tr, dec) ← Run[P(param, pk, sk) ↔
V(param, sk)] and returns (tr, dec) to the adversary.

– If atk = aa, it runs as follows: If s < PS then it sets PS ← {s},
picks a random coin ρ, and sets a state of the prover stP[s] ←
(param, sk, ρ). Next, it obtains (Mout, stP[s]) ← P(Min, stP[s]).

It returns Mout.

– If atk = ca, it runs as follows: If s < PS then it adds s to

PS (that is, PS ← PS ∪ {s}), picks a random coin ρ, and sets

a state of the prover stP[s] ← (param, sk, ρ). Next, it obtains

(Mout, stP[s])← P(Min, stP[s]). It returns Mout.

Challenge Phase: CV outputs stCP. The challenger gives stCP to CP. Fi-

nally, the challenger obtains (tr, dec) ← Run[CP(stCP) ↔ V(param, pk)]

and returns dec.

Notice that if atk = pa the adversary could learn only transcripts between the

legitimate prover and verifier. If atk = aa, the adversary could interact with the

legitimate prover sequentially and has the power to abort the session. If atk = ca,

the adversary interact with the legitimate prover concurrently by indicating each

interaction with session identifier.
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Definition 6.2.5. Let SID = (Setup,KG,P,V) be an ID scheme, A = (CV,CP)

an impersonator, and n a security parameter. We define the advantage of A as

Adv
imp-atk

SID,A (n) := Pr
[
Exp

imp-atk

SID,A (n) = 1
]
. We say that SID is secure against imper-

sonation under passive, active, and concurrent attacks if Adv
imp-atk

SID,A (·) is negligible

for every polynomial-time adversaryA where atk = pa, aa, ca, respectively.

Special Soundness

We say a canonical ID scheme is special sound if an adversary, given param

and sk, outputs (cmt, ch1, rsp1) and (cmt, ch2, rsp2) in the challenge phase with

non-negligible probability such that ch1 , ch2 and V2(param, pk, ch1, rsp1) =

V2(param, pk, cmt, ch2, rsp2) = 1 then we can compute sk corresponding to pk.

We say a canonical ID scheme is BS-special sound (in Bellare and

Shoup [BS08]) if no polynomial-time adversary in the Exp
imp-atk

SID,A (n) cannot out-

puts (cmt, ch1, rsp1) and (cmt, ch2, rsp2) in the challenge phase with non-negligible

probability such that (ch1, rsp1) , (ch2, rsp2) and V2(param, pk, ch1, rsp1) =

V2(param, pk, cmt, ch2, rsp2) = 1.

Often, the BS-special soundness is a stronger requirement than the special

soundness.

6.3 The Micciancio–Vadhan Protocol

In [MV03], Micciancio and Vadhan proposed statistical zero-knowledge proof sys-

tems for GapCVPδ and GapSVPδ. Here, we only discuss the one for GapCVPδ.

Their protocol can be considered a zero-knowledge variant of the coAM protocol

by Goldreich and Goldwasser [GG00].

Scheme 6.3.1 (The MV Protocol [MV03]). The protocol is parameterized by an

integer k. The common input is a triplet (B, t, d), which is an instance of GapCVPδ.

Prover’s auxiliary input is a lattice vector Bw ∈ Λ such that ‖t − Bw‖ ≤ d. In the

following, we denote t − Bw by u.

Step P1 (commitment):

1. For i = 1, . . . , k, choose ci ∈ {0, 1} and ri ∈ B(δd/2) uniformly at random.

2. Check that there exists an index i∗ such that ‖ri∗ + (2ci∗ − 1)u‖ ≤ δd/2

and store i∗. Otherwise, set i∗ = 1 and redefine ci∗ = 0 and ri∗ = u/2

to satisfy ‖ri∗ + (2ci∗ − 1)u‖ ≤ δd/2. (This procedure makes the protocol

perfectly correct.)

3. Compute yi = ci t + ri mod B for all i.

4. Send y1, . . . , yk to the verifier.

Step V1 (challenge): Flip a fair coin c← {0, 1} and send it to the prover.

Step P2 (response): Receive a bit c ∈ {0, 1}.
1. Compute Bvi = yi − (ri + ci t) for all i.
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2. If c ,
⊕

i
ci then replace ci∗ and Bvi∗ by 1 − ci∗ and B(vi∗ + (2ci∗ − 1)w).

3. Send c1, . . . , ck and v1, . . . , vk to the verifier.

Step V2 (verification): Receive k bits c1, . . . , ck and k vectors Bv1, . . . , Bvk ∈
L. If

⊕
i
ci = c and ‖yi − (Bvi + ci t)‖ ≤ δd/2 for all i the verifier accepts,

otherwise rejects.

Intuitively, when the instance is an YES instance, the prover can cheat by ri∗

in both balls B(0, δd/2) and B(t, δd/2) since two balls overlap sufficiently. When

the instance is a NO instance, two balls do not overlap and the prover cannot cheat.

We note that the protocol is already k-concatenated by the ORing composition.

Notice that we can simulate the prover oracle in passive attacks, since the protocol

is honest-verifier statistical zero knowledge.

The properties of the protocol are summarized as follows:

Theorem 6.3.2 ([MV03, Lemma 4 and Corollary 6]). Suppose that the security

parameter is n, and Λ(B) ⊆ Zm, where m = poly(n). The above system is a

statistical zero-knowledge proof system for GapCVP2
δ with perfect completeness

and soundness error 1/2, provided one of the following conditions holds true:

• δ = Ω(
√

m/ log m) and k = poly(n) is a sufficiently large polynomial,

• or δ = Ω(
√

m) and k = ω(log n) is any super-logarithmic function of n,

• or δ = m0.5+Ω(1) and k = ω(1) is any super-constant function of n.

Precisely speaking, there exists a simulator Sim such that the statistical difference

of S̃im
V∗

(B, t, d) from 〈P,V∗〉(B, t, d) is at most 2 · (1 − β(2/δ))k, where β(ǫ) is

the relative volume of the intersection of two m-dimensional unit spheres whose

centers are at distance ǫ. Additionally, the protocol is honest-verifier statistical

zero knowledge. Furthermore, there exists a knowledge extractor KE; if there ex-

ists a cheating prover P∗ who makes V accept with probability 1/2 + ǫ on some

instance (B, y, d) then KEP∗(B, t, d) outputs a lattice vector Bw ∈ L(B) satisfying

‖t − Bw‖ ≤ δd in time poly(n)/ǫ2.

The above parameters are obtained by the bound β(ǫ) ≥ max{3 ·
exp(−ǫ2m/2), 1 − ǫ

√
m}. See, for example, [GG00].

6.4 The Variants of the Micciancio–Vadhan Schemes

Combining the lattice-based hash family with the MV protocol [MV03], we obtain

several ID schemes. In this section, we argue their concurrent security.

In [MV03, Section 5], they discussed identification schemes using their proto-

col. A summary of their discussions is as follows:

1. A passively secure ω(log n)-round ID scheme is obtained by sequential com-

position. The public key is an YES instance (B, t, d) and the secret key is the

corresponding witness Bw.
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2. A passively secure 3-round ID scheme is obtained by parallel composition.

The public key is two YES instances of GapCVPδ and the secret key is one of

the corresponding witness.

3. A concurrently secure 3-round ID scheme is obtained by parallel composition

and the ORing technique. The public key is two YES instances of GapCVPδ
and the secret key is one of the corresponding witness. (Applying techniques

of De Santis, Di Crescenzo, Persiano, and Yung [DSDCPY94] and of Feige

and Shamir [FS90], the ID scheme can be proven to have concurrent security.)

4. (MV-IDGL,p) A passively secure 3-round ID scheme is obtained by using ran-

dom lattices Λ⊥q (A) under the worst-case assumptions of lattice problems. In

order to obtain keys, one computes a public key A ∈ Zn×m
q and a secret key

e ∈ {0, 1}m such that Ae ≡ 0 (mod q). (See [Ajt96].) The prover, given a com-

mon input (B,
√

m) and an auxiliary input e, proves that e ∈ Λ⊥q (A) is short by

using the MV protocol for GapSVP2
δ.

5. (MV-ID+
GL,p

) A concurrently secure 3-round ID scheme is obtained by applying

the ORing technique to the above passively secure ID scheme.

6. A passively secure 3-round ID scheme is obtained from the assumption that

GapCVP with preprocessing (for the state-of-the-art hardness results of this

problem, see [AKKV05]) is hard for some approximation factor. The third

party chooses a common random matrix B. Each user chooses a short error

vector x as a secret key, and computes a public key y = x mod B.

Their discussion (4) says that, by combining their protocol for GapSVPδ and

random lattices Λ⊥(A), we obtain an ID scheme which is secure against imper-

sonation under passive attack under the worst-case hardness assumption of lattice

problems. Their discussion (5) also says that we have a concurrently secure ID

scheme based on the worst-case hardness of lattice problems2.

An Observation: In more direct way, we obtain concurrently secure ID schemes

(MV-ID++L,∗) by combining the lattice-based hash familiesH(q,m) orH(f, q,m) and

the protocol for GapCVPδ which are similar to the ID schemes in their discussion

(6); The common lattice is set to be Λ⊥q (A), where the third party publishes A

uniformly chosen from Zn×m
q . The secret key is e and the public key is u = Ae mod

q.

A syndrome u indicates a target vector t ∈ Zm such that At ≡ u (mod q). (See

[GPV08, Section 5.1] for this isomorphism between a set of syndrome and that of

2 In [Lyu08a, Section 1.2], Lyubashevsky wrote “ In this work [MV03], the authors [Micciancio

and Vadhan] show an efficient-prover SZK proof system for certain lattice problems and mention that

one convert the proof system into an identification scheme. The conversion is non-trivial (due to the

problem of zero-knowledge not being closed under parallel-composition), and many details remain

to be filled in.” But, it is easy to verify that the conversion yields a concurrently secure ID scheme,

as they and we discussed in (5) MV-ID+GL,p. We note that the assumption is the worst-case hardness

of SIVPÕ(n1.5) and it is weaker than that of SIVPÕ(n2) Lyubashevsky used in [Lyu08a].
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target vectors.) We can compute a close vector in lattice x = t − e ∈ Λ⊥(A). The

distance between e and t is exactly ‖x‖2 which is at most d2. So, the prover will run

the MV protocol for a basis B of the lattice Λ⊥q (A), a target vector t, a threshold d,

a parameter δ, and a secret vector x.

The detail is in the next section.

6.4.1 Concrete Schemes

Let us describe the ID schemes, named MV-ID++L,∗, where L ∈ {GL,C/IL} denotes

the underlying hash functions and ∗ ∈ {p, s} denotes parallel and sequential com-

position.

When we use ideal-lattice-based hash functions, we replace m with mn. We

denote a set of keys of a hash family A by Kn, which is Zn×m
q in the case of the

lattice-based hash family LHash and Rotf(R
m
f,q

) in the case of ideal-lattice-based

hash family ILHash. Let d2 and d∞ denote max{‖e‖2 : e ∈ Dn} and max{‖e‖∞ : e ∈
Dn}, respectively.

Scheme 6.4.1 (MV-ID++L,∗). All of the participants agree the parameters m, q, f, Dn,

and δ = Ω(
√

n/ log n). The concrete scheme MV-ID++L,∗ is defined as follows.

Setup(1n): Given the security parameter 1n, the setup algorithm chooses A ←
KS, where Kn = Z

n×m
q if L = GL and Kn = Rotf(R

m
f,q

) if L = C/IL. In the

following, B denotes a basis of Λ⊥q (A) and all of the participants agree the

matrix B, say an Hermite normal form of the public lattice.

KeyGen(A): Given the public parameter A, the key-generation algorithm

chooses e ← Dn uniformly at random, computes u ← Ae mod q, and out-

puts (pk, sk)← (u, e).

P and V: They interact as follows:

1. Compute a target vector t ∈ Zm or Zmn such that At ≡ u (mod q).

2. (The prover) compute x = t − e.

3. If L = GL set d = d2. If L = C/IL set d =
√

mn · d∞.

4. They set B, t, and d as the common input and x as prover’s auxiliary

input. On the condition ∗ ∈ {p, s}, they run the MV protocol for GapCVPδ
in parallel or sequential in t = ω(log n) times, respectively.

The security of the protocol is summarized as follows:

Theorem 6.4.2. Assume that qn/ |Dn| is negligible in n. The above scheme

MV-ID++L,∗ is concurrently secure where L = GL or C/IL if SIS2
q,m,O(δd2) or f-

SIS∞
q,m,O(δ

√
mnd∞)

is hard on average. In particular,

• if q = poly(n), m = Θ(n log q), δ =
√

m, and Dn = {0, 1}m, then we have

d2 =
√

m and the security of MV-ID++
GL,∗ is based on the worst-case hardness

of SIVPÕ(n1.5), and
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• if f is suitable, q = poly(n), m = Θ(log q), δ =
√

mn, and Dn = {0, 1}mn, then

we have d∞ = 1 and the security of MV-ID++
C/IL,∗ is based on the worst-case

hardness of f-SVP∞
Õ(n2)

.

In the proof, we use the simulator MV.Sim and the extractor MV.KE as the

black box.

Proof. Since the MV protocol is witness indistinguishable, so are its parallel and

sequential versions. The challenger, given a random matrix A from Kn, runs the

adversary against concurrent security. The challenger makes a secret key e and a

public key u ≡ Ae mod q. Using the secret key, it can simulate the prover oracle

perfectly. Using the knowledge extractor MV.KE, it obtains x′ ∈ Λ⊥q (A) such that

‖t − x′‖ ≤ δd. Thus, if x′ does not equal to x = t − e, then we have a short

vector z = x − x′ in Λ⊥q (A) whose length is at most (δ + 1)d, since ‖x − x′‖ ≤
‖t − x′‖ + ‖x − t‖ ≤ δd + ‖e‖. Next, we estimate the probability that x , x′. If

qn/ |Dn| is negligible in n, then a simple argument shows that, we have x , x′ with

probability at least 1/2, since the MV protocol is witness indistinguishable.

If L = GL, d is set as d2. Thus, the length of z is at most (δ + 1)d = O(δd2). If

L = C/IL, the threshold d is set as
√

mn · d∞. Hence, the max norm of z is at most

(δ + 1)d = O(δ
√

mn · d∞). This completes the proof. �

6.5 Lyubashevsky’s Scheme – 1

We next review the Lyubashevsky ID schemes Ly08-IDL,p [Lyu08a], where L ∈
{GL,C/IL}.

The protocol is algebraic structure, while the MV protocol exploited the geo-

metric structure.

Let us recall the Random-or-Masked protocol often used in the protocols for the

number-theoretic relations. The typical example is the Schnorr protocol [Sch91].

Let g be a generator of a cyclic group G of order prime q. Let a common input be

(g,G, q, u = ge) and auxiliary input e ∈ Zq. In the protocol, (1) the prover chooses

r ← Zq and commits y = gr, (2) the verifier chooses a challenge c ← {0, 1},
which corresponds verifier’s order to open “random” or “masked” values, (3) the

prover responds z = ce + r mod q, and (4) the verifier accepts if z ∈ [0, q − 1] and

gz = uc · y. The prover opens r if c = 1 and it opens e + r otherwise. It is easy

to show that the protocol has soundness 1/2 and is perfectly zero knowledge and

proof of knowledge (in addition, has special soundness).

Lyubashevsky applied this strategy to the lattice-based hash functions. The

auxiliary input is e← Dn = {0, 1}m and the common input is A and u = Ae mod q.

In the first attempt, the protocol is (1) the prover chooses r ∈ [0, . . . ,D]m and

commits y = Ar mod q, (2) the verifier chooses a challenge c ← {0, 1}, (3) the

prover responds z = ce + r, and (4) the verifier accepts if z ∈ [0, . . . ,D + 1]m and

Az ≡ cu + y (mod q).
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But, this direct approach fails, facing a dilemma. If we set D = q − 1, the

adversary without knowledge of e can make the verifier accept. On the contrary, if

we set D < q − 1, the response z will leak the secret since q = poly(n). If e1 = 1,

the first coordinate of the response z1 takes a value D+1 with probability 1/(D+1),

while z1 cannot takes a value D + 1 if e1 = 0.

This problem is overcome by the discard of the response. The prover aborts

the protocol if z leaks the secret e. The abortion makes the protocol not zero

knowledge, but we can show the protocol is witness indistinguishable by taking

the parameters carefully.

The basic protocol is defined as follows:

Scheme 6.5.1 (Basic protocol [Lyu08a]). All of the participants agree with the

parameter m = m(n) and q = q(n). In addition, they agree with the sets De, Dr, and

G.

Setup(1n): The setup algorithm, given 1n, outputs a random matrix A← Kn.

KeyGen(A): The key-generation algorithm, given the public parameter A,

chooses a random vector e ∈ De and computes u ← hA(e) ∈ Zn
q. It outputs

(pk, sk) = (u, e).

P = (P1,P2), V = (V1,V2): The common inputs are A and u. Prover’s auxiliary

input is e. They interact as follows:

Step P1: Pick a random r← Dr and send y← hA(r).

Step V1: Send a random challenge c← {0, 1}.
Step P2: Compute z ← ce + r. If z ∈ G, then send it to the verifier. Other-

wise, send ⊥ and abort the protocol.

Step V2: Receiving z, accepts if z ∈ G and hA(z) = cu + y.

In the following, we only discuss the case where L = GL. The choice of

the parameters is as follows: m =
⌊
4n log n

⌋
, q = Θ̃(n3), De = {0, 1}m, Dr =

{0, 1, . . . , 5m − 1}m, and G = [5m − 1]m.3

Lyubashevsky showed the followings:

1. For m ≥ 10, the completeness error is at most 0.19, that is, PrP,V[dec = 1 :

(tr, dec)← Run[P(A, u, e)↔ V(A,u)]] ≥ (1 − 1/5m)m ≥ 0.81.

2. The protocol is statistically witness indistinguishable.

3. For any A, Pre←{0,1}m[∃ e′ ∈ {0, 1}m \ {e}, hA(e) = hA(e′)] ≥ 1 − 2n log q−m.

For the proofs, see [Lyu08a]. In the next section, we give the full description of the

scheme Ly08-IDL,∗.

3 we change the verification procedure. In the original, the verifier checks ‖z‖ ≤ 5m1.5 instead of

z ∈ G.
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6.5.1 Description

Scheme 6.5.2 (Ly08-IDL,p [Lyu08a]). All of the participants agree with the param-

eter m = m(n) and q = q(n). In addition, they agree with the sets De, Dr, and

G.

Setup(1n): The setup algorithm, given 1n, outputs a random matrix A← Kn.

KeyGen(A): The key-generation algorithm, given the public parameter A,

chooses a random vector e ∈ De and computes u ← hA(e) ∈ Zn
q. It outputs

(pk, sk) = (u, e).

P = (P1,P2), V = (V1,V2): The common inputs are A and u. Prover’s auxiliary

input is e. The protocol is t-parallel or t-sequential composition of the basic

protocol. If the verifier of the basic protocol accepts at least 0.65 fraction of

the t protocols, then the verifier accepts. Otherwise, it rejects.

The completeness error is reduced to at most 2−t/14, shown by the Chernoff

bound. The security of Ly08-IDGL,p is summarized as follows:

Theorem 6.5.3 (Theorem 13, [Lyu08a]). If there is an adversary breaking

Ly08-IDGL,p in time T and with probability ǫ, then there exists an algorithm solv-

ing SISq,m,β in time poly(T, n) with success probability Ω(ǫ2 − 2−t/18+1) − negl(n),

where β = 10m1.5.

We omit the proofs, see the original paper [Lyu08a]. We note that the proof for

the ideal-lattice-based scheme Ly08-IDC/IL,p is obtained in the similar way to the

above.

6.6 Review of Stern’s ID Scheme

Here, we turn our eyes to the identification schemes based on coding problems.

The Stern ID scheme is the first one based on the hardness of the coding problems.

Stern’s protocol deals with the decoding problem on binary codewords called the

Syndrome Decoding Problem.

Definition 6.6.1 (Syndrome Decoding Problem). Given H ∈ Zn×m
2

, u ∈ Zn
2
, and

w ∈ N, the problem is finding a vector e ∈ S(m,w) such that He ≡ u mod 2.

We can consider this problem as a restricted version of ISISq,m,β (by replacing H

with A and 2 with q). He indeed proposed that an analogous scheme in Zq, where

q is extremely small (typically 3, 5, or 7) [Ste96, Section VI].

Let us consider the protocol, where the common input is H ∈ Zn×m
q , u =

He mod q, and the Hamming weight w of e. Prover’s auxiliary input is e. Stern’s

protocol is a Random–Masked–Permute protocol, which allows the prover to prove

the Hamming weight of the auxiliary input e. (1) the prover commits a masked

value Hr, a permutation π, and permuted vectors π(e) and π(r), (2) the verifier

chooses a challenge c ← {1, 2, 3} corresponding to the order opening “permuted,”
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“masked,” and “random” values, (3) the prover opens (π(e), π(r)), (π, e + r), or

(π, r), (4) the verifier accepts if the checks are passed. Notice that the verifier can

verify the Hamming weight of e in the check of the permuted values.

The precise protocols is given below:

Scheme 6.6.2 (The basic scheme in [Ste96]). All of the participants agree with

the parameter m = m(n), q = q(n), and the weight w = w(n). They also agree

the hash function H : {0, 1}2k → {0, 1}l. Let us define the commitment function

Com : {0, 1}2k → {0, 1}l as Com(msg; ρ) = H(ρ ◦ (msg ⊕ ρ)) for msg, ρ ∈ {0, 1}k.

We omit the randomness part ρ in the description.

Setup(1n): The setup algorithm, on input 1n, outputs a random matrix H ∈
Zn×m

q .

KG(H): The key-generation algorithm, on input H, chooses a random vector

e ∈ S(m,w) and computes u := He mod q. It outputs (pk, sk) = (u, e).

P = (P1,P2), V = (V1,V2): The common inputs are H and u. Prover’s auxiliary

input is e. They interact as follows:

Step P1: Choose a random permutation π over [m] and a random vector

r ∈ Zm
q and send commitments c1, c2, and c3 computed as

• c1 = Com(π, Hr),

• c2 = Com(π(r)),

• c3 = Com(π(e + r)).

Step V1: Send a random challenge ch ∈ {1, 2, 3} to P.

Step P2:

• If ch = 1, reveal c2 and c3. So, send w = π(e) and x = π(r).

• If ch = 2, reveal c1 and c3. Send φ = π and y = e + r.

• If ch = 3, reveal c1 and c2. Send ψ = π and z = r.

Step V2:

• If ch = 1, check that c2 = Com(x), c3 = Com(w + x), and w ∈
S(m,w).

• If ch = 2, check that c1 = Com(φ,Hy − u) and c3 = Com(φ(y)).

• If ch = 3, check that c1 = Com(ψ,Hz) and c2 = Com(ψ(z)).

Output dec = 1 if all checks are passed, otherwise output dec = 0.

In [Ste96], Stern insisted that the protocol is SZKPoK protocol and yields the

passively secure ID scheme based on the average-case hardness of the syndrome

decoding problem, where H and u are uniformly at random over Zn×m
q and Zn

q.

However, we could not prove the security of the commitment function despite of

our efforts. We can show the security if we replace the above commitment with the

statistically-hiding and computationally-binding commitment. We omit the proof,

since it is given in the next section.
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6.7 The Kawachi–Tanaka–Xagawa Identification Scheme

Kawachi et al. [KTX08] observed that the key-generation algorithm of the above

basic scheme has a similar structure of the lattice-based hash functions LHash. In

addition, they also observed that, if the commitment Com is replaced with LNIC,

the underlying problems are now SISq,m,β for an appropriate β.

Following their observations, let us replace H with A and Com with LNIC, i.e.,

ComA, in Section 5.3 in the above basic scheme, Scheme 6.6.2. Then the follow-

ing reduction algorithm shows the concurrent security: On input A, generates a

secret key e ∈ S(m,w) and a public key u = Ae mod q, and feeds A and u to

the adversary. The reduction algorithm can simulate the prover that the adversary

concurrently accesses, since the algorithm has A and e. Using the knowledge ex-

tractor for the adversary in Stern’s proof, the algorithm obtains either a collision of

a string commitment scheme or a secret key e′ such that e′ , e and Ae′ = u. In the

former case, the algorithm outputs the collision (s, s′) of a hash function hA in the

string commitment scheme. Thus, the solution for SIS is obtained by z = s − s′.
In the latter case, the condition e , e′ will be satisfied with probability at least

1/2 by witness indistinguishability of Stern’s protocol. Thus, the algorithm has the

solution z = e− e′ for SIS. The l2 norm of both solutions is at most
√

m = Õ(n1/2).

From the relationship between SIS and GapSVP the assumption is the worst-case

hardness of GapSVPÕ(n).

6.7.1 Description

The variant St-ID+
GL,∗ (for L ∈ {GL,C/IL} and ∗ ∈ {p, s}) is obtained by replacing

the string commitment scheme in Stern’s ID scheme [Ste96] with our lattice-based

one. We adjust this parameter to connect his framework to our assumptions of the

lattice problems.

We now describe the protocol St-ID+
GL,∗ below. To simplify the notations, we

do not write random strings in ComA explicitly.

Scheme 6.7.1 (St-ID+
GL,∗, [KTX08]). If ∗ = s the protocol is repeated sequentially

t times. If ∗ = p the protocol is composed in t parallel sessions.

Setup(1n): The setup algorithm, on input 1n, outputs a random matrix A ∈
Zn×m

q . Notice that this matrix defines the hash function hA and the commit-

ment function ComA.

KG(A): The key-generation algorithm, on input A, chooses a random vector

e ∈ S(m,w) and computes u := Ae mod q. It outputs (pk, sk) = (u, e).

P = (P1,P2), V = (V1,V2): The common inputs are A and u. Prover’s auxiliary

input is e. The verifier accepts if all verifiers accept.

Step P1: Choose a random permutation π over [m] and a random vector

r ∈ Zm
q and send commitments c1, c2, and c3 computed as

• c1 = ComA(π, Ar),
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• c2 = ComA(π(r)),

• c3 = ComA(π(e + r)).

Step V1: Send a random challenge ch ∈ {1, 2, 3} to P.

Step P2:

• If ch = 1, reveal c2 and c3. So, send w = π(e) and x = π(r).

• If ch = 2, reveal c1 and c3. Send φ = π and y = e + r.

• If ch = 3, reveal c1 and c2. Send ψ = π and z = r.

Step V2:

• If ch = 1, check that c2 = ComA(x), c3 = ComA(w + x), and w ∈
S(m,m/2).

• If ch = 2, check that c1 = ComA(φ, Ay − u) and c3 = ComA(φ(y)).

• If ch = 3, check that c1 = ComA(ψ, Az) and c2 = ComA(ψ(z)).

Output dec = 1 if all checks are passed, otherwise output dec = 0.

6.7.2 Security Proofs

We will show the followings and prove the security by composing them.

1. The completeness error is 0.

2. The protocol (P,V) is an SZK protocol and thus it is statistically witness-

indistinguishable.

3. PrA←Zn×m
q ,e←S(m,w)[∃ e′ ∈ S(m,w), hA(e) = hA(e′)] ≥ 1 − negl(n).

4. There is a knowledge extractor KE extracting a collision in hA from an adver-

sary.

The first part is easily verified.

Next, we show that the protocol is an SZK protocol. The proof of zero-

knowledge property of the original protocol is in [Ste96, Theorem 4]. Stern left

completion of the proof as the problem for reader. Thus, we give the whole proof

that Stern’s protocol is statistically zero knowledge when Com is a statistically-

hiding and computationally-binding string commitment scheme.

Lemma 6.7.2. The protocol is statistically zero knowledge when Com is a

statistically-hiding and computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulator S which on input A and

y and given oracle access to a cheating verifier CV, outputs a simulated transcript.

A real transcript between P and CV on input A and y is denoted by 〈P,CV〉(A, y).

First, S chooses a random value c̄ from {1, 2, 3} which is a prediction what

value the cheating verifier CV will not choose. Next, it chooses a random tape

of CV, denoted by r′. We remark that, by the assumption on the commitment,

the distributions of a challenge from CV in the real interaction and that in the
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simulation are statistically close.

Case c̄ = 1: S computes x′ ∈ Zm
q such that Ax′ = y by using linear algebra. Next,

it chooses a random permutation π′ over [m], a random vector r′ ∈ Zm
q , and random

strings ρ′
1
, ρ′

2
, and ρ′

3
. So, it computes

• c′
1

:= Com(π′, Ar′; ρ′
1
),

• c′
2

:= Com(π′(r′); ρ′
2
),

• c′
3

:= Com(π′(x′ + r′); ρ′
3
).

It sends them to CV. Since the commitment scheme is statistically hiding, the

distribution of a challenge from CV is statistically close to the real distribution.

Receiving a challenge ch from CV, the simulator S computes a transcript as fol-

lows:

• If ch = 1, S outputs ⊥ and halts.

• If ch = 2, it outputs (r′; (c′
1
, c′

2
, c′

3
), 2, (π′, x′ + r′, ρ′

1
, ρ′

3
)).

• If ch = 3, it outputs (r′; (c′
1
, c′

2
, c′

3
), 3, (π′, r′, ρ′

1
, ρ′

2
)).

We analyze the case ch = 2. In this case, we obtain that

〈P,CV〉(A, y) = (r; (c1, c2, c3), 2, (π, x + r, ρ1, ρ3),

S(A, y) = (r′; (c′1, c
′
2, c
′
3), 2, (π′, x′ + r′, ρ′1, ρ

′
3)).

Assume that (π′, r′, ρ′
1
, ρ′

3
) = (π, r + x − x′, ρ1, ρ3). By this equation, we have that

c′
1
= c1, c′

3
= c3, and the responses from the simulator equal to the responses from

the prover. Since the commitment is statistically hiding, we have the distributions

of c2 and c′
2

are statistically close. Thus, we conclude that the both distributions of

the simulated transcript and the real transcript are statistically close.

It is straightforward to show it in the case ch = 3 by using the equation (π′, r′) =
(π, r). Thus, we omit this part from the proof.

Case c̄ = 2: S chooses a random permutation π′ over [m], two random vectors r′ ∈
Zm

q , x′ ∈ S(m,m/2), and random strings ρ′
1
, ρ′

2
, and ρ′

3
. S computes commitments

• c′
1

:= Com(π′, Ar′; ρ′
1
),

• c′
2

:= Com(π′(r′); ρ′
2
),

• c′
3

:= Com(π′(x′ + r′); ρ′
3
).

It sends them to CV. Receiving a challenge ch, the simulator computes a transcript

as follows:

• If ch = 1, then S outputs (r′; (c′
1
, c′

2
, c′

3
), 1, (π′(x′), π′(r′), ρ′

2
, ρ′

3
)).

• If ch = 2, then it outputs ⊥ and halts.

• If ch = 3, then it outputs (r′; (c′
1
, c′

2
, c′

3
), 3, (π′, r′, ρ′

1
, ρ′

2
)).

71



6.7. THE KAWACHI–TANAKA–XAGAWA IDENTIFICATION SCHEME

We analyze the case ch = 1. In this case, we have that

〈P,CV〉(A, y) = (r; (c1, c2, c3), 1, (π(x), π(r), ρ2, ρ3),

S(A, y) = (r′; (c′1, c
′
2, c
′
3), 1, (π′(x′), π′(r′), ρ′2, ρ

′
3)).

Let χ be a permutation over [m] such that χ(x′) = x. In this case, we set

(π′, r′, ρ′
2
, ρ′

3
) = (χ−1 ◦ π, χ(r), ρ2, ρ3). By this equation, we have c′

2
= c2, c′

3
= c3,

and the responses from the simulator equal to the responses from the prover. Since

the commitment scheme is statistically hiding, the distributions of the real tran-

script and the output of the simulator are statistically close.

We omit the proof of the case ch = 3, since it is trivial.

Case c̄ = 3: S chooses a random permutation π over [m], two random vectors

r ∈ Zm
q , x′ ∈ S(m,m/2), and random strings ρ1, ρ2, and ρ3. S computes

• c1 := Com(π, A(x′ + r) − y; ρ1),

• c2 := Com(π(r); ρ2),

• c3 := Com(π(x′ + r); ρ3).

It sends them to CV.

• If ch = 1, then S outputs (r′; (c1, c2, c3), 1, (π(x′), π(r), ρ2, ρ3).

• If ch = 2, then it outputs (r′; (c1, c2, c3), 2, (π, x′ + r′)).

• If ch = 3, it outputs ⊥ and halts.

In the case ch = 1, we consider the equation (π′, r′, ρ′
2
, ρ′

3
) = (χ−1 ◦

π, χ(r), ρ2, ρ3). The remaining part of proof is the same as that in the case c̄ = 2

and ch = 1. In the case ch = 2, we let (π′, r′, ρ′
1
, ρ′

3
) = (π, r + x − x′, ρ1, ρ3). The

remaining part of proof is the same as that in the case c̄ = 1 and ch = 2.

The probability that the simulator S outputs ⊥ is at most 1/3 + ǫ(n) ≤ 1/2

where ǫ is some negligible function. Additionally, by the above arguments, the

distribution of the output of S conditioned on it is not ⊥ is statistically close to the

distribution of the real transcript. Therefore, we have constructed the simulator and

completed the proof. �

Since the protocol is statistically zero knowledge for t = 1, it has a witness-

indistinguishable property. Witness-indistinguishable property is closed under the

parallel composition [FS90]. Thus, the above protocol is witness indistinguishable

for t = ω(log n) if a statistically-hiding string commitment scheme is used.

We show the theorem of the security on our ID protocol, which concerns im-

personation under concurrent attack.

Theorem 6.7.3. For any q = poly(n), m ≥ 2(1+ δ)n log q for some constant δ > 0,

and w = ω(log m) such that qn/ |S(m,w)| is negligible in n, the above ID scheme

St-ID+
GL,∗ is concurrently secure if SISq,m,

√
m is hard on average.

Before the proof of security, we need to mention the following trivial lemma,

which corresponds to the third part.
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Lemma 6.7.4. For any fixed A, let U := {u ∈ Zn
q | |{e ∈ S(m,w) | Ae = u}| = 1},

i.e., a set of vectors u such that the preimage e of u is uniquely determined for A.

If qn/ |S(m,w)| is negligible in n, then the probability that, if we obtain (u, e) ←
KG(A), then u ∈ U is negligible in n.

We now prove Theorem 6.7.3.

Proof of Theorem 6.7.3 for ∗ = p. We construct A solving SISq,m,
√

m on the aver-

age from an impersonator I = (CV,CP) which succeeds impersonation under

concurrent attack with non-negligible probability ǫ. Notice that the protocol is

witness-indistinguishable since we set m ≥ 2(1 + δ)n log q and LNIC = ComA is

statistically-hiding and computationally-binding commitment scheme.

For the clarity, we write the transcript of interaction by (cmt, ch, rsp, dec). Since

the protocol is parallelized, each cmt, ch, and rsp is an ordered list which contains

t elements. For example, cmt = (cmt1, . . . , cmtt).

Given A, A chooses a random secret key e ∈ S(m,w) and computes u = Ae.

Using the secret key, it can simulate the prover oracle perfectly. A runs CV on input

(A,u) and obtains a state for CP. A feeds the state to CP and acts as a legitimate

verifier. Receiving commitments cmt, A chooses three challenges ch(1), ch(2), and

ch(3) from {1, 2, 3}t uniformly at random. Rewinding with three challenges, A
obtains three transcripts (cmt, ch(i), rsp(i), dec(i)) for i = 1, 2, 3 as the results of the

interactions.

By the Heavy Row Lemma [OO98], the probability that all dec(i) are 1 is at

least (ǫ/2)3. Meanwhile, we have

Pr
[
∃ j ∈ [t] : {ch

(1)
j
, ch

(2)
j
, ch

(3)
j
} = {1, 2, 3}

]
= 1 − (7/9)t

by a simple calculation, where ch(i) is randomly chosen from {1, 2, 3}t. Thus the

probability that A has three transcripts (cmt, ch(i), rsp(i), dec(i)) for i = 1, 2, 3 such

that dec(i) = 1 for all i, and {ch
(1)
j
, ch

(2)
j
, ch

(3)
j
} = {1, 2, 3} for some j ∈ [t] is at least

(ǫ/2)3 − (7/9)t, which is non-negligible since ǫ is non-negligible and t = ω(log n).

We next show how A obtains a secret key or finds a collision of the hash

functions in the string commitment scheme by using three good transcripts. As-

sume that A has three transcripts (cmt(i), ch(i), rsp(i), dec(i)) for i = 1, 2, 3 such that

cmt(1) = cmt(2) = cmt(3), dec(i) = 1 for all i, and {ch
(1)
j
, ch

(2)
j
, ch

(3)
j
} = {1, 2, 3} for

some j ∈ [t]. Without loss of generality, we assume that ch
(i)
j
= i. We parse rsp

(i)
j

as in Step V2. We have following equations (We omit j for simplification):

c1 = ComA(φ, Ay − u; ρ
(2)
1

) = ComA(ψ, Az; ρ
(3)
1

),

c2 = ComA(x; ρ
(1)
2

) = ComA(ψ(z); ρ
(3)
2

),

c3 = ComA(w + x; ρ
(1)
3

) = ComA(φ(y); ρ
(2)
3

),

w ∈ S(m,w).

If there exists a distinct pair of arguments of ComA,A violates the computational-

binding property of LNIC and obtains a collision for hA and, thus, solves SISq,m,
√

m.
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Next, we suppose that there exist no distinct pairs of the arguments of ComA.

Let π denote the inverse permutation of φ. From the first equation, we have π−1 =

φ = ψ. Thus, we obtain y = π(w + x) from the third equation. Combining it with

the first equation, we have Az = A(π(w)+π(x))−u. Since z = φ−1(x) = π(x) from

the second equation, we obtain u = A · π(w). Since w ∈ S(m,w), so π(w) also is in

S(m,w). Therefore,A sets e′ := π(w).

We now have to show that e′ , e with probability at least 1/2. By Lemma 6.7.4,

there must be another secret key e′ corresponding to u with overwhelming proba-

bility. Recall that the protocol is statistically witness indistinguishable. Hence, I’s

view is independent of A’s choice of e with overwhelming probability. Thus we

have e′ , e with probability at least 1/2 − negl(n). In this case A outputs e − e′

and solves SISq,m,
√

m. �

We note that the above proof is extended into multi-user settings as in the proof

of Lyubashevsky [Lyu08a].

We next show the proof for sequential composition. We will estimate the lower

bound of the case where the adversary can answer the three challenge.

Proof of Theorem 6.7.3 for ∗ = s. We note that the proof for the sequential com-

position is also very similar to the ones of Stern [Ste96] and Pointcheval and

Poupard [PP03].

Assume that there exists a polynomial-time impersonator I that impersonates

the prover with probability ǫ. We construct the polynomial-time algorithm K out-

putting three transcripts (cmt, ch(i), rsp(i), dec(i)) such that ch(i) = i and dec(i) = 1

for i = 1, 2, 3 with non-negligible probability. The algorithm yields an adversary

A which violates the binding property of LNIC or the collision-resistance property

of hA as in the previous proof.

We describe the algorithm K . On input A, K chooses the random tape ω of

the impersonator I and its own random tape for the learning phase. Using them,

K terminate the setup and learning phases and obtains the state for CP. Next, it

runs CP with several rewinds. Let I denote the random challenge of the legitimate

verifier that is identified with the challenge C = (ch1, . . . , cht) ∈ {0, 1, 2}t. Consider

the execution tree T (ω), corresponding to all accepted I, with a fixed ω. K finds

a node of the tree which has three sons by (1) choose I uniformly at random, (2)

check I contains a node with three sons by rewinding the prover (3) output three

transcripts on the three sons. This yields 3t times of the executions of the basic

protocol and thus K runs in polynomial time of n.

We next estimate the probability that K correctly outputs three valid tran-

scripts. Let us denote by S the set of the pairs (ω, I) which lead to acceptance.

Hence, we have that Pr(ω,I)[(ω, I) ∈ S ] = ǫ = (2/3)t + ǫ′. Next, we define the

set Ω = {ω | PrI[(ω, I) ∈ S ] ≥ (2/3)t + ǫ′/2}. A standard argument shows that

Prω[ω ∈ Ω] ≥ ǫ′/2 and Pr[Ω | S ] ≥ ǫ′/2ǫ. Assume in the following that the event

Ω occurs.

We denote by ni the number of the nodes at the depth i = 0, . . . , t of the tree

T (ω). We know that n0 = 1 and nt = 2t +3tǫ′/2, because nk/3
k = PrI[(ω, I) ∈ S ] ≥
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(2/3)t + ǫ′/2. So, we have that

t−1∏

i=0

ni+1

ni

=
nt

n0
≥ 2t +

ǫ′

2
· 3t ≥

(
1 − ǫ

′

2

)
· 2t +

ǫ′

2
· 3t.

By taking the logarithm of the inequation and using the convexity of the logarithm,

we obtain that

t−1∑

i=0

log
ni+1

ni

≥
(
1 − ǫ

′

2

)
· log 2t +

ǫ′

2
· log 3t ≥ t

(
log 2 +

ǫ′

2
log

3

2

)
.

Therefore, there exists i < t such that

ni+1

ni

≥ 2(3/2)ǫ
′/2 = 2 exp

(
ǫ′

2
· log

3

2

)
≥ 2 ·

(
1 +

ǫ′

2
· log

3

2

)
≥ 2 ·

(
1 +

ǫ′

5

)
.

Let fi and ti denote the number of nodes at depth i with exactly 3 sons and that with

at most 2 sons, respectively: We have that

ni = fi + ti and ni+1 ≤ 3 fi + 2ti = fi + 2ni.

Therefore, for the above i, we obtain that 2 + fi/ni ≥ ni+1/ni2 + 2ǫ′/5. Thus, so,

with probability greater than 2ǫ′/5, the path I contains a node with 3 sons.

This shows that, with probability greater than ǫ(ǫ′/2ǫ)(2ǫ′/5) = ǫ′2/5, K finds

a node with 3 sons.

�

6.7.3 The Cyclic/Ideal Version

We obtain the ID scheme St-ID+
C/IL,∗ by combining the above setup and key-

generation algorithms and the string commitment scheme with Stern’s scheme as

in Section 6.7. One can prove the securities of the schemes in the same manner

to the proofs of Theorem 6.7.3. For simplicity, we only consider f = xn + 1 with

n = 2k.

Theorem 6.7.5. Let m, q, and w be polynomially bounded functions of n such that

m > 4 log q, q is a prime with q ≡ 3 (mod 8), and qn/ |S(mn,w)| is negligible in

n. Then, if f-SIS∞q,m,1 is hard on average, the ID scheme St-ID+
C/IL,∗ is concurrently

secure.

In addition, let m = m(n), q = q(n), and w = w(n) be polynomially bounded

functions such that q > 6mn3/2 log n, and qn/ |S(mn,w)| is negligible in n. Then for

γ = 72mn log2 n, if f-SVP∞γ is hard in the worst case then the ID scheme St-ID+
C/IL,∗

is concurrently secure.

Proof Sketch. Notice that, by the hypothesis, ILNIC is statistically-hiding and

computationally-binding under the assumption that f-SIS∞q,m,1 is hard on average.
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As in the proofs of Theorem 6.7.3, we need to show that if there exists an

impersonator I which succeeds impersonation under concurrent attack with non-

negligible probability ǫ, there existsA that finds a collision (e1, e2) forHI(f, q,m)

or violates the computational binding of ILNIC. The proofs are indeed the same as

the proofs of Theorem 6.7.3 and we omit them. �

6.8 The Lyubashevsky ID Scheme – 2

The scheme is can be interpreted as a parallel composition of Ly08 with a hash

familyH(xn + 1, q,m).

Recall the the Schnorr protocol [Sch91]. By extending the challenge set from

{0, 1} to [0,C − 1], the soundness is reduced to 1/C rather than 1/2. Lyubashevsky

also extending the challenge set from {0, 1} to {0, 1}n, because the ideal-lattice-

based hash functions is Rf,q-linear;

hǎ(c⊗ ě+ ř) =
∑

i

ai ⊗ (c⊗ ei + ri) = c⊗
∑

i

ai ⊗ ei +
∑

i

ai ⊗ ri = c⊗ hǎ(ě)+ hǎ(ř).

See the protocol description.

6.8.1 Description

Let us fix f = xn + 1 in the following.

Scheme 6.8.1 (Ly09 [Lyu09]). All of the participants agree with the parameters

m = m(n), q = q(n), σ = σ(n), and κ = κ(n) and the following sets D, De, Dr, Dc,

and G;

• D = { ǧ ∈ Rm
f,q

: ‖ ǧ‖∞ ≤ mnσκ},
• De = { ǧ ∈ Rm

f,q
: ‖ ǧ‖∞ ≤ σ},

• Dr = { ǧ ∈ Rm
f,q

: ‖ ǧ‖∞ ≤ mnσκ},
• Dc = { ǧ ∈ Rf,q : ‖ ǧ‖1 ≤ κ}, and

• G = { ǧ ∈ Rm
f,q

: ‖ ǧ‖∞ ≤ mnσκ − σκ}.

Setup(1n): The setup algorithm, given 1n, outputs a random row vector ǎ ←
Rm

f,q
.

KeyGen(ā): The key-generation algorithm, given the public parameter ǎ,

chooses a random column vector ě ∈ De and computes u ← hǎ(ě) ∈ Rf,q.

It outputs (pk, sk) = (u, ě).

P = (P1,P2), V = (V1,V2): The common inputs are ǎ and u. Prover’s auxiliary

input is ě. They interact as follows:

Step P1: Pick a random ř← Dr and send y← hǎ(ř).

Step V1: Send a random challenge c← Dc.

Step P2: Compute ž ← c ⊗ ě + ř. If ž ∈ Gm, then send it to the verifier.

Otherwise, send ⊥ and abort the protocol.
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Step V2: Receiving ž, accepts if ž ∈ G and hǎ( ž) = u ⊗ c + y.

It is obvious that, conditioned on that the prover does not abort, the honest

prover is always accepted. He showed that the followings and proved the security

by combining them.

1. The completeness error is at most 1 − 1/e, that is, PrP,V[dec = 1 : (tr, dec) ←
Run[P(A, u, e)↔ V(A,u)]] ≥ 1/e.

2. The protocol (P,V) is perfectly witness indistinguishable.

3. Prǎ←Rm
f,q
,ě←Dm

e
[∃ ě′ ∈ Dm

e , hǎ(ě) = hǎ(ě′)] ≥ 1 − negl(n).

4. If we know ě such that hǎ(ě) = u and there is an adversary answering to two

challenges c1 and c2 after committing y, then we can retrieve a collision of hǎ.

Theorem 6.8.2 ([Lyu09]). Let f = xn + 1. The scheme Ly09-ID is concurrently

secure if f-SIS∞q,m,β with β = 2(mn−1)σκ is hard on average. In particular, let σ be

a constant and let κ(n) = Θ(log2 n). Then the scheme is secure if f-SVP∞γ is hard

in the worst case, where γ = Õ(n2).

The first and third conditions are satisfied by careful choices of the parameters.

The second part is complex and see [Lyu09]. The fourth part is almost obvious. Let

(y, c1, ž1) and (y, c2, ž2) be two transcripts which lead acceptance such that c1 , c2.

Then, we have hǎ( ži) = ci ⊗ hǎ(ě) + y and hǎ( ž1 − c1 ⊗ ě) = hǎ( ž2 − c2 ⊗ ě). Thus,

( ž1−c1⊗ ě, ž2−c2⊗ ě) seems a collision for hǎ and both are in D. (We need to show

that they differs but we omit it.) For the details of the parameters and the proofs,

see the original paper [Lyu09].

The ID scheme has completeness error 1 − 1/e if we carefully choose the pa-

rameters. Hence, this protocol should be composed in parallel to reduce the com-

pleteness error to negl(n). In order to decrease the communication cost, one can use

the hash-based commitment H(·), where H is any collision-resistant hash function.

6.9 Summary

We have reviewed several ID scheme based on lattice and ideal lattice problems

and their security. As a summary, see Table 6.1.

The MV protocol: The variants based on the MV protocol requires the mild

assumption, SIVPÕ(n1.5) is hard in the worst case. In addition, the one of variants

directly bears an identity-based identification scheme. See Chapter 7.

The KTX ID scheme: The assumption is the weakest among those in other

schemes. The one weak point is a long transcript. The scheme requires a per-

mutation over [m] and thus, the communication cost is most expensive.
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Lattice-based ID schemes (A0, A1, A ∈ Zn×m
q )

Par. Public key Relation γ in GapSVPγ Comm. cost Errors

MV-ID+
GL,p

[MV03] – A0, A1 A0e = 0 or A1e = 0 Õ(n1.5) t · Õ(n) 1-sided

MV-ID++
GL,p

A u Ae = u Õ(n1.5) t · Õ(n) 1-sided

Ly08-IDGL,p [Lyu08a] (A) A,u Ae = u Õ(n2) t · Õ(n) 2-sided

St-IDGL,p [KTX08] A u Ae = u and wH(e) = w Õ(n) t · Õ(n) 1-sided

Ideal-Lattice-based ID schemes (f = xn + 1 and ǎ0, ǎ1, ǎ ∈ Rm
f,q

)

Par. Public key Relation γ in f-SVP∞γ Comm. cost Errors

MV-ID+
C/IL,p

[MV03] – ǎ0, ǎ1 ǎ0ě = 0 or ǎ1ě = 0 Õ(n1.5) t · Õ(n) 1-sided

MV-ID++
C/IL,p

ǎ u ǎě = u Õ(n1.5) t · Õ(n) 1-sided

Ly08-IDC/IL,p [Lyu08a] (ǎ) ǎ,u ǎě = u Õ(n2) t · Õ(n) 2-sided

St-IDC/IL,p [KTX08] ǎ u ǎě = u and wH(ě) = w Õ(n) t · Õ(n) 1-sided

Ly09-IDp [Lyu09] (ǎ) ǎ,u ǎě = u Õ(n2) t · Õ(n) 2-sided

Table 6.1: Comparisons among ID schemes. A secret key sk is e ∈ Dn. The factor

n denotes the security parameter. Assume that the protocols are repeated t times in

parallel for reducing errors. In MV-ID, we set δ =
√

m and δ =
√

mn with respect

to L = GL and C/IL, respectively.

The Lyubashevsky ID schemes: The assumption is strongest one. However, it

attracts us by its low communication cost. In addition, the variant Ly09-ID yields a

simple signature scheme by applying the Fiat–Shamir transform. See Chapter 11.
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7
Identity-based Identification

In this chapter, we show that the combination of the Micciancio-Vadhan identifica-

tion with lattice-based signatures in Chapter 11 yields concurrently secure identity-

based identification scheme in the random oracle model.

Organization: In Section 7.1, we review a model of identity-based identification

(IBI) schemes and security notions of them. In Section 7.2, we construct IBIs and

prove their security.

7.1 Definitions

7.1.1 Model of Identity-Based Identification Schemes

Identity-based cryptosystems (precisely, encryption and signature schemes) are

proposed by Shamir [Sha85]. First, a master generates the public parameters and

corresponding master’s secret key. Each user has no public key but identity. They

use an identity instead of public key in the cryptosystem. Notice that anyone of

user obtains its secret key from the master, called as user’s secret key.

On identity-based identification, the prover has a user secret key as its auxiliary

input and the verifier is given the public parameter and prover’s identity as input.

We adopt the definition by Bellare, Namprempre, and Neven [BNN09]. For-

mally, an identity-based identification scheme IBI is a quadruplet of algorithms

(Setup,Ext,P,V).

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param and a master secret key msk.
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Ext(msk, id): An extraction algorithm, given msk and an identity id, outputs a

secret key skid for the identity id.

P(param, id, skid), V(param, id): (P,V) is an interactive protocol. A prover al-

gorithm P takes param, id, and skid as inputs. A verifier algorithm V takes

param and id as inputs. At the end of interaction, V outputs 0 (reject) or 1

(accept).

We require the natural correctness condition; For any param generated by

Setup(1n) and skid generated by Ext(msk, id), the decision of V(param, id) inter-

acting with P(param, id, skid) is 1 with probability 1. That is, for any id

Pr

dec = 1 :

(param,msk)← Setup(1n);

skid ← Ext(msk, id);

(tr, dec)← Run[P(param, id, skid)↔ V(param, id)];

 = 1.

An IBI scheme IBI is said to be canonical if the protocol is 3-move and public

coin as in Section 6.2.

7.1.2 Security Notions

The definition of security notions are almost identical to these of ID schemes. We

describe the formal definition as follows. Consider the experiment Exp
imp-atk

IBI,A (n)

between the challenger C and the impersonator A = (CV,CP), where atk ∈
{pa, aa, ca}.

Experiment Exp
imp-atk

IBI,A (n):

Setup Phase: The challenger C obtains (param,msk) ← Setup(1n). Next,

C sets HU,CU,TU ← ∅ and PS ← ∅, where HU,CU, TU and PS de-

notes the set of honest users, corrupted users, target users, and provers’

sessions, respectively. The impersonator CV is given the security param-

eter 1n, the system parameter param.

Learning Phase: The impersonator CV can query to the oracles Init,

Extract, and Prov.

• The oracle Init receives an identity id. If id ∈ HU ∪ CU ∪ TU then

return ⊥. Otherwise, it obtains skid ← Ext(msk, id), stores it into

usk[id], and adds id to HU. Finally, return 1 to the adversary.

• The oracle Extract receives an identity id. If id < HU then return ⊥.

Else, it adds id to CU, deletes id from HU, and returns usk[id] to the

adversary.

• The oracle Prov receives inputs id, s,Min, where s denotes the ses-

sion identifier. This oracle changes its behavior in three attacks.

– If atk = pa, it obtains (tr, dec) ← Run[P(param, id, skid) ↔
V(param, id)] and returns (tr, dec) to the adversary.
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– If atk = aa, it runs as follows: If id < HU then return ⊥. If

(id, s) < PS then it sets PS ← {(id, s)}, picks a random coin ρ,

and sets a state of the prover stP[s] ← (param, skid, ρ). Next, it

obtains (Mout, stP[id, s])← P(Min, stP[id, s]). It returns Mout.

– If atk = ca, it runs as follows: If (id, s) < PS then it adds (id, s)

to PS (that is, PS ← PS ∪ {(id, s)}), picks a random coin ρ, and

sets a state of the prover stP[id, s] ← (param, skid, ρ). Next, it

obtains (Mout, stP[id, s])← P(Min, stP[id, s]). It returns Mout.

At the end of the phase CV outputs (id∗, stCP).

Challenge Phase: Suppose that C receives (id∗, stCP) from CV. If id∗ <
HU, then C outputs 0 and halts. Else, the challenger C adds id∗ to TU,

deletes id∗ from HU, and gives stCP to CP. Finally, the challenger ob-

tains (tr, dec) ← Run[CP(stCP)Init,Extract,Prov ↔ V(param, id)] and re-

turns dec.

Notice that if atk = pa the adversary could learn only transcripts between the

legitimate prover and verifier. If atk = aa, the adversary could interact with the

legitimate prover sequentially and has the power to abort the session. If atk = ca,

the adversary interact with the legitimate prover concurrently by indicating each

interaction with session identifier.

Definition 7.1.1. Let IBI = (Setup,Extract,P,V) be an IBI scheme,A = (CV,CP)

an impersonator, and n a security parameter. We define the advantage of A as

Adv
imp-atk

IBI,A (n) := Pr
[
Exp

imp-atk

IBI,A (n) = 1
]
. We say that IBI is secure against imper-

sonation under passive, active, and concurrent attacks if Adv
imp-atk

IBI,A (·) is negligible

for every polynomial-time adversaryA where atk = pa, aa, ca, respectively.

7.2 Identity-based Identification Schemes

An intuitive explanation of a well-known strategy to construct an IBI scheme is

as follows: A master generates (vk, sk) which is a verification and a signing keys

of a signature scheme. It publishes vk and keeps sk secret. If a user queries with

id, then the master returns a signature σ on id. As identification, the user proves

possession of σ using some protocol. We note that Bellare, Namprempre, and

Neven [BNN09] also gave the general construction of IBIs from any identification

scheme and any signature scheme. For more information on generic constructions,

see [KH04, BNN09, YCW+07].

They are several identity-based identification schemes based on number the-

oretic problems. However, we know a few IBI schemes based on the com-

binatorial problems with security proofs. The one is that by Cayrel, Gaborit,

Galindo, and Girault [CGDG09] (see also [CGG07]) based on the coding prob-

lems, which consists of the Courtois–Finiasz–Sendrier signature scheme [CFS01]

and Stern’s ID scheme (Section 6.6). The other is one by Stehlé, Steinfeld,
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Tanaka, and Xagawa [SSTX09], which is obtained by combining the Gentry–

Peikert–Vaikuntanathan (GPV) signature scheme [GPV08] (Section 11.3) and the

Micciancio–Vadhan (MV) protocol (Section 6.3).

We now give a brief review of the GPV signature scheme (For the details,

Chapter 10 and Section 11.3). Roughly speaking, the public key is A ∈ Zn×m
q and

the secret key is a short basis T ∈ Zm×m of a lattice Λ = Λ⊥q (A) such that ‖T̃‖ ≤ L.

If such basis is known, one can sample DΛ,s,t with s = L · ω(
√

log n) and for

any t ∈ Rm (see Chapter 10). This indicates the trapdoor T allows us to sample

e ← DΛ,s conditioned on u = hA(e). Notice that the sample e has a norm at most

s
√

m with overwhelming probability.

We follow the above general strategy to construct lattice-based IBIs: Master’s

key pair is (vk = A, sk = T). A signature on id is σ = e such that Ae ≡ H(id)

(mod q) and e ∈ Dn = {e ∈ Zm | ‖e‖ ≤ s
√

m}. We then use the MV protocol

for a proof of signature possession. Since the signature schemes are secure under

the worst-case hardness of lattice problems and the MV protocol is witness indis-

tinguishable and proof-of-knowledge, the IBI schemes also enjoy the concurrent

security in the random oracle model.

Scheme 7.2.1 (LIBI [SSTX09]). See GPV-FDH = (Setup,KeyGen,Sign,Ver) in

Section 11.3. Let (P,V) be the prover and the verifier in the scheme MV+
GL

. Let

H : {0, 1}∗ → Zn
q be the random oracle which is used in GPV-FDH. The IBI

scheme LIBI = (Setup′,Ext′,P′,V′) is defined as follows:

Setup′(1n): Given the security parameter 1n, the setup algorithm obtains

(A,T) ← KeyGen(1n), where A is almost uniformly distributed over Zn×m
q

and T is a short basis of Λ⊥q (A) such that
∥∥∥T̃

∥∥∥ ≤ L for some L. It outputs

(param,msk) = (A, (A,T)).

Ext′((A,T), id): Given an identity id, it outputs e ← Sign((A,T), id) such that

‖e‖ is short (‖e‖ ≤ d2 = s
√

m) and Ae ≡ H(id) mod q.

P′ and V′: The common inputs are A and id. Prover’s auxiliary input is e. Let

us define u = H(id) ∈ Zn
q. They are the same as P and V with parameter d2 in

the MV protocol.

Theorem 7.2.2. The obtained IBI scheme is concurrently secure in the random

oracle model if SIS2
q,m,O(

√
m·d2)

is hard on the average, where d2 = L
√

m·ω(
√

log n).

The GPV signature scheme [GPV08] with the Alwen–Peikert construction in

Chapter 11 yields that L = O(
√

n log q) when m = (5+3δ)n log q for some constant

δ > 0. Thus, the security of the IBI scheme is reduced to SIVPγ for γ = Õ(n2).

In addition, if we replace the GPV signature scheme with the Bonsai signature

schemes in Section 11.7, the IBI schemes (and hierarchy IBI scheme) in the stan-

dard model are obtained. If we employ the ideal-lattice-based signature schemes,

we also obtain the ideal-lattice-based IBI (and hierarchy IBI) schemes which are

concurrently secure.
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Ring Identification

Organization: Section 8.1 introduces rind identification. Section 8.2 defines a

model and security notions of rind identification schemes. Section 8.3 gives details

of the Kawachi–Tanaka–Xagawa ring identification schemes.

8.1 Introduction

Dodis, Kiayias, Nicolosi, and Shoup introduced new identification, under the

name ad hoc anonymous identification (AID) [DKNS04], which are identification

versions of ring signature1. We call this new identification “ring identification

scheme” rather than “ad hoc anonymous identification scheme” for simplification

of the name and stress of the relation to ring signature.

An RID scheme allows a user to anonymously prove his/her membership in a

ring, which is the set of public keys, if and only if the user is an actual member

of the ring. We use the term “ring” instead of “group,” since we want to stress

that the ring is formed in an ad hoc fashion, without help of the group manager.

Hence, we then assume that every user registers his/her public key to the public

key infrastructure.

RID schemes: By taking OR of l statements [DSDCPY94], we can straightfor-

wardly obtain an MV+
GL

-based RID scheme,whose security is based on the worst-

case hardness of lattice problem. The prover and the verifier have the common

input pk1, . . . , pkl. The prover convinces the verifier that he/she has a secret key

corresponding to one of public keys, pki.

1Indeed, applying the Fiat-Shamir transform to their AID schemes, we can obtain ring signature

schemes. See the original paper [DKNS04]
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However, this simple modification requires a large overhead cost involving the

size of the ring. Let l be the number of the members in the ring and n the security

parameter. The protocol is run in t times in parallel to reduce the errors. The

communication costs of the MV+
GL

-based scheme is tl · Õ(n). The size of the ring is

l · Õ(n2) in the modified versions of MV+
GL

.

On RID schemes, the KTX ring identification schemes KTX-RIDGL by

Kawachi et al. [KTX08] require many vectors proportional to the member of the

ring, while the MV+
GL

-based scheme requires many matrices proportional to the size

of the group (see Table 6.1). Additionally, the communication cost of KTX-RIDGL

is t · Õ(n + l), while those in the MV+
GL

-based is tl · Õ(n).

8.2 Definitions

8.2.1 Model of Ring Identification Schemes

An RID scheme is a sextuplet of algorithms RID =

(Setup,Reg,RPKC,RSKC,P,V):

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param.

Reg(param, i): A key-generation algorithm, given param and user identity i,

outputs a pair of a public key and a secret key (pki, ski). This models the key

registration procedure.

RPKC(param,R = (pki1
, . . . , pkil

)): A ring public-key construction algorithm,

given the public parameters param, a ring of public keys R = (pki1
, . . . , pkil

),

outputs a ring public key rpk.

RSKC(param,R = (pki1
, . . . , pkil

), skik ): A ring secret-key construction algo-

rithm, given param, R = (pki1
, . . . , pkil

), and one of corresponding secret key

skik , outputs a ring secret key rsk.

P(param, rpk, rsk), V(param, rpk): (P,V) is an interactive protocol. A prover

algorithm P takes param, rpk, and rsk as inputs. A verifier algorithm V takes

param and rpk as inputs. At the end of interaction, V outputs 0 (reject) or 1

(accept).

Correctness: As in the definition of ID schemes, we require the natural cor-

rectness condition; For any param, {(pki, ski)}i=1,...,l, rpk, and rsk generated by

Setup(1n), Reg(param), RPKC({pki}i=1,...,l, skk), and RSKC({pki}i=1,...,l, skk), the

decision of V(param, rpk) interacting with P(param, rpk, rsk) is 1 with probabil-

ity 1. That is, for any polynomial Q = Q(n) and {i1, . . . , il} ⊆ {1, 2, . . . ,Q}, and
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k ∈ {1, . . . , l},

Pr


dec = 1 :

param← Setup(1n);

(pki, ski)← Reg(param, i) for i = 1, . . . ,Q;

rpk ← RPKC(param, {pki}i=i1,...,il);

rsk ← RSKC(param, {pki}i=i1,...,il , skik );

(tr, dec)← Run[P(param, rpk, rsk)↔ V(param, rpk)];


= 1.

8.2.2 Security Notions

There are two goals for security of RID schemes: Security against impersonation

and anonymity.

Dodis et al. formally defined security against impersonation under passive at-

tack. They mentioned the definition of security against impersonation under con-

current attack. However, they did not give the formal definition (see [DKNS04,

Section 3.2]). Thus, we define the security notion with respect to concurrent at-

tack. In the setting of chosen-group attack, the adversary could force the prover to

prove the membership in an arbitrary group if the prover is indeed a member of the

group. Additionally, concurrent attack allows the cheating verifier to interact with

the clones of any provers. Also, they allow the cheating prover to interact with the

clones of provers, but prohibit it from interacting with the target provers. We say

RID is secure against impersonation under concurrent chosen-group attack, if any

polynomial-time adversary cannot impersonate the legitimate prover in the above

settings.

The security notion, anonymity against full key exposure, captures the property

that an adversary cannot distinguish two transcripts even if the adversary has the

secret keys of all the members. We say RID is anonymous against full key exposure

if any polynomial-time adversary cannot distinguish two provers with a common

set of public keys even though the adversary generates all keys of the set.

Security against impersonation: In the setting of chosen-group attack, the ad-

versary could force the prover to prove the membership in an arbitrary ring if the

prover is indeed a member of the ring. Additionally, concurrent attack allows the

cheating verifier to interact with the clones of any provers. Also, they allow the

cheating prover to interact with the clones of provers, but prohibit it from inter-

acting with anyone of the target provers. Notice that this condition prevents the

adversary a simple Man-in-the-Middle attack.

We describe the formal definition of the security as follows. Consider the fol-

lowing experiment Exp
imp-cg-atk

RID,I (n) between the challenger and the impersonator

I = (CV,CP), where atk ∈ {pa, aa, ca}.

Experiment Exp
imp-cg-atk

RID,A (n):

Setup Phase: The challenger obtains param ← Setup(1n) and initializes

HU,CU,TU, PS ← ∅, where HU, CU, and TU denote the sets of hon-
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est users, corrupted users, and target users, respectively, and PS denotes

the set of prover’s sessions. The impersonator CV is given the security

parameter 1n and the system parameter param.

Learning Phase: The impersonator CV can query to the three oracles Init,

Corr, and Prov.

• The oracle Init receives input i. If i ∈ HU ∪ CU ∪ TU then returns

⊥. Otherwise, it obtains (pki, ski)← Reg(param, i; ri), adds i to HU,

and providesA with pki.

• The oracle Corr receives input i. If i < HU \ TU then returns ⊥.

Otherwise, it adds i to CU, deletes i in HU, and returns ri toA.

• The oracle Prov receives some inputs. This oracle changes its behav-

ior in three attacks.

– If atk = pa, it receives inputs R = (pki1
, . . . , pkil

) and

ik. If pkik
< R then returns ⊥. (The public keys in R

need not to be registered.) If the check is passed, it obtains

rpk ← RPKC(param,R) and rsk ← RSKC(param,R, skik ), and

(tr, dec) ← Run[P(param, rpk, rsk) ↔ V(param, rpk)]. It re-

turns (tr, dec) to the adversary.

– If atk = aa, it receives inputs R = (pki1
, . . . , pkil

), ik, s, and

Min. If pkik
< R or ik < HU \ TU then returns ⊥. (The

public keys in R need not to be registered.) If the checks

are passed, it obtains rpk ← RPKC(param,R) and rsk ←
RSKC(param,R, skik ). If (R, ik, s) < PS then it sets PS ←
{(R, ik, s)} to PS , picks a random coin ρ, and sets a state of the

prover stP[(R, ik, s)] ← (param,R, rpk, rsk, skik , ρ). Next, it ob-

tains (Mout, stP[(R, ik, s)]) ← P(Min, stP[(R, ik, s)]). Finally, it

returns Mout.

– If atk = ca, it receives inputs R = (pki1
, . . . , pkil

), i, s, and Min.

If pkik
< R or ik < HU \ TU then returns ⊥. (The public keys

in R need not to be registered.) If the checks are passed, it ob-

tains rpk ← RPKC(param,R) and rsk ← RSKC(param,R, skik ).

If (R, ik, s) < PS then it adds (R, ik, s) to PS (PS ← PS ∪
{(R, ik, s)}), picks a random coin ρ, and sets a state of the prover

stP[(R, ik, s)] ← (param,R, rpk, rsk, skik , ρ). Next, it obtains

(Mout, stP[(R, ik, s)]) ← P(Min, stP[(R, ik, s)]). Finally, it returns

Mout.

Challenge Phase: CV outputs a set of public keys Rt = (pki1
, . . . , pkil

) and

stCP. If the indexes of the keys {i1, . . . , il} * HU then the challenger

outputs 0 and halts. Otherwise, the challenger sets TU ← {i1, . . . , il}
and gives stCP to CP. CP can query to the oracles Init, Corr, and

Prov as in the learning phase. Finally, the challenger obtains (tr, dec) ←
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Run[CP(stCP)Init,Corr,Prov ↔ V(param,Rt)] and outputs dec.

Definition 8.2.1. Let RID be an RID scheme and A = (CV,CP) an impersonator.

Let n be a security parameter. The advantage ofA in attacking RID is defined by

Adv
imp-cg-atk

RID,A (n) = Pr
[
Exp

imp-cg-atk

RID,A (n) = 1
]
.

We say that RID is secure against impersonation under passive/active/concurrent

chosen-group attack if Adv
imp-cg-atk

RID,A (·) is negligible for every polynomial-time ad-

versaryA, where atk = pa, aa, ca, respectively.

Anonymity against full key exposure: Anonymity against full key exposure for

an RID scheme RID is defined by using the following experiment Expanon−fke
RID,A (n)

between a challenger and adversaryA:

Experiment Expanon−fke
RID,A (n):

Setup Phase: The challenger runs the algorithm Setup with input 1n and

obtains param. The adversaryA is given the system parameter param.

Challenge Phase: A requests a challenge by sending to the challenger the

values ((pki0
, ski0), (pki1

, ski1),R). Here the set of public keys R contains

pki0
and pki1

, and (pki0
, ski0) and (pki1

, ski1) are valid key pairs. The chal-

lenger chooses a random bit b ∈ {0, 1} and runs the protocol as a prover

who has skib . (tr, b∗) ← Run[P(param,R, skib) ↔ A]. If b = b∗ the

challenger returns 1, otherwise returns 0.

Definition 8.2.2. Let RID be an RID scheme, A an adversary, and n a security

parameter. The advantage ofA in attacking RID is defined by

Advanon−fke
RID,A (n) :=

∣∣∣∣∣Pr
[
Expanon−fke

RID,A (n) = 1
]
− 1

2

∣∣∣∣∣ .

We say that RID has anonymity with full key exposure if Advanon−fke
RID,A (·) is negligible

for every polynomial-timeA.

8.3 The Kawachi–Tanaka–Xagawa Ring Identification

Schemes

We review the Kawachi–Tanaka–Xagawa RID scheme based on GapSVP. First,

we sketch a basic idea for our construction: Let A be a system parameter. Each

user has a secret key ei ∈ S(m,w) and a public key ui = Aei mod q. In the RID

scheme, a group is specified by a set of public keys (u1, . . . ,ul) of the members.

Let ii,l denote an l-dimensional vector (0, . . . , 0, 1, 0, . . . , 0) whose i-th element is 1.

The prover in the group, who has a secret key ei, wants convinces the verifier that

he/she knows that e′ := ei ◦ −ii,l such that [A u1 . . . ul]e
′ = 0 and ei ∈ S(m,m/2).

Changing the parameters and using Stern’s protocol, the prover can convinces the
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verifier that he/she has e′ such that [A u1 . . . ul]e
′ = 0, the numbers of +1 in e′ is

m/2, and the numbers of −1 in e′ is 1. Additionally, we force the prover to prove

that e′ is in the form e′ = ei ◦ −ii,l. To do so, Kawachi et al. divided a permutation

π in Step P1 into two permutations.

Let πh be a permutation over [m] and πt be a permutation over [l]. For a per-

mutation π over [m + l], we denote π = πh ⊙ πt if

π =

(
1 2 · · · m

πh(1) πh(2) · · · πh(m)

)
·
(

m + 1 m + 2 · · · m + l

m + πt(1) m + πt(2) · · · m + πt(l)

)
.

For any πh and πt, we have (πh ⊙ πt)
−1 = π−1

h
⊙ π−1

t . For any eh ∈ Zm and et ∈ Zl, if

π = πh ⊙ πt then π(eh ◦ et) = πh(eh) ◦ πt(et).

8.3.1 Description

We here construct an RID scheme KTX-RIDGL,∗ based on GapSVP. Similarly to the

ID scheme St-ID+
GL,∗ in Section 6.7, the protocol is repeated t = ω(log n) times in

parallel to achieve exponentially small soundness error. As in the previous section,

we hide randomness in ComA.

Scheme 8.3.1 (KTX-RIDGL,p). All the participants agree with the parameters m =

m(n), q = q(n), and w = w(n).

Setup(1n): The same as Setup of the protocol in Section 6.7.

Reg(A, i): The same as KG of the protocol in Section 6.7.

RPKC(A,R = (ui1 , . . . ,uil)): Output A′ = [A ui1 . . . uil] ∈ Z
n×(m+l)
q .

RSKC(A,R = (ui1 , . . . ,uil), eik ): Output e′ = eik ◦ −ik,l ∈ {0, 1}m × −S(l, 1).

P and V: The common inputs are A and (u1, . . . ,ul). The prover’s auxiliary

input is ei for some i ∈ [l]. Let A′ := [A u1 . . . ul] and e := ei ◦−ii.l. We write

Com instead of ComA for ease of notation. Formally, they interact as follows:

Step P1: Choose random permutations πh over [m] and πt over [l]. Let

π = πh ⊙ πt. Choose a random vector r ∈ Zm+l
q . Send commitments c1, c2,

and c3 as

• c1 = Com(πh, πt, A′r),

• c2 = Com(π(r)),

• c3 = Com(π(e + r)).

Step V1 Send a random challenge ch ∈ {1, 2, 3} to P.

Step P2

• If ch = 1, reveal c2 and c3. Send w = π(e) and x = π(r).

• If ch = 2, reveal c1 and c2. Send φh = πh, φt = πt, and y = e + r.

• If ch = 3, reveal c1 and c3. Send ψh = πh, ψt = πt, and z = r.

Step V2

• If ch = 1, check that c2 = Com(x), c3 = Com(w + x), and w is in the

form wh ◦ −i j,l for some j and wh ∈ S(m,w).
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• If ch = 2, check that c1 = Com(φh, φt, A′y) and c3 = Com((φh ⊙
φt)(y)).

• If ch = 3, check that c1 = Com(ψh, ψt, A′) and c2 = Com((ψh ⊙
ψt)(z)).

Output dec = 1 if all checks are passed, otherwise output dec = 0.

8.3.2 Security Proof

The security of the above protocol is stated as follows.

Theorem 8.3.2. Let m = m(n) and q = q(n) be polynomially bounded functions

satisfying the conditions that m ≥ 2(1 + δ)n log q for some constant δ > 0 and

qn/ |S(m,w)| is negligible in n. Assume that there exists an impersonator A that

succeeds impersonation under concurrent chosen-group attack with non-negligible

probability. Then there exists a probabilistic polynomial-time algorithm A that

solves SIS2
q,m,
√

m
.

Combining Theorem 8.3.2 with Theorem 2.4.9, we obtain the following theorem.

Theorem 8.3.3. For any m(n) = Θ(n log n), there exist q(n) = poly(n), w(n) =

ω(log n), and γ(n) = O(n
√

log n) such that qn/ |S(m,w)| is negligible in n and

the above scheme is secure against impersonation under concurrent chosen-group

attack if SIVP2
γ is hard in the worst case.

The statistical anonymity of the above scheme follows from witness indistinguisha-

bility of the protocol.

Proof of Theorem 8.3.2. We will construct A solving SISq,m,
√

m with non-

negligible probability by using an impersonator I which succeeds impersonation

with non-negligible probability.

The algorithmA, given input A, feeds A to the impersonator I. In the experi-

ment, the impersonator I will call Init, Corr, and Prov. If I calls Init with input

i, then A chooses ei at random, computes ui := Aei, and returns ui to I. A can

simulate the oracles Corr and Prov, since A has the secret key ei corresponding

to the public key ui.

At the end of the experiment, I will impersonate the one in a ring R =

(u1, . . . ,ul). Rewinding I three times, A obtains three valid transcripts as in the

previous proof.

We next show how A obtains a secret key or finding a collision of the hash

functions in the string commitment scheme by using three good transcripts. As-

sume that A has three transcripts (cmt(i), ch(i), rsp(i), dec(i)) for i = 1, 2, 3 such that

cmt(1) = cmt(2) = cmt(3), dec(i) = 1 for all i, and {ch
(1)
j
, ch

(2)
j
, ch

(3)
j
} = {1, 2, 3} for

some j ∈ [t]. Without loss of generality, we assume that ch
(i)
j
= i. We parse rsp

(i)
j

as in Step V2. From the above argument, we have four equations as follows (We
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omit j for simplification):

c1 = ComA(φh, φt, A′y; ρ
(2)
1

) = ComA(ψh, ψt, A′ z; ρ
(3)
1

),

c2 = ComA(x; ρ
(1)
2

) = ComA((ψh ⊙ ψt)(z); ρ
(3)
2

),

c3 = ComA(w + x; ρ
(1)
3

) = ComA((φh ⊙ φt)(y); ρ
(2)
3

),

w = wh ◦ −ik,l for some k and wh ∈ S(m,w).

If there exists a distinct pair of arguments of ComA, A obtains a collision for A

and solves SISq,m,
√

m.

Let us assume that there exist no distinct pairs. Let π be an inverse permutation

of φh ⊙ φt. From the first equation, we obtain the equation π−1 = φh ⊙ φt =

ψh ⊙ ψt. Combining with the third equation, we have y = π(w + x). Thus, we have

A′ z = A′(π(w) + π(x)). From the second equation, z = π(x). Hence, we obtain

A′ ·π(w) = 0. We have π = πh⊙πt for some permutations πh and πt over [m] and [l]

respectively, since π is inverse of φh ⊙φt. Thus, we have A′(πh(wh) ◦ πt(−ik.l)) = 0.

That is uπt(k) = Aπh(wh). By using same argument in the previous proof, we

have that πh(wh) , eπt(k) with probability at least 1/2 − negl(n). So, A outputs

z = eπt(k) − πh(wh) as a solution for SISq,m,
√

m.

�

8.3.3 The Cyclic/Ideal version

Changing the key-generation algorithm, we have a lightweight version

KTX-RIDC/IL,∗. For simplicity, we fix f = x2k

+ 1.

Theorem 8.3.4. Let m, q, and w be polynomially bounded functions of n such that

m > 4 log q, q is a prime with q ≡ 3 (mod 8), and qn/ |S(mn,w)| is negligible in n.

Then, if f-SIS∞q,m,1 is hard on average, the ID scheme KTX-RIDC/IL,∗ is concurrently

secure.

In addition, let m = m(n), q = q(n), and w = w(n) be polynomially bounded

functions such that q > 6mn3/2 log n, and qn/ |S(mn,w)| is negligible in n. Then

for γ = 72mn log2 n, if f-SVP∞γ is hard in the worst case then the ID scheme

KTX-RIDC/IL,∗ is concurrently secure.

sketch. We show that if there exists an impersonator I which succeeds imperson-

ation under concurrent chosen-group attack with non-negligible probability, there

existsA that finds a collision (z1, z2) for hǎ.

The algorithm A, given input ǎ ∈ Rm
f,q

, feeds ǎ to the impersonator I. In

the experiment, the impersonator I will call Init, Corr, and Prov. If I calls Init

with input i, then A chooses ěi ∈ S(mn,w) at random, computes ui := hǎ(ěi), and

returns ui to I. A can correctly simulate the oracles Corr and Prov, since A has

the secret key ěi corresponding to the public key ui.

At the end of the experiment, I will impersonate the one of a ring R =

(u1, . . . ,ul). Rewinding A three times, A obtains (s, ρ) , (s′, ρ′) such that

ComA(s; ρ) = ComA(s′; ρ′) or a vector e = eh◦et such that [Rotf(ǎ) u1 . . . ul]e = 0,
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where xh ∈ {0, 1}mn, et = −ik,l for some k, and eh ∈ S(mn,w) as in the proofs of

Theorem 6.7.3 and Theorem 8.3.2.

In the former case, A computes z , z′ ∈ {0, 1}mn such that Comǎ(s; ρ) =

Rotf(ǎ)z and Comǎ(s′; ρ′) = Rotf(ǎ)z′. Hence, A outputs (z, z′) as a collision for

hǎ.

In the latter case, we have Rotf(ǎ) · eh = uk. By the same argument as in the

proof of Theorem 8.3.2, we have that eh , ek with probability at least 1/2. Hence,

A outputs (eh, ek) as a collision for hǎ. �
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9
Interlude: Zero-Knowledge Protocols on

NTRU

As an interlude, we review zero-knowledge and proof-of-knowledge protocols for

NTRU by Xagawa and Tanaka [XT09] which exploited Stern’s ID scheme. One is

for the relation on secret-key knowledge and the other for that on plaintext knowl-

edge. They are the first non-trivial constructions of these protocols for NTRU.

Additionally, the former directly yields an identification scheme based on NTRU.

Organization: In Section 9.1, we review background of the NTRU encryption

scheme. Section 9.2 gives a brief review of the NTRU encryption scheme. We give

exiting relations between NTRU and lattices in Section 9.3. Section 9.4 reviews the

Xagawa–Tanaka protocol for the basic relations. Section 9.5 gives a detail of ID

scheme obtained from the XT protocol. Section 9.6 compares several ID schemes

based on combinatorial problems. Section 9.7 gives some concluding remarks on

the protocol and the ID scheme.

9.1 Introduction

Background: In 1996, Hoffstein, Pipher, and Silverman proposed a public-

key encryption system, NTRU [HPS98] (the conference version is appeared in

ANTS III [HPS98]). The main attractions of this encryption scheme are fast key-

generation, encryption, and decryption, and compact sizes of keys. Other lattice-

based encryption schemes, such as the Ajtai–Dwork cryptosystem [AD97], the

GGH cryptosystem [GGH97b], and the Regev cryptosystems [Reg03, Reg09] do

not have all of these attractions. (See Chapter 12 for the details of them.) Addi-
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tionally, it seems bearable against threat of quantum computers. After proposing

the scheme, they founded a company named NTRU Cryptosystems.

The proposers of NTRU have modified the parameters of the system. As

instantiations of NTRU, there are NTRU-1998 [HPS98], NTRU-2001 [HS00],

NTRU-2005 [HGSW05], NTRU-2007 [HHGP+07], and NTRU-2008 [WHGH+08,

HHHGW09], where the last instantiation is in IEEE P1363.1/D12. There are sev-

eral attacks after the Coppersmith–Shamir attack [CS97]. For chosen plaintext

attack, see Coppersmith and Shamir [CS97], Odlyzko’s meet-in-the-middle at-

tack [HGSW03], and Howgrave-Graham [HG07]. For chosen ciphertext attack,

see [JJ00, HHHK03, HGNP+03, MR06, GN07]. For the summary of the attacks,

see, e.g., Mol and Yung [MY08].

While approximately forty papers have dealt with NTRU, surprisingly, there

are no protocols except these for encryption or signature. For example, there are no

secure identification schemes based on the NTRU problems and proofs of plaintext

knowledge for NTRU. This contrasts with the situation that the number-theoretical

assumptions allow us to construct concurrent-secure identification schemes and

non-malleable proofs of plaintext knowledge for the RSA, Rabin, Paillier, and El-

Gamal encryption schemes [Kat03].

Techniques: The main idea of Xagawa and Tanaka [XT09] is plugging the struc-

ture of NTRU into a variant of Stern’s protocol [Ste96, KTX08].

Kawachi, Tanaka, and Xagawa [KTX08] observed that Stern’s protocol can

be used for the relations on q-ary lattices. The relation is the set of ((A, u), e) ∈
(Zn×m

q × Zn
q)× {0, 1}m such that Ae ≡ u (mod q) and the Hamming weight of e is d

(see Section 6.6 and Section 6.7).

In addition, note that the well-known NTRU lattice is indeed q-ary lat-

tice, which has a representation Λ⊥q (A) = {e ∈ Zm | Ae ≡ 0 (mod q)}
(see [CS97, MR08]).

However, there are some difficulties to connect NTRU with the Stern’s proto-

col directly. In order to connect NTRU with the variant of Stern’s protocol, we

modify the structure of ad hoc anonymous identification schemes by Kawachi et

al. [KTX08], which introduced the permutation splitting technique in Stern’s proto-

col, rather than the identification scheme by them. By this modification, we pattern

a statistical-zero-knowledge and proof-of-knowledge argument for the generalized

relations, say, the set of polynomials ((a, b, z), (x,u)) such that a ⊗ x + b ⊗ u ≡ z

(mod xn − 1, q) and each Hamming weight of x and u is dx and dy, respectively.

Then, we modify the protocols in order to employ the relations on secret-key

knowledge and plaintext knowledge tailored for each instantiation of NTRU.

Related works: It is well-known that the existence of one-way functions im-

plies computational-zero-knowledge proof systems for any NP-relation. How-

ever, this general proof system is less efficient than the arguments by Xagawa and

Tanaka [XT09].
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In general, one has a simple challenge-and-response protocol for the relation

on secret-key knowledge: The verifier sends a random ciphertext to the prover,

and the prover answers the plaintext of the ciphertext. This simple protocol is

honest-verifier perfect zero knowledge for the relation on secret-key knowledge.

However, a malicious verifier can use this protocol as the decryption oracle. In

some instantiations of NTRU, this yields the universal break [MY08].

One can consider a protocol by combining the observations by Coppersmith

and Shamir mentioned above with statistical-zero-knowledge proof systems for

GapSVP and GapCVP by Micciancio and Vadhan [MV03] (Section 6.3). This

combination might fit for our purpose, however, we cannot provide reasonable

analysis of it.

Recent studies on lattice-based cryptography gave several protocols for lattice

problems and cryptographic primitives based on the worst-case hardness of lattice

problems. There are statistical zero-knowledge proof systems for coGapSVP and

coGapCVP by Goldreich and Goldwasser [GG00], and ones with efficient prover

for GapSVP and GapCVP by Micciancio and Vadhan [MV03]. Recently, Peikert

and Vaikuntanathan gave non-interactive statistical-zero-knowledge proof systems

with efficient prover for several lattice problems [PV08]. Lyubashevsky [Lyu08a,

Lyu09] (Section 6.5 and Section 6.8) and Kawachi et al. [KTX08] (Section 6.7)

proposed concurrently-secure lattice-based identification schemes. It will be an

interesting task to construct concurrently-secure ID scheme and non-interactive

zero-knowledge protocols for NTRU.

We next discuss the plaintext knowledge. The Xagawa–Tanaka proof-of-

knowledge arguments for the relations on plaintext knowledge are related to proof

of plaintext knowledge (PPK). Explicit formalization of PPK is due to Aumann and

Rabin (cited in Katz [Kat03]). According to Katz [Kat03, Section 1.2], they gave a

generic solution for any public-key encryption scheme and their protocol is honest-

verifier zero knowledge, while the arguments are (cheating-verifier) statistical zero

knowledge.

There are many identification schemes based on the combinatorial prob-

lems; Shamir’s scheme [Sha89] based on the permuted kernel problem, Stern’s

scheme [Ste96] based on the syndrome decoding problem, and the scheme by

Pointcheval and Poupard [PP03] based on the permuted perceptron problem, and

etc. Section 9.6 compares the NTRU-based ID scheme and the identification

schemes mentioned above.

Finally, we report that we found an independent work by Gaborit and Gi-

rault [GG07]. They proposed light-weight variants of Stern’s identification scheme

by using NTRU-like codes, double circulant linear codes and assumed the hard-

ness of the syndrome decoding problem of their NTRU-like codes. We note that

their paper lacks the proof of security and does not show zero-knowledge property

of the protocol. (We also note that we can easily repair the protocol and obtain

their security proof.) We also note that their protocol cannot be used as a proof-of-

knowledge argument for the relation on secret-key knowledge since they did not

split the permutation.
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9.2 Brief Sketch of NTRU

In this section, we briefly review NTRU. For details, see the original pa-

per [HPS98], the proposals of the parameters [HS00, HGSW05, HHGP+07,

WHGH+08, HHHGW09], and the description in Section 12.6

For a positive integer n, NTRU is defined on a quotient ring R = Z[x]/(xn − 1).

For a positive integer q, we denote Z[x]/(q, xn − 1) by Rq. We identify R with Zn

by identifying f =
∑n−1

i=0 fix
i ∈ R with f = ( f0, . . . , fn−1) ∈ Zn. We also identify Rq

with Zn
q.

Intuitively, the security is based on the hardness to factor a product of two short

polynomials in Rq. Let n denote the dimension of Rq. The subsets of Rq, L f , Lg,

Lm, Lr, and LF are defined later. They are used for key generation, encryption,

and decryption. While we do not consider the decryption in this paper, we note the

decryption procedure.

Scheme 9.2.1 (NTRUEncrypt). Let n denote the dimension of Rq. All the partici-

pant agree the parameters settings.

Setup(1n): Given the security parameter n, output 1n.

KeyGen(param = 1n): Choose f ← L f and g ← Lg with the constrain that f is

invertible in Rq and Rp. Set Fq ← f−1 in Rq. Compute h ← p ⊗ g ⊗ Fq in Rq.

The public key is h and the secret key is f.

Enc(ek = h,msg = m): The plaintext is m ∈ Lm. Generate a random polyno-

mial r← Lr and compute c← h ⊗ r +m in Rq. The ciphertext is c.

Dec(dk = f, ct = c): The ciphertext is c ∈ Rq. Compute a′ ← f ⊗ c in Rq. Com-

pute a← p⊗g⊗r+f⊗m in R from a′ by using a centering algorithm. Compute

Fp ← f−1 in Rp. Compute m′ ← Fp ⊗ a in Rp. The obtained plaintext is m′.

The decryption correctly works since the parameters are chosen carefully to

ensure that a = p⊗ g⊗ r+ f ⊗m in R with high probability. We omit the details of

the parameter setting; see the original paper or the papers on instantiations [HPS98,

WHGH+08, HHHGW09].

Let T denote {−1, 0,+1}n. T (d1, d2) denotes the subset of T such that each

polynomial in T (d1, d2) has exactly d1 coefficients set to 1 and d2 coefficients set

to −1. For an integer a and a subset S ⊆ Rq, we define aS as {af : f ∈ S}. For a

subset S ⊆ Rq, S∗ denotes the set of the polynomials in S which have the inverses

in Rq, i.e., S∗ = {f ∈ S : ∃f−1 ∈ Rq}.
There are five instantiations of NTRU, NTRU-1998 [HPS98], NTRU-

2001 [HS00], NTRU-2005 [HGSW05], NTRU-2007 [HHGP+07], and NTRU-

2008 [WHGH+08, HHHGW09], which are summarized in Table 9.1. The fol-

lowing table summarizes the parameter sets of these instantiations. In Table 9.1,

we use T (dg, dg) instead of T (dg, dg)∗ in NTRU-2008 for certain technical reason.
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Parameter Sets q p L f Lg Lm Lr LF

NTRU-1998 2k 3 T (d f , d f − 1)∗ T (dg, dg) T T (dr , dr) -

NTRU-2001 prime 2 + x {1 + p ⊗ F : F ∈ LF }∗ B(dg) B B(dr) B(dF )

NTRU-2005 prime 2 {1 + p ⊗ F : F ∈ LF }∗ B(N/2)∗ B X(dr) X(dF )

NTRU-2007 2k 3 {1 + p ⊗ F : F ∈ LF }∗ T (d f , d f − 1)∗ T (d f , d f − 1) T (d f , d f − 1) T (d f , d f − 1)

NTRU-2008 2k 3 {1 + p ⊗ F : F ∈ LF }∗ T (dg, dg) T T (dr , dr) T (dF )

Table 9.1: Parameter sets. In NTRU-1998, f must be invertible in Rp.

9.3 Interpretation of NTRU as Lattice-based Encryption

Since we connect NTRU and the lattice-based protocol, we briefly review NTRU

lattices.

NTRU lattices: We consider the following matrix C which is generated by a

secret key:

C =
[
RotT (f) RotT (p ⊗ g)

]
.

An NTRU lattice [CS97] is generated by a basis

H =

[
Rot(1) Rot(0)

Rot(h) Rot(q)

]
.

It is easy to verify that L(H) = Λq(C) by the equation h ≡ f−1 ⊗ (p ⊗ g) (mod q).

Since Stern’s protocol and its variant usedΛ⊥q (A) for some A rather thanΛq(C),

we have to find A ∈ Zn×2n
q such that L(H) = Λ⊥q (A). As noted in the paper propos-

ing NTRUSign [HHGP+03], we can verify that

L(H) = Λ⊥q ([−Rot(h) Rot(1)]).

Thus, we define A = [−Rot(h) Rot(1)]. In the following, we mainly consider

NTRU lattices in this form. We will give the details in Section 12.6.

9.4 The Xagawa–Tanaka Protocol

Now, we review the Xagawa–Tanaka protocol [XT09]. We first quickly review the

Stern protocol (Section 6.6) and the KTX RID protocol (Section 8.3).

9.4.1 Relations of Stern’s Protocol and its Variant

LetBm(d) denote the set of m-dimensional binary vectors whose Hamming weights

are d, i.e., the numbers of 1’s are exactly d. As already seen in Section 6.6, his

protocol is for the following relation:

{((A,u), e) ∈ (Zn×m
q × Zn

q) × {0, 1}m : (Ae ≡ u (mod q)) ∧ (e ∈ Bm(d))}.
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Kawachi et al. proposed the variants of Stern’s protocol [KTX08] which appeared

in Section 8.3. In a ring identification scheme based on their variant, the protocol

is for the relation

{((A, u1, . . . ,ul), e) ∈ (Zn×m
q × Zn×l

q ) × {−1, 0,+1}m+l

: (e = eh◦et)∧(eh ∈ Bm(d))∧(et ∈ −Bl(1))∧(Aeh+[u1 . . . ul]el ≡ 0 (mod q))}.

In order to design the protocol, they split a permutation in Stern’s protocol; they

put two permutations in their protocol, while Stern put one permutation. (See

Section 8.3 and [KTX08, Section 5].)

9.4.2 The Xagawa–Tanaka Protocol

The Xagawa–Tanaka protocol [XT09] has a similar structure of the ring identi-

fication schemes by Kawachi et al. [KTX08], which are obtained by splitting a

permutation in Stern’s protocol [Ste96] as in the above. We replace the two set,

Bm(m/2) and −Bl(1), with the following enumeration sets.

Enumeration sets: For a positive integer n, we denote by [n] the set {0, . . . , n−1}.
S n denotes the n-dimensional permutation group, i.e., the group consisting of all of

the permutations over [n]. The operator ∗ means the composition of permutations,

that is, (π ∗ φ)(x) = π(φ(x)).

We define a property of a subset of Rq. Let π be a permutation over [n]. For an

n-dimensional vector f = ( f0, . . . , fn−1) ∈ Zn
q, we define π( f ) = ( fπ(0), . . . , fπ(n−1)).

We note that, for a permutation π over [n] and two polynomials a and b in Rq,

π(a + b) = π(a) + π(b). For a polynomial x ∈ Rq, Sx denotes {π(x) : π ∈ S n} ⊂ Rq.

We call these sets enumeration sets. We note that T (d1, d2) is an enumeration set,

while T is not.

9.4.3 Description

For two enumeration sets Sh and St, consider the following relation:

R = {((Rot(ah),Rot(at), u), (eh, et)) ∈ (Mq ×Mq × Zn
q) × (Zn

q × Zn
q)

: (Rot(ah) · eh + Rot(at) · et = u) ∧ (eh ∈ Sh) ∧ (et ∈ St)}.

This relation is interpreted as follows:

R = {((ah, at,u), (eh, et)) ∈ R3
q ×R2

q : (ah ⊗ eh + at ⊗ et = u)∧ (eh ∈ Sh)∧ (et ∈ St)}.

If ah = −h and at = 1, the relation R is directly for the NTRU lattice.

Let Com be the special type of a statistically-hiding and computationally-

binding string-commitment scheme as in Section 5.1.3.

Now, we describe the XT protocol, which is statistical zero knowledge and

proof of knowledge for the relation R. For ease of notation, we do not write the

randomness of the function Com.
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Scheme 9.4.1 (The Xagawa–Tanaka protocol [XT09]). The common input is a

triplet (ah, at, u) ∈ R3
q. Prover’s auxiliary inputs are eh and et such that ah⊗eh+at⊗

et = u, eh ∈ Sh, and et ∈ St. The prover P and the verifier V interact as follows:

Step P1: Choose random permutations πh and πt over [n]. Choose random vec-

tors rh and rt ∈ Rq and send commitments y = (c1, c2, c3) computed as follows:

• c1 ← Com(πh, πt, ah ⊗ rh + at ⊗ rt),

• c2 ← Com(πh(rh), πt(rt)),

• c3 ← Com(πh(eh + rh), πt(et + rt)).

Step V1: Send a random challenge ch ∈ {1, 2, 3} to P. Each challenge 1, 2, and

3 corresponds to verifier’s check “permuted,” “masked,” and “random.”

Step P2:

• If ch = 1, it reveals c2 and c3. So, send z1 = (wh,wt, xh, xt) ←
(πh(eh), πt(et), πh(rh), πt(rt)).

• If ch = 2, it reveals c1 and c3. Send z2 = (φh, φt, yh, yt) ← (πh, πt, eh +

rh, et + rt).

• If ch = 3, it reveals c1 and c2. Send (ψh, ψt, zh, zt)← (πh, πt, rh, rt).

Step V2:

• If ch = 1, check that c2 = Com(xh, xt), c3 = Com(wh + xh,wt + xt),

wh ∈ Sh, and wt ∈ St.

• If ch = 2, check that c1 = Com(φh, φt, ah ⊗ yh + at ⊗ yt − u), c3 =

Com(φh(yh), φt(yt)).

• If ch = 3, check that c1 = Com(ψh, ψt, ah ⊗ zh + at ⊗ zt) and c2 =

Com(ψh(zh), ψt(zt)).

Output dec = 1 if all of the above checks are passed, otherwise output dec = 0.

Theorem 9.4.2. If Com is a statistically-hiding and computationally-binding

string-commitment scheme, the above protocol is a statistical-zero-knowledge and

proof-of-knowledge argument for a relation R with soundness 2/3.

Proof. The correctness of the above protocol can easily be shown. The existence

of a knowledge extractor implies the soundness of the protocol. Thus, in the proof,

we show the existence of a simulator and a knowledge extractor. However, since

these proofs are very similar to the ones in [Ste96, KTX08], we omit the details

and give the sketch of the proof.

Statistical zero knowledge: The construction of the simulator is similar to the ones

in [Ste96] and [KTX08].

We construct a simulator S which, on input (ah, at,u) and given oracle access

to a cheating verifier V∗, outputs a simulated transcript. S chooses a random value

ch from {1, 2, 3}, a prediction of the value V∗ will not choose. Next, the simulator

chooses a random tape r′ of V∗. We only show how the simulator works in the

case ch = 1. The remaining cases can be proved by the similar way to the proof of
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Lemma 6.7.2.

Case ch = 1: S computes e′
h

and e′t such that ah ⊗ e′
h
+ at ⊗ e′t = u by using

linear algebra. Next, it chooses random permutations π′
h

and π′t over [n], random

polynomials r′
h

and r′t from Rq, and random strings ρ′
i

for i = 1, 2, 3. It computes

commitments as

• c′
1
= Com(π′

h
, π′t , ah ⊗ r′

h
+ at ⊗ r′t ; ρ

′
1
),

• c′
2
= Com(π′

h
(r′

h
), π′t(r

′
t); ρ

′
2
),

• c′
3
= Com(π′

h
(e′

h
+ r′

h
), π′t(e

′
t + r′t); ρ

′
3
).

It sends the commitments to V∗ and receives a challenge ch from V∗. The simulator

S computes a transcript as follows:

• If ch = 1, it outputs ⊥ and halts.

• If ch = 2, it outputs (r′; (c′
1
, c′

2
, c′

3
), 2, (π′

h
, π′t , e

′
h
+ r′

h
, e′t + r′t , ρ

′
1
, ρ′

3
)).

• If ch = 3, it outputs (r′; (c′
1
, c′

2
, c′

3
), 3, (π′

h
, π′t , r

′
h
, r′t , ρ

′
1
, ρ′

2
)).

We start the analysis of the case ch = 2. In this case, we have that

ViewP
V∗(z)(ah, at,u) = (r; (c1, c2, c3), 2, (πh, πt, eh + rh, et + rt, ρ1, ρ3)),

S(ah, at,u) = (r′; (c′1, c
′
2, c
′
3), 2, (π′h, π

′
t , e
′
h + r′h, e

′
t + r′t , ρ

′
1, ρ
′
3)).

Consider a one-to-one mapping (π′
h
, π′t , r

′
h
, r′t , ρ

′
1
, ρ′

3
) = (πh, πt, rh + eh − e′

h
, rt + et −

e′t , ρ1, ρ3). By this equation, we have that c′
1
= c1 and c′

3
= c3, and the responses

from the simulator equal to the ones from the prover. From the statistically-hiding

property of Com, the statistical distance between the distributions of c2 and c′
2

is

negligible. Thus, the distributions of ViewP
V∗(z)(ah, at,u) and S(ah, at, u) are statis-

tically close.

In the case ch = 3, it is easy to verify the statistical distance by setting

(π′
h
, π′t , r

′
h
, r′t , ρ

′
1
, ρ′

2
) = (πh, πt, rh, rt, ρ1, ρ2).

Proof of knowledge: We construct the extractor following [Ste96] and [KTX08].

Assume that there exists P∗ that convincing V with probability 2/3+ ǫ. The knowl-

edge extractor K works as follows:

1. Choose a random tape of P∗.

2. Obtain three transcripts by acting as the verifier and by setting ch = 1, 2, 3.

Each ρ
( j)
i

denotes the random string in the commitment ci in the case

that ch = j. The three transcripts are ((c1, c2, c3), 1, (wh,wt, xh, xt, ρ
(1)
2
, ρ

(1)
3

)),

((c1, c2, c3), 2, (φh, φt, yh, yt, ρ
(2)
1
, ρ

(2)
3

)), and ((c1, c2, c3), 3, (ψh, ψt, zh, zt, ρ
(3)
1
, ρ

(3)
2

)).

3. Output (φ−1
h

(wh), φ−1
t (wt)) as a witness.

We analyze the probability that the output is the witness corresponding to

(ah, at,u). Since the probability that P∗ convincing V is 2/3 + ǫ, for ǫ fraction of
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random tapes three transcripts are valid. Hence, we have the following equations:

Com(φh, φt, ah ⊗ yh + at ⊗ yt − u; ρ
(2)
1

) = Com(ψh, ψt, ah ⊗ vh + at ⊗ zt; ρ
(3)
1

),

(9.1)

Com(xh, xt; ρ
(1)
2

) = Com(ψh(zh), ψt(zt); ρ
(3)
2

), (9.2)

Com(wh + xh,wt + xt; ρ
(1)
3

) = Com(φh(yh), φt(yt); ρ
(2)
3

). (9.3)

By the assumption that Com is computationally binding, there exists no distinct

pair of arguments of Com in the equations (9.1), (9.2), and (9.3). From the equation

(9.3), we have that yh = φ−1
h

(wh + xh) = φ−1
h

(wh) + φ−1
h

(xh) and yt = φ−1
t (wt) +

φ−1
t (xt). Combining the equations φh = ψh, φt = ψt, and (9.2), we obtain that

zh = φ
−1
h

(xh) and zt = φ
−1
t (xt). By substitution in the equation (9.1), we have that

ah⊗(φ−1
h (wh)+φ−1

h (xh))+at⊗(φ−1
t (wt)+φ

−1
t (xt))−u = ah⊗(φ−1

h (xh))+at⊗(φ−1
t (xt)).

Simplifying the above we obtain that

ah ⊗ (φ−1
h (wh)) + at ⊗ (φ−1

t (wt)) = u.

Recall that Sh and St are enumeration sets. Therefore, φ−1
h

(wh) ∈ Sh and φ−1
t (wt) ∈

St. This completes the proof. � �

9.4.4 Relations for NTRU

In this section, we tailor the relations for instantiations of NTRU.

Relations on Secret-Key Knowledge

For NTRU-1998: The secret keys f and g are chosen from T (d f , d f − 1)∗ and

T (dg, dg), respectively. Additionally, f must be invertible in R3 = Z[α]/(3, αn − 1).

The public key is computed as h = 3g ⊗ f−1.

We define the following relation:

R1998
KEY = {((−h, 1, 0), (f, 3g)) ∈ R3

q × R2
q

: (−h ⊗ f + 3g = 0) ∧ (f ∈ T (d f , d f − 1)) ∧ (3g ∈ 3T (dg, dg))}.

For NTRU-2001: The secret key f is chosen from {1 + p ⊗ F : F ∈ B(dF)}∗,
where p = 2 + α. The polynomial g is randomly chosen from B(dg). The public

key is computed as h = p ⊗ g ⊗ (1 + p ⊗ F)−1. We define the following relation:

R2001
KEY := {((−h, 1, p−1 ⊗ h), (F, g)) ∈ R3

q × R2
q

: (−h ⊗ F + g = p−1 ⊗ h) ∧ (F ∈ B(dF)) ∧ (g ∈ B(dg))}.
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For NTRU-2005: As in the relation on plaintext knowledge, we cannot define

the relation on secret-key knowledge of the encryption in NTRU-2005, sinceLF =

X(dF) is not an enumeration set. Again, a simple modification allows us to define

the key-pair relation for the modified version of NTRU-2005.

For NTRU-2007: The secret key f is chosen from {1 + 3F : F ∈ T (d f , d f − 1)}∗.
The polynomial g is randomly chosen from T (d f , d f − 1)∗. The public key is

computed as h = 3g ⊗ (1 + 3F)−1. Let 3−1 be the multiplicative inverse of 3 in Rq.

We define the following relation:

R2007
KEY := {((−h, 1, 3−1 ⊗ h), (F, g)) ∈ R3

q × R2
q

: (−h ⊗ F + g = 3−1 ⊗ h) ∧ (F ∈ T (d f , d f − 1)) ∧ (g ∈ T (d f , d f − 1))}.

For NTRU-2008: The secret key f is chosen from {1 + 3F : F ∈ T (dF , dF)}∗.
The polynomial g is randomly chosen from T (dg, dg). The public key is computed

as h = 3g ⊗ (1 + 3F)−1. We define the following relation:

R2008
KEY = {((−h, 1,h), (3F, 3g)) ∈ R3

q × R2
q

: (−h ⊗ 3F + 3g = h) ∧ (3F ∈ 3T (dF , dF)) ∧ (3g ∈ 3T (dg, dg))}.

Remark 9.4.3. We note that these relations do not imply that f and g are invertible

in Rq. Moreover, these relation for NTRU-1998 does not assure that f is invertible

in Rp. They guarantee that the l∞ norm of f and g is relatively short and one can

decrypt ciphertexts by using the polynomials f and g in the instantiations except

NTRU-1998. In NTRU-1998, the keys satisfying the relation would imply the

partial decryption.

Relations on Plaintext Knowledge

Recall the encryption procedure of NTRU. Let m and r be a plaintext and a ran-

domness, respectively. The ciphertext c is m+h⊗r. Instead ofT , we useT (dm, dm)

for some dm. By changing the message spaces, each Lm is treated as an enumera-

tion set.

For NTRU-1998 and NTRU-2008: Lr is set as T (dr, dr). We define the follow-

ing relation:

R1998
ENC = R2008

ENC = {((h, 1, c), (r,m)) ∈ R3
q × R2

q

: (h ⊗ r +m = c) ∧ (r ∈ T (dr, dr)) ∧ (m ∈ Lm)}.

For NTRU-2001: In this case, Lr is set as B(dr). We define the following rela-

tion:

R2001
ENC := {((h, 1, c), (r,m)) ∈ R3

q × R2
q : (h ⊗ r +m = c) ∧ (r ∈ B(dr)) ∧ (m ∈ Lm)}.
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For NTRU-2005: X(dr) is defined as {f1 ⊗ f2 + f3 : fi ∈ B(dr)} and is not an

enumeration set. We cannot define the relation on plaintext knowledge of the en-

cryption in NTRU-2005, since X(dr) is not an enumeration set.

However, simple modification allows us to define the relation for NTRU-2005

as in the above. For example, we could use X′(dr) = {f ∈ X(dr) : f ∈ {0, 1}n},
which is an enumeration set, instead of X(dr).

For NTRU-2007: Lr is set asT (d f , d f −1) and so isLm. We define the following

relation:

R2007
ENC := {((h, 1, c), (r,m)) ∈ R3

q × R2
q

: (h ⊗ r +m = c) ∧ (r ∈ T (d f , d f − 1)) ∧ (m ∈ T (d f , d f − 1))}.

Remark 9.4.4. In order to prevent information leakage on m, NTRU-2008 rec-

ommended that the numbers of 1s, −1s, and 0s in a plaintext are at least some

parameter. (See [WHGH+08, HHHGW09, Section 9.2.2]).

Additionally, we note that certain encryption schemes used the enumeration set

B(d) as the plaintext spaces. For example, the Chor–Rivest cryptosystem and the

Okamoto–Tanaka–Uchiyama cryptosystem did so.

9.5 Identification Schemes

We can simply develop identification schemes based on NTRU from the XT pro-

tocol; A key-generation algorithm is same as the one in NTRU. A prover and a

verifier runs the protocol for secret-key knowledge t times sequentially or in paral-

lel. Let us discuss the security of this identification scheme. In the following, the

security parameter n specifies the parameters N, p, and q, and the spaces L f , Lg,

Lm, and Lr.

Assumptions: In the literature of padding schemes for NTRU, their securities

are build on the one-way or the partial one-way assumption; the standard one-way

assumption is stated as follows:

Definition 9.5.1 (The NTRU (one-way) assumption). It is asymptotically hard to

solve the NTRU inversion problem; For any polynomial-time adversary A, the

success probability Advow
NTRU,A(n) is negligible in n; where

Advow
NTRU,A(n) = Pr

[
A(h, c) = m :

(h, f)← KG(1n); m← Lm; r← Lr; c = h ⊗ r +m

]
.

The problem on recovering the secret key is not easier than the problem on

inverting the NTRU function, since, if one can get the secret key, then one can

decrypt the ciphertexts.
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Definition 9.5.2 (The NTRU factoring assumption). This assumption states that it

is asymptotically hard to solve the NTRU factoring problem; For any polynomial-

time adversaryA, the success probability Advfac
NTRU,A(n) is negligible in n; where

Advfac
NTRU,A(n) = Pr

[
(h = p ⊗ f′−1 ⊗ g′) ∧ (f′ ∈ L f ) ∧ (g′ ∈ Lg) :

(h, f)← KG(1n); (f′, g′)← A(h)

]
.

Note that in the NTRU factoring assumption, the adversary has to output f′ which

has an inverse in Rq.

As stated in Remark 9.4.3, the XT protocol does not ensure that the prover

has f which is invertible in Rq. Thus, we need another assumption which may be

stronger then the NTRU factoring assumption.

Definition 9.5.3 (The NTRU decomposotion assumption). This assumption states

that it is asymptotically hard to solve the NTRU decomposition problem; For any

polynomial-time adversary A, the success probability Advdec
NTRU,A(n) is negligible

in n; where

Advdec
NTRU,A(n) = Pr

[
(f′ ⊗ h = p ⊗ g′) ∧ (f′ ∈ L f ) ∧ (g′ ∈ Lg) :

(h, f)← KG(1n); (f′, g′)← A(h)

]
.

The adversary violating this assumption still can be used to invert the NTRU

function: Invoking the adversary, we obtain f′ and g′ such that f′ ∈ L f , g′ ∈ Lg,

and f′ ⊗ h = p ⊗ g′. Assume that the ciphertext is in the form c = h ⊗ r + m.

Multiplying f′ to the ciphertext, We have that f′ ⊗ c = p ⊗ g ⊗ r + f′ ⊗ m in Rq.

Since the parameters are set to decrypt correctly with overwhelming probability,

we can compute a′ = p ⊗ g ⊗ r + f′ ⊗ m over Z. Hence, we obtain f′ ⊗ m in Rp.

In the case of NTRU-2008, L f is {1 + pF}. Hence, we can correctly compute m.

In the case of NTRU-1998, L f is T (d f , d f − 1). Even if f′ is not invertible in Rp,

we can partially decrypt m as stated in Remark 9.4.3. Consequently, the NTRU

decomposition assumption is not stronger than the NTRU one-way assumption.

9.5.1 Description

As stated in the first paragraph of this section, we can develop a passive-secure

identification scheme based on NTRU from the XT protocol for secret-key knowl-

edge, since the protocol composed sequentially is a proof of knowledge and statis-

tical zero knowledge.

Let Com be the special type of a statistically-hiding and computationally-

binding string-commitment scheme as in Section 5.1.3.

Scheme 9.5.4 (NTRU-ID).

Setup(1n): Given 1n, output 1n.

KeyGen(1n): Choose f ← L f and g← Lg with the constrain that f is invertible

in Rq and Rp. Set Fq ← f−1 in Rq. Compute h← p ⊗ g ⊗ Fq in Rq. The public

key is h and the secret key is (f, g).
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P and V: The common input is the pubic key h ∈ Rq. Prover’s auxiliary input is

(f, g). The prover P and the verifier V interact as follows: The prover and the

verifier runs the XT protocol for RKEY in t-parallel or t-sequential.

9.5.2 Security Proofs

Theorem 9.5.5. Let NTRU-IDs and NTRU-IDp denote obtained ID schemes by the

sequential composition and by the parallel composition t times, respectively. As-

sume that there exists an adversaryA that impersonates the valid prover with prob-

ability at least AdvIMP−PA
ID,A (n). Then, there exists an adversary B which solves the

NTRU decomposition problem with probability at least Advdec
NTRU,B(n) or breaks the

binding property of the commitment scheme with probability at least AdvCOM,B(n).

The proof is obtained by applying the argument of Poupard and

Pointcheval [PP03] to the proof by Stern [Ste96].

Proof. We only give the proof for the sequential composition, since the proof for

parallel composition is very similar to the one in Section 6.7. We note that the proof

for the sequential composition is also very similar to the ones of Stern [Ste96] and

Pointcheval and Poupard [PP03].

Assume that there exists a polynomial-time adversaryA that impersonates the

prover with probability ǫ. We first replace the prover oracle with the simulation.

This change introduces the statistical distance Qt∆.

Let ω denote the random tape of the adversary A. Let I denote the random

tape of the verifier that is identified with the challenge C ∈ {0, 1, 2}t. Let us denote

by S the set of the pairs (ω, I) which lead to acceptance. Hence, we have that

Pr(ω,I)[(ω, I) ∈ S ] = ǫ = (2/3)t + ǫ′. Next, we define the set Ω = {ω | PrI[(ω, I) ∈
S ] ≥ (2/3)t + ǫ′/2}. A standard argument shows that Prω[ω ∈ Ω] ≥ ǫ′/2 and

Pr[Ω | S ] ≥ ǫ′/2ǫ. Assume in the following that the event Ω occurs.

Next, consider the execution tree T (ω), corresponding to all accepted I, with

a fixed ω. We denote by ni the number of the nodes at the depth i. We know that

n0 = 1 and nt = 2t + 3tǫ′/2, because nk/3
k = PrI[(ω, I) ∈ S ] ≥ (2/3)t + ǫ′/2. So,

we have that

t−1∏

i=0

ni+1

ni

=
nt

n0
≥ 2t +

ǫ′

2
· 3t ≥

(
1 − ǫ

′

2

)
· 2t +

ǫ′

2
· 3t.

By taking the logarithm of the inequation and using the convexity of the logarithm,

we obtain that

t−1∑

i=0

log
ni+1

ni

≥
(
1 − ǫ

′

2

)
· log 2t +

ǫ′

2
· log 3t ≥ t

(
log 2 +

ǫ′

2
log

3

2

)
.

Therefore, there exists i < t such that

ni+1

ni

≥ 2(3/2)ǫ
′/2 = 2 exp

(
ǫ′

2
· log

3

2

)
≥ 2 ·

(
1 +

ǫ′

2
· log

3

2

)
≥ 2 ·

(
1 +

ǫ′

5

)
.
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Let fi and ti denote the number of nodes at depth i with exactly 3 sons and that with

at most 2 sons, respectively: We have that

ni = fi + ti and ni+1 ≤ 3 fi + 2ti = fi + 2ni.

Therefore, for the above i, we obtain that 2 + fi/ni ≥ ni+1/ni2 + 2ǫ′/5. Thus, so,

with probability greater than 2ǫ′/5, the path I contains a node with 3 sons.

Now, the strategy of the reduction is as follows: (1) choose a random tape ω

for the adversaryA. (2) choose a random challenge I for the simulated verifier. (3)

using a ZK simulator, simulating the prover oracle. (4) checking 3k possible nodes

along the path I. With probability greater than ǫ(ǫ′/2ǫ)(2ǫ′/5) = ǫ′2/5, we have

found a node with 3 sons.

Assume that we have found a node with 3 sons. In that case, the reduction

algorithm can obtains a collision for the commitment or solves the problem as in

the proof of Stern [Ste96].

Hence, we have that

ǫ′2

5
− Qt∆ ≤ Advdec

NTRU,B(k) + AdvCOM,B(k).

�

Remark 9.5.6. Since the protocol is (cheating-verifier) zero knowledge, the re-

duction algorithm can simulate the valid prover even if the adversary accesses the

prover oracle in an active way. This reduction requires as many steps as Qtk times

of the original reduction. For simplicity, we only consider the reduction for the

passive adversary.

9.5.3 Parameters and Communication Costs

In order to achieve the 80-bit security, we can set

(2/3)t ≤ 2−81, and Advdec
NTRU,B(k),AdvCOM,B(k),Qt∆ ≤ 2−166.

By solving (2/3)t ≤ 2−81, we have that t ≥ 138.47... and set t = 150 (with rea-

sonable margin). We use NTRU and the hash function which is suitable for use at

the 192-bit security level. By setting Q = 260, we have ∆ ≤ 2−234.8137... and set

∆ = 2−256.

In NTRU-2008 [WHGH+08, HHHGW09], three parameter sets, ees677ep1,

ees887ep1, and ees1087ep1, are recommended for the 192-bit security level. We

adopt ees677ep1: the public-key length is 677·log 2048 = 7447 bits and the secret-

key length is 677 · 2 = 1354 bits.

We next adopt the Halevi-Micali commitment scheme [HM96]. In this case,

we need a 192-bit secure cryptographic hash function which outputs the digest of

length at least 384 bits. Then, we have the commitment scheme where the length

of the commitment is 7 · 384 = 2688 bits and the length of the decommitment is
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|m| + 2688 bits (m is a message to be committed). We have to compute |m|. The

prover will sends two permutations and two vectors, or four vectors in Step P2. In

the former, the length of the message is 2 · log 677!+2 ·667 · log 2048 ∼ 25686 bits.

In the latter, the length of the message is 2 · 677 · log 3+ 2 · 677 · log 2048 ∼ 17041

bits.

Thus, the total communication cost is 150 · (3 ·2688+2+ (25686+2 ·2688)) =

5869200 bits (approximately 716.5kB).

Discussions: By parallel composition, we can obtain almost the same identifica-

tion scheme. However, this scheme has a drawback in the sense of tightness of the

reduction. In this case, the tightness is cubic as in Kawachi et al. [KTX08], rather

than quadratic as in the above.

It seems that concurrently secure identification schemes need stronger assump-

tions, such as the one-more NTRU one-way assumption or the assumption that the

small integer solution problem over NTRU lattices is hard on the average. The

small integer solution problem, SISβ, is, given a matrix A ∈ Zn×m
q , to find a non-

zero vector z ∈ Λ⊥q (A) such that ‖z‖ ≤ β in some norm. Using this assumptions,

Lyubashevsky [Lyu08a] and Kawachi et al. [KTX08] succeeded to construct con-

currently secure identification schemes based on lattice problems.

9.6 Comparisons

There are several identification schemes based on combinatorial problems.

We compare the schemes such as Stern’s SD-based [Ste96], Shamir’s PKP-

based [Sha89], PPP-based by Pointcheval and Poupard [PP03], Lyubashevsky’s

C/IL-based [Lyu08a, Lyu08b], and C/IL-based by Kawachi et al. [KTX08] identi-

fication schemes. For the comparison with standard identification schemes, we put

GQ [GQ88] and Schnorr [Sch91] in Table 9.2.

In the papers [Ste96, Sha89], the authors ignored the commitment scheme and

directly used the hash value. Thus, the proofs are not correct in the standard model

(this requires stronger assumptions on the hash function). We, hence, replace the

hash function with the commitment scheme.

The main difficulty of comparison is that the parameter settings for other

schemes were not explicit. They did not propose the parameter-generating method

in order to attain the security level. Here, we briefly discuss the parameters and

costs if we set 80-bit security for the identification schemes.

Storage costs: Notice that, in all reduction, the advantages of the adversary

against identification schemes are upperbounded by the square roots of the advan-

tage of the adversary against the assumption that the underlying problem is hard.

Thus, the best work factor for solving the underlying problem must be at least 2160.

We here require 196-bit security for the underlying problem.

Recall that in the case of NTRU-ID, we have a 7447-bit public key.
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Name Reduction Security |pk| (kB) Cost (kB) Ref.

NTRU-ID (2/3)t +
√

5
√
ǫ(k) + ǫ′(k) + Qt∆ P (A) 0.91 716.5 [XT09]

St-IDp (2/3)t +
√

5
√
ǫ(k) + ǫ′(k) + Qt∆ P (A) 0.204

(+680.9) 935.1 [Ste96]

PKP
(

126
251

)t
+
√

5.758...
√
ǫ(k) + ǫ′(k) + Qt∆ P (A) ≥ 2.313 ≥ 90.0 [Sha89]

PPP (3/4)t +
√

14/3
√
ǫ(k) + ǫ′(k) + 2Qt∆ P (A) ≥0.196

(+≥5.324) ≥ 637.0 [PP03]

Ly09-ID
√

2ǫ(k) + 4 · 2−kt/5 + 2−3k log k/4 C ? ? [Lyu09]

St-ID+
C/IL,p

(2/3)t +
√

10
√

2ǫ(k) + Qt∆′ + 2−Ω(k) C ? ? [KTX08]

(cf:) GQ (1/2)l(k) +
√
ǫ(k) P 0.938

(+1.875) 1.885 [GQ88]

(cf:) Schnorr (1/2)l(k) +
√
ǫ(k) P 0.938

(+0.957) 0.967 [Sch91]

Table 9.2: Comparisons on reduction and security. Note: NTRU-ID, St-IDp, PKP,

PPP, and St-ID+
C/IL,p

run the basic protocol in t times sequentially. In Ly09-ID, t

is the number for parallel. Each ǫ(k) denotes the advantage of the polynomial-

time adversary against the underlying problem. Each ǫ′(k) denotes Advbd
COM(k),

the advantage of the polynomial-time adversary against the commitment scheme.

In St-ID+
C/IL,p

, ∆′ denotes the regularity of the lattice-based hash functions. In GQ

and Schnorr, l(k) denotes the length of the challenge message. In the column of

security, P, A, and C denotes passive, active, and concurrent, respectively.

In the GQ and Schnorr schemes, the RSA modulus N or the parameter for

the group p is often of length 2048 bits. However, to achieve 196-bit security,

they should be 7680-bit numbers. Interestingly, in the GQ scheme, the public key

consists of N and two elements e, X in Z∗
N

, so, the length of public key is longer than

that of NTRU-ID. Even if (N, e) in the GQ scheme and p in the Schnorr scheme is

public parameter, there is a little difference between the length of the public key.

In Stern’s scheme St-IDp [Ste96], in order to achieve 196-bit security, it

requires a random matrix in Zn×m
q as a public parameter, where (q, n,m) =

(2, 1670, 3340) (see the estimation by Canteaut and Chabaud [CC98, Approxima-

tion 1]). Hence it requires approximately 680kB for the public parameter. Each

public key is a vector in Zn
q, whose length is 1670 bits.

In the PKP scheme, Shamir proposed the parameter set (q, n,m) = (251, 16, 32)

and (q, n,m) = (251, 37, 64), which may achieve 76-bit and 184-bit security. We

adopt the latter parameter set. In the case, the public key A is a matrix in Zn×m
q and

the length of it is 18944 bits (approximately 2.31kB).

In the PPP scheme by Poupard and Pointcheval [PP03], they proposed several

parameters (n,m) = (121, 137) and (n,m) = (201, 217), which are estimated 264-

security and more. Hence, we adopt the latter. Note that their public parameters

are of length at least 201 · 217 = 43617 bits. Each public key is a vector in Zn
m,

whose length is approximately 1560 bits.

Communication Costs: The communication costs mainly depend on the domain

size of the permutations in the protocol. In PKP and PPP, they used a permutation

over [64] or over [217], respectively. Thus, their communication costs are relatively
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low. On the other hand, St-IDp uses a permutation over [3340] and NTRU-ID

employs two permutations over [677]. Hence, the communication costs are very

large.

9.7 Concluding Remarks

On computational-zero-knowledge proof systems: By using the hard-core bit

of NTRU [NSW03] or the general hard-core predicate by Goldreich and Levin,

we can construct computationally-hiding and statistically-binding bit-commitment

schemes from the NTRU one-way assumption. By using the above commitment

scheme, one obtains computational-zero-knowledge and proof-of-knowledge proof

systems for the same relations.

Signature schemes: In the literature, there were two practical signature schemes

based on NTRU, NSS [HPS01] and NTRUSign [HHGP+03]. Unfortunately, their

security were not proven under plausible assumptions. Indeed, NSS and a simple

version of NTRUSign were already broken [GJSS01, NR06].

Meanwhile, applying the Fiat-Shamir transformation to the 3-round paral-

lelized version of the XT protocol, we can obtain a secure signature scheme under

the NTRU decomposition assumption in the random oracle model. However, the

XT-NTRU signature scheme is far from practical use.

We finally mention the signature scheme by Gentry, Peikert, and Vaikun-

tanathan [GPV08]. In their scheme, the public key is A ∈ Zn×m
q and the secret

key is a short basis of Λ⊥q (A) in the l2 norm. We already saw that the short vector

f ◦ (pg) is in Λ⊥q ([−Rot(h) Rot(1)]). By rotating the short vector, one can obtain

a half of the basis of the NTRU lattice. Hoffstein, Howgrave-Graham, Pipher, Sil-

verman, and Whyte proposed the NTRUSign [HHGP+03] in 2003. In [HHGP+03],

they discussed how to obtain the remaining half of the basis of the NTRU lattice.

They used certain norm rather than the l2 norm. The method obtaining the remain-

ing half of a short basis in l2 norm would yield a secure signature scheme based on

the NTRU problems in a similar way to the GPV signature scheme [GPV08].
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10
Trapdoors for Lattices

Organization: We briefly introduce the background of trapdoor functions based

on lattice problems in Section 10.1. In Section 10.2, we review the definition of

(one-way and collision-resistant) preimage sampleable functions (PSFs), which

suit for lattice-based trapdoor functions. In Section 10.3, we review the Alwen-

Peikert algorithm for trapdoor generation. Section 10.4 reviews the sampling algo-

rithm for DΛ,s,c by Gentry, Peikert, and Vaikuntanathan (which appears originally

in Klein [Kle00]). In Section 10.5, we describes lattice-based PSFs obtained by

combining the aboves. Section 10.6 illustrates the ideal version of the Alwen-

Peikert construction. In Section 10.7 describes an instantiation of PSFs from ideal

lattices. Section 10.8 reviews the notions of “Bonsai” techniques. We apply these

techniques to ideal-lattice-based constructions in Section 10.9. As direct applica-

tions of PSFs, we construct lattice-based trapdoor hash functions in Section 10.10

10.1 Introduction

In the seminal paper of Ajtai [Ajt96], he gave an instance-generation algorithm for

SIS that outputs (A, e): Generate a random vector e← {0, 1}m, generates a random

matrix A ∈ Zn×m
q with constrain that Ae = 0, and permutes them. But, an instance-

generation algorithm that outputs A ← Zn×m
q with the short basis of Λ⊥q (A) is

non-trivial. After this algorithm, he proposed the instance generation algorithm for

this problem [Ajt99]. This algorithm was an isolated point of lattice-based cryptog-

raphy; because in about decade, there were no cryptographic schemes employing

this algorithm.

In 2008, Gentry, Peikert, and Vaikuntanathan [GPV08] showed that the short

basis has a power of sampling the discretized Gaussian DΛ,s,c on the latticeΛ. They
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also improved the analysis of the Ajtai algorithm. Alwen and Peikert further im-

proved the Ajtai algorithm [AP09]. Finally, in 2009, Stehlé, Steinfeld, Tanaka, and

Xagawa [SSTX09] proposed an ideal version of the Alwen–Peikert construction.

These algorithm allows to implement trapdoors for hA (or hǎ). The trapdoor

is a basis T of a lattice Λ⊥q (A) (or Λ⊥q (Rotf(ǎ))) such that ‖T̃‖ ≤ L for some L.

One can sample DΛ⊥q (A),s,c (or DΛ⊥q (Rotf (ǎ)),s,c) by using T for s = L · ω(
√

log n).

Turning it into hash functions, one can sample preimages e (or ě) of u (or u). Since

appearing distributions are not uniform, Gentry et al. defined preimage sampleable

functions rather than trapdoor functions for generality.

10.2 Definition of Preimage Sampleable Functions

Roughly speaking, preimage sampleable functions (PSFs) is a hash family H =
{Hn}, where Hn = { fa : Dn → Rn | (a, t) ∈ Kn × Tn}, defined with a distribution

ensemble X = {Xn} over D = {Dn}. First, one can sample preimages of y ∈ Rn

under fa by using the corresponding t to a. Next, the two distributions of the

samples (x, y) and (x′, y′) must be statistically identical, where (x, y) is sampled by

x ← Xn and y ← fa(y) and (x′, y′) is sampled by y′ ← U(Dn) and obtaining x′

by the above trapdoor sampling procedure. In addition, the distribution fa(Xn) is

almost uniform over Rn.

Gentry et al. [GPV08] defined it in the algorithmic form and we follow them.

10.2.1 Model of Preimage Sampleable Functions

The preimage sampleable (trapdoor) functions PSF defined by a quadruplet of

algorithms (TrapGen,Eval,SampleDom,SamplePre).

TrapGen(1n): A trapdoor-generation algorithm, given the security parameter 1n,

outputs a description of function a ∈ Kn and its trapdoor t. (Notice that a

defines the function fa : Dn → Rn.)

Eval(a, x): An evaluation algorithm, given a and an element x ∈ Dn, returns

y = fa(x).

SampleDom(1n): A domain sampling algorithm, given the security parameter

1n, samples x ∈ Dn from some distribution over Dn.

SamplePre(t, y): A preimage sampling algorithm, given a trapdoor t corre-

sponding to a and an image y, samples x from some distribution over Dn.

Definition 10.2.1 (Preimage Sampleable Functions). We say PSF is preimage

sampleable function scheme if the following conditions hold: Let X denote the ran-

dom variable stands for the output of SampleDom and let Xy denote the random

variable according to the conditional distribution of the output x by SampleDom

given fa(x) = y.
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Domain sampling with uniform distribution: With overwhelming probability

of the choice of a, SampleDom samples an x for which the distribution of

fa(x) is statistically close to uniform over Rn. Formally,

Pr
[
∆( fa(X),U(Rn)) ≤ negl(n) : (a, t)← TrapGen(1n);

]
≥ 1 − negl(n).

Preimage sampling with trapdoor: With overwhelming probability of the

choice of a, SamplePre, given t and y, samples an x for which the distribution

of x is statistically close to that of Xy. Formally, for any y ∈ Rn,

Pr
[
∆(SamplePre(t, y), Xy) ≤ negl(n) : (a, t)← TrapGen(1n);

]
≥ 1−negl(n).

10.2.2 Security Notions

Roughly speaking, we say that PSF is one-way if any polynomial-time adversary

cannot, given a and y, output a preimage x of y under fa. We say that PSF is

collision-resistant if any polynomial-time adversary cannot, given a, output dis-

tinct x, x′ ∈ Dn such that fa(x) = fa(x′) and the conditional min-entropy of

x ← SampleDom(1n) given fa(x) = y is at least ω(log n). Note that the difference

between the collision-resistance definitions of Hash and PSF. (The definition of

the hash scheme does not require the min-entropy condition.)

Formally, we define the following experiments Expow
PSF,A(n) and Expcr

PSF,A(n)

between the challenger C and the adversaryA.

Experiment Expow
PSF,A(n):

Setup Phase: The challenger C runs TrapGen with 1n and obtains (a, t).

Next, it generates y ← Rn uniformly at random. C feeds a and y to the

adversaryA.

Challenge Phase: A outputs x. If x ∈ Dn and fa(x) = y then the challenger

returns 1, otherwise, 0.

Experiment Expcr
PSF,A(n):

Setup Phase: The challenger C runs TrapGen with 1n and obtains (a, t). C
feeds a to the adversaryA.

Challenge Phase: A outputs x and x′ If x, x′ ∈ Dn, x , x′, and fa(x) =

fa(x′) then the challenger returns 1, otherwise, 0.

Definition 10.2.2. Let PSF = (TrapGen,Eval,SampleDom,SamplePre) be a

preimage sampleable function scheme. Let A be an adversary. Let the advan-

tage of A against one-wayness be Advow
PSF,A(n) := Pr

[
Expow

PSF,A(n) = 1
]
. We say

that PSF is one-way if, for any polynomial-time adversary A, Advow
Hash,A(n) is

negligible in n.

Let the advantage of A against collision resistance be Advcr
PSF,A(n) :=

Pr
[
Expcr

PSF,A(n) = 1
]
. We say that PSF is collision resistant if, for any polynomial-

time adversaryA, Advcr
PSF,A(n) is negligible in n and the conditional min-entropy
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H∞(X | fa(X) = y) is at least ω(log n), where X denotes the random variable which

stands for the output of SampleDom(1n).

10.3 The Ajtai and Alwen–Peikert Constructions

We next review the one of the underlying component of lattice-based PSFs, the

Ajtai and Alwen–Peikert constructions. As noted in Section 10.1, Ajtai [Ajt99]

proposed that the instance-generation algorithm which outputs a random matrix

A and a short basis T of a lattice Λ⊥q (A). There are improved versions of the

algorithm by Gentry et al. [GPV08] and by Alwen and Peikert [AP09]. We follow

the construction by Alwen and Peikert.

10.3.1 Main Strategy

Assume that we have a random matrix A1 ∈ Zn×m1
q . We then want to construct

random A2 ∈ Zn×m2
q with a short basis S ∈ Zm×m

q of Λ⊥q (A), where m = m1+m2 and

A = [A1|A2]. Let d = (1 + δ)n log q. We suppose that m1 ≥ d which will support

the uniformity of A2.

To construct S, we first compute an Hermite normal form H ∈ Zm1×m1 of a

basis of Λ⊥q (A1). Since H is a basis of Λ⊥q (A1), we have that A1H ≡ O (mod q).

With high probability, Λ⊥q (A1) is full-rank, and so is H.

Next, let us construct F = [H|U; O|Im2
] for some U ∈ Zm1×m2 and A2 ∈ Zn×m2

q

such that [A1|A2]F ≡ O (mod q). In order to do so, we set A2 ≡ −A1U (mod q)

and we have AF = [A1H|A1U + A2] ≡ O (mod q), where U has randomness to

applying the leftover hash lemma and will be defined later. Notice that F is a basis

of Λ⊥q (F) by construction.

We then construct a unimodular matrix Q = [−Im1
|O; P|B] such that a basis

S = FQ is short. We will set B an upper triangle matrix with diagonals 1, which

yields the unimodularity of Q. We figure them as follows:

[
A1 A2

] [ V D

P B

]
= O and

[
V D

P B

]

︸      ︷︷      ︸
S

=

[
H U

O Im2

]

︸        ︷︷        ︸
F

[
−Im1

O

P B

]

︸          ︷︷          ︸
Q

.

By setting U = R + G, with G to be defined later on and R a random matrix, we

will have that A2 is almost uniformly random by the leftover hash lemma. More

precisely, we set R = [R′; O] ∈ Zm1×m2 and R′ is chosen from {−1, 0,+1}d×m2 .

According to the structure of S, we have that

D = (G + R)B and V = −H + (G + R)P.

The matrix G will be designed to GP = H2 − Id. So, we let V = RP − Im1
. Note

that D = GB + RB and hence we let W = GB.
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Preliminaries of the constructions: We first show that F is a basis of

Λ⊥q ([A1|A2]).

Lemma 10.3.1. If H is a basis of Λ⊥q (A1) then F is a basis of Λ⊥q ([A1|A2]).

Proof. Let A = [A1|A2]. Consider any e1◦e2 ∈ Λ⊥q (A). We have that A ·(e1◦e2) =

A1e1 + A2e2 ≡ 0 (mod q). Since A2 = −A1U in the construction, we also have

that

A1(e1 − Ue2) ≡ 0 (mod q).

Thus, e1 − Ue2 ∈ Λ⊥q (A1). This indicates there is some w ∈ Zm1 such that Hw =

e1 − Ue2, since H is a basis of Λ⊥q (A).

We note that F ⊆ Λ⊥q (A) since AF ≡ O (mod q) by the construction. Since

qIm1
⊆ Λ⊥q (A1), the basis H of Λ⊥q (A1) is full-rank. Thus, F = [H|U; O|Im2

] is

also full-rank.

Hence, we can write e1 ◦ e2 = F(c1 ◦ c2) for some c1 ∈ Qm1 and c2 ∈ Qm2 . It

suffices to show they are integer vectors. This means e1 = Hc1 +Uc2 and e2 = c2.

Thus, we have that e1 = Hc1 + Uc2 and Hc1 = e1 − Ue2 ∈ Zm1 . Hence, c1 = w

and we have confirmed that c1 and c2 are integer vectors, which completes the

proof. �

Notice that the determinant of H is at most qn and each diagonal of H is at

most q (the equality holds when the columns of A1 generates Zn
q).

Hereafter, we set W = GB. We often use the matrix Tκ = {ti, j} ∈ Zκ×κ, where

ti,i = 1, ti,i+1 = −r, and all other ti, j’s are 0. Illustratively,

Tκ =



1 2 3 ··· κ

1 1 −r

2 1 −r

3 1
. . .

...
. . . −r

κ 1



, T−1
κ =



1 2 3 ··· κ

1 1 r r2 . . . rκ−1

2 1 r . . . rκ−2

3 1
. . .

...
...

. . . r

κ 1



.

It is easy to verify T−1
κ is the inverse of Tκ by a multiplication.

There are three versions of the Alwen–Peikert construction. See the following

sections (Section 10.3.2, Section 10.3.3, and Section 10.3.4).

10.3.2 The First Construction

Theorem 10.3.2 (Alwen and Peikert [AP09]). Let δ > 0 and r ≥ 2 be any constant.

Let m1 = m1(n), m2 = m2(n), m = m1 + m2, and q = q(n). There is a probabilistic

polynomial-time algorithm ExtLattice1 that, on input 1n and uniformly random

matrix A1 ∈ Zn×m1
q , outputs a pair (A = [A1|A2], S) ∈ Zm×n

q × Zm×m. If m1 ≥ d =

(1 + δ)n log q and m2 ≥ 2n log q,

• A is (m2 · q−δn/2)-uniform over Zn×m
q ,

115



10.3. THE AJTAI AND ALWEN–PEIKERT CONSTRUCTIONS

• S is a basis of Λ⊥(A), and

• for anyω(
√

log n) functions, ‖S‖ ≤ (m1+n logr q)·ω(
√

log n) with overwhelm-

ing probability.

Description: We start with a construction of B; Let H′ = H − Im1
. Let ci and

c′
i

denote i-th diagonals of H and H′, respectively. Notice that ci ∈ [1, q]. Let

li = ⌈logr ci⌉ ≤ 1 + logr ci. Define the partial sums s0 = 0, s j = s j−1 + l j for

j ∈ [m1]. Define the total sum s = sm1
.

Note that if ci = 1 then li = 0 and there are at most n log q values of i for which

ci > 1. In addition, we have that
∏

i∈[m1] ci ≤ qn, since det(H) ≤ qn. Therefore, we

have that s ≤ n log q +
∑

i logr ci ≤ 2n log q ≤ m2.

Here, we set

B = diag(Tl1 , . . . ,Tlm1
, Im2−s).

We note that

B−1 = diag(T−1
l1
, . . . ,T−1

lm1
, Im2−s).

We next split W and G into m1 + 1 matrices where W = [W(1)| . . . |W(m1)|O],

G = [G(1)| . . . |G(m1)|O], and W(k),G(k) ∈ Zm1×lk for any k ∈ [m1]. Let W(k) =

{w(k)
i, j
}i∈[m1], j∈[lk] and G(k) = {g(k)

i, j
}i∈[m1], j∈[lk]. We set

w
(k)
i, j
=


1 (i = k and j = 1),

0 (otherwise)
.

By this construction, we have that

g
(k)
i, j
=


r j (i = k),

0 (otherwise)

since G =WB−1. Let gl = [1, r, . . . , rl−1] ∈ Z1×l. Illustratively, we have that

G =



1 2 ··· m1 ...

1 gl1

2 gl2
...

. . .

m1 glm1



Using this construction, making GP = H′ = H − Im1
is straightforward; Let

P = [P(1); . . . ; P(m1); O], where P(k) = [p
(k)
1
| . . . |p(k)

m1
] and p

(k)
j
∈ Zlk . Let H′ =

{h′
i, j
}i, j∈[m1].

For any i, j ∈ [m1], we have that

h′i, j = g · p
( j)
i

by the construction of G. Hence, we set p
( j)
i

to be a r-base decomposition of h′
i, j

and have that each coefficient in p
( j)
i

is in [0, r − 1].
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Length of S: The norm of S is max{‖S1‖ , ‖S2‖}, where S1 = [V; P] and S2 =

[D; B].

We start to estimate the norm of S2. Recall that U = G + R and D = UB =

GB + RB. We have that ‖GB‖2 ≤ ‖W‖2 ≤ 1. We also have ‖R‖ ≤
√

d and thus

‖RB‖ ≤ (r + 1)
√

d. Hence, ‖D‖ ≤ ‖GB‖ + ‖RB‖ ≤ 1 + (r + 1)
√

d ≤ (r + 2)
√

d.

‖S2‖2 ≤ ‖D‖2 + ‖B‖2 ≤ (r + 2)2d + (r2 + 1) ≤ (r + 2)2(d + 1).

Next, we estimate the norm of S1. Simply, we have that ‖P‖ ≤
√

s · (r − 1).

Recall that V = RP − Im1
. Hence, we have that

‖V‖ ≤
√

d · (r − 1)s + 1.

This indicates

‖S1‖2 ≤ ‖V‖2 + ‖P‖2 ≤ (
√

d(r − 1)s + 1)2 + (r − 1)2s ≤ 2dr2s2

for sufficiently large d and s.

Combining the above arguments, we have the upper bound
√

2d · rs.

To obtain better upper bound, we use Hoeffding’s inequality: Since R′ is cho-

sen from {−1, 0,+1}d×m2 uniformly at random, for any S , which is any entry of

RP, we have that |S | ≥ t
√

s with probability at most 2 exp(−2t2/r2). Setting

t = ω(r
√

log n) and taking a union bound over all entries of PR, we have that

‖PR‖ ≤ t
√

sd with overwhelming probability. This shows that

‖S1‖2 ≤ ‖V‖2 + ‖P‖2 ≤ (
√

sd · t + 1)2 + r2s = O(sdt2)

and thus we have the upper bound
√

sd ·ω(
√

log n) with overwhelming probability.

10.3.3 The Second Construction

Theorem 10.3.3 (Alwen and Peikert [AP09]). Let δ > 0 and r ≥ 2 be any constant.

Let m1 = m1(n), m2 = m2(n), m = m1+m2, and q = q(n). Let l denote
⌈
logr (q − 1)

⌉
.

There is a probabilistic polynomial-time algorithm ExtLattice2 that, on input 1n

and uniformly random matrix A1 ∈ Zn×m1
q , outputs a pair (A = [A1|A2],S) ∈

Zm×n
q × Zm×m. If m1 ≥ d = (1 + δ)n log q and m2 ≥ m1 · l,

• A is (m2 · q−δn/2)-uniform over Zn×m
q ,

• S is a basis of Λ⊥(A), and

• ‖S‖ ≤ 2r
√

m1 + 1.

Description: The basic idea is we make G contain the columns of H′ =
[h′

1
, . . . , h′m1

] = H − Im1
. This drastically reduces the norm of P. We again start

with a construction of B;

B = diag(Tl, . . . ,Tl, Im2−m1·l).
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We note that

B = diag(T−1
l , . . . ,T−1

l , Im2−m1·l).

We next split W and G into m1 + 1 matrices where W = [W(1)| . . . |W(m1)|O],

G = [G(1)| . . . |G(m1)|O], and W(k),G(k) ∈ Zm1×l for any k ∈ [m1]. Let W(k) =

[w
(k)
1
, . . . ,w

(k)
l

] and G(k) = [g
(k)
1
, . . . , g

(k)
l

]. Notice that G(k) =W(k) ·T−1
l

. Let w
(k)
j

be

a reverse-order r-base decomposition of h′
k
, that is, h′

k
=

∑
j∈[l] rl− jw

(k)
j

. Then,

g
(k)
l
=

∑

j∈[l]
rl− jw

(k)
j
= h′k.

Using this construction, making GP = H′ = H − Im1
is again straightforward; The

j-th column of P picks up h′
j

in G. More precisely, let P = [p1, . . . , pm1
] and let

pj = ili for i ∈ [m1].

Length of S: The norm of S is max{‖S1‖ , ‖S2‖}, where S1 = [V; P] and S2 =

[D; B].

We start to estimate the norm of S2. Recall that U = G + R and D = UB =

GB + RB. We have that ‖GB‖ = ‖W‖ ≤ √m1(r − 1). We also have ‖R‖ ≤
√

d and

thus ‖RB‖ ≤ (r + 1)
√

d. Hence, ‖D‖ ≤ ‖GB‖+ ‖RB‖ ≤ √m1(r − 1)+ (r + 1)
√

d ≤
2r
√

m1.

‖S2‖2 ≤ ‖D‖2 + ‖B‖2 ≤ 4r2m1 + r2 + 1 ≤ (2r)2(m1 + 1)

for sufficiently large m1.

Next, we estimate the norm of S1. Simply, we have that ‖P‖ = 1. Then, we

also have ‖RP‖ ≤
√

d. Hence, by the triangle inequality, we have that

‖V‖ ≤
√

d + 1

This indicates

‖S1‖2 ≤ ‖V‖2 + ‖P‖2 ≤ d + 2
√

d + 1 + 1 ≤ (
√

d + 2)2.

Combining the above arguments, we have the upper bound 2r
√

m1 + 1.

10.3.4 The Third Construction

Theorem 10.3.4 ([AP09]). Let δ > 0 and r ≥ 2 be any constants. Let m1 = m1(n),

m2 = m2(n), m = m1 + m2, and q = q(n) with q odd prime. There is a probabilistic

polynomial-time algorithm ExtLattice3 that, on input 1n and uniformly random

matrix A1 ∈ Zn×m1
q , outputs a pair (A = [A1|A2],S) ∈ Zn×m2

q × Zm×m. If m1 ≥ d =

(1 + δ)n log q and m2 ≥ (4 + 2δ)n log q, there is a constant C > 0 such that

• A is (m2 · q−δn/2)-uniform over Zm
q ,

• S is a basis of Λ⊥q (A),

• ‖S‖ ≤ Cn log q with overwhelming probability, and

• ‖S̃‖ ≤ 1 +C
√

d = O(
√

n log q) with overwhelming probability.
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Description: Roughly speaking, the construction is similar to the construction 1.

The basic idea is implanting another matrix M into G to shorten the norm of S̃,

where rows of M is orthogonal.

We recall the definition of B in the construction 1;

B = diag(Tl1 , . . . ,Tlm1
, Im2−s),

where li =
⌈
logr ci

⌉
and s =

∑
i∈[m1] li.

We next split W and G into m1 + 2 matrices;

W = [W(1)| . . . |W(m1)|M|O] and G = [G(1)| . . . |G(m1)|M|O],

where W(k),G(k) ∈ Zm1×l for any k ∈ [m1]. We define M later. As in the construc-

tion 1, let w
(k)
i, j
= 1 when i = k and j = 1, and 0 otherwise. Then, we have that

g
(k)
i, j
= r j when i = k, and 0 otherwise.

We next define M ∈ Zm1×w. Let w be the largest power of 2 in the range

[d,m2 − 2n logr q]. By the hypothesis, we have m2 − 2n logr q ≥ 2d. Thus, there is

a power of w in the range. Notice that w ≥ m2/2 − n logr q ≥ m2/4. The matrix M

is zero in all but its first d rows. The first d rows of M are set to be the C′ multiple

of d distinct rows of a square Hadamard matrix of dimension w. Note that, by the

Sylvester construction, we always have a w by w Hadamard matrix H
⊗ logw

2
, where

H2 = [1, 1;−1, 1].

The matrix P is defined as the same way to the one in the construction 1.

Length of S: The estimation of ‖S‖ is obtained by the almost same way to the

one of the construction 1.

We omit the estimation of the length of S̃, since this needs a somewhat compli-

cated analysis on the singular values of random matrices. For the details, see the

original paper [AP09].

10.4 The Sampling Algorithm

Theorem 10.4.1 ([GPV08]). There is a probabilistic polynomial-time algorithm

SampleD that, given a basis T of an n-dimensional lattice Λ, a parameter s ≥
‖T̃‖ · ω(

√
log m), and a center c ∈ Rn, outputs a sample from distribution that is

statistically close to DΛ,s,c.

We note that the algorithm SampleD is indeed the same as Klein’s one, as

Lyubashevsky pointed out.

The core of the algorithm used the acceptance–rejection method [vN51,

Dev86]. Hence, we first review it.
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10.4.1 The Acceptance–Rejection Method

We recall the acceptance–rejection method, the one of the basic methodologies

for sampling from non-uniform distributions. This technique is formalized by von

Neumann [vN51].

Suppose that we want to sample values according to a distribution f over S .

Assume that we can sample values according to another distribution g over S . If,

for any x ∈ S , we have f (x) < cg(x) for some c > 1, we can use the acceptance–

rejection method in order to sample from f . The algorithm is as follows:

1. Sample x← g and u← (0, 1).

2. If u < f (x)/cg(x), output x. Otherwise output ⊥.

In order to simplify the notation, we define h(x) = f (x)/(cg(x)) in this subsection.

Let Dh denote the distribution of the output of the above algorithm using h(x).

Dh(x) denotes the probability density function of the distribution Dh.

For a random variable u← (0, 1) and x ∈ S ,

Pr

[
u ≤ f (x)

cg(x)

]
= Pr

[
u ≤ f (X)

cg(X)
| X = x

]
=

f (x)

cg(x)
= h(x).

Thus,

Dh(x) =


f (x)

cg(x)
· g(x) =

f (x)
c

(x ∈ S )

1 − 1/c (x = ⊥)
.

Therefore, the distribution f coincides with the distribution of the output condi-

tioned on that the output is not ⊥.

The correctness of the algorithm when repeated r-times is summarized as fol-

lows:

Lemma 10.4.2. Consider the following algorithm:

1. Initialize i← 0.

2. Sample x← g and u← (0, 1).

3. If u < f (x)/(cg(x)), output x. If i ≥ r output ⊥. Otherwise go to Step 2.

Let D denote the output distribution of the above algorithm. Then,

∆(D, f ) =

(
1 − 1

c

)r

.

Proof. Since f coincides with the conditional distribution given that the output is

not ⊥, we have that

D(x) =


(1 − (1 − 1/c)r) f (x) (x ∈ S )

(1 − 1/c)r (x = ⊥)
.
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To ease of notation, let δ denote (1 − 1/c)r. We obtain that

∆(D, f ) =
1

2

∫

x∈S∪{⊥}
|D(x) − f (x)| dx

=
1

2

(
D(⊥) +

∫

x∈S
|D(x) − f (x)| dx

)

=
1

2

(
δ +

∫

x∈S
(1 − δ) f (x)dx

)

=
1

2
· 2δ = δ,

which completes the proof. �

10.4.2 Sampling over a One-Dimensional Lattice

The starting point is a sampling algorithm over a one-dimensional lattice.

Algorithm 1 SampleZ

Require: 1n, s > 0, c ∈ R
Ensure: x← DZ,s,c

1: x← Z ∩ [c − st, c + st]

2: u← [0, 1]

3: if ρs(x − c) ≤ u then

4: return x

5: else

6: goto Step 1

7: end if

The following lemma ensures that the sample from DZ,s,c falls in the range

[c − st, c + st] with overwhelming probability if t is sufficiently large.

Lemma 10.4.3 ([GPV08]). For any ǫ > 0, any s ≥ ηǫ(Z), and any t > 0,

Pr
x←DZ,s,c

[|x − c| ≥ ts] ≤ 2 · 1 + ǫ

1 − ǫ · exp(−πt2).

In particular, for ǫ ∈ (0, 1/2) and t ≥ ω(
√

log n), the probability that |x − c| ≥ ts is

negligible in n.

The correctness of the algorithm SampleZ is summarized as follows, which is

obtained as the corollary of the above lemmas:

Lemma 10.4.4 ([GPV08]). For any 0 < ǫ < exp(−π), any s ≥ ηǫ(Z), and c ∈ R,

and t(n) = ω(
√

log n), SampleZ terminates within t(n) · ω(log n) iterations with

overwhelming probability, and its output distribution is statistically close to DZ,s,c.
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10.4.3 Sampling over Arbitrary Lattice

The algorithm SampleD take a sample from DΛ,s,c. Its procedure is recursive one

and can be interpreted as randomized nearest plane algorithm. Indeed, if we change

the line 4 in SampleD, the algorithm is the nearest plane algorithm [Bab86].

Algorithm 2 SampleD

Require: a basis T of an n-dimensional lattice Λ, a parameter s > 0, and a

center c ∈ Rn

Ensure: x← DΛ,s,c
1: vn ← 0 and cn ← c.

2: for i = n to 1 do

3: c′
i
← 〈ci, t̃i〉/‖ t̃i‖2 ∈ R and s′

i
← s/‖ t̃i‖ > 0

4: zi ← DZ,s′
i
,c′

i
(this is done by zi ← SampleZ(1n, s′

i
, c′

i
).)

5: ci−1 ← ci − zi ti and vi−1 ← vi + zi ti

6: end for

7: return v0

From the construction vi−1 ← vi + zi ti, the output vector v = v0 is a lattice

vector.

For the consistency, we include the proof by Gentry et al.. They prepared two

lemmas.

Lemma 10.4.5 (Lemma 4.4, [GPV08]). For any (T, s, c) and any output v = v0 =∑
i∈[n] zi ti ∈ Λ of SampleD,

v − c =
∑

i∈[n]

(zi − c′i) t̃i.

Proof. For i ∈ [n], let us define projections π j : Rn → span(t1, . . . , ti). We will

show that for all j = 0, . . . , n,

(v0 − v j) − π j(c j) =
∑

i∈[ j]

(zi − c′i) t̃i.

It holds in the case where j = 0 trivially. Hence, suppose that it holds for j = k − 1

for some k ∈ [n]. By the construction, we have vk = vk−1−zk tk and ck = ck−1+zk tk.

In addition, we have that ‖ t̃i‖2c′
i
= 〈ck, t̃k〉. Therefore, we have that

v0 − vk − πk(ck) = v0 − (vk−1 − zk tk) − (πk−1(ck) + c′k t̃k)

= (v0 − vk−1) + zk tk − (πk−1(ck−1) + πk−1(zk tk) + c′k t̃k)

= (v0 − vk−1 − πk−1(ck−1)) + zk(tk − πk−1(tk)) − c′k t̃k

= (v0 − vk−1 − πk−1(ck−1)) + (zk − c′k) t̃k

=
∑

i∈[k]

(zi − c′i) t̃i.

By the induction, we have this equation in j = k and complete the proof. �
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Lemma 10.4.6 (Lemma 4.5, [GPV08]). For any input (T, s, c) and any output

v = v0 =
∑

i∈[n] ẑi ti ∈ Λ of SampleD, the probability that SampleD outputs v is

exactly

ρs,c(v) ·
∏

i∈[n]

1

ρs′
i
,c′

i
(Z)

.

Proof. The vector v is output if every random choice zi = ẑi for i = n, . . . , 1. Let E

denote this event. For each i, the probability that zi = ẑi, conditioned on z j = ẑ j for

all j = n, . . . , i + 1 is DZ,s′
i
,c′

i
(ẑi). Hence, the probability of E is

∏

i∈[n]

DZ,s′
i
,c′

i
(ẑi) =

∏
i∈[n] ρs′

i
,c′

i
(ẑi)∏

i∈[n] ρs′
i
,c′

i
(Z)

.

The numerator is

∏

i∈[n]

ρs′
i
,c′

i
(ẑi) =

∏

i∈[n]

ρs((ẑi − c′i) · ‖ t̃i‖) = ρs


∑

i∈[n]

(ẑi − c′i) t̃i

 = ρs(v − c) = ρs,c(v),

where we use s′
i
= s/‖ t̃i‖ and the orthogonality of T̃. This completes the proof. �

Finally, they proved the following theorem.

Theorem 10.4.7 (Theorem 4.1, [GPV08]). Given a basis T of an n-dimensional

lattice Λ, a parameter s ≥ ‖T̃‖ · ω(
√

log n), and a center c ∈ Rn, the algorithm

SampleD outputs a sample from a distribution that is statistically close to DΛ,s,c.

Proof. Let s ≥ ‖T̃‖ · g(n) for some g(n) = ω(
√

log n). Then, we have that s′
i
=

s/‖ t̃i‖ ≥ g(n). By Lemma 2.1.7, we have that ηǫ(Z) ≤ b̃l(Z)·
√

log(2n(1 + 1/ǫ))/π ≤√
log(2n(1 + 1/ǫ))/π. Thus, by setting ǫ(n) = 2−O(g2(n)) = negl(n) appropriately,

we have g(n) ≥ ηǫ(Z) and each s′
i
≥ ηǫ(Z). Hence, the SampleZ implements the

oracle DZ,s′
i
,c′

i
within negligible statistical distance.

We show that SampleD using DZ,s′,c′ samples to withing negligible statistical

distance of DΛ,s,c. Let Q = ρs,c(Λ). Then, the probability function of v under DΛ,s,c
is ρs,c(v)/Q. Meanwhile, Lemma 2.1.10 implies that

ρs′
i
,c′

i
(Z) ∈ [ 1−ǫ

1+ǫ
, 1] · ρs′

i
(Z)

for any value c′
i
. By the above lemma, for every v ∈ Λ, the probability that

SampleD outputs v is in the range

R−1 · [1, ( 1+ǫ
1−ǫ )n] · ρs,c ⊆ R−1 · [1, 1 + ǫ′] · ρs,c(v),

where R =
∏

i∈[n] ρs′
i
(Z) and ǫ′(n) is some negligible function of n. This shows that

R ∈ [1, 1 + ǫ′]Q and the distance is at most ǫ′/2. �
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SAMPLEABLE FUNCTION

10.5 Lattice-Based Collision-Resistant Preimage Sam-

pleable Function

We now return to the lattice-based collision-resistant PSFs. Gentry et al. showed

the scheme combining Ajtai’s trapdoor generation, Ajtai’s hash functions, and

the sampling algorithm in the previous section (Section 10.4) is indeed collision-

resistant PSFs (statistically).

Scheme 10.5.1 (LPSF [GPV08]).

TrapGen(1n): The same as ExtLattice3(1n) in Section 10.3. It outputs (A,T),

where A ∈ Zn×m
q is statistically close to uniform and T ⊂ Λ⊥q (A) is a good

basis with ‖T̃‖ ≤ L = O(
√

n lg q). The matrix A defines the function hA(·).
This function is defined as hA(e) = Ae mod q with domain Dn = {e ∈ Zm :

‖e‖ ≤ s
√

m} and range Rn = Z
n
q.

SampleDom(1n): The input distribution is DZm,s. Hence, this algorithm invokes

SampleD with inputs Im, s, and 0 and outputs the sample.

SamplePre(A,T, s, u): The algorithm samples from h−1
A

(u) as follows: It gen-

erates t ∈ Zm such that At = u mod q by standard algebra, samples v ←
DΛ⊥q (A),s,−t by SampleD(T, s,−t), and outputs e = t + v.

We start with several lemmas.

Lemma 10.5.2 (Regev, [Reg09]). Let m ≥ 2n log q. Then for all but an at most

q−n fraction of A ∈ Zn×m
q , the subset-sums of the columns of A generate Zn

q. That

is, for every u ∈ Zn
q, there is an error vector e ∈ {0, 1}m such that Ae = u mod q.

Lemma 10.5.3 (Lemma 5.2, [GPV08]). Assume the columns of A ∈ Zn×m
q generate

Zq and let ǫ ∈ (0, 1/2) and s ≥ ηǫ(Λ⊥q (A)). Then for e← DZm,s, the distribution of

the syndrome u = Ae mod q is within statistical distance 2ǫ of uniform over Zn
q.

Furthermore, fix u and t ∈ Zm be an arbitrary solution to At = u mod q.

Then the conditional distribution of e ← DZm,s given Ae = u mod q is exactly

t + DΛ⊥q (A),s,−t .

Lemma 10.5.4 ([GPV08]). Let n and q be positive integers with q prime, and let

m ≥ 2n log q. Then for all but an at most q−n fraction of A ∈ Zn×m
q , we have

λ∞
1

(Λq(A)) ≥ q/4.

In particular, for such A and for any ω(
√

log m) function, there is a negligible

function ǫ(m) such that ηǫ(Λ
⊥
q (A)) ≤ ω(

√
log m).

Corollary 10.5.5 ([GPV08]). Let n and q be positive integers with q prime, and

let m ≥ 2n log q. Then for all but an at most 2q−n fraction of A ∈ Zn×m
q and for

any s ≥ ω(
√

log m), the distribution of the syndrome u = Ae mod q is statistically

close to uniform over Zn
q, where e← DZm,s.

By using these lemmas, we can proof the security of LPSF.
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Theorem 10.5.6 ([GPV08]). The above scheme LPSF is collision resistant if

SISq,m,2s
√

m is hard and m ≥ (5 + 3δ) log q for some constant δ > 0.

Proof. We note that s ≥ L · ω(
√

log m) ≥ ηǫ(Λ⊥q (A)) for some negligible ǫ(n) by

Lemma 2.1.7 since L ≥ ‖T̃‖ ≥ b̃l(Λ⊥q (A)).

Next, a sample e ← DZm,s falls into Dn except with negligible probability by

Lemma 2.1.9. Furthermore, for all but a q−n fraction of A, hA(e) is statistically

close to uniform over Rn = Z
n
q by Corollary 10.5.5.

The preimage sampleable property follows from s ≥ ‖T̃‖ · ω(
√

log m),

Lemma 10.5.3, and the correctness of SampleD (Theorem 10.4.7); The samples

from a distribution is statistically close to DΛ⊥q (A),s,−t and the conditional distribu-

tion of e← DZm,s given Ae ≡ u (mod q) is exactly t + DΛ⊥q (A),s,−t .

The collision resistance property immediately follows from the hardness of

SISq,m,2s
√

m.

The preimage min-entropy is at least m−1. This follows the fact that the preim-

ages are distributed according to t + DΛ⊥q (A),s,−t and the min-entropy of DΛ⊥q (A),s,−t

is at least m − 1 (see Lemma 2.1.14). �

10.6 Ideal-Lattice Version of the Alwen-Peikert Con-

struction

In order to obtain the ideal-lattice-based collision-resistant PSFs, we need to

an ideal-lattice version of the Ajtai algorithm, which is proposed by Sthelé et

al. [SSTX09]. The core idea is dividing each matrices into n by n submatrices

and letting them to be rotation matrices corresponding to polynomials in Rf,q.

Quick remainders on polynomials and rings: For a monic polynomial f of

degree n which is irreducible over Z, we define Rf = Z[x]/〈f〉. For an integer q and

such f, Rf,q denotes Zq[x]/〈f〉.
The number of units in Rf,q plays an important role for regularity (see Sec-

tion 4.4.2). Hence, we quickly analyze the number. For any integer q and any

monic polynomial f, we have |R∗
f,q
|/|Rf,q| ≥

∏
i∈[t](1 − (φ(q)/q)deg(fi)), where φ(·)

is Euler’s phi function and f =
∏

i∈[t] fi is the factorization of f over Zq. If f

is invertible over Zq, we have ≥ 1 − (φ(q)/q)n. If q is an odd prime and f is

completely split over Zq, we have ≥ (1 − 1/q)n. If q is an odd prime, we have

|R∗
f,q
|/|Rf,q| ≥

∏
i∈[t](1 − q− deg(fi)).

10.6.1 The Stehlé–Steinfeld–Tanaka–Xagawa Construction

Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09] proposed the ideal-lattice version

of the Alwen–Peikert construction.

Let M⊥(ǎ) denote the module {ě ∈ Rm
f
| ǎě ≡ 0 (mod q)}. We will construct

the basis T of the module. Let us consider the following construction: We first
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CONSTRUCTION

compute a basis F of M⊥(ǎ). This basis F is not short. Hence, we then construct

a unimodular matrix Q such that a basis S = FQ is short. Precisely, S has the

following form as in the Alwen–Peikert construction:

[
ā1 ā2

] [ V D

P B

]
= O and

[
V D

P B

]

︸      ︷︷      ︸
S

=

[
H U

O Im2

]

︸        ︷︷        ︸
F

[
−Im1

O

P B

]

︸          ︷︷          ︸
Q

By construction, we have that

ā1H + ā2O ≡ 0̄ (mod q) and ā1U + ā2Im2
≡ 0̄ (mod q).

Thus,

ā1H ≡ 0̄ (mod q) and ā2 ≡ −ā1U (mod q).

In the Alwen–Peikert construction they set H to be the Hermite normal form of

Λ⊥q (A1), however we cannot define the Hermite normal form of a basis M⊥(ǎ1)

in the case where f is reducible over Zq. This is overcome later and we suppose

some matrix H, a basis of M⊥(ǎ1) . By setting U = G + R, with G to be defined

later on and R a random matrix, we have that ā2 is almost uniformly random by

Micciancio’s regularity lemma instead of direct applying the leftover hash lemma.

More precisely, the columns of R is chosen from ({−1, 0, 1}n)d × ({0}n)m1−d.

According to the structure of S, we have that

D = (G + R)B and V = −H + (G + R)P.

The matrix G will be designed to GP = H2 − Id. So, we let V = RP − Im1
. Note

that D = GB + RB. We let W = GB.

Formally, we will show the following theorem.

Theorem 10.6.1 (Main Lemma, rearranged, [SSTX09]). There are probabilistic

polynomial-time algorithms with the following properties. They takes an odd prime

q and integers n, σ, d, m1, and m2. They also takes a monic and irreducible

polynomial f ∈ Z[x] of degree n and random polynomials ā1 ∈ R
m1

f,q
, where Rf,q =

Zq[x]/〈f〉. Let f =
∏

i∈[t] fi be the factorization of f over Zq. We let κ =
⌈
1 + log q

⌉
,

∆ =

√
−1 +

∏
i∈[t](1 + (

q

3d )deg(fi)), and m = m1 + m2. The algorithms succeed with

probability psucc ≥ 1−pfail over ā1, where pfail =
(
1 −∏

i∈[t](1 − q− deg(fi))
)σ

. When

they do,

1. The distance to uniformity of ā is at most pfail + m2∆.

2. The quality of S is as follows:

• If m1 ≥ max{σ, κ, d} and m2 ≥ κ, then ‖Rotf(S)‖ ≤ EF(f, 2) ·
√

2κd1/2n3/2.

Additionally, ‖Rotf(S)‖ ≤ EF(f, 2) ·
√

3aκd · n with probability 1 −
2−a+O(log nm1d) for a super-logarithmic function a = a(n) = ω(log n).

• If m1 ≥ max{σ, κ, d} and m2 ≥ κ ·m1, then ‖Rotf(S)‖ ≤ EF( f , 2) · (4
√

nd+

3).
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3. In particular, for f = x2k

+ 1 with k ≥ 2 and a prime q with q ≡ 3 (mod 8), the

following holds:

• We can set σ = 1 and r =
⌈
1 + log3 q

⌉
. Then, the error probability is

pfail = q−Ω(n) and the parameter ∆ is 2−Ω(n).

• If m1,m2 ≥ κ, then ‖Rotf(S)‖ ≤
√

6aκd · n = O(
√

an log q) with proba-

bility 1 − 2−a+O(log(nm1 log q)) for a super-logarithmic function a = a(n) =

ω(log n).

• If m1 ≥ κ and m2 ≥ κ ·m1, then ‖Rotf(S)‖ ≤
√

2(4
√

nd+3) = O(
√

n log q).

For the sake of notation, we name the algorithms ExtIdLattice1 for the case

where m2 ≥ κ and ExtIdLattice2 for the case where m2 ≥ m1κ.

We follow the Alwen–Peikert construction in which r is fixed to 2. Let m1 ≥
κ =

⌈
1 + log q

⌉
and m = m1 + m2. Given random polynomials ǎ1 = (a1, . . . , am1

),

we should construct random polynomials ǎ2 with a basis S of M⊥(ǎ), where ǎ =

[ǎ1|ǎ2]. We need an Hermite normal form of M⊥(ǎ1). However, if f is not invertible

in Zq, we cannot define the Hermite normal form over Rf,q. This circumvent is

overcome with a simple idea: Use of an HNF-like matrix.

Construction of H without Hermite Normal Forms: At first, we note that the

one of ai is in R∗
f,q

with probability at least 1 − pfail, since m1 ≥ σ. Let i∗ denote

such index. For now, we set i∗ = 1 for simplicity. Although we have no definition

for the HNF, we can construct the following HNF-like basis H = {hi, j}i, j∈[m1] of

M⊥(ǎ1): The first column is qı̌1 and the i-th column is hi ı̌1 + ı̌i for i = 2, . . . ,m1,

where ı̌i is a column vector in R
m1

f
such that the i-th element is 1 and others are 0,

and hi = −ai ⊗ a−1
1

mod q such that hi ∈ [0, q)n. Illustratively, we have

H =



q h2 . . . hm1−1 hm1

1
. . .

1

1



.

By the construction, we have the following lemma.

Lemma 10.6.2. The matrix H is a basis of M⊥(ǎ1) ⊆ R
m1

f
.

Proof. Let ȟi denote the i-th column of H. By the definition of H, ǎ1H ≡ 0̌

(mod q). Hence, H ⊆ M⊥(ǎ1). It is obvious that ȟ1, . . . , ȟm1
are linearly indepen-

dent over Rf .

In order to verify that H is a basis of the module, we need to show that, for

each y̌ ∈ M⊥(ǎ1), there exists a vector č ∈ R
m1

f
such that y̌ = Hč. Since the

columns of H are linearly independent, there exists č ∈ (Q[x]/〈f〉)m1 such that

y̌ = Hč. Hence, it is remaining to show č ∈ R
m1

f
. The equation y̌ = Hč implies

that y1 = qc1 +
∑m1

i=2
hi ⊗ ci and yi = ci for i = 2, . . . ,m1. Since yi ∈ Rf for i ∈ [m1],

we have that ci ∈ Rf for i = 2, . . . ,m1 and qc1 = y1 −
∑m1

i=2
hi ⊗ yi ∈ Rf . By the
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assumption on y̌ = (y1, . . . , ym1
), we have that

∑
i∈[m1] ai ⊗ yi ≡ 0 (mod q). In

addition recall that the definition of hi ≡ −ai ⊗ a−1
1

(mod q). Hence, we have that

qc1 ≡ y1 −
m1∑

i=2

hi ⊗ yi ≡ y1 + a−1
1 ⊗


m1∑

i=2

ai ⊗ yi



≡ a−1
1 ⊗

a1 ⊗ y1 +

m1∑

i=2

ai ⊗ yi

 ≡ a−1
1 ⊗ 0 ≡ 0 (mod q).

Thus, c1 ∈ Rf and we conclude that H is a basis of M⊥(ǎ1). �

Next, we consider the case where i∗ , 1. In this case, we swap the columns

1 and i∗ of A1 and call it ǎ′
1
. Applying the method above, we obtain H′, a basis

of M⊥(ǎ′
1
). Again, swap the columns and the rows of H′ we obtain H, a basis

of M⊥(ǎ1). In the following, we denote by i∗ the index i such that ai ∈ R∗
f,q

and

hi,i = q.

Preliminaries of the constructions: Hereafter, we set W = GB. We often use

the matrix Tκ = {ti, j} ∈ Rκ×κ
f

, where ti,i = 1, ti,i+1 = −2, and all other ti, j’s are 0.

Illustratively,

Tκ =



0 1 2 ··· κ−1

0 1 −2

1 1 −2

2 1
. . .

...
. . . −2

κ−1 1



, T−1
κ =



0 1 2 ··· κ−1

0 1 2 22 . . . 2κ−1

1 1 2 . . . 2κ−2

2 1
. . .

...
...

. . . 2

κ−1 1



.

We can verify T−1
κ is the inverse of Tκ by a multiplication of them as in the Alwen–

Peikert construction.

10.6.2 An Analog of the Alwen–Peikert Construction 1

We start with a construction of B; we set

B =

[
Tκ O

O Im2−κ

]
, B−1 =

[
T−1
κ O

O Im2−κ

]
,

We next set W = [ı̌i∗ 0̌ . . . 0̌] ∈ R
m1×m2

f
. By the construction of W, we have

that G = [ı̌i∗ 2ı̌i∗ . . . 2κ−1
ı̌i∗ 0̌ . . . 0̌] ∈ R

m1×m2

f
, since G = WB−1. Notice that the

columns of H − Im1
except the i∗-th row are all zero vectors, while the i∗-th row is

[h1, . . . ,hi∗−1,hi∗ −1,hi∗+1, . . . ,hm1
], where hi∗ −1 = q−1. Using this construction

and the above fact, making GP = H − Im1
is straightforward; Let P = {pi, j} ∈

R
m2×m1

f
. We let pi, j ∈ {0, 1}n for i ∈ [κ] and j ∈ [m1] such that h j =

∑
i∈[κ] 2i−1pi, j.

In addition, for i = κ + 1, . . . ,m2 and for j ∈ [m1], let pi, j = 0. We then have

GP = H − Im1
.
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Length of S: The norm of Rotf(S) is max{‖Rotf(S1)‖ , ‖Rotf(S2)‖}, where S1 =

[V; P] and S2 = [D; B]. The estimations are the same as that in the Alwen–Peikert

construction, we omit them.

10.6.3 An Analog of the Alwen–Peikert Construction 2

The idea in [AP09] is to have G contain the columns of H−Im1
. This helps decrease

the norms of the columns of P and V.

To do so, we again start with construction of B. Recall the inequality m2 ≥ κm1.

Define B be the matrix of the form

B =



Tκ
. . .

Tκ
Im2−κm1


, B−1 =



T−1
κ

. . .

T−1
κ

Im2−κm1


.

Let ȟ′
k

denote the k-th column of H − Im1
. Recall that ȟ′

k
= hk ⊗ ı̌i∗ for some

hk in [0, q − 1)n.

Let us consider Gk = {g(k)
i, j
} and Wk = {w(k)

i, j
} in R

m1×κ
f

for k ∈ [m1]. We have

Gk = Wk · T−1
κ contain ȟ′

k
. In order to do so, we let w

(k)
i∗, j ∈ {0, 1}n for j ∈ [κ] such

that hk =
∑

j∈[κ] 2κ− jw
(k)
i∗, j and w

(k)
i, j
= 0 for i , i∗. Then, the last columns of Gk is

ȟ′
k
.

Let G = [G1| . . . |Gm1
|O] and W = [W1| . . . |Wm1

|O]. The matrix P =

[ p̌1 . . . p̌m1
] picks all columns ȟ1, . . . , ȟm1

in G by setting p̌j = ı̌κ j ∈ R
m2

f
.

Length of S: The norm of Rotf(S) is max{‖Rotf(S1)‖ , ‖Rotf(S2)‖}, where S1 =

[V; P] and S2 = [D; B]. For simplicity, we only consider the case where f = xn+1.

In the general case, the bound on ‖Rotf(S)‖ involves an extra EF(f, 2) factor.

We have that ‖Rotf(GB)‖2 = ‖Rotf(W)‖2 ≤ n, since the entries of W are all 0

except the i∗-th polynomials w
(k)
i∗, j which are in {0, 1}n. As in the previous construc-

tion, we have ‖Rotf(RB)‖2 ≤ 9nd. Hence, we obtain that

‖Rotf(S2)‖2 ≤ ‖Rotf(D)‖2 + ‖Rotf(B)‖2 ≤ ‖Rotf(GB + RB)‖2 + ‖Rotf(B)‖2

≤ (3
√

nd +
√

n)2 + 5 ≤ (4
√

nd + 3)2.

It is obvious that ‖Rotf(P)‖ ≤ 1. In addition, we have that ‖Rotf(PR)‖2 ≤ nr.

Therefore,

‖Rotf(S1)‖2 ≤ ‖Rotf(V)‖2 + ‖Rotf(P)‖2 ≤ ‖Rotf(RP − I)‖2 + ‖Rotf(P)‖2

≤ (
√

nd + 1)2 + 1 ≤ (2
√

nd + 2)2,

which completes the proof.
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10.6.4 Discussions

We left the problem to construct an analog of the Alwen–Peikert construction 3,

which employs the rows of the Hadamard matrix to take a balance on the lower

bound of m2 and the norm of the Gram–Schmidt orthogonalized basis. The dif-

ficulty is finding the analog of the Hadamard matrix in R
m1

f
or the rows that have

mutually orthogonality.

10.7 Ideal-Lattice-Based Collision-Resistant Preimage

Sampleable Functions

By replacing the trapdoor-generation algorithm, we obtain the ideal-lattice-based

collision-resistant PSFs ILPSF.

Scheme 10.7.1 (ILPSF [SSTX09]).

TrapGen(1n): It invokes ExtIdLattice1(1n) (or ExtIdLattice2(1n)) and obtains

(ǎ,T). It outputs (ǎ,T), where ǎ ∈ Rm
f,q

is statistically close to uniform and

T′ = Rotf(T) ⊂ Λ⊥q (Rotf(ǎ)) is a good basis with ‖T̃′‖ ≤ L. The row vector ǎ

defines the function hǎ(·). This function is defined as hǎ(e) = Rotf(ǎ) ·e mod q

with domain Dn = {e ∈ Zmn : ‖e‖∞ ≤ s log m} and range Rn = Z
n
q.

SampleDom(1n): The input distribution is DZmn,s. It invokes

SampleD(Imn, s, 0) and outputs the obtained sample.

SamplePre(ǎ,T, s,u): The algorithm samples from h−1
ǎ

(u) as follows: It gen-

erates t ∈ Zmn such that Rotf(ǎ)t = u mod q by standard algebra, samples

v← DΛ⊥q (Rotf (ǎ)),s,−t by SampleD(T′, s,−t), and outputs e = t + v.

In the following, we fix the polynomial f = xn+1 with n = 2k ≥ 32. In addition,

we fix q to be a prime with q ≡ 3 mod 4. We let denote Λ⊥q = Λ
⊥
q (Rotf(ǎ)) and

Λq = Λq(Rotf(ǎ)).

We again start with several lemmas.

Instead of Lemma 10.5.2 we use the following lemma.

Lemma 10.7.2. Let m ≥ 3. Then, for all but an at most q−n fraction of ǎ, the

columns of Rotf(ǎ) generates Zn
q.

Proof. By the condition of f and q, the row vector ǎ contains ai ∈ R∗
f,q

with proba-

bility at least 1 − (2q−n/2)m ≥ 1 − q−n. This completes the proof. �

Notice that we can apply Lemma 10.5.3 in our case. However, we cannot apply

Lemma 10.5.4 directly in our case. Instead of the lemma, the following lemma

ensures that for all but negligible fraction of ǎ, we have λ∞
1

(Λq) ≥ q/4 and thus,

for such ǎ and for any ω(
√

log mn) function, there exists a negligible function ǫ

such that ηǫ(Λ
⊥
q ) ≤ ω(

√
log mn).
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Lemma 10.7.3 (Lemma 5, [SSTX09]). Let m ≥ 8 log q. Then for all but an at most

q−n fraction of ǎ ∈ Rm
f,q

, we have λ∞
1

(Λq(Rotf(ǎ))) ≥ q/4.

For consistency, we include the proof, which is due to Stehlé and Stein-

feld [SS09]. Before the proof, we should note the curious property of f = xn + 1.

Reciprocal polynomials: For a polynomial a =
∑

i∈[n] aix
i−1, Rotf(a) is nega-

cyclic matrix: Hence, we have the following relation on transpose operator.

Rotf(a) =



a1 −an . . . −a2

a2 a1 . . . −a3

...
...

. . .
...

an an−1 . . . a1


and Rotf(a)T =



a1 a2 . . . an

−an a1 . . . an−1

...
...

. . .
...

−a2 −a3 . . . a1


.

Let us consider a(1/x), that is,
∑

i∈[n] aix
−(i−1). Since x−(i−1) = −xi in Rf , we have

that

a1 + a2x−1 + · · · + anx−(n−1) = a1 − a2xn−1 − · · · − anx1 = a1 − anx1 − · · · − a2xn−1.

Now, we set rec(a) = a(1/x), a reciprocal polynomial of a. Using this notion, we

have that

Rotf(a)T = Rotf(rec(a)).

Obviously, the mapping rec is a bijection over Rf and Rf,q.

Returning to the proofs:

Proof. By our presupposition, we have that f = f1 ·f2 over Zq where fi is irreducible

in Zq[x] and can be written fi = xn/2 + tix
n/4 − 1 for some ti ∈ Zq.

Let s ∈ Rf,q and v ∈ Zmn
q . We want to bound the probability that (Rotf(ǎ))T · s =

v when ǎ← Rm
f,q

. Since Rotf(a)T = Rotf(rec(a)) and the mapping rec is a bijection

over Rf,q, we instead bound the probability that ǎ⊗ s = v̌ for v̌ ∈ Rm
f,q

. Let us define

the map φs that maps a to a ⊗ s. The probability is
∏

j∈[m] Pra j←Rf,q
[φs(a j) = v j].

The case where s and f are coprime: Since φs is a bijection in this case, we have

that Pra j←Rf,q
[φs(a j) = v j] is q−n.

The case where s and f are not coprime: In this case, we have s = fis
′ for some

i ∈ {1, 2} and s′ ∈ Zq[x] of degree smaller than n/2. If v j is not of the form fiv
′
j

for

some v′
j

of degree smaller than n/2, then Pra j
[φs(a j) = v j] = 0. Otherwise, since

the kernel of φs is of cardinality qn/2, we have Pra j
[φs(a j) = v j] = q−n/2.

Taking the union bound over all non-zero polynomials s ∈ Rf,q and the vectors

v̌ ∈ Rm
f,q

such that ‖v̌‖∞ < q/4, the probability that we have λ∞
1

(Λq(Rotf(ǎ))) < q/4

is upper bounded by
∑

s∈Rf,q

gcd(s,f)=1

∑

v̌∈Rm
f,q

‖v̌‖∞<q/4

∏

j∈[m]

Pr
a

[φs(a) = v j] + 2
∑

s∈Rf,q

f1 |s

∑

v̌∈Rm
f,q

‖v̌‖∞<q/4

∏

j∈[m]

Pr
a

[φs(a) = v j].
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The first term is upper bounded by qn(q/2)mq−mn = 2−mq−mn+m+n. Let N be the

number of v ∈ Rf,q such that ‖v‖∞ < q/4 and v = f1v′ for some v′. Thanks to the

shape of f1 = xn/2 − t1xn/4 + 1, the latter conditions imply that ‖v′′‖∞ < q/4 where

v′′ ∈ Zq[x] is the vector made of the n/4 lower degree coefficients of v′. Hence, we

have that N ≤ qn/2/2n/4. Therefore, the second term is at most 2qn/2Nmq−mn/2 =

2qn/22−nm/4.

This argument shows that the probability we have the short vector v corre-

sponding to v̌ in Λq(Rotf(ǎ)) is at most

2−mq−mn+m+n + 2qn/22−nm/4,

which is negligible when m = 2(1 + δ) log q. In particular, if we set m = 8 log q,

the probability is at most

q−n−(mn+8−m−2n) + 2qn/2q−2n ≤ q−n.

�

We can show the following corollary.

Corollary 10.7.4. Let m ≥ 8 log q. Then for all but an at most 2q−n fraction of ǎ ∈
Rf,q and for any s ≥ ω(

√
log mn), the distribution of the syndrome u = ǎě mod q

is statistically close to uniform over Rf,q, where ě = e← DZmn,s.

Proof. By Lemma 10.7.2 and Lemma 10.7.3, for all but a 2q−n fraction of all ǎ,

the columns of Rotf(ǎ) generate Zn
q and s ≥ ηǫ(Λ

⊥
q ) for some negligible function

ǫ(mn). Now by Lemma 10.5.3, the distribution of u = ǎě = Rotf(ǎ) · e mod q is

statistically close to uniform over Rf,q. �

By using this lemma, we can proof the security of ILPSF.

Theorem 10.7.5 ([SSTX09]). Let f = xn + 1 and n = 2k ≥ 32. Let m and q be

integers with q prime, q ≡ 3 mod 4, and m ≥ 41 log q. Then, the above scheme

ILPSF is collision resistant if f-SISq,m,2s
√

mn is hard.

Proof. We note that s ≥ L · ω(
√

log m) ≥ ηǫ(Λ
⊥
q ) for some negligible ǫ(n) by

Lemma 2.1.7 since L ≥ ‖T̃′‖ ≥ b̃l(Λ⊥q ).

Next, a sample e ← DZmn,s falls into Dn except with negligible probability by

Lemma 2.1.9. Furthermore, for all but a 2q−n fraction of A, hA(e) is statistically

close to uniform over Rn = Z
n
q by Corollary 10.7.4.

The preimage sampleable property follows from s ≥ ‖T̃‖ · ω(
√

log m),

Lemma 10.5.3, and the correctness of SampleD (Theorem 10.4.7); The samples

from a distribution is statistically close to DΛ⊥q ,s,−t and the conditional distribution

of e← DZmn,s given Rotf(ǎ)e ≡ u (mod q) is exactly t + DΛ⊥q ,s,−t .

The collision resistance property immediately follows from the hardness of f-

SIS∞
q,m,2s log mn

or f-SISq,m,2s
√

mn

The preimage min-entropy is at least mn − 1. This follows the fact that the

preimages are distributed according to t +DΛ⊥,s,−t and the min-entropy of DΛ⊥,s,−t

is at least mn − 1 (see Lemma 2.1.14). �
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10.8 On “Bonsai” Notions

Peikert [Pei09b] compared the generations of the random lattice A to controlling

growths in Bonsai. Let us figure out what is a bonsai tree. Imagine the binary tree

{0, 1}l and the path µ. Let A0 ∈ Zn×m
q and A

(b)
i
∈ Zn×m

q for i ∈ [l] and b ∈ {0, 1}.
Then, for any µ ∈ {0, 1}l, we define Aµ = [A0|A(µ1)

1
| . . . |A(µl)

l
]. This construction

indicates a hierarchy of trapdoor functions.

The legitimate user has a trapdoor T0 of A0 and generate random A
(b)
i

, which

is undirected growth. It then has, for any µ ∈ {0, 1}l, a trapdoor Tµ for Aµ by

extending control.

The simulator crucially uses a directed growth. From A0, it can makes A1 with

a trapdoor of [A0|A1].

In addition, we can delegate the basis by a randomized control (see also

[CHK09]). If one knows a trapdoor T of A, one can generates a new trapdoor

S of A with a slight loss.

These techniques will be exploited in digital signature (Chapter 11), public-key

encryption (Chapter 12), and identity-based encryption (Chapter 14).

In the following, m denotes the sum of m1 and m2.

10.8.1 Undirected Growth

Let A1 ∈ Zn×m1
q and let A2 ∈ Zn×m2

q . Let us define A = [A1|A2]. It is obvi-

ous that Λ⊥q (A) is a higher-dimensional supper-lattice of Λ⊥q (A), since, for any

v1 ∈ Λ⊥q (A1), the vector v = v1 ◦ 0 is in Λ⊥q (A). Undirected growth is done by

concatenating fresh random matrix A2 onto a given A1.

10.8.2 Controlled Growth

This was already done by Alwen and Peikert. An arborist can generate a lattice

Λ⊥q (A) with a short basis of it from A1 as in the constructions (see Sections 10.3.2,

10.3.3, and 10.3.4).

10.8.3 Extending Control

If an arborist knows a trapdoor T of A1, then he also knows a trapdoor S of A =

[A1|A2]. We suppose that q is a prime.

Let us consider the following deterministic algorithm ExtBasis(T, A) which

will outputs S;

• For j = 1, . . . ,m1, let si = ti ◦ 0 ∈ Zm.

• For j = 1, . . . ,m2, let bi ∈ Zm be an arbitrary integer solution to the equation

A1bi ≡ −a
(2)
i

(mod q), where A2 = [a
(2)
1
, . . . , a

(2)
m2

]. Let sm1+i = bi ◦ ii ∈ Zm.

It is easy to show the following lemma, which states the matrix S inherits the

quality of T.
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Lemma 10.8.1 (Lemma 3.2, [Pei09b]). The algorithm runs in polynomial-time

and outputs a basis S of Λ⊥q (A) such that ‖S̃‖ = ‖T̃‖.

10.8.4 Randomizing Control

We finally review how to randomize the basis of a superlatticeΛ⊥q (A). This control

also appears in Cash, Hofheinz, and Kiltz [CHK09] with a name, delegation of a

basis.

Let us consider the following probabilistic algorithm RandBasis(T, s) which,

given a basis T of some m-dimensional lattice Λ and a parameter s ≥ ‖T̃‖ ·
ω(

√
log n), outputs a new basis S of Λ;

1. For i = 1, . . . ,m,

(a) Generate v ← SampleD(T, s). If v is linearly independent of

{v1, . . . , vi−1}, then let vi = v and increment i. Otherwise, repeat this step.

2. Let T′ be an HNF of T. Output S← MGReduce(T′,V).

It is easy to verify that Step 1 takes at most O(m2) times with overwhelming

probability. On the quality, ‖S̃‖ ≤ s ·
√

m with overwhelming probability, be-

cause v distributes according to the distribution statistically close to DΛ,s by Theo-

rem 10.4.7 and the norm bound in Theorem 2.1.9.

10.9 On “Miniature Bonsai” Notions

Here, we apply the above techniques to the ideal-lattice-based constructions. In the

following, m denotes the sum of m1 and m2.

10.9.1 Undirected Growth

Let ǎ1 ∈ R
m1

f,q
and let ǎ2 ∈ R

m2

f,q
. Let us define ǎ = ǎ1◦ ǎ2. As in the previous section,

it is obvious that M⊥q (ǎ) is a higher-dimensional supper-module of M⊥q (ǎ1), since,

for any ě1 ∈ M⊥q (ǎ1), the vector ě = ě1 ◦ 0̌ is in M⊥q (A). Undirected growth is done

by concatenating fresh random vector ǎ2 onto a given ǎ1.

10.9.2 Controlled Growth

An arborist can generate a module M⊥q (ǎ) with a short basis T of it from ǎ1 as in

the SSTX constructions (see Section 10.6).

10.9.3 Extending Control

If an arborist knows a trapdoor T of ǎ1, then he also knows a trapdoor S of ǎ =

ǎ1 ◦ ǎ2.
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Let us consider the following deterministic algorithm ExtIdBasis(T, A) which

will outputs S = [š1, . . . , šm];

• For j = 1, . . . ,m1, let š j = ť j ◦ 0̌ ∈ Rm
f

.

• For j = 1, . . . ,m2, let b̌ j ∈ R
m1

f
be an arbitrary integer solution to the equation

ǎ1b j ≡ −a
(2)
j

(mod q), where ǎ2 = [a
(2)
1
, . . . , a

(2)
m2

]. Let šm1+ j = b̌ j ◦ ı̌ j ∈ Zm.

It is easy to show the analogue of Lemma 10.8.1 which states the matrix S inherits

the quality of T.

Lemma 10.9.1. The algorithm runs in polynomial-time and outputs a basis S of

M⊥q (ǎ) such that ‖ ˜Rotf(S)‖ = ‖ ˜Rotf(T)‖.

10.9.4 Randomizing Control

We can use RandBasis appeared in Section 10.8. Hence, we omit the details.

10.10 An Application: Trapdoor Hash Functions

Introduction: Trapdoor commitments (or trapdoor hash functions) appeared first

in Brassard, Chaum, and Crépeau [BCC88], under the name “chameleon blobs”, in

the context of zero-knowledge proofs and arguments. They are underlying prim-

itives to construct complex cryptographic schemes and have many applications,

zero-knowledge proofs, arguments, signatures, universally composable commit-

ments. See Fischlin’s thesis [Fis01] for the details of trapdoor commitment (which

is a generalized notion of trapdoor hash family).

Here, we intend to discuss non-interactive one, a trapdoor hash family as

known as “chameleon hash functions” [KR00]. We mainly adopt the definition of

trapdoor hash functions by Shamir and Tauman (Kalai) in [ST01], however, their

definition depends on the number-theoretic assumptions: they require uniformity

of hash functions.

Let us confirm the definitions in [KR00, ST01]. Roughly speaking, the scheme

consists of a triple of polynomial-time algorithm, (TrapGen,Eval,TrapCol); The

generation algorithm, given the security parameter 1n, outputs (a, t), a pair of an in-

dex of hash function, which defines a hash function ha : Mn,a ×Wn,a → Rn,a, and a

trapdoor corresponding to a; The evaluation algorithm Eval, given a, m ∈ Mn,a, and

r ∈ Wn,a, computes d = ha(m, r); The trapdoor collision algorithm TrapCol, given

t, two distinct messages m1 , m2 ∈ Mn,a, and r1 ∈ Rn,a, outputs r2 ∈ Rn,a such

that ha(m1, r1) = ha(m2, r2); As ordinal hash functions, it is required to be collision

resistant: any polynomial-time adversary cannot, given an index a, outputs two dis-

tinct message m1 , m2 and two strings r1 and r2 such that ha(m1, r1) = ha(m2, r2),

where the probability is taken over the choice of (a, t)← TrapGen(1n) and the ran-

domness of the adversary. The problem is in the definition of uniformity. In [KR00]

and [ST01], their requirements are as follows:
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By Krawczyk and Rabin [KR00]: For any two distinct messages m1 , m2 ∈
Mn,a, the two distributions ha(m1, r1) and ha(m2, r2) are computationally iden-

tical if r1 and r2 are chosen uniformly at random from Rn,a.

By Shamir and Tauman [ST01]: If r1 is uniformly distributed in Wn,a, then the

distribution of r2 output by the algorithm TrapCol is computationally indistin-

guishable from uniform in Wn,a.

These uniformity definitions are violated if we choose r1 from another distri-

bution over Wn,a rather than the uniform distribution. Hence, we here give more

generalized one, which is very similar to the definition of preimage sampleable

functions in Section 10.2.

10.10.1 Definitions

Model of Trapdoor Hash Functions

In order to introduce the other distribution over Wn,a, we add the algorithm

SampleDom to the scheme. Let THash = (TrapGen,Eval,SampleDom,TrapCol)

over a message space Mn, a randomness space Wn, and a value space Rn be a trap-

door hash scheme. Notation of the algorithms is below:

TrapGen(1n): A key-generation algorithm, given the security parameter 1n, out-

puts a pair of an index of a hash function and a trapdoor (a, t). An index a

defines the hash function ha : Mn ×Wn → Rn.

Eval(a,msg, r): An evaluation algorithm, given a, a message msg ∈ Mn and a

randomness r ∈ Wn, outputs a digest d = ha(msg, r) ∈ Rn.

SampleDom(1n): A domain sampling algorithm, given the security parameter

1n, samples r ∈ Wn from some distribution over Wn.

TrapCol(a, t,msg0, r0,msg1): A trapdoor collision algorithm, given a, t corre-

sponding to a, msg0 ∈ Mn, r0 ∈ Rn, and msg1 ∈ Mn, outputs r1 ∈ Rn.

Security Notions

The collision resistance is defined as that in usual hash functions (see Section 4.1).

The hiding property is given below in order to generalize the uniformity in the

previous definitions: If SampleDom samples from the uniform distribution over

Rn, the definition is just the uniformity.

To define the security notion, consider the experiments Expcr
THash,A(n) and

Exphide
THash,A(n) between the challenger C and the adversaryA.

Experiment Expcr
THash,A(n):

Setup Phase: The challenger C runs TrapGen(1n) and obtains (a, t). The

adversaryA is given the security parameter 1n and the parameters a.
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Challenge Phase: The adversary outputs (msg, r), and (msg′, r′). If

msg,msg′ ∈ Mn, r, r′ ∈ Wn, (msg, r) , (msg′, r′), and Eval(a,msg, r) =

Eval(a,msg′, r′) then C returns 1. Otherwise, it returns 0.

Experiment Exphide
THash,A(n):

Setup Phase: The challenger C runs TrapGen(1n) and obtains (a, t). The

adversaryA is given the security parameter 1n and the parameters param.

Challenge Phase: The adversary outputs msg0 and msg1. If (1)

msg0,msg1 ∈ Mn and (2) msg0 , msg1, the challenger flips a fair

coin b ← {0, 1}. If b = 0, C generates r0 ← SampleDom(1n).

If b = 1, C generates r0 ← SampleDom(1n) and obtains r1 ←
TrapCol(a, t,msg0, r0,msg1). C provides (msgb, rb) to the adversary A.

If the above two checks are not passed, C returns 0 and halts.

Decision Phase: Finally, the adversary outputs its decision b′. If b = b′ the

challenger returns 1, otherwise 0.

Definition 10.10.1 (Collision resistance). Let THash be a trapdoor hash scheme.

LetA be an adversary. We define the advantage ofA as

Advcr
THash,A(n) := Pr

[
Expcr

THash,A(n) = 1
]
.

We say a trapdoor hash scheme THash is computationally binding if

Advcr
THash,A(n) is negligible in n for any polynomial-time adversaryA.

We treat the uniformity as the property of the output distribution of ha.

Definition 10.10.2 (Uniformity). Consider a trapdoor hash scheme THash. We

say THash has the (statistical) uniformity if if any messages msg ∈ Mn,

∆((a, d), (a, u)) ≤ negl(n) for some negligible function negl(n), where (a, t) ←
TrapGen(1n), r ← SampleDom(1n), d ← Eval(msg, r), and u← Rn.

The property that anyone cannot distinguish the pair of a message and a random

string and the pair output by TrapCol is now named as the hiding property.

Definition 10.10.3 (Hiding). Consider a trapdoor hash scheme THash. Let A be

an adversary. We define the advantage ofA as

Advhide
THash,A(n) :=

∣∣∣∣∣Pr
[
Exphide

THash,A(n) = 1
]
− 1

2

∣∣∣∣∣ .

We say THash is computationally hiding if for any polynomial-time adversaryA,

Advhide
THash,A(n) is negligible in n.

10.10.2 Constructions

Fujisaki [Eii08] and Peikert [Pei09b] pointed out the construction of trapdoor hash

schemes based on lattice problems. These are based on LPSF with the flavor of

LNIC.
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In LNIC, an index of the hash function is A = [A′|A′′] ∈ Zn×(m′+m′′)
q . The

commitment u = A(m ◦ r) = A′m + A′′r. What happen if we have the trapdoor

of A′′? For any message m and a committed value u, we can sample r such that

A′′r = u − A′m.

Descriptions

Scheme 10.10.4 (LTHash).

TrapGen(1n): The key-generation algorithm, given the security parameter 1n,

obtains (A′,T′) ← LPSF.TrapGen(1n) with the parameter m. Next, it gener-

ates a random matrix A′′ ← Zn×m
q . An index A = [A′′|A′] defines the hash

function hA : {0, 1}m × Dn → Zn
q.

Eval(A,w, r): The evaluation algorithm, given A, a message msg = w ∈ {0, 1}m
and a randomness r ∈ Dn, outputs a digest u = hA(w ◦ r) ∈ Zn

q.

SampleDom(1n): The domain sampling algorithm is the same as

LPSF.SampleDom(·). The distribution is DZm,s.

TrapCol(A,T,w0, r0,w1): First, it computes a digest u = hA(w0 ◦ r0) = A′′w0 +

A′r0. Then, it computes a half of digest u′ = A′′w1. Since, A′r1 = u′ − u, it

obtains r1 ← LPSF.SamplePre(A′,T′, s,u′ − u). Then, it outputs r1.

Security Proofs

The security proofs are straightforward. The collision resistance and the uniformity

follow from these of LPSF. The hiding property also follows statistical one of

LPSF. Hence, we omit them.

Extension

We again extend the domain of messages. As already noted in [KR00], the combi-

nation of hash functions and trapdoor hash functions yields this; the new trapdoor

hash functions are in the form h′a(msg, r) = ha(H(msg), r), where ha is a trapdoor

hash function and H is a hash function. We note that our method in Section 5.3.1

also extend the domain in our case.

An Ideal-Lattice-Based Construction

By simple argument, we can construct ILThash from ILPSF. We omit the details,

since they are very similar to LTHash from LPSF.

Remark

We finally note that Kurosawa and Heng [KH08] showed the conversion from a

trapdoor hash family to an ID scheme. Their conversion yields the following ID

scheme. The key pair is (a, t) ← TrapGen(1n). The protocol is defined as follows:
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(1) the prover chooses m ← Mn, generates a sample r ← SampleDom(1n), and

commits y = ha(m, r) = Eval(a,m, r), (2) the verifier sends a random challenge

c ← Mn, (3) the prover computes z ← TrapCol(a, t,m, r, c) and sends it, and (4)

the verifier checks that z ∈ Rn and y = ha(c, z).

Applying this conversion to our LTHash, we obtain a passively-secure ID

scheme based on the average-case hardness of SISq,m,β for β = Õ(n) (thus, the

worst-case hardness of SIVPÕ(n1.5)). The protocol is quite efficient since the com-

munication cost is Õ(n).
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11
Signature

Organization: This chapter includes the signature schemes based on lattice

problems. We give the definitions of signature in Section 11.1. Section 11.2

summarizes the general conversions from several primitives to secure signature

schemes. In Section 11.3, we review the Gentry–Peikert–Vaikuntanathan signa-

ture scheme. Section 11.4 gives a description of the ideal-lattice version of it by

Stehlé et al.. Section 11.5 reviews the ideal-lattice-based one-time signature by

Lyubashevsky and Micciancio. Section 11.6 reviews the obtained signatures from

Lyubashevsky’s ID scheme. In Section 11.7 gives a brief review of a signature

scheme proposed by Peikert very recently.

11.1 Definitions

11.1.1 Model of Signature Schemes

A signature scheme is a quadruplet of algorithms SIG =

(Setup,KeyGen,Sign,Ver).

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param.

KeyGen(param): A key-generation algorithm, given param, outputs a pair of a

verification key and a signing key (vk, sk).

Sign(param, sk,msg): A signing algorithm, given param, sk, and a message

msg, outputs a signature σ.

Ver(param, vk,msg, σ): A verification algorithm, given param, vk, msg, and σ,

returns 0 (reject) or 1 (accept).
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Correctness: We require a correctness condition that for any msg, it holds that

Ver(param, vk,msg, σ) = 1 with overwhelming probability for correctly generated

param, (vk, sk), and σ. Formally, we require that for any msg,

Pr


dec = 1 :

param← Setup(1n);

(vk, sk)← KeyGen(param);

σ← Sign(param, sk,msg);

dec← Ver(param, vk,msg, σ);


= 1 − negl(n).

11.1.2 Security Notions

The required security is basically that any polynomial-time adversary cannot output

a valid signature even if it can choose a message adversely. The notion is called

as existential unforgeability. There are several attacks and we describe the formal

definitions as follows:

One-time security means any polynomial-time adversary cannot output a valid

signature even if it is provided a signature of any message, which can be chosen

adversary, made by a valid signer. Consider the experiment Expot-cma
SIG,A(n) between

the challenger C and the adversaryA.

Experiment Expot-cma
SIG,A(n):

Setup Phase: The challenger C takes a security parameter 1n. The chal-

lenger runs the algorithm Setup, and obtains parameters param. Next,

it obtains (vk, sk) ← KeyGen(param). C gives 1n, param, and vk to the

adversary.

Learning Phase: The adversary queries to the oracle Sign at most once.

• The oracle Sign receives a message msg. It returns σ ←
Sign(param, sk,msg) to the adversary.

Challenge Phase: The adversary A outputs a message msg∗ and a forged

signature σ∗. If msg∗ , msg and Ver(param, vk,msg∗, σ∗) = 1, then C
outputs 1. Otherwise, it outputs 0.

Definition 11.1.1 (One-time security). Let SIG be a signature scheme, A an ad-

versary, and n a security parameter. We define the advantage ofA as

Advot-cma
SIG,A(n) = Pr

[
Expot-cma

SIG,A(n) = 1
]
.

We say that SIG is one-time secure if Advot-cma
SIG,A(·) is negligible for every

polynomial-time adversaryA.

Furthermore, we say that SIG is strongly one-time secure if Advot-cma
SIG,A(·) is

negligible for every polynomial-time adversary A, where we replace the check

msg∗ , msg with (msg∗, σ∗) , (msg, σ) in the challenge phase of the experiment.

Existential unforgeability under weak chosen message attacks means any

polynomial-time adversary cannot output a valid signature of an unsigned mes-

sage even if it is given signatures of chosen message before it is given the verifying
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key. Consider the experiment Expeuf-wcma
SIG,A (n) between the challenger C and the

adversaryA.

Experiment Expeuf-wcma
SIG,A (n):

Initiating Phase: The challenger C takes a security parameter 1n. C gives

A the security parameter 1n. C receives (msg1, . . . ,msgl) fromA.

Setup Phase: The challenger runs the algorithm Setup, and obtains param-

eters param. Next, it obtains (vk, sk)← KeyGen(param).

Learning Phase: The challenger makes signatures σi for the message msgi

using sk. Then, it feeds vk and σ1, . . . , σl to the adversary.

Challenge Phase: The adversary A outputs a message msg∗ and a forged

signature σ∗. If msg∗ , msgi for any i and Ver(param, vk,msg∗, σ∗) = 1,

then C outputs 1. Otherwise, it outputs 0.

Definition 11.1.2 (EUF-wCMA security). Let SIG be a signature scheme, A an

adversary, and n a security parameter. We define the advantage ofA as

Adveuf-wcma
SIG,A (n) = Pr

[
Expeuf-wcma

SIG,A (n) = 1
]
.

We say that SIG is existentially unforgeable under weak chosen message attacks if

Adveuf-wcma
SIG,A (·) is negligible for every polynomial-time adversaryA.

Existential unforgeability under chosen message attacks (EUF-CMA) means

any polynomial-time adversary cannot output a valid signature even if it is provided

a signature of any message, which can be chosen adversary, made by a valid signer.

In strong EUF-CMA (sEUF-CMA), the adversary wins if the output message is

already signed (we need the output signature is not equal to the signature output by

the legitimate signer).

Consider the experiment Exp
goal-cma

SIG,A (n) between the challenger C and the ad-

versaryA, where goal ∈ {euf, seuf}.

Experiment Exp
goal-cma

SIG,A (n):

Setup Phase: The challenger C takes a security parameter 1n. The chal-

lenger runs the algorithm Setup, and obtains parameters param. Next,

it obtains (vk, sk) ← KeyGen(param). C gives 1n, param, and vk to the

adversary.

Learning Phase: The adversary queries to the oracle Sign.

• The oracle Sign receives a message msgi in the i-th query. It returns

σi ← Sign(param, sk,msgi) to the adversary.

Challenge Phase: The adversary A outputs a message msg∗ and a forged

signature σ∗.

• If goal = euf then, the challenger checks that msg∗ , msgi for any

i and Ver(param, vk,msg∗, σ∗) = 1, then C outputs 1. Otherwise, it

outputs 0.
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• If goal = seuf then, the challenger checks that (msg∗, σ∗) ,
(msgi, σi) for any i and Ver(param, vk,msg∗, σ∗) = 1, then C outputs

1. Otherwise, it outputs 0.

Definition 11.1.3 (EUF-CMA and sEUF-CMA security). Let SIG be a signature

scheme,A an adversary, and n a security parameter. We define the advantage ofA
as

Adv
goal-cma

SIG,A (n) = Pr
[
Exp

goal-cma

SIG,A (n) = 1
]
.

We say that SIG is existential unforgeable under chosen message attacks if

Adveuf-cma
SIG,A (·) is negligible for every polynomial-time adversaryA.

We say that SIG is strongly existential unforgeable under chosen message at-

tacks if Advseuf-cma
SIG,A (·) is negligible for every polynomial-time adversaryA.

11.2 General Conversions to Secure Signature Schemes

We have found a lack of textbooks or notes containing the general conversion tech-

niques to obtain secure signature schemes. We here give a survey of them. We

hope that the textbook on this issue to appear.

11.2.1 From One-Way Function Family to Strong One-Time Signa-

ture Schemes

It is well-known that one-way functions yield one-time signature schemes and the

obtained signature scheme is employed anywhere of cryptography. The first one is

due to Lamport [Lam79] and we introduce only it in this section.

Suppose that OWF = (OWF.Setup,OWF.Eval) is a one-way function family.

OWF.Setup(1n) outputs an index a ∈ Kn that defines a function fa : Dn,a → Rn,a.

For x ∈ Dn,a, OWF.Eval(a, x) outputs fa(x).

Scheme 11.2.1 (Lamport-OTS). The message space of the signature is {0, 1}n.

Setup(1n): Given the security parameter 1n, invoke a ← OWF.Setup(1n) and

outputs param = a.

KeyGen(a): Given the index a, it first choose 2n random elements x
(b)
i
← Dn,a

for i ∈ [n] and b ∈ {0, 1}. It next computes y
(b)
i
← fa(x

(b)
i

). The signing key is

sk = X = {x(b)
i
}i,b. The verification key is vk = Y = {y(b)

i
}i,b.

Sign(a, X,msg): The message is an n-bit string. Let msgi denote the i-th bit

of msg. Then, the algorithm reveals x
(msgi)

i
as σ. Formally, it outputs σ =

{x(msgi)

i
}i∈[n].

Ver(a,Y,msg, σ): Parse σ = {σi}i∈[n]. It checks that y
(msgi)

i
= fa(σi) and σi ∈

Dn,a. It accepts if all the checks are passed and rejects otherwise.

Theorem 11.2.2. The scheme Lamport-OTS is one-time secure if OWF is one-way.
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For the proof, see, e.g., [BDS08, Section 7.2].

Direct use of one-way function can achieve only one-time security rather than

strong one-time security. It is known that a target collision-resistant hash family

(as known as a universal one-way hash family)1 suffices to construct strongly one-

time secure signature schemes [NY89]. Rompel showed that a one-way function

family is suffice to construct a target collision-resistant hash family [Rom90] (see

the concrete proof Katz and Koo [KK05]). In addition, if we replace the internal

function of Lamport-OTS with a collision-resistant hash function, the similar proof

shows the security of the obtained scheme. See the next section.

From Collision-Resistant Hash Family to Strong One-Time Signature

Schemes

Replacing the one-way function family with the collision-resistant hash family, we

can prove strong one-time security of the scheme Lamport-OTS.

Suppose that Hash = (Hash.Setup,Hash.Eval) is a collision-resistant hash

family with domain Dn and range Rn. Hash.Setup(1n) outputs an index a ∈ Kn

that defines a function ha : Dn → Rn. For x ∈ Dn, Hash.Eval(a, x) outputs ha(x).

Scheme 11.2.3 (Lamport-OTS′). The message space of the signature is {0, 1}n.

Setup(1n): Given the security parameter 1n, invoke a ← OWF.Setup(1n) and

outputs param = a.

KeyGen(a): Given the index a, it first choose 2n random elements x
(b)
i
← Dn,a

for i ∈ [n] and b ∈ {0, 1}. It next computes y
(b)
i
← fa(x

(b)
i

). The signing key is

sk = X = {x(b)
i
}i,b. The verification key is vk = Y = {y(b)

i
}i,b.

Sign(a, X,msg): The message is an n-bit string. Let msgi denote the i-th bit

of msg. Then, the algorithm reveals x
(msgi)

i
as σ. Formally, it outputs σ =

{x(msgi)

i
}i∈[n].

Ver(a,Y,msg, σ): Parse σ = {σi}i∈[n]. It checks that y
(msgi)

i
= fa(σi) and σi ∈

Dn,a. It accepts if all the checks are passed and rejects otherwise.

Theorem 11.2.4. Suppose that |Dn| / |Rn| = 2ω(log n). The scheme Lamport-OTS′

is strongly one-time secure if Hash is collision resistant.

Proof. Suppose that there exists an adversary A that wins the strong one-time se-

curity game. We construct an adversary B that outputs a collision.

At the first, B is given an index a ← Hash.Setup(1n). Then, it makes the

signing key X = {x(b)
i
} and the verification key Y = {y(b)

i
} for i ∈ [n] and b ∈ {0, 1},

where y
(b)
i
← ha(x

(b)
i

). B feeds a and Y to A. If A queries a message msg to be

1 Consider the following game; (1) the adversary A first output msg ∈ Dn, (2) the challenger C
generates a ← Kn and feeds it A, (3) A outputs msg′ ∈ Dn, (4) C outputs 1 if msg , msg′ and

ha(msg) = ha(msg′) and 0 otherwise. The adversary wins if C outputs 1. We say H = {Hn}n (or

corresponding Hash) is target collision resistance if no polynomial-time adversary wins the game

with non-negligible probability.
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signed, then B signs it by using the signing key X and return σ = {σi} = {x(msgi)

i
}

toA. At the end,A outputs (msg∗, σ∗).
We should consider two cases, (1) msg∗ = msg and σ∗ , σ, and (2) msg∗ ,

msg. We show B can output a collision with high probability in each case if A
wins the game.

(1) msg∗ = msg and σ∗ , σ: There must be an index i such that σ∗
i
, σi = x

(msgi)

i
.

If Ver(a,Y,msg∗, σ∗) = 1, ha(σ∗
i
) = ha(σi). Then, B can output a collision (σ∗

i
, σi)

for ha.

(2) msg∗ , msg: There is an index i such that msg∗
i
, msgi. Notice thatA have not

seen x
(msg∗

i
)

i
. Hence, with high probability, σ∗

i
, x

(msg∗
i
)

i
because B chooses x

(msg∗
i
)

i

uniformly at random from Dn and |Dn| / |Rn| = 2ω(log n). Therefore, B can output a

collision (σ∗
i
, x

(msg∗
i
)

i
) for ha. �

We note that we can change Hash with a collision-resistant preimage sam-

pleable functions PSF. The proof is essentially same.

11.2.2 From One-time Signature Scheme

Merkle’s tree can be used to construct of EUF-CMA secure signature from one-

time signature. Intuitively, the verification key of the scheme authenticates the

verification keys of one-time signature. For theoretical and implementation tech-

niques, see the survey by Buchmann, Dahmen, and Szydlo [BDS08].

11.2.3 From One-Way Trapdoor Permutations

We say the scheme TDOWF is a one-way trapdoor permutation scheme if each

function fa is a permutation (that is, the function fa is one-to-one and the domain

Dn,a and the range Rn,a are the same set) and write it TDOWP.

The security of the full-domain hash (FDH) paradigm (or well-known heuris-

tic) is proved by Bellare and Rogaway [BR93] with introducing the random oracle

paradigm (see also [BR96] and Coron [Cor00]). The probabilistic full-domain

hash (PFDH) paradigm is a variant of FDH, which employs “salts”, and proposed

by Coron [Cor02, Appendix A].

Scheme 11.2.5 (TDOWP-FDH). Let TDOWP = (TrapGen,Eval, Inv) be a one-

way trapdoor permutation scheme with domain and range Dn,a = Rn,a. The hash

function H : {0, 1}∗ → Rn,a is modeled as the random oracle. The signature scheme

TDOWP-FDH is defined as follows:

Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter from the arguments of the algorithms for ease of notation.

KeyGen(1n): The key-generation algorithm invokes TDOWP.TrapGen(1n) and

obtains (a, t). It outputs (vk = a, sk = t).

Sig(t,msg): The signing algorithm, given msg, first obtains y = H(msg) ∈ Rn,a.

Then, it invokes x← TDOWP.Inv(t, y) and outputs x ∈ Dn,a.
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Ver(a,msg, σ = x): The verification algorithm first computes y = H(msg). If

y = TDOWP.Eval(a, x) it outputs 1, otherwise outputs 0.

Scheme 11.2.6 (TDOWP-PFDH). Let TDOWP = (TrapGen,Eval, Inv) be a one-

way trapdoor permutation scheme with domain and range Dn,a = Rn,a. The hash

function H : {0, 1}∗ → Rn,a is modeled as the random oracle. The signature scheme

TDOWP-PFDH is defined as follows:

Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter from the arguments of the algorithms for ease of notation.

KeyGen(1n): The key-generation algorithm invokes TDOWP.TrapGen(1n) and

obtains (a, t). It outputs (vk = a, sk = t).

Sig(t,msg): The signing algorithm, given msg, first generates r ← {0, 1}n and

obtains y = H(msg ◦ r) ∈ Rn,a. Then, it invokes TDOWP.Inv(t, y) and obtains

x ∈ Dn. The signature is (r, x).

Ver(a,msg, σ = (r, x)): The verification algorithm first computes y = H(msg◦r).

If y = TDOWP.Eval(a, x) it outputs 1, otherwise outputs 0.

Theorem 11.2.7. Both TDOWP-FDH and TDOWP-PFDH are EUF-CMA secure

in the random oracle model if TDOWP is one-way.

Roughly speaking, the adversary against TDOWP programs y as H(msgi) for

some msgi, which is queried to the random oracle. In order to obtain tighter security

reductions, several researchers proposed the simulation and programming methods

of the random oracle. The simplest one is the simulator chooses i ∈ [Q] and setting

y as H(msgi), where Q is the number of the queries to the random oracle H by the

adversary. Using this method, we can upper bound

Adveuf-cma
TDOWP-FDH,A(n) ≤ 1

Q
AdvTDOWP(n) + negl(n),

where AdvTDOWP(n) is the upper bound of the advantages Advow
TDOWP,A(n) for any

polynomial-time adversary A against one-way property of TDOWP. See, e.g.,

Coron [Cor00] to reduce the factor 1/Q. We note that Coron’s method can be

applied to homomorphic functions.

11.2.4 From Collision-Resistant Preimage Sampleable Functions

Gentry et al. [GPV08] observed that we can replace OWTDP with a collision-

resistant preimage sampleable function family PSF. Furthermore, it yields tighter

security than that for OWTDP-FDH and OWTDP-PFDH. The schemes PSF-FDH

and PSF-PFDH are defined as follows:

Scheme 11.2.8 (PSF-FDH). Let PSF = (TrapGen,Eval,SampleDom,SamplePre)

be a preimage sampleable function scheme with domain Dn and range Rn. The

hash function H : {0, 1}∗ → Rn is modeled as the random oracle. The scheme

PSF-FDH is defined as follows:
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Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter for ease of notation.

KeyGen(1n): The key-generation algorithm invokes PSF.TrapGen(1n) and ob-

tains (a, t). It outputs (vk = a, sk = t).

Sig(sk = t,msg): The signing algorithm, given msg, first checks its local storage.

If (msg, σmsg) is in local storage, the output σmsg. Else, it computes y ←
H(msg) ∈ Rn, invokes PSF.SamplePre(t, y) and obtains σmsg = x ∈ Dn.

Ver(vk = a,msg, σ = x): The verification algorithm first computes y = H(msg).

If y = PSF.Eval(a, x) it outputs 1, otherwise outputs 0.

Scheme 11.2.9 (PSF-PFDH). Let PSF =

(TrapGen,Eval,SampleDom,SamplePre) be a preimage sampleable func-

tion scheme with domain Dn and range Rn. The hash function H : {0, 1}∗ → Rn is

modeled as the random oracle. The scheme PSF-PFDH is defined as follows:

Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter for ease of notation.

KeyGen(1n): The key-generation algorithm invokes PSF.TrapGen(1n) and ob-

tains (a, t). It outputs (vk = a, sk = t).

Sig(sk = t,msg): The signing algorithm, given msg, first generates r ← {0, 1}n
and obtains y = H(msg ◦ r) ∈ Rn. Then, it invokes PSF.SamplePre(t, y) and

obtains x ∈ Dn. The signature is (r, x).

Ver(vk = a,msg, σ = (r, x)): The verification algorithm first computes y =

H(msg ◦ r). If y = PSF.Eval(a, x) it outputs 1, otherwise outputs 0.

Since the underlying functions are collision resistant, the security reduction is

tighter than that in the FDH signature based on one-way trapdoor functions. We

note that this idea is used independently by Bernstein [Ber08] to given the tighter

security reduction for the Rabin–Williams signature scheme, which is based on the

4-to-1 one-way function.

Theorem 11.2.10 (Propositions 6.1 and 6.2, [GPV08]). Let PSF be a collision-

resistant preimage sampleable functions with domain Dn and range Rn. Then both

PSF-FDH and PSF-PFDH are sEUF-CMA secure in the random oracle model.

11.2.5 From Identification Schemes: The Fiat–Shamir Conversion

Let us recall canonical identification schemes. The scheme has a prover P =

(P1,P2) and a verifier V = (V1,V2). The interaction between them is a triplet

of a commitment y from P1, a challenge c from V1, and a response z from P2.

Roughly speaking, if we replace c by V1 with c = H(msg, y), there is no interac-

tion. The signer computes y← P1, c← H(msg, y), and z← P2 and sets (y, c, z) as

a signature. Then, verifier can verify it by invoking V2.

Originally, Fiat and Shamir introduced the conversion as a heuristic. Its se-

curity is proved in Pointcheval and Stern [PS96] and Okamoto and Ohta [OO98].
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Finally, Abdalla, An, Bellare, and Namprempre minimized the assumption on the

underlying ID scheme, which must be passively secure and has large challenge

space.

Recall that a canonical identification in Section 6.2.2. We describe the slightly

modified version of the Fiat–Shamir conversion in [AABN08].

Scheme 11.2.11 (The Fiat–Shamir conversion with a slight modifica-

tion [AABN08]). Let ID = (ID.Setup, ID.KeyGen, ID.P = (ID.P1, ID.P2), ID.V =

(ID.V1, ID.V2)) be a canonical ID scheme with challenge space Cn such that

|Cn| = 2ω(log n). Let H : {0, 1}∗ → Cn be the random oracle. Let α(n) be

some non-negative integer function. The converted signature scheme Sig =

(Setup,KeyGen,Sign,Ver) is defined as follows:

Setup(1n): Given the security parameter, it obtains param ← ID.Setup(1n) and

outputs param′ = param

KeyGen(param′): Given the public parameter param, it obtains (pk, sk) ←
ID.KeyGen(1n) and outputs (vk′, sk′) = (pk, (pk, sk)).

Sign(param′, sk′ = (pk, sk),msg): Given param′, pk, sk, and a message msg,

it generate a signature as follows: First, it obtains (cmt, stP) ←
ID.P1(param, pk, sk). Next, it chooses r ← {0, 1}α(n) and computes ch ←
H(r ◦ cmt ◦ msg). Finally, it obtains rsp ← ID.P2(ch, stP). It outputs

σ = (r, cmt, rsp).

Ver′(param′, vk′ = pk,msg, σ = (r, cmt, rsp)): Given param′, vk′, msg, and σ, it

makes a decision as follows: It computes ch ← H(r ◦ cmt ◦ msg), obtains

dec← ID.V2(pk, cmt, ch, rsp), and outputs dec.

If s(n) = 0 for any n, this is the original Fiat–Shamir conversion. To make the

result general, Abdalla et al. introduced α(n) as the parameter.

To describe the security, we require the non-triviality of an ID scheme. That is,

commitments generated by P1 has sufficiently large min-entropy β(n) = ω(log n).

Theorem 11.2.12 ([AABN08]). Suppose that ID is a passively-secure canonical

identification scheme with |Cn| = 2ω(log n) and α(n) + β(n) = ω(log(n)). Then, the

obtained signature scheme Sig′ is EUF-CMA secure in the random oracle model.

Corollary 11.2.13 ([AABN08]). Suppose that ID is a passively-secure, non-trivial,

canonical identification scheme with |Cn| = 2ω(log n). Suppose that s(n) = 0 for any

n. Then, the obtained signature scheme Sig′ is EUF-CMA secure in the random

oracle model.

The Fiat–Shamir Conversion with Aborts

In the above conversion, ID has perfect completeness, that is, the decision of the

legitimate verifier interacting the legitimate prover is 1 with probability 1. Inter-

estingly, Lyubashevsky [Lyu09] observed that the ID schemes are not needed to
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be perfectly correct in the Fiat-Shamir conversion. The signer repeat the above

procedure until it succeeds.

One-Time Signature Schemes from Identification Schemes: The Fiat–Shamir

Conversion without the Random Oracle

In [BS08], Bellare and Shoup proved that, if we want to construct one-time signa-

ture2, a collision-resistant hash family can be used instead of the random oracle in

the Fiat–Shamir conversion. However, the underlying identification must be con-

currently secure rather than passively secure as in the Fiat–Shamir conversion. In

addition, the underlying identification must have a special soundness.

Intuitively, the public and secret key of the identification scheme corresponds

to the master verification and signing key, respectively. The commitment generated

by the prover and its randomness are the session verification key and the session

signing key. For each session key, only a message can be signed. If only one

session is allowed, the scheme is a one-time signature scheme.

Scheme 11.2.14 (The Fiat–Shamir conversion without the random oracle [BS08]).

Let ID = (ID.Setup, ID.KeyGen, ID.P = (ID.P1, ID.P2), ID.V = (ID.V1, ID.V2)) be a

canonical ID scheme with challenge space Cn such that |Cn| = 2ω(log n). Let Hash =

(Hash.Setup,Hash.Eval) be a hash scheme. Let α(n) be some non-negative integer

function. The converted signature scheme Sig = (Setup,KeyGen,Sign,Ver) is

defined as follows:

Setup(1n): Given the security parameter, it obtains param ← ID.Setup(1n) and

k ← Hash.Setup(1n), and outputs param′ = (param, k).

KeyGen(param′ = (param, k)): Given the public parameter param′, it obtains

(pk, sk)← ID.KeyGen(1n). Next, it obtains (cmt, stP)← ID.P1(param, pk, sk).

It outputs (vk′, sk′) = ((pk, cmt), (pk, sk, stP)).

Sign(param′, sk′ = (pk, sk, stP),msg): Given param′, pk, sk, and a message msg,

it generate a signature as follows: It computes ch← Hash.Eval(k, cmt◦msg) =

hk(cmt ◦ msg). Finally, it obtains rsp← ID.P2(ch, stP). It outputs σ = rsp.

Ver(param′, vk′ = (pk, cmt),msg, σ = rsp): Given param′, vk′, msg, and σ, it

makes a decision as follows: It computes ch ← Hash.Eval(k, cmt ◦ msg),

obtains dec← ID.V2(pk, cmt, ch, rsp), and outputs dec.

Theorem 11.2.15 ([BS08]). Suppose that ID is a concurrently-secure, canonical,

and special-sound identification scheme with |Cn| = 2ω(log n). Also, suppose that

Hash is collision-resistant. Then, the obtained signature scheme Sig′ is strongly

one-time secure.

2 Precisely, they defined two-tier signature and showed it includes one-time signature as a special

version.
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11.2.6 From Trapdoor Hash Schemes and Weakly Secure Signature

Schemes

Shamir and Tauman showed that the hash-sign-switch paradigm bares secure sig-

nature scheme.

Scheme 11.2.16 (The Hash-Sign-Switch Paradigm [ST01]). Let THash =

(TrapGen,Eval,SampleDom,TrapCol) be a trapdoor hash scheme and let Sig =

(Setup,KeyGen,Sign,Ver) be a weakly-secure signature scheme. A new signature

scheme Sig′ = (Setup′,KeyGen′,Sign′,Ver′) is obtained as follows:

Setup′(1n): Given the security parameter 1n, invoke param ← Setup(1n) and

output param.

KeyGen′(param): Generate key pairs (vk, sk) ← KeyGen(param) and (a, t) ←
TrapGen(1n). The new key pair is vk′ = (vk, a) and sk′ = (sk, a, t).

Sign′ = (SignOff,SignOn): The signing algorithm has two stages, off-line

phase and one-line phase.

SignOff′(sk′): Choose a random message msg′ ← Mn and a random string

r′ ← SampleDom(1n). Then, compute a digest d = ha(msg′, r′) by

Eval(a,msg′, r′). Next, obtain σoff ← Sign(sk, d). It outputs σoff and

stoff = (d,msg′, r′).

SignOn′(sk′, σoff , stoff ,msg): Obtain r ← TrapCol(a, t,msg′, r′,msg1).

Output σ = (σoff , r) as the signature.

Ver′(vk′ = (vk, a),msg, σ = (σoff , r)): Compute d ← ha(msg, r) and output

dec← Ver(vk, d, σoff) as the decision.

Theorem 11.2.17. Let THash be a trapdoor hash scheme and let Sig be an EUF-

wCMA secure signature scheme. Then, Sig′ is an EUF-CMA secure signature

scheme.

Although we have changed the definition of trapdoor hash families, we can give

the security proof by the essentially similar way to the one of Shamir and Tauman.

Hence, we omit the details.

11.2.7 From Identity-based Encryption

As noted in the paper by Boneh and Franklin [BF03], Naor pointed out identity-

based encryption induces the signature scheme. For notation and notions on

identity-based encryption, see Chapter 14.

Given an IBE scheme IBE = (Setup,Ext,Enc,Dec), a signature scheme SIG =

(KeyGen,Sign,Ver) is defined as follows;

KeyGen(1n): (vk, sk) = (param,msk)← Setup(1n).

Sig(msg, sk): σ = uskmsg ← Ext(msg,msk).
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Ver(msg, σ, vk): To verify the signatureσ on msg under the verification key vk, it

randomly generates a ciphertext ct ← Enc(m,msg, pk) with a random plaintext

m, and checks that m = Dec(ct, σ, pk). If the check is passed, it accepts the

signature. Otherwise, reject.

It is easy to show that this construction yields secure signature scheme if the

underlying identity-based encryption scheme is fully-ID secure. Roughly speak-

ing, if there is a forger for the signature scheme, one can extract the identity and its

decryption key. Hence, this violates the security of the underlying identity-based

encryption scheme.

11.3 The Gentry–Peikert–Vaikuntanathan Signature

We now turn back to lattice-based signature schemes. The first appearing ones are

proposed by Gentry et al. [GPV08]. The schemes are obtained by applying FDH

and PFDH paradigms to LPSF.

11.3.1 Description

Applying PSF-FDH and PSF-PFDH to the lattice-based CR-PSFs in Section 10.5,

we obtained a sEUF-CMA secure signature scheme based on the SIS assumption.

Scheme 11.3.1 (GPV-FDH). We model the hash function H : {0, 1}∗ → Zn
q as the

random oracle.

Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter for ease of notation.

KeyGen(1n): The key-generation algorithm invokes LPSF.TrapGen(1n) in Sec-

tion 10.5 and obtains (A,T) ∈ Zn×m
q × Zm×m. It outputs (vk = A, sk = T).

Sign(sk = T,msg): The signing algorithm, given msg, first obtains u = H(msg).

Then, it invokes LPSF.SamplePre(A,T, s,u) in Section 10.5 and obtains e.

(Here, e is a sample from the distribution D which is statistically close to

DΛ⊥q (A),s,t where t is any solution of At = u mod q.)

Ver(vk = A,msg, σ = e): The verification algorithm first computes u = H(msg).

Then, it verifies Ae = u mod q. Output 1 if the check is passed, otherwise, 0.

Scheme 11.3.2 (GPV-PFDH). We model the hash function H : {0, 1}∗ → Zn
q as

the random oracle.

Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter for ease of notation.

KeyGen(1n): The key-generation algorithm invokes LPSF.TrapGen(1n) in Sec-

tion 10.5 and obtains (A,T) ∈ Zn×m
q × Zm×m. It outputs (vk = A, sk = T).

Sig(sk = T,msg): The signing algorithm, given msg, first generates a ran-

dom string r ← {0, 1}n and obtains u = H(msg ◦ r). Then, it invokes
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11.4. THE STEHLÉ–STEINFELD–TANAKA–XAGAWA SIGNATURE

LPSF.SamplePre(A,T, s,u) in Section 10.5 and obtains e. It outputs (r, e)

as the signature.

Ver(vk = A,msg, σ = (r, e)): The verification algorithm first computes u =

H(msg ◦ r). Then, it verifies Ae = u mod q. Output 1 if the check is passed,

otherwise, 0.

Theorem 11.3.3 (Security, [GPV08]). Let m ≥ (5 + 3δ)n log q for some constant

δ > 0. Let s ≥ L · ω(
√

log m), where L = O(
√

n log q). The above schemes are

sEUF-CMA secure if SISq,m,2s
√

m is hard.

The security proofs of two schemes is obtained by combining the arguments

in Section 10.5 and Section 11.2.4.

11.4 The Stehlé–Steinfeld–Tanaka–Xagawa Signature

As an analogue of the GPV signatures, we introduce the SSTX signatures based on

the ideal-lattice-based PSFs. These schemes are obtained by replacing the under-

lying PSFs LPSF with ILPSF.

11.4.1 Description

Scheme 11.4.1 (SSTX-PFDH). We model the hash function H : {0, 1}∗ → Rf,q as

the random oracle.

Setup(1n): The setup algorithm outputs param = 1n. We omit the public pa-

rameter for ease of notation.

KeyGen(1n): The key-generation algorithm invokes ILPSF.TrapGen(1n) in

Section 10.5 (hence, ExtIdLattice in Section 10.3) and obtains (ǎ,T). It out-

puts (vk = ǎ, sk = T).

Sig(sk = T,msg): The signing algorithm, given msg, first generates a ran-

dom string r ← {0, 1}n and obtains u = H(msg ◦ r). Then, it invokes

ILPSF.SamplePre(ǎ,T, s,u) in Section 10.5 and obtains ě. It outputs (r, ě)

as the signature.

Ver(vk = ǎ,msg, σ = (r, ě)): The verification algorithm first computes u =

H(msg ◦ r). Then, it verifies . If ǎě = u mod q it outputs 1, otherwise outputs

0.

11.4.2 Security Proofs

The security proofs of two schemes is obtained by combining the arguments in Sec-

tion 10.5 and Section 11.2.4.
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11.5 The Lyubashevsky–Micciancio One-Time Signature

This scheme has a flavor of the Bellare–Shoup transformation with the Lyuba-

shevsky identification scheme, Ly08-IDC/IL, but there are two main differences.

The first difference is the change of key spaces and the method of key genera-

tion to obtain perfect correctness. The second difference is no use of collision

resistant hash functions. We note that this is a reverse-chronicle order. Lyuba-

shevsky and Micciancio [LM08] proposed the scheme in March 2008 and Lyuba-

shevsky [Lyu08b, Lyu09] proposed his identification scheme in September 2008

and December 2009.

11.5.1 Description

For simplicity, we fix f = xn+1 and l =
⌊
log2 n

⌋
. Let us fix q = n3 and m← ⌈

log n
⌉
.

Define for any i ∈ N,

De,i = {y̌ ∈ Rm
f,q | ‖y̌‖∞ ≤ 5iq1/m} and Dr,i = {y̌ ∈ Rm

f,q | ‖y̌‖∞ ≤ 5inpq1/m}.

We also define

G = {y̌ ∈ Rm
f,q | ‖y̌‖∞ ≤ 10q1/mn log2 n}.

Scheme 11.5.1 (LM-OTS [LM08]).

Setup(1n): It chooses a random row vector ǎ← Rm
f,q

uniformly and outputs it.

KeyGen(ǎ): It first choose r ∈ {0, 1}l. If r = 0l set j = l. Else, set j as the

position of the left-most standing bit of r. Pick ě ← De, j and ř ← Dr, j.

Compute u ← hǎ(ě) and y ← hǎ(ř). The signing key is (u, y, ě, ř) and the

verification key is (u, y).

Sign(ǎ, sk = (u, y, ě, ř),msg = c): The message c is in {−1, 0,+1}n. It outputs

σ = ž← c ⊗ ě + ř.

Ver(ǎ, vk = (u, y),msg = c, σ = ž): If ž ∈ G and hǎ( ž) = c ⊗ u + y then output 1

(accept) and output 0 otherwise.

Theorem 11.5.2 ([LM08, Theorem 8]). The above scheme is strongly one-time

secure if the f-SIS∞q,m,β is hard on average, where β = 20q1/mn log2 n. In particular,

for appropriately settings on the parameters, the scheme is secure if f-SVP∞γ is hard

in the worst case, where γ = Õ(n2).

For the proof, see the original paper [LM08].

11.6 The Lyubashevsky Signature

We also obtain an EUF-CMA secure signature by applying the Fiat-Shamir trans-

formation with aborts to the basic protocol of Ly09-ID Section 6.8..
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11.6.1 Descriptions

Scheme 11.6.1 (Ly-SIG, [Lyu09]). All the participant agree with the parameters m,

q, De, Dr, Dc, and G as in Section 6.8. We model the hash function H : {0, 1}∗ →
Dc as the random oracle. Let f denote xn + 1.

Setup(1n): It outputs ǎ← Rm
f,q

uniformly at random.

KeyGen(ǎ): It chooses ě ← De and computes u = hǎ(ě). It outputs sk = (u, ě)

and vk = u.

Sig(ǎ, (u, ě),msg): Choose ř ← Dr and compute y ← hǎ(ř). Compute c ←
H(msg ◦ y). Then compute ž ← c ⊗ ě + ř. If ž ∈ G then it outputs σ = (y, ž).

Otherwise repeat the above procedures.

Ver(ǎ, u,msg, σ = (y, ž)): First, compute c← H(msg ◦ y). If ž ∈ G and hǎ( ž) =

c ⊗ u + y outputs 1, otherwise outputs 0.

Theorem 11.6.2 ([Lyu09, Theorem 3]). The above scheme is EUF-CMA secure if

f-SIS∞q,m,β is hard on average, where β = 2(mn − 1)σκ. In particular, let σ be a

constant and κ(n) = Θ(log2 n). Then for appropriately settings on the parameters,

the scheme is secure if f-SVP∞γ is hard in the worst case, where γ = Õ(n2).

11.7 The Signature from “Bonsai”

Very recently, Peikert proposed a signature scheme made by “Bonsai.” This signa-

ture scheme has the flavors of the Hohenberger–Waters signature scheme based on

the RSA assumption and as the IBE-to-Sig conversion.

11.7.1 Description

Scheme 11.7.1 (Bonsai-wSIG). We model the hash function. The parame-

ters are defined as follows: Two integers m1,m2 = O(n log q), and a bound

L = O(
√

n log q). Let a hashed message length be k and total dimension m =

m1 + (k + 1)m2, and a Gaussian parameter s = L · ω(
√

log n).

KeyGen(1n): Generate A0 ∈ Zn×(m1+m2)
q with a basis T of Λ⊥q (A0) such that

‖T̃‖ ≤ L. For each (b, j) ∈ {0, 1} × [k], generate uniform and independent

A
(b)
j
∈ Zn×m2

q . Output vk = (A0, {A(b)
j
}) and sk = (S, vk).

Sig(sk = (T, vk),msg = µ ∈ {0, 1}k): Let Aµ = [A0|Aµ1

1
| . . . |Aµk

k
] ∈ Zn×m

q . Let

Tµ ← ExtBasis(T, Aµ). Then, output σ = e← SampleD(Tµ, s, 0).

Ver(vk = (A0, {A(b)
j
}),msg = µ, σ = e): Let Aµ as above. If e , 0, ‖e‖ ≤ s ·

√
m,

and Aµe = 0 mod q, output 1 as accept; otherwise, output 0 as reject.

Theorem 11.7.2 ([Pei09b]). Let m = m1 + (k + 1)m2 and m′ = m1 + (2k + 1)m2.

The above scheme is EUF-wCMA secure if SISq,m′,β is hard on average, where

β = s
√

m.
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For the proof, see [Pei09b].

Combining the above scheme Bonsai-wSIG and the trapdoor commitment

scheme, we obtain the scheme Bonsai-SIG. If we set pk = a of the public key

of the trapdoor-commitment scheme as the public parameter, we then have the sig-

nature scheme. In addition, if the verification key vk includes a and the signing

key sk includes the corresponding trapdoor t, the scheme is now one-line/off-line

signature.

Scheme 11.7.3 (Bonsai-SIG). Let THash =

(TrapGen,Eval,SampleDom,TrapCol) be a trapdoor hash scheme with range

{0, 1}k. The parameters are defined as follows: Two integers m1,m2 = O(n log q),

and a bound L = O(
√

n log q). A hashed message length k and total dimension

m = m1 + (k + 1)m2, and a Gaussian parameter s = L · ω(
√

log n).

KeyGen(1n): Invoke Bonsai-wSIG.KeyGen and obtain vk′ = (A0, {A(b)
j
}) and

sk′ = (T, vk′). Invoke TrapGen(1n) and obtain pk = a and sk = t. Output

vk = (A0, {A(b)
j
}, a) and sk = (T, t, vk).

Sign = (SignOff,SignOn):

SigOff(skoff = (T, vk)): First generate random string r ← SampleDom(1n)

and compute µ← Eval(0; r) ∈ {0, 1}k. Then, let Aµ = [A0|Aµ1

1
| . . . |Aµk

k
] ∈

Zn×m
q and let Tµ ← ExtBasis(T, Aµ). Output σoff = e ←

SampleD(Tµ, s, 0) and stoff = (µ, r).

SigOn(skon = t, σoff = e, stoff = (µ, r),msg ∈ {0, 1}∗): It computes r′ ←
TrapCol(µ, 0, r,msg). Then outputs the signature σ = (r′, e).

Ver(vk = (A0, {A(b)
j
}),msg, σ = (r, e)): First compute µ← Eval(msg, r). Let Aµ

as above. If e , 0, ‖e‖ ≤ s ·
√

m, and Aµe = 0 mod q, output 1 as accept;

otherwise, output 0 as reject.

The signing algorithm can be split into two algorithms, SigOff and SigOn,

where SigOff does not involve the message.

Remark 11.7.4. Notice that the above scheme is EUF-CMA secure but not sEUF-

CMA secure; From a valid signature σ = (r, e) on msg, a new signature σ =

(r,−e) on msg is obtained. To protect the scheme against the above attack, Rükert

fixed the verification; the public key contains u ← Zn
q, the signer samples e ←

SampleD(Tµ, s, u), and the verifier checks Aµe ≡ u mod q. For the details and the

proofs, see Rükert’s paper [Rüc10].

Remark 11.7.5. Stehlé et al. [SSTX09] already proposed ideal-lattice version of

“Bonsai” (see Section 10.6). Replacing the “Bonsai” technique with the miniature

“Bonsai,” we obtain ideal-lattice-based “Bonsai” signature scheme.
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12
Encryption

Organization: Section 12.1 reviews the brief history of lattice-based encryp-

tions. Section 12.2 reviews the definitions of public-key encryption, that is, model

and security notions. In Section 12.4 gave the review of the Ajtai–Dwork encryp-

tion scheme. Section 12.5 and Section 12.6 are the reviews of the Goldreich–

Goldwasser–Halevi and NTRU encryption schemes. We review the Regev03 en-

cryption scheme in Section 12.7. Regev’s LWE-based encryption scheme, which

plays important roles in lattice-based cryptography, is reviewed in Section 12.8.

Section 12.9 reviews the “dual” of Regev’s LWE-based encryption scheme. Sec-

tion 12.10 contains lossy trapdoor functions and its children by Peikert and Wa-

ters. By using them, we describe the Peikert–Waters encryption scheme in Sec-

tion 12.10.2.

12.1 Introduction

After the seminal result of Ajtai [Ajt96], Ajtai and Dwork [AD97] gave the first

public-key encryption scheme AD based on the worst-case hardness of lattice prob-

lems. However, their inefficiency in the real world opened the door of attacks.

Hence, efficient public-key encryption schemes with harder security reduction were

needed.

The partial answers appeared almost simultaneously; GGH and NTRU. Gold-

reich, Goldwasser, and Halevi [GGH97b] proposed a lattice variant of the

McEliece encryption scheme [McE78] (we describe them later). Hoffstein, Pipher,

and Silverman also proposed a encryption scheme employing the quotient ring of

polynomials [HPS98]. These schemes are more efficient than AD, but they lack the

security proof based on the worst-case hardness of lattice problems.
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12.1. INTRODUCTION

param ek Enc C |ek| |ct|/|msg|
AD-GGH (12.4) – A, i0, i1 Ae +

µ

2 ai1 mod B P(B) Õ(n4) Õ(n3)

AD+ (12.4) – A Ae +
µ

2 ai1 mod B P(B) Õ(n4) Õ(n2)

R03 (12.7) N = 28n2
a ae + µ

⌊
ai1/2

⌉
mod N ZN Õ(n3) Õ(n2)

LWE-PKE (12.8) (A) A, P (Ae, PT e + µ ⌊q/2⌋) Zn
q × Zn

q Õ(n2) Õ(1)

Dual (12.9) (A) A,U AT s + xp,U
T s + xv + µ ⌊q/2⌋ Zm

q × Zn
q Õ(n2) Õ(1)

Table 12.1: Comparisons among IND-CPA secure encryption schemes. The factor

n denotes the security parameter. See corresponding sections for the details

The other answer is given in 2003, the Regev03 encryption scheme [Reg04b].

He proposed a 1-dimensional version of AD and reduced it security from harder

lattice problem than that of Ajtai and Dwork. However, efficiency is not good

because the key has huge size. This obstructs us to take a larger security parameter.

These situations were overcome by Regev in 2005 [Reg09] using quantum re-

ductions. He gave a simple public-key encryption scheme based on the variant of

Learning Parity Noise (LPN) problem, called Learning With Error (LWE) Problem,

and showed the quantum reduction from SIVPγ to the variant.

On the blowup factor, the ratio between the ciphertext and the plaintext, the

original Regev05 encryption scheme has a factor O(n log n).

Kawachi, Tanaka, and Xagawa [KTX07] reduced the ciphertext blowup factor

to O(n). This is dramatically reduced to O(1) by an amortizing technique of Peikert,

Vaikuntanathan, and Waters [PVW08].

Gentry, Peikert, and Vaikuntanathan [GPV08] observed that the roles of a pub-

lic key and a ciphertext can be swapped. This scheme is called as the “Dual” en-

cryption scheme and opens the door to construct identity-based encryption scheme.

See [GPV08] and Chapter 14.

The above schemes are secure in the sense of indistinguishability under cho-

sen plaintext attacks (IND-CPA). Can we construct encryption schemes enjoying

the stronger security, indistinguishability under chosen ciphertext attacks (IND-

CCA2)?

Peikert and Waters [PW08] answered this problem by introducing lossy trap-

door functions and giving the construction of them from LWE problem. Peik-

ert [Pei09c] (and Goldwasser and Vaikuntanathan [GV08]) also gave the answer

which exploited the one-wayness of the LWE function, which appears in Chap-

ter 13.

The schemes which we will not mention: Key-leakage security and key-

dependent message security are featured recently.

Key-leakage security states the scheme is secure even if the part of the secret

key was leaked, which was considered as the theoretical model of side channel at-

tacks. Akavia, Goldwasser, and Vaikuntanathan [AGV09] showed the key-leakage

security of the Regev05 encryption scheme. We note that in a weaker model of
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key-leakage security, the combination of an IND-CPA secure public-key encryp-

tion scheme and the extractor yields secure encryption scheme [NS09]. Gold-

wasser, Kalai, Peikert, and Vaikuntanathan proved the robustness of the LWE based

secret-key encryption schemes [GKPV10]. Dodis, Goldwasser, Kalai, Peikert, and

Vaikuntanathan [DGK+10] also showed the key-leakage security of the “Dual” en-

cryption scheme in several models. See their papers for the details. We note that the

proof techniques of them partially appears in Section 15.4, which are independent.

Key-dependent message security states the scheme is secure even if the cipher-

text contains the information of the secret key, for example, Encek(dk) should be

indistinguishable from Encek(0l), where (ek, dk) ← KeyGen(1n) and l = |dk|. For-

mally, the adversary could choose a function from some class F = { f : Kk
n → Mn},

where Kn is a decryption-key space and Mn = {0, 1}l is a message space. The adver-

sary has an access to the oracle which returns Encek j
( f (sk1, . . . , skk)) or Encek j

(0l)

on the query ( j, f ).

The scheme which satisfies some functions was firstly proposed by Boneh,

Halevi, Hamburg, and Ostrovsky [BHHO08]. In the spirit, their scheme has KDM-

security with respect to the class of affine functions under the DDH assumption.

Applebaum, Cash, Peikert, and Sahai [ACPS09]. also proposed a KDM-secure

public-key encryption scheme with respect to the class of affine functions under the

LWE assumption. We mention the improvements by Brakerski, Goldwasser, and

Kalai [BGK09] and Barak, Haitner, Hofheinz, and Ishai [BHHI09] which proposed

the schemes with respect to richer class of functions. For the details see the original

papers.

We also does not describe the variants of the Peikert encryption scheme by Katz

and Vaikuntanathan [KV09], which yields secure password-based authenticated

key-exchange schemes.

Finally, we mention Gentry’s fully homomorphic encryption scheme [Gen09]

and its variants [SV09, vDGHV09]. Their encryption functions are ring homomor-

phic to F2, which solved the long-standing open problem. (We note that Aguilar

Melchor, Gaborit, and Herranz [AMGH08] also gave additive homomorphic en-

cryption schemes which allows t multiplications.)

12.2 Definitions

12.2.1 Model of Public-Key Encryption Schemes

A PKE scheme PKE is a quadruplet of algorithms (Setup,KeyGen,Enc,Dec).

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param.

KeyGen(param): A key-generation algorithm, given param, outputs a pair of an

encryption key and a decryption key (ek, dk).

Enc(param, ek,msg): An encryption algorithm, given param, ek, and a message
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msg, outputs a ciphertext ct.

Dec(dk, ct): An decryption algorithm, given dk and ct, returns msg.

Correctness: The correctness of a public-key encryption scheme is defined as

follows: With overwhelming probability the ciphertext of any message msg in the

message space under an encryption key ek should be decrypted into msg, where the

probability is taken by coins of Setup, KeyGen, and Enc. Formally, this require-

ment is denoted

Pr


msg , m̃sg :

param← Setup(1n);

(ek, dk)← KeyGen(param);

ct ← Enc(param, ek,msg);

m̃sg← Dec(dk, ct);


≤ negl(n).

12.2.2 Security Notions

We adopt the standard security notions, indistinguishability of ciphertexts under

several attacks. Roughly speaking, any polynomial-time adversary cannot distin-

guish two ciphertexts of distinct messages msg and msg′ even if it chooses the

messages. In chosen plaintext attacks (cpa), the adversary could only encrypt its

chosen message and cannot use the decryption oracle. In chosen ciphertext attacks

(cca1), the adversary could query to the decryption oracle until the adversary com-

mits the target messages. In chosen ciphertext attacks (cca2), the adversary could

query to the decryption oracle after it receives the target ciphertext.

We describe the formal definition as follows: The following experiment is de-

fined in the “second and penalty” style (see [BHK09] for the discussion on the

definition styles). Consider the experiment Expind-atk
PKE,A(n) between the challenger C

and the adversaryA, where atk ∈ {cpa, cca1, cca2}.

Experiment Expind-atk
PKE,A(n):

Setup Phase: The challenger takes the security parameter n and obtains

param← Setup(1n) and (ek, dk)← KeyGen(param). It gives param and

ek to the adversaryA.

Learning Phase 1: The adversary can issue queries to the oracle if atk ∈
{cca1, cca2}. The oracle Dec receives an input ct and returns msg ←
Dec(dk, ct).

Challenge Phase: The adversaryA outputs two plaintexts msg0 and msg1.

The challenger flips a coin b ← {0, 1}, sets the target ciphertext to be

ct∗ ← Enc(ek,msgb), and sends ct∗ to the adversary.

Learning Phase 2: The adversary can issue queries to the oracle if atk =

cca2. The oracle Dec receives input ct. If ct = ct∗, the challenger outputs

0 and halts. Otherwise, the oracle returns msg← Dec(dk, ct) toA.
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Guessing Phase: Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b, the

challenger outputs 1, otherwise 0.

Definition 12.2.1. Let PKE = (Setup,ReKeyGen,Enc,Dec) be a public-key en-

cryption scheme,A an adversary, and n a security parameter. We define the advan-

tage ofA as

Advind-atk
PKE,A(n) =

∣∣∣∣∣Pr
[
Expind-atk

PRE,A(n) = 1
]
− 1

2

∣∣∣∣∣ .

We say that PKE is ind-atk secure if Advind-atk
PKE,A(·) is negligible for every

polynomial-time adversaryA, where atk ∈ {cpa, cca1, cca2}.

12.3 The McEliece Encryption Scheme

As the warm up, we start with a coding-theoretic encryption scheme, the McEliece

encryption scheme [McE78] which has appeared in 1978 and is believed that it re-

mains secure against quantum computes. (See the survey [OS08].) The McEliece

encryption scheme is as follows (as opposite to ordinal notation, we transpose ma-

trices and rename the parameters):

Scheme 12.3.1 (the McEliece encryption scheme, McEliece). All the participant

agree use of an [m,m − n, 2t + 1] linear code C, which is able to decode a received

word up to t errors.

Key Generation: Let G ∈ Fn×m be a generator matrix of the linear code. Then,

the public key is G′ = ΠGS, where S ← GLn(F) and Π is a random permuta-

tion matrix over [m]. the secret key is S, G, and Π.

Encryption: To encrypt the message s ∈ Fk, choose a error vector x ← S(m, t)

and compute the ciphertext p← G′T s + x.

Decryption: To decrypt it, compute d = Π−1 p = GSs + Π−1x, decode it and

obtain GSs, finally outputs s.

We already seeS(m, t) is an enumeration set. Hence, for any vector x ∈ S(m, t),

π(x) is also in S(m, t). Thus, the decoding procedure works well in decryption.

The security is guaranteed from the intuition that one could not find the struc-

ture G from G′ in polynomial time of n. The one-wayness follows from the two

assumptions; the one is that that the learning with parity (LPN) problem is hard and

the other is the indistinguishability of the public key and the uniform over Fn×m.

We will turn back to this encryption scheme, because this and some lattice-

based encryption schemes share some structures.

12.4 The Ajtai–Dwork Encryption Scheme

Ajtai and Dwork proposed three public-key encryption scheme based on lattice

problems. The third of them is well-known as the Ajtai–Dwork encryption scheme.

161



12.4. THE AJTAI–DWORK ENCRYPTION SCHEME

The first construction of lattice-based public-key encryption scheme is the Ajtai–

Dwork encryption scheme [AD97]. (The first and the second are preparations for

the third cryptosystem.) Later, Goldreich, Goldwasser, and Halevi [GGH97a] elim-

inated decryption errors in the public-key encryption scheme. The scheme enjoys

the average-case/worst-case security proof and is based on uSVP with an approx-

imation factor Õ(n11). The scheme is later improved by the originators, Ajtai and

Dwork.

We give a rough structure of the encryption scheme. The secret key is a unit

n-dimensional vector u ∈ Bn(1). Imagine the set of the hyperplanes H = {x ∈ Rn |
〈x,u〉 ∈ Z}. Then, the public key consists of m vectors near H. The ciphertext of

0, c0, is the random sum of such m vectors, which is also near H. The ciphertext

of 1, c1, is a random vector Rn. One knowing u can distinguish the ciphertext of 0

from the ciphertext of 1 by determining 〈c, u〉 is near H or not.

12.4.1 Description

For d ∈ R, let frc (d) denote |d − ⌊d⌉ |, which stands for the distance of d from the

integer set Z.

The scheme AD is described as follows:

Scheme 12.4.1 (AD [AD97]). All the participants agree with the parameters n,

m = n3, R = 2O(n log n), and r = n−3.

Setup(1n): Given the security parameter n output ⊥.

KeyGen(param): Choose u ← B(1). Choose x1, . . . , xm ← {x ∈ B(R) | 〈x, u〉 ∈
Z}. Choose yi, j ← B(r) uniformly at random for i = 1, . . . ,m and j = 1, . . . , n.

Compute zi =
∑n

j=1 yi, j for i = 1, . . . ,m. Then, compute ai = xi + zi. Let i0 be

the smallest i for which the width of parallelepiped spanned by ai+1, . . . , ai+n

is at least n−2. For j = 1, . . . , n, let b j = ai0+ j. The decryption key is dk = u

and the encryption key is ek = (a1, . . . , am, i0).

Enc(ek = (a1, . . . , am, i0),msg = t): Let t ∈ {0, 1} be a plaintext.

• To encrypt t = 0, choose e ∈ {0, 1}m and compute c = Ae mod B, where

B = [b1, . . . , bn].

• To encrypt t = 1, choose c← P(B). The ciphertext is c.

Dec(dk = u, ct = c): For a received ciphertext, compute d = 〈c, u〉. Output 0 if

|frc (d) | ≤ 1/n, 1 otherwise.

Obviously, the ciphertext of 1 is decrypted as 0 with probability about

2/n. In order to eliminate the decryption errors in AD, Goldreich, Goldwasser,

and Halevi [GGH97a] changed several procedures. We denote the scheme by

AD-GGH.

Scheme 12.4.2 (AD-GGH [GGH97a]). All the participants agree with the param-

eters n, m = n3, R = 2O(n log n), and r = n−3.

Setup(1n): The same as AD.Setup
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KeyGen(param): It chooses u, xi, and zi, computes ai = xi + zi, selects i0 in

the same manner as AD.KeyGen does. In addition, pick an index i1 uniformly

at random from all indices i for which 〈ai, u〉 is odd. The decryption key is

dk = u and the encryption key is ek = (a1, . . . , am, i0, i1).

Enc(ek = (a1, . . . , am, i0, i1),msg = t): Let t ∈ {0, 1} be a plaintext. Choose e ∈
{0, 1}m and compute c = Ae + t · ai1/2 mod B, where B = [b1, . . . , bn].

Dec(dk = u, ct = c): For a received ciphertext, compute d = 〈c,u〉. Output 0 if

|frc (d) | ≤ 1/4, 1 otherwise.

12.4.2 Security

The security of AD and AD-GGH is based on O(n11)-uSVP.

Consider the following two games: The first game is the original IND-CPA

game. In the second game, we replace the public key with the uniformly cho-

sen one, that is, ai ← B(R). Roughly speaking, if the adversary distinguishes

two games, we can verify a vector p is near to the set of hyperplanes H = {x ∈
Rn | 〈x,u〉 ∈ Z} or not. Exploiting this power, the security is reduced from uSVP

with approximation factor γ = O(n11). For the detailed proof, see the original

paper [AD97].

12.4.3 Attacks

The scheme AD has a fatal drawback in the real world: huge public key of bit

size Õ(n4). The size of the public key is approximately 2Gb even when n = 32.

Nguyen and Stern [NS98] analyzed the scheme with realistic parameters by the

LLL algorithm.

Hall, Goldberg, and Schneier [HGS99] examined the CCA1 attacks against

several public-key encryption schemes based on combinatorial problems includ-

ing AD-GGH. They proposed the CCA1 attacks which retrieves the secret key

of AD-GGH. Izmerly and Mor [IM06] gave the CCA1 attacks against AD and

AD-GGH.

These two attacks employs the above idea in the security reduction. If one

has a decryption oracle, one recognize the set of hyperplanes H. Using the set of

hyperplanes, one can extract the secret key u.

12.5 The Goldreich–Goldwasser–Halevi Encryption

Scheme

At the same time of the improvement of AD [GGH97a], Goldreich, Goldwasser,

and Halevi proposed their new encryption scheme GGH. Their sales point is signif-

icantly small size of the public key O(n3) (still larger than conservative encryption

schemes).
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(We note that Solé, Charnes, and Martin rediscover GGH as the lattice version

of the McEliece encryption scheme. See [SCM01].)

Roughly speaking, their idea is as follows: The secret key is a “good” basis R

of a random lattice L, which corresponds to G. The public key is a “bad” basis B =

RU−1 of the random lattice, where U is a unimodular matrix and B corresponds

to G′. The message is encoded into the coefficient vector s. Then, the ciphertext

is p = Bs + x where x is a small random error vector, which resembles to the

ciphertext of the McEliece encryption scheme. To decrypt p, first apply the round-

off algorithm, that is, d ←
⌊
R−1 p

⌉
. Then, d will be R−1Bs since the error x is short

and R is good. Multiplying B−1R to d, we can obtain s.

Why it works: The inversion algorithm computes s = U
⌊
R−1 p

⌉
and x = p−Bs,

where U = B−1R. Hence, we should consider
⌊
R−1 p

⌉
, because x is computed

automatically from s. We have that

⌊
R−1 p

⌉
=

⌊
R−1(Bs + x)

⌉
=

⌊
U−1s + R−1x

⌉
.

Since U is unimodular, U−1 is also unimodular. Thus, the computation correctly

works when
⌊
R−1x

⌉
= 0, that is,

∥∥∥R−1x
∥∥∥∞ < 1/2.

Observe that R−1 = (R−T )T . Then, we only need to show that a basis T = R−T

of the dual lattice Λ∗ is short. If T is short, we have the following lemma ensuring

the correctness.

Lemma 12.5.1. Let B be a basis of an n-dimensional lattice Λ. Let T be a basis

of a dual lattice Λ∗ such that ‖T‖ ≤ L. For any s ∈ Zn and any x ∈ Rn with

‖x‖ ≤ 1/2L, we have ⌊
TT (Bs + x)

⌉
= TT Bs.

Proof. Since T = [t1, . . . , tn] is a basis of the dual lattice Λ∗, we have 〈ti, Bs〉 ∈ Z
for any i ∈ [n] and s ∈ Zn. Thus, TT Bs = (〈t1, Bs〉, . . . , 〈tn, Bs〉) ∈ Zn. Hence, we

only need to show that
∥∥∥TT · x

∥∥∥∞ < 1/2, that is, for any i ∈ [n], |〈ti, x〉| < 1/2.

By the hypothesis of T, we have ‖ti‖ ≤ L. Therefore, we have that

|〈ti, x〉| ≤ ‖ti‖ · ‖x‖ < L · (1/2L) = 1/2,

which completes the proof. �

12.5.1 Description

The key-generation algorithms vary and the authors defined two key-generation

algorithms:

1. KeyGen1: This algorithm chooses a “random” lattice: Generate R ←
{−l,−(l − 1), . . . , l − 1, l}n×n, where l is a small integer, say 4.
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2. KeyGen2: This algorithm chooses a “rectangular” lattice: Generate noise ma-

trix R′ ← {−l, . . . , l}n×n, where l is a small integer, say 4. Then, compute

R← R′ + kIn, where k is a large integer, say
√

n.

Scheme 12.5.2 (GGH).

KeyGen(1n): It outputs B and R, which spans the same lattice, by using

KeyGen1 or KeyGen2.

Enc(B, s): It first choose x ← Dn, where Dn ⊆ Zn and each element in Dn is

short. Then, the ciphertext is p = Bs + x.

Dec(R, p): The decryption algorithm computes s = B−1R
⌊
R−1 p

⌉
and outputs

it.

12.5.2 Attacks

The scheme GGH has no security proofs. Nguyen [Ngu99] reported a weak point

of GGH: the error vector x is chosen from Dn = {−σ,σ}n. He solved the challenge

by the authors of GGH up to n = 350 and gave the partial solution even for n = 400.

Hence, the error vector should be chosen from Dn = {−σ,−(σ − 1), . . . , σ − 1, σ}.
After several years, Lee and Hahn [LH08] solved the GGH challenge of pa-

rameter n = 400 completely using Nguyen’s partial solution. This demonstrates

the security parameter n must be large enough.

12.5.3 Micciancio’s Variant

In 2001, Micciancio [Mic01] gives the dual of the scheme. We give the details of

the scheme.

Scheme 12.5.3 (GGH-Mic).

KeyGen(1n): It first generates R as in KeyGen1 or KeyGen2. It next computes

an Hermite normal form B of R. Then, the public key is B and the secret key

is R.

Enc(B, x): The message vector is x ∈ Dn. Then, the ciphertext is u = x mod B.

Dec(R, u): Applying the nearest plane algorithm to u with R, it obtains the clos-

est vector Rs to the vector u. Then output x = Rs − u.

We note that the scheme can be considered as a lattice analogue of the Nieder-

reider encryption scheme. Micciancio’s main idea is use of Hermite normal forms

(HNFs). The benefits derived from the HNFs are simplifying the randomizing

method and reducing the sizes of the public keys and the ciphertexts. First, since

the Hermite normal form of the basis is computed deterministically, we can ig-

nore the “bad” randomness of the public keys. Second, the Hermite normal form

is upper triangle and its non-diagonal elements are smaller than the corresponding

diagonals, whose product is at most 2O(n log n). Hence the size of ciphertext is now

O(n log n).
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We finally mention the improvement by Plantard, Rose, and Susilo, which

speeds up the decryption procedure of the cryptosystem. See [PRS09] for the de-

tailed analyses and the experimental results.

12.5.4 The Variant by Paeng, Jung, and Ha

Paeng, Jung, and Ha [PJH03] proposed the technique to reduce the size of public

key. This very resembles NTRU detailed in later. Let us fix n′ = 2n and consider

Rq = Zq[x]/〈xn − 1〉.
Their key generation algorithm first choose four polynomials f1, f2,h1,h2 ∈ Rq.

The polynomials fi has a large coefficient ⌊
√

2nl⌋ in some position ji and the other

coefficients are chosen from [−l, l]. The polynomials hi are chosen from [−l, l]n.

Then, the private matrix R = Rotxn−1(R′) is

R′ =

[
f1 h1

h2 f2

]
.

If the positions ji = 1, then this matrix is in the range of the KeyGen2.

In order to randomize the matrix, they are chosen g ∈ (−q/2, q/2]n, which has

the inverse g−1 in Rq. This shows that there exist gq and Q in R = Z[x]/〈xn − 1〉
such that g ⊗ gq − 1 = qQ over Z. They computed four polynomials pi as follows:

B′ =

[
p1 p2

p3 p4

]
=

[
f1 h1

h2 f2

]

︸    ︷︷    ︸
R′

⊗
[

g q

Q gq

]

︸   ︷︷   ︸
U−1

.

It is easy to verify Rotxn−1(U−1) has a determinant 1, since g× gq − qQ = 1 over Z.

They replaced the key-generation algorithm in GGH with the above and R =

Rotxn−1(R′) and B = Rotxn−1(B′) as the secret and the public key. This drastically

reduce the length of key, the size of B is 22.3kB even if we set n = 1001 and take

80-bit prime q.

Unfortunately, after four years, Han, Kim, and Yeom [HKY07] analyzed the

PJH variant up to n = 1001. They reported they can recover the secret key R′ from

B′ within 10 minutes computations. They observed that g ⊗ P2 = qP1 + h1 over

Z. This indicates the total system is broken if h1 and q are recovered, since we can

find g from h1 and q by the above equation and also other variables. In addition,

the lattice spanned by Rotxn−1(p2) has very short vector h1 and other vectors in the

lattice will very long as q. Using this property, they recovered h1 and q from p2

heuristically. For the details, see the original paper [HKY07].

12.6 NTRU

Although we already introduced this encryption scheme in Chapter 9, we review

it in the context of the lattice-based encryption schemes. See the introduction of

NTRU in Section 9.1.
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12.6.1 Description

For details, see the original paper [HPS98] and the proposals of the parame-

ters [HS00, HGSW05, HHGP+07, WHGH+08, HHHGW09].

For a positive integer n which is often set as a prime, NTRU is defined on a

quotient ring R = Z[x]/〈xn − 1〉. For a positive integer or a small polynomial q, we

denote Z[x]/〈q, xn − 1〉 by Rq.

Intuitively, the security is based on the hardness to factor a product of two short

polynomials in Rq.

Scheme 12.6.1 (NTRUEncrypt). Let n denote the dimension of Rq. The subsets of

Rq, L f , Lg, Lm, Lr, and LF are defined later. They are used for key generation,

encryption, and decryption.

Setup(1n): Given the security parameter 1n, output 1n.

KeyGen(param = 1n): Choose f ← L f and g ← Lg with the constrain that f is

invertible in Rq and Rp. Set Fq ← f−1 in Rq. Compute h ← p ⊗ g ⊗ Fq in Rq.

The public key is h and the secret key is f.

Enc(ek = h,msg = m): The plaintext is m ∈ Lm. Generate a random polyno-

mial r← Lr and compute c← h ⊗ r +m in Rq. The ciphertext is c.

Dec(dk = f, ct = c): The ciphertext is c ∈ Rq. Compute a′ ← f ⊗ c in Rq. Com-

pute a← p⊗g⊗r+f⊗m in R from a′ by using a centering algorithm. Compute

Fp ← f−1 in Rp. Compute m′ ← Fp ⊗ a in Rp. The obtained plaintext is m′.

The decryption correctly works since the parameters are chosen carefully to

ensure that a = p⊗ g⊗ r+ f ⊗m in R with high probability. We omit the details of

the parameter setting; see the original paper or the papers on instantiations [HPS98,

WHGH+08, HHHGW09].

Let T denote {−1, 0,+1}n. T (d1, d2) denotes the subset of T such that each

polynomial in T (d1, d2) has exactly d1 coefficients set to 1 and d2 coefficients set

to −1. For an integer a and a subset S ⊆ Rq, we define aS as {af : f ∈ S}. For a

subset S ⊆ Rq, S∗ denotes the set of the polynomials in S which have the inverses

in Rq, i.e., S∗ = {f ∈ S : ∃f−1 ∈ Rq}.
There are five instantiations of NTRU, NTRU-1998 [HPS98], NTRU-

2001 [HS00], NTRU-2005 [HGSW05], NTRU-2007 [HHGP+07], and NTRU-

2008 [WHGH+08, HHHGW09]. For simplicity, we only consider NTRU-1998

and NTRU-2008 in this paper. The following table summarizes the parameter sets

of these instantiations.
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Parameter Sets q p L f Lg Lm Lr LF

NTRU-1998 2k 3 T (d f , d f − 1)∗ T (dg, dg) T T (dr , dr) -

NTRU-2001 prime 2 + α {1 + p ⊗ F : F ∈ LF }∗ B(dg) B B(dr) B(dF )

NTRU-2005 prime 2 {1 + p ⊗ F : F ∈ LF }∗ B(N/2)∗ B X(dr) X(dF )

NTRU-2007 2k 3 {1 + p ⊗ F : F ∈ LF }∗ T (d f , d f − 1)∗ T (d f , d f − 1) T (d f , d f − 1) T (d f , d f − 1)

NTRU-2008 2k 3 {1 + p ⊗ F : F ∈ LF }∗ T (dg, dg) T T (dr , dr) T (dF )

Interpretation as the Micciancio variant of the GGH encryption: Here, we

note an interpretation in Micciancio and Goldwasser [MG02] and Micciancio and

Regev [MR08]. We have already defined the NTRU lattice [CS97] in Section 9.3.

For a secret key (f, g) and a public key h, the NTRU lattice Λh is defined as

Λh = L(H) = Λq(C) = Λ⊥q (A),

where

H =

[
Rotxn−1(1) Rotxn−1(0)

Rotxn−1(h) Rotxn−1(q)

]
,

C =
[
RotT

xn−1(f) RotT
xn−1(p ⊗ g)

]
,

A =
[
−Rot(h) Rot(1)

]
.

Notice that H is indeed an Hermite normal form because h ∈ [0, q − 1]n. Notice

also thatΛh contains As the consequence, it contains the short vector ( f , pg), since

−f ⊗ h + pg ≡ 0 (mod q).

Consider the vector (−r,m) and reduce it modulo H.

[
−r

m

]
mod

[
Rotxn−1(1) Rotxn−1(0)

Rotxn−1(h) Rotxn−1(q)

]
=

[
0

m + h ⊗ r mod q

]
.

This indicates the encryption procedure corresponds to that of Micciancio’s variant.

12.6.2 Attacks

In the next year, Coppersmith and Shamir [CS97] proposed a lattice-based attack

against NTRU using the above notions. They studied NTRU lattices and observed

that a secret key comprises of a half of a short basis of the NTRU lattice which

is generated by the correspondent public key of the cryptosystem. They also ob-

served that a ciphertext is the remainder of the concatenation of a message vector

and a random vector modulo the NTRU lattice. May [May99], , see Jaulmes and

Joux [JJ00], Han, Hong, Han, and Kwon [HHHK03], Howgrave-Graham, Nguyen,

Pointcheval, Proos, Silverman, Singer, and Whyte [HGNP+03], Meskanen and

Renvall [MR06], and Gama and Nguyen [GN07].
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12.7 The Regev03 Encryption Scheme

Regev [Reg04b] improved the Ajtai-Dwork public-key encryption scheme AD. The

underlying assumption is the worst-case hardness of uSVP with a factor Õ(n1.5).

We can consider the scheme as a 1-dimensional version of AD-GGH.

12.7.1 Description

Scheme 12.7.1 (mR03 [Reg04b, KTX07]). All the participants agree with the pa-

rameters n, r, and δ(n) = ω(n1+r
√

log n), the precision 2−8n2
, and the size p of the

plaintext space. We define Hr = {h ∈ [
√

N, 2
√

N) : frc (h) < 1/(8nrm)}.

Setup(1n): Given the security parameter 1n, output 1n.

KeyGen(1n): We choose h ∈ Hr uniformly at random and set d = N/h. Choos-

ing α ∈ [2/δ(n), (2
√

2)/δ(n)), we sample m values z1, . . . , zm from the distribu-

tionΦh,α, where zi = (xi+yi)/h (i = 1, . . . ,m) according to the above sampling

procedure. Let ai = ⌊Nzi⌋ for every i ∈ {1, . . . ,m}. Additionally, we choose

an index i1 uniformly at random from {i : xi . 0 mod p}. Then, we compute

k ≡ x j mod p. The decryption key is dk = (d, k) and the encryption key is

ek = (a1, . . . , am, i1).

Enc(ek = (a1, . . . , am, i1),msg = t): Let σ ∈ {0, . . . , p − 1} be a plaintext. We

choose a uniformly random subset S of {1, . . . ,m}. The ciphertext is w =(∑
i∈S ai + t

⌊
ai1/p

⌉)
mod N.

Dec(dk = (d, k), ct = w): For a received ciphertext w ∈ {0, . . . ,N − 1}, we com-

pute τ = w/d mod 1. We decrypt the ciphertext w to ⌊pτ⌉ k−1 mod p, where

k−1 is the inverse of k in Zp.

12.7.2 Security and Attacks

The security is summarized as follows:

Theorem 12.7.2. For any constant r > 0, let δ(n) = ω(n1+r
√

log n) and let p(n) be

a prime such that 2 ≤ p(n) ≤ nr. The cryptosystem mR03 encrypts a
⌊
log p(n)

⌋
-

bit plaintext into an 8n2-bit ciphertext with decryption error probability at most

2−Ω(δ2(n)/(n2rm)) + 2−Ω(n). The security of mR03 is based on the worst case of

O(δ(n)
√

n)-uSVP.

On the attacks, we found only Izmerly and Mor [IM06] gave the CCA1 attack

against the original scheme R03.

12.8 The Regev05 Encryption Scheme

In 2005, Regev [Reg09] proposed a lattice-based public-key encryption scheme

based on the LWE problem. Formally, the dLWE(q, χ) assumption is defined as

follows:
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Definition 12.8.1 (dLWE assumption). For q = q(n), a distribution χ, and an ad-

versaryA, define the advantage of the adversary as follows:

AdvdLWE(q,χ),A(n) = |Pr[AAs,χ(1n) = 1] − Pr[AU(1n) = 1]|,

where probability is taken by s ← Zn
q and random coins of A. We say

that the dLWE(q, χ) assumption holds if for any polynomial-time adversary,

AdvdLWE(q,χ),A(n) is negligible in n.

Before reviewing LWE-PKE, we consider the following simple symmetric-key

encryption scheme LWE-SKE based on the dLWE(q, χ) assumption.

Enc(dk = s ∈ Zn
q,msg = w ∈ {0, 1}): It generates a ← Zn

q and x ← χ randomly,

and outputs (a, v = 〈a, s〉 + χ + w ⌊q/2⌉).
Dec(dk = s, ct = (a, v)): It computes d = v − 〈a, s〉 and outputs 0 if |d|q ≤ q/4

and 1 otherwise.

Notice that the ciphertext of 0 is the sample from As,χ. One cannot distinguish the

ciphertexts of 0 and 1 if the dLWE(q, χ) assumption holds.

Regev’s encryption scheme, R05, is obtained from LWE-SKE as follows: The

public key is m ciphertexts of 0. The ciphertext of R05 is the random sum of the ci-

phertexts plus w ⌊q/2⌉. Since LWE-SKE is bounded homomorphic, the decryption

works correctly.

The security proof is done by as follows: The public key (m samples from

As,χ) and the uniform distribution are computationally indistinguishable. Hence,

we can replace the public key and the random vectors over Zn
q×Zq. In addition, the

random sum of the random vectors is almost uniformly distributed by the leftover

hash lemma. Therefore, the adversary cannot distinguish the ciphertexts of two

messages after the replacement.

12.8.1 Description

Scheme 12.8.2 (LWE-PKE [Reg09]). Define the function t(a) = ⌊aq/p⌉ mod q

for a ∈ Zp. Naturally, for the vector a = (a1, . . . , al) ∈ Zl
p, we define t(a) =

(t(a1), . . . , t(al)) ∈ Zl
q.

Setup(1n): On input the security parameter n, it outputs the random matrix A ∈
Zn×m

q as param.

KeyGen(param = A): It generates S ← Zn×l
q and X ← χm×l. It outputs P =

AT S + X ∈ Zm×l
q .

Enc(param = A, ek = P, b): For message v ∈ Zl
p, define the new vector w =

t(b) ∈ Zl
p. Choose a vector e ← {0, 1}m ⊂ Zm

q uniformly at random. The

ciphertext is the pair (u, c) = (Ae, PT e + w) ∈ Zn
q × Zl

q.

Dec(dk = S, ct = (u, c)) . Compute d = c − ST u ∈ Zl
q. Output the plaintext

b ∈ Zl
p with di − t(bi) ∈ Zq is closest to 0.
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Theorem 12.8.3 (Correctness, [PVW08, Lemma 7.2]). For q ≥ 5mp and α ≤
1/(p

√
m · ω(log n)), the above scheme is correct.

Proof. Notice that

d = c − ST u = PT e + w − ST Ae = XT e + w.

Let X = [x1, . . . , xl]. Then, to prove the correctness, we need to show that for any

i ∈ [l], |xT
i

e| < q/2p with overwhelming probability.

We first fix some i ∈ [l]. By the construction, x ← ⌊qy⌉ mod q, where y ←
N(0, α2/2π)m. Consider x′ ← ⌊qy⌉. Notice that if |x′T e| < q/2p then |xT e| is also

smaller than q/2p. Hence, it suffices to show that |x′T e| < q/2p with overwhelming

probability.

By the construction, we have that ‖x′ − qy‖ ≤
√

m/2. In addition, we have that

|x′T e| ≤ |(x′ − qy)T e| + q|yT e| ≤ m/2 + q|yT e|

by the Cauchy–Schwartz bound. Since, q > 5mp, it suffices to show |yT e| < 2/5p.

(if so, we have m/2 + q|yT e| < q/(10p) + 4q/(10p) = q/2p.)

Since Gaussian has a regenerativity, the random variable yT e is distributed as

the Gaussian whose variance is at most mα2/2π. Thus, we have that for any e ∈
{0, 1}m,

Pr[|yT e| > 2/5p] ≤
√

mα
√

2π2/5p
· exp

(
−π (2/5p)2

mα2

)
= exp(−ω(log n)),

since α < 1/(p
√

m · ω(
√

log n)). �

Notes: The original Regev encryption scheme is parametrized by p = 2 and

l = 1. Kawachi, Tanaka, and Xagawa [KTX07] improved the ciphertext blowup

by factor O(log n) by set p = nc ≥ 2 for some constant c > 0 without changing

the public key. Peikert, Vaikuntanathan, and Waters [PVW08] proposed amortiz-

ing technique l ≥ 1. Micciancio and Regev [MR08] changed the domain of the

randomness {0, 1, . . . , σ}m instead of {0, 1}m.

12.8.2 Security Proof

First, we can change the real key [A; PT ] with the fake key [A; PT ] which is dis-

tributed over U(Z
(n+l)×m
q ) under the dLWE assumption. If we use the fake key,

the ciphertext contains no information of a message, since [A; PT ] is uniformly

distributed and it is universal as the hash functions.

Theorem 12.8.4 (IND-CPA Security, adapted [Reg09, KTX07, PVW08]). Let m ≥
((1 + δ)n + l) log q for some constant δ > 0. The scheme LWE-PKE is IND-CPA

secure under the dLWE(q, χ) assumption.
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Combining this theorem and the arguments in Section 2.4.3, the security is

reduced from the quantum hardness of SIVPγ or GapSVPγ.

Proof. Let ǫ denote the advantage of the adversaryA against IND-CPA game.

We consider the following l+1 games. In Gamei, the public key is computed as

follows: First, A← Zn×m
q . Next, take samples si+1, . . . , sl ← Zn

q and xi+1, . . . , xl ←
χm. Then, compute pj ← AT s j + x j for j = i + 1, . . . , l. In addition, take i samples

p′
1
, . . . , p′

i
← Zm

q . The public key is A and P = [p′
1
, . . . , p′

i
, pi+1, . . . , pl].

Game0 is the original IND-CPA game. In addition, in Gamel, the public key is

now uniformly at random. Let S i be an event that the adversaryA wins in Gamei.

Then, we have that

|Pr[S 0] − 1/2| = ǫ and |Pr[S l] − 1/2| ≤ q−
1
2 δn = negl(n).

The latter inequation follows from the leftover hash lemma (see Section 4.3.1). By

using the hybrid argument, there is an index i ∈ [l] such that

|Pr[S i−1] − Pr[S i]| ≥ ǫ/l − q−δn/2/l.

However, if there exists such index, we can solve the dLWEq,χ problem as follows:

Take the m samples (A, p∗) from the oracle of dLWEq,χ problem. Then, make a

public key (A, P), where p′
j
← Zm

q for j = 1, . . . , i− 1, pi = p∗, and pj = AT s j + x j

for j = i + 1, . . . , l. If the oracle is U(Zn+1
q ), then the simulation is for Gamei−1. If

the oracle is As,χ, then the simulation is for Gamei. Hence, we have that

AdvdLWE(q,χ)(n) ≥ ǫ/l − q−δn/2/l.

This shows that

ǫ = Adv
ind-cpa

LWE-PKE,A(n) ≤ l · AdvdLWE(q,χ)(n) + q−δn/2

and completes the proof. �

12.8.3 Attacks

The following TB-CCA1 attack is due to Izmerly and Mor [IM06] and Xagawa.

For simplicity, we consider R05 with p = 2 and l = 1. By these specification,

the public parameter is A ∈ Zn×m
q , the secret key is s ∈ Zn

q, the public key is p =

AT s+x ∈ Zm
q , the encryption of the message v ∈ {0, 1} is (u, c) = (Ae, pT e+v ⌊q/2⌉)

for some e ∈ {0, 1}m. The decryption algorithm outputs 0 if d = c − uT s is close to

0, outputs 1 otherwise. Specifically, the decryption algorithm outputs 0 if |d| ≤ q/4.

We describe how to extract the first coordinate s1 of the secret key s. The other

coordinates are extracted by a slight modification. Let t denote ⌊q/4⌋. Let us set

u = (1, 0, . . . , 0). Then, in decryption, the variable d is set to be c − s1 mod q,

where s1 is the first coordinate of the secret key, s. Sliding c, we can detect when

d is firstly larger than t since the response switches from 0 to 1. Let c∗ denote the

value such that c∗ − s1 = t. By solving this, we have s1 = c∗ − t.
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ENCRYPTION SCHEME

12.8.4 Extensions

As mentioned in the introduction, there are several security proofs of the variant

of the scheme LWE-PKE. Akavia, Goldwasser, and Vaikuntanathan showed the

key-leakage security of the scheme under dLWEq,χ assumption in the smaller di-

mension n′ < n.

Applebaum, Cash, Peikert, and Sahai [ACPS09] proposed a simple variant of

LWE-PKE, where q = p2 and the secret key is chosen from χn and s ∈ Zn
p ⊂

Zn
q. They showed the key-dependent message security of their variant; in the key-

dependent message CPA game, the adversary chooses a function ft,w : Zn
p → Zp,

where ft,w(s) = 〈t, s〉 + w mod p.

In addition, Lyubashevsky, Palacio, and Segev [LPS10] proposed that the vari-

ant of LWE-PKE whose security is based on the subset sum problem.

12.9 The Gentry–Peikert–Vaikuntanathan “Dual” en-

cryption scheme

They observed that the “dual” of LWE-PKE is also a public-key encryption scheme:

The public key is (A,u = Ae) and the ciphertext is (p = AT s + x, c = uT s + x +

w ⌊q/2⌉). The decryption is done by computing d ← v − eT p = w ⌊q/2⌉ − eT x + x

and rounding it.

The point is the public key (A,u) is uniformly chosen from Zn×m
q × Zn

q.

This yields an identity-based encryption by combining the GPV signature scheme

in Section 11.3 (see Section 14.3). We note that the distribution of the public key

(A, p) of LWE-PKE is somewhat sparse in Zn×m
q × Zm

q .

12.9.1 Description

Scheme 12.9.1 (Dual [GPV08]).

Setup(1n): On input the security parameter 1n, output the random matrix A ∈
Zn×m

q as param.

KeyGen(param = A): Generate E ← Dl
Zm,s

. The encryption key is ek = U ←
AE ∈ Zn×l

q . The decryption key is dk = E ∈ Zm×l.

Enc(ek = U,msg = b): Generate s ← Zn
q, xp ← χm, and xv ← χl. Compute

p = AT s + x ∈ Zm
q . In addition, compute v = UT s + xv ∈ Zl

q. For message

b ∈ Zl
p, compute w = t(b) ∈ Zl

q. Then, the ciphertext is (p, c = v + w).

Dec(dk = e, ct = (p, c)) . Compute d = c − ET p ∈ Zl
q. Output the plaintext

b ∈ Zl
p with di − t(bi) ∈ Zq is closest to 0.

Theorem 12.9.2 (Correctness, [GPV08, Theorem 7.1]). Let χ = Ψ̄α, q ≥ 5(m +

1)ps, and α ≤ 1/(ps
√

m + 1 · ω(log n)). The above scheme is correct.
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Proof. For simplicity, we only show the correctness where l = 1. The other case

can be proved in the same manner. Notice that

d = c − eT p = uT s + xv + w − eT AT s − eT xp = w + xv − eT xp.

Hence, to prove the correctness, we will show that |xv − eT xp| < q/2p over Z. No-

tice that by the construction, we have ‖e‖ ≤ s
√

m with overwhelming probability.

To obtain the above upperbound, it suffices to show that |xT e| < q/2p where

x← Ψ̄m+1
α and for any e ∈ Zm+1 such that ‖e‖ ≤ s

√
m + 1.

As in the previous correctness proof of Theorem 12.8.3, we replace x with

x′ and y. By the construction, x ← ⌊qy⌉ mod q, where y ← N(0, α2/2π)m+1.

Consider x′ ← ⌊qy⌉. Notice that if |x′T e| < q/2p then |xT e| is also smaller than

q/2p. Hence, it suffices to show that |x′T e| < q/2p with overwhelming probability.

By the construction, we have that ‖x′ − qy‖ ≤
√

m + 1/2. In addition, we have that

|x′T e| ≤ |(x′ − qy)T e| + q|yT e| ≤ s(m + 1)/2 + q|yT e|

by the Cauchy–Schwartz bound. Since, q > 5(m + 1)ps, it suffices to show |yT e| <
2/5p. (if so, we have s(m + 1)/2 + q|yT e| < q/(10p) + 4q/(10p) = q/2p.)

Since Gaussian has a regenerativity, the random variable yT e is distributed as

the Gaussian whose variance is ‖e‖α2/2π. Thus, we have that for any e with ‖e‖ ≤
s
√

m + 1,

Pr[|yT e| > 2/5p] = exp(−ω(log n)),

since α < 1/(ps
√

m + 1 · ω(
√

log n)). �

12.9.2 Security Proof

It easy show the IND-CPA security assuming the dLWEq,χ is hard on average.

Notice that U is distributed almost uniformly over Zn×l
q if s = ω(log n).

Theorem 12.9.3 (IND-CPA Security, adapted [GPV08]). Let m ≥ 2(n + l) log q

and s = ω(
√

log m). Then the scheme Dual is IND-CPA secure under the dLWEq,χ

assumption.

Proof. Assume that there exists an adversaryA that wins the IND-CPA game with

advantage ǫ.

We consider the following 3 games. Game0 is the original IND-CPA game.

In Game1, we replace the public key with (A,U) ← Zn×m
q × Zn×l

q . In Game2, we

replace the generation method of the challenge ciphertext as follows: Let (p′, v′)←
U(Zm

q × Zl
q). Then, the target ciphertext is (p′, c′ = v′ + t).

Let S i be an event that the adversaryA wins in Gamei. Then, we have that

|Pr[S 0] − 1/2| = ǫ, |Pr[S 0] − Pr[S 1]| ≤ negl(n), |Pr[S 2] − 1/2| = 0.

The second inequation follows from Corollary 10.5.5 and our parameter settings.

In addition, we have

|Pr[S 1] − Pr[S 2]| ≤ AdvdLWE(q,χ)(n).
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Taking m samples (A, p) and l samples (U, v) from the oracle of the dLWE problem,

simulate the game with the adversary A. If the oracle is As,χ, we have simulated

Game1, otherwise, we have simulated Game2. Then, it follows.

These argument show that

ǫ = Adv
ind-cpa

LWE-PKE,A(n) ≤ AdvdLWE(q,χ)(n) + negl(n)

and completes the proof. �

12.9.3 Attacks

The TB-CCA1 attack below follows the attack by Izmerly and Mor [IM06] and

Xagawa.

For simplicity, we consider Dual with p = 2 and l = 1. By these specification,

the public parameter is A ∈ Zn×m
q , the secret key is e ∈ Zm, the public key is

u = Ae ∈ Zn
q, the encryption of the message b ∈ {0, 1} is (p, c) = (AT s + xp, u

T s +

xv + b ⌊q/2⌉). The decryption algorithm outputs 0 if d = c − eT p is close to 0,

outputs 1 otherwise. Specifically, the decryption algorithm outputs 0 if |d| ≤ q/4.

The idea is same as that in the attack against R05. We describe how to extract

the first coordinate e1 of the secret key e. The other coordinates are extracted by

a slight modification. Let t denote ⌊q/4⌋. Let us set p = (1, 0, . . . , 0). Then, in

decryption, the variable d is set to be c − e1 mod q. Sliding c, we can detect when

d is firstly larger than t since the response switches from 0 to 1. Let c∗ denote the

value such that c∗ − e1 = t. By solving this, we have e1 = c∗ − t.

12.10 The Peikert–Waters “Lossy” Trapdoor Functions

Peikert and Waters [PW08] defined lossy trapdoor functions (LTDFs) and all-but-

one trapdoor functions (ABO TDFs).

Intuitively, LTDFs have two mode: lossy mode and invertible mode. In invert-

ible mode, the legitimate user with a trapdoor can invert the his function. However,

in lossy mode, any user cannot information theoretically. In addition, the keys in

lossy mode and invertible mode are computationally indistinguishable.

The precise definition is given as follows: Let n be the security parameter, and

λ(n) represent the input length of the function, κ(n) represent the lossiness of the

collection. For convenience, we define the residual leakage ρ(n) = λ(n) − κ(n).

Definition 12.10.1 (Lossy trapdoor functions, [PW08]). Consider a following

scheme LosTDF = (Gen,Eval, Inv). Let us suppose that mode ∈ {inj, los}.

Gen(1n,mode): A generation algorithm, given the security parameter 1n, and

works as follows:

• If mode = inj, it outputs (a, t).

• If mode = los, it outputs (a,⊥).

These defines the functions fa : {0, 1}λ → Rn.
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Eval(a, x): An evaluation algorithm, given the index a and x ∈ {0, 1}λ, it outputs

fa(x).

Inv(a, t, y): An inversion algorithm, given the set of (a, t) generate by

Gen(1n, inj) and y = fa(x) ∈ Rn, it outputs x.

We say LosTDF is a collection of (λ, κ)-lossy trapdoor functions if the following

conditions hold:

Easy to sample an injective function with trapdoor: Consider (a, t) ←
Gen(1n, inj). Then, the function fa is an injective function and Inv with input

(a, t, y = fa(x)) efficiently retrieves x.

Easy to sample a lossy function: Consider (a,⊥) ← Gen(1n, los). Then, fa :

{0, 1}λ → Rn has image size at most 2ρ = 2λ−κ, that is,
∣∣∣ fa({0, 1}λ)

∣∣∣ ≤ 2ρ.

Hard to distinguish injective from lossy: The first outputs of Gen(1n, inj) and

Gen(1n, los) are computationally indistinguishable.

Definition 12.10.2 (All-but-one trapdoor functions, [PW08]). Consider a follow-

ing scheme ABOTDF = (Gen,Eval, Inv). Let Vn be a set of branches.

Gen(1n, v∗): A generation algorithm, given the security parameter 1n and lossy

branch v∗ ∈ Vn, and outputs (a, t), where a is a function index and t is its

trapdoor. The index a defines the function ga(·, ·) : Vn × {0, 1}λ → Rn.

Eval(a, v, x): An evaluation algorithm, given the index a, a branch v ∈ Vn, and

x ∈ {0, 1}λ, it outputs ga(v, x) = ga,v(x).

Inv(t, v, y): An inversion algorithm, given the trapdoor t and y = ga,v(x) ∈ Rn, if

v , v∗ outputs x.

We say ABOTDF is a collection of (λ, κ)-all-but-one trapdoor functions if the fol-

lowing conditions hold:

Easy to sample an injective function with trapdoor: Consider (a, t) ←
Gen(1n, v∗). Then, for any v , v∗, the function ga,v is an injective function

and Inv with input (t, v, y = ga,v(x)) efficiently retrieves x.

Loss on the lossy branch: Consider (a, t) ← Gen(1n, v∗). Then, ga,v∗ :

{0, 1}λ → Rn has image size at most 2ρ = 2λ−κ, that is,
∣∣∣ga,v∗({0, 1}λ)

∣∣∣ ≤ 2ρ.

Hidden lossy branch: Consider the following game: An adversary A outputs

(v0, v1) ∈ V2
n , is given a function index a, where (a, t) ← Gen(1n, vb) and

b← {0, 1}, and outputs b′. For any polynomial-time adversaryA,

∣∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣∣ ≤ negl(n).

It is easy to show that LTDFs are one-way. In addition, LTDFs yields ABOTDfs

with two branches and the l-time use of (n, n − r)-ABOTDFs with branch set

V = {0, 1} yields (n, n − lr)-ABOTDfs with branch set V = {0, 1}l. Furthermore,

they yields pseudorandom generators, collision-resistant hash families, and thus
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one-time secure signature schemes. (See [PW08, Section 3]). Using them, they

construct encryption schemes and oblivious transfers.

Peikert and Waters instantiated LTDFs and ABO TDFs based on the DDH

assumption and the LWE assumption. Following their result, many researchers

proposed LTDFs and ABO TDFs under several assumptions.

It is worth to note how we obtain the idea of lossy trapdoor functions. Recall

LWE-PKE. The ciphertext of b with a randomness e is

[
u

c

]
=

[
A

PT

]
· e +

[
0

⌊q/p⌋ b

]

and a legitimate receiver can retrieve the vector b rather than e. To retrieve e, we

set l = m and consider the following function

[
u

c

]
=

[
A

PT + ⌊q/p⌋ Im

]
· e =

[
A

PT

]
· e +

[
0

⌊q/p⌋ e

]
.

Obviously, we can retrieve e. This is the main idea of Peikert and Waters and

the DDH construction is done by the same idea. However, to apply this idea to

LWE-PKE, they need to circumvent several obstacles, for example, the noise may

leak the information and we cannot ensure lossiness. We describe the circumven-

tions in the following sections.

12.10.1 Descriptions of Lattice-Based Lossy Functions

Matrix Concealer

We start with recalling matrix concealer, which makes the function index. This

definition is as known as matrix encryption.

GenConcealχ(1n,m, l): The inputs are the security parameter 1n, and integers

m, l = poly(n). First generate two random matrices A ← Zn×m
q and S ← Zn×l

q

and an error matrix X ← χm×l. Then output C = [A; PT ], where P = AT S +

X ∈ Zm×l
q .

Although notation is changed, this algorithm is the same as the key-generation al-

gorithm of LWE-PKE. Hence, the output C of GenConcealχ is computationally

indistinguishable from U(Z
(n+l)×m
q ) if m, l = poly(n) and dLWEq,χ is hard on aver-

age. The proof is obtained by the hybrid argument on the columns of P.

The following lemma will be used later.

Lemma 12.10.3 ([PW08]). Let h,w, p be positive integers. Let q ≥ 4ph, let 1/α ≥
8p(m + g) for some g > 0, and let χ = Ψ̄α. Then except with probability at most

w · 2−g over the choice of X ← χm×l, the following holds: for every row vector

e = (e1, . . . , em) ∈ {0, 1}m, each entry of 1
q

Xe ∈ Tl has absolute value less than 1
4p

.
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Lossy TDFs

For a while we assume that p = 2k for some k ≥ 1. Define a special row vector

g = [1, 2, . . . , 2log p−1 = p/2] ∈ Zk. Then, we define G = Ih ⊗ g ∈ Zh×hk
q , where ⊗

denotes the Tensor product. Illustratively, we have

G =



g 0 . . . 0

0 g . . . 0
...

...
. . .

...

0 0 . . . g



By using 2-base representation, we can define the invertible function encode(w) =

e = (e1, . . . , ek) ∈ {0, 1}k such that g · e = w for any w ∈ Zp. We map w =

(w1, . . . ,wl) ∈ Zh
p into e = encode(w) ∈ {0, 1}hk and vice verse. Then we have that

Ge = w.

The description of the construction is given as follows:

Scheme 12.10.4 ([PW08]). Let us set m = lk.

Gen(1n,mode ∈ {inj, los}): The algorithm first invokes GenConcealχ(1n,m, l)

to generate a matrix C = [A; PT ] ∈ Z(n+l)×m
q and a trapdoor S ∈ Zn×l

q , where

P = AT S + X.

• If mode = inj, output the function index Y = [A; PT + M] ∈ Z(n+l)×m
q and

the trapdoor S, where M = t(G).

• If mode = los, output the function index Y = C.

Eval(Y, e): Let Y be a function index and e ∈ {0, 1}m. Output z = Ye ∈ Z(n+l)
q .

Inv(S, z): Parse z as (u, v) ∈ Zn
q × Zl

q. Then compute d ← v − ST u and let

w = t−1(d) ∈ Zl
p. Finally output e← decode(w) ∈ {0, 1}m.

The index-generation algorithm is the same as LWE-PKE.KeyGen if mode =

los. But, in the case where mode = inj, the key is changed to P+M. Crucially, this

change allows us to recover e with the trapdoor S. It is obvious that the adversary

distinguishes [A; PT +M] from [A; PT ] yields the adversary distinguishes [A; PT ]

and [A; P′T ], where P′ is drawn from Zm×l
q uniformly at random.

The correctness follows from the correctness conditions of LWE-PKE. The

main part is the following lossiness proof.

Theorem 12.10.5 ([PW08]). Let q ≥ 4lp log p and χ = Ψ̄α with 1/α ≥ 16pm =

16lp log p. Then the above algorithms define a collection of almost-always (m,m′)-
lossy TDFs under the dLWEq,χ assumption, where m = n log p and the residual

leakage r = m − m′ is

r ≤ m

l

(
n + (n + l) logp (q/p)

)
.

Proof. Lossiness is computed as follows: Let Y = [A|PT = ST A + XT ] be a

function index produced by Gen(1n, los).

Eval(Y, e) = (u, v) = Ye = (Ae,ST Ae + XT e).
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The number of possible values for u is at most qn. Given u, the number of possible

values for vis exactly the number of possible values for XT e. The latter quantity is

at most (1+q/2p)l ≤ (q/p)l. Hence the total number of outputs is at most qn ·(q/p)l.

Therefore,

r ≤ n · log q + l · log (q/p) = m · n log q

l log p
+

m

log p
· log (q/p)

=
m

l

(
n + (n + l) logp (q/p)

)
.

�

We omit how to construct all-but-one trapdoor functions from dLWEq,χ as-

sumption but note they construct directly all-but-one trapdoor functions from as in

the above rather than general construction we already mentioned. For the details,

see [PW08].

12.10.2 Description of Encryption Scheme

After the constructions of lossy TDFs and all-but-one TDFs, they gave an IND-

CCA2 secure encryption scheme based on them. We review the construction here.

Scheme 12.10.6 (PW-PKE [PW08]). Let LosTDF = (L.Gen, L.Eval, L.Inv) and

ABOTDF = (A.Gen,A.Eval,A.Inv) be (λ, κ)-lossy and (λ, κ′)-ABO trapdoor func-

tions with branch set V = {0, 1}v. We require the total residual leakage is

ρ + ρ′ = 2λ − κ − κ′ ≤ λ − a,

for some a = a(n) = ω(log n). Let OTS = (O.KeyGen,O.Sign,O.Ver) be a one-

time secure signature scheme with verification-key space V = {0, 1}v. Let H be

a universal family of hash functions from {0, 1}λ → {0, 1}l, where 0 < l ≤ a −
2 log 1/ǫ for some negligible ǫ = ǫ(n). The message space is {0, 1}l.

KeyGen(1n): Given 1n, it generates (a, t) ← L.Gen(1n, inj), (a′, t′) ←
A.Gen(1n, 0v), and a hash function h ← H . The encryption key is ek =

(a, a′, h) and the decryption key is dk = (t, t′, ek).

Enc(ek = (a, a′, h),msg ∈ {0, 1}l): It generates a key pair (vk, sk) ←
O.KeyGen(1n), chooses x← {0, 1}λ uniformly at random. It computes

c1 = L.Eval(a, x) = fa(x), c2 = A.Eval(a′, vk, x) = ga′,vk(x), c3 = m ⊕ h(x).

Finally, it signs the triplet (c1, c2, c3) as σ ← O.Sign(sk, (c1, c2, c3)). Then, it

outputs the ciphertext ct = (vk, c1, c2, c3, σ).

Dec(dk = (t, t′, ek), ct = (vk, c1, c2, c3, σ): It first checks that

O.Ver(vk, (c1, c2, c3), σ) = 1. If not, it outputs ⊥ and halts. It then

computes x ← L.Inv(t, c1), and checks that c1 = fa(x) and c2 = ga′,vk(x); if

not, it outputs ⊥ and halts. Finally, it outputs m← c3 ⊕ h(x).
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Theorem 12.10.7 ([PW08, Theorem 4.2]). The above scheme is IND-CCA2 se-

cure.

We only give the games in the proof and intuitions.

• The game Game0 is the original IND-CCA2 game, which induces the target

ciphertext ct∗ = (vk∗, c∗
1
, c∗

2
, c∗

3
, σ∗).

• In Game1, they changed the decryption oracle which rejects the query ct =

(vk, c1, c2, c3, σ) if vk = vk∗. If it happens, the one-time security of OTS is

violated.

• In Game2, they replace the lossy branch 0v with vk∗. The distance between

Game1 and Game2 is ensured by the hidden branch property.

• In Game3, the decryption oracles retrieve x by A.Inv(t′, vk, c2) instead of

L.Inv(t′, c1). This change makes no difference since fa and ga,vk is injective.

• In Game4, they replace the injective function with a lossy function. The dis-

tance between Game1 and Game2 is ensured by the “hard to distinguish in-

jective from lossy” property.

• In Game5, they replace the component c∗
3

with a uniformly random string over

{0, 1}l. Since h is extractor, this only makes a statistical difference.

We note that we have no need to sign c1. This observation is due to Matsuda,

Nishimaki, and Tanaka [MNT10], who proposed an IND-CCA2 secure proxy re-

encryption scheme based on the LTDFs based on the DDH assumption.

Notes: Unfortunately, the above scheme instantiated from the dLWE assumption

has very huge public key, say Õ(n3), and thus it is not convenient to use the scheme

in the real world. However, the power of lossiness is curious and attractive, and

the proof techniques are very useful and powerful. We require the more efficient

construction of an IND-CCA2 secure encryption scheme.
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Key-Encapsulation Mechanism

Organization: Section 13.1 and Section 13.2 reviews the definitions on key-

encapsulation mechanism (KEM) and data-encapsulation mechanism (DEM), re-

spectively. Section 13.3 reminds us of the construction of PKE from KEM and

DEM, that is, the KEM/DEM framework. Section 13.4 gives the description of

Peikert’s KEM. We give a review of ideal-lattice-based versions of the encryption

schemes by Stehlé, Steinfeld, Tanaka, and Xagawa in Section 13.5.

13.1 Definitions of Key-Encapsulation Mechanism

13.1.1 Model of Key-Encapsulation Mechanism

A key-encapsulation mechanism scheme KEM with associated key space Kn is a

triplet of algorithms (Gen,Encaps,Decaps).

Gen(1n): A key-generation algorithm, given 1n, outputs a pair of an encryption

key and a decryption key (ek, dk).

Encaps(ek,msg): An encapsulation algorithm, given ek, outputs a key k ∈ Kn

and a ciphertext ct.

Decaps(dk, ct): A decapsulation algorithm, given dk and ct, returns a key k or a

special symbol ⊥.

Correctness: The correctness of a key-encapsulation mechanism is defined as

follows: With overwhelming probability the ciphertext of any key k ∈ Kn under

an encryption key ek should be decrypted into k, where the probability is taken by
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coins of Gen and Encaps. Formally, this requirement is denoted

Pr

k , k̃ :

(ek, dk)← Gen(1n);

(k, ct)← Encaps(ek);

k̃ ← Decaps(dk, ct);

 ≤ negl(n).

13.1.2 Security Notions

We adopt the standard security notions [HHK06], indistinguishability of cipher-

texts under several attacks. Roughly speaking, we say the scheme has indistin-

guishability if any polynomial-time adversary cannot distinguish a valid key k1

from a random key k0 with the ciphertext ct of a valid key. In chosen plaintext at-

tacks (cpa), the adversary could only encrypt its chosen message and cannot use the

decryption oracle. In chosen ciphertext attacks (cca1), the adversary could query

to the decryption oracle until the adversary commits the target messages. In chosen

ciphertext attacks (cca2), the adversary could query to the decryption oracle after

it receives the target ciphertext.

We describe the formal definition as follows: Consider the experiment

Expind-atk
KEM,A(n) between the challenger C and the adversary A, where atk ∈

{cpa, cca1, cca2}.

Experiment Expind-atk
KEM,A(n):

Setup Phase: The challenger takes the security parameter n and obtains

param ← Setup(1n) and (ek, dk) ← Gen(param). It gives param and ek

to the adversaryA.

Learning Phase 1: The adversary can issue queries to the oracle if atk ∈
{cca1, cca2}. The oracle Dec receives an input ct and returns k ←
Decaps(dk, ct).

Challenge Phase: The adversaryA query to the challenger. The challenger

generates a random key k0 ← Kn and a pair of a valid key and ciphertext

(k1, ct)← Encaps(param, ek). The challenger flips a coin b← {0, 1}, sets

k∗ ← kb, and sends (k∗, ct∗) to the adversary.

Learning Phase 2: The adversary can issue queries to the oracle if atk =

cca2. The oracle Dec receives input ct. If ct = ct∗, the challenger outputs

0 and halts. Otherwise, the oracle returns k ← Decaps(dk, ct) toA.

Guessing Phase: Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b, the

challenger outputs 1, otherwise 0.

Definition 13.1.1. Let KEM = (Setup,Gen,Encaps,Decaps) be a key-

encapsulation mechanism, A an adversary, and n a security parameter. We define

the advantage ofA as

Advind-atk
KEM,A(n) =

∣∣∣∣∣Pr
[
Expind-atk

KEM,A(n) = 1
]
− 1

2

∣∣∣∣∣ .
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We say that KEM is ind-atk secure if Advind-atk
KEM,A(·) is negligible for every

polynomial-time adversaryA, where atk ∈ {cpa, cca1, cca2}.

13.2 Definitions of Data-Encapsulation Mechanism

13.2.1 Model of Data-Encapsulation Mechanism

A data-encapsulation mechanism scheme DEM with associated key space Kn and

message space Mn is a triplet of algorithms (Gen,Encaps,Decaps).

Gen(1n): A key-generation algorithm, given the security parameter 1n, outputs

a key k ∈ Kn.

Encaps(k,msg): An encapsulation algorithm, given a key k and a data msg ∈
Mn, outputs a ciphertext ct.

Decaps(k, ct): A decapsulation algorithm, given k and ct, returns a message msg

or a special symbol ⊥.

Correctness: The correctness of a data-encapsulation mechanism is defined as

follows: With overwhelming probability the ciphertext of any message msg in the

message space under an encryption key k should be decrypted into msg, where the

probability is taken by coins of Gen, and Encaps. Formally, this requirement is

denoted

Pr

msg , m̃sg :

k ← Gen(1n);

ct ← Encaps(k,msg);

m̃sg← Decaps(k, ct);

 ≤ negl(n).

13.2.2 Security Notions

We adopt the standard security notions [BDJR97, HHK06], indistinguishability

of ciphertexts under several attacks. Roughly speaking, we say the scheme has

indistinguishability if any polynomial-time adversary cannot distinguish a valid

key k1 from a random key k0 with the ciphertext ct of a valid key.

In chosen plaintext attacks (cpa), the adversary could only encrypt its chosen

message and cannot use the decryption oracle. In chosen ciphertext attacks (cca1),

the adversary could query to the decryption oracle until the adversary commits the

target messages. In chosen ciphertext attacks (cca2), the adversary could query

to the decryption oracle after it receives the target ciphertext. In these attacks the

adversary could query to the encryption oracle.

There are other attacks. In addition, Herranz, Hofheinz, and Kiltz formalized

one-time security for DEM, which was already appeared in the other names in the

literature [CS03, KY06]. In one-time attacks (ot), the adversary has no oracles.

In one-time chosen-ciphertext attacks (otcca), the adversary could query to the

decryption oracle after obtaining the challenge ciphertext. In there attacks, the

adversary has no encryption oracle.
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We describe the formal definition as follows: Consider the experiment

Expind-atk
KEM,A(n) between the challenger C and the adversary A, where atk ∈

{ot, otcca, cpa, cca1, cca2}.

Experiment Expind-atk
PKE,A(n):

Setup Phase: The challenger takes the security parameter n and obtains

param← Setup(1n) and (ek, dk)← KeyGen(param). It gives param and

ek to the adversaryA.

Learning Phase 1: The adversary can issue queries to the encryption ora-

cle if atk ∈ {cpa, cca1, cca2}. In addition, it can query to the decryption

oracle if atk ∈ {cca1, cca2}.
• The oracle Enc receives an input msg and returns ct ←

Encaps(k,msg).

• The oracle Dec receives an input ct and returns msg← Decaps(k, ct).

Challenge Phase: The adversary A query two distinct message

msg0,msg1 ∈ Mn to the challenger. The challenger flips a coin

b← {0, 1} and sends ct∗ ← Encaps(k,msgb) to the adversary.

Learning Phase 2: The adversary can issue queries to the encryption ora-

cle if atk ∈ {cpa, cca1, cca2}. It also can query to the decryption oracle if

atk ∈ {otcca, cca2}.
• The oracle Enc receives an input msg and returns ct ←

Encaps(k,msg).

• The oracle Dec receives an input ct. If ct = ct∗, the challenger outputs

0 and halts. Otherwise, the oracle returns msg ← Decaps(k, ct) to

A.

Guessing Phase: Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b, the

challenger outputs 1, otherwise 0.

Definition 13.2.1. Let DEM = (Gen,Encaps,Decaps) be a data-encapsulation

mechanism, A an adversary, and n a security parameter. We define the advantage

ofA as

Advind-atk
DEM,A(n) =

∣∣∣∣∣Pr
[
Expind-atk

DEM,A(n) = 1
]
− 1

2

∣∣∣∣∣ .

We say that DEM is ind-atk secure if Advind-atk
KEM,A(·) is negligible for every

polynomial-time adversaryA, where atk ∈ {ot, otcca, cpa, cca1, cca2}.

13.3 Hybrid Encryption

We here briefly review the framework of the hybrid encryption, the construction of

a public-key encryption scheme from a key- and data-encapsulation mechanism.

Scheme 13.3.1 (Hybrid Encryption). Let KEM = (K.Gen,K.Encaps,K.Decaps)
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be a KEM and let DEM = (D.Gen,D.Encaps,D.Decaps) be a DEM. Then, the

obtained scheme PKE = (P.KeyGen,P.Enc,P.Dec) is defined as follows:

P.KeyGen(1n): Output (ek, dk)← K.Gen(1n).

P.Enc(ek,msg): Obtain (k, ct1) ← K.Encaps(ek), obtain ct2 ←
D.Encaps(k,msg), and outputs ct = (ct1, ct2).

P.Dec(dk, ct = (ct1, ct2)): Retrieve k ← K.Decaps(dk, ct1) and outputs msg ←
D.Decaps(k, ct2).

Herranz et al. showed the following results. The final statement is already

proved by Cramer and Shoup [CS03].

• For any atk ∈ {ot, otcca, cpa, cca1, cca2}, if KEM is ind-cpa secure and DEM is

ind-atk secure, then the obtained PKE is ind-cpa secure.

• For any atk ∈ {ot, otcca, cpa, cca1, cca2}, if KEM is ind-cca1 secure and DEM

is ind-atk secure, then the obtained PKE is ind-cca1 secure.

• For any atk ∈ {ot, cpa, cca1}, if KEM is ind-cca2 secure and DEM is ind-atk

secure, then the obtained PKE is ind-cca1 secure.

• For any atk ∈ {otcca, cca2}, if KEM is ind-cca2 secure and DEM is ind-atk

secure, then the obtained PKE is ind-cca2 secure.

13.4 Peikert’s Key-Encapsulation Mechanism and

Public-Key Encryption Schemes

We have already seen that the key generation and encryption in the McEliece en-

cryption scheme resemble to the key-generation method of the Regev encryption

scheme LWE-PKE. Why cannot we use the lattice-based analogy of the McEliece

encryption scheme? Can we replace G′ ∈ Fn×m with A ∈ Zn×m
q and the distribution

U(S(m, t)) with χm?

Gentry, Peikert, and Vaikuntanathan [GPV08] pointed out that the short basis T

of the latticeΛ⊥q (A) also exploits the latticeΛq(A). Using T, we can solve the BDD

over the lattice Λq(A); that is, given p = AT s+ x, we can recover s and x! (We will

describe the simplified variant later.) One-wayness of this function, with respect to

the input distribution U(Zn
q) × χm, is apparent under the sLWE assumption.

We can interpret this results into the analogy of the McEliece encryption

scheme as follows: Instead of the Hamming weight, we consider the Lee weight

(see Roth’s textbook [Rot06]). For an element c ∈ Zq, we define the Lee value |c|
by

|c| =


c, 0 ≤ c ≤ q/2,

q − c q/2 < c ≤ q − 1

as we already defined the absolute value |c| for c ∈ Zq. The Lee weight of a vector

c = (c1, . . . , cn) ∈ Zn
q is defined by

∑n
i=1

∣∣∣c j

∣∣∣. This is just the l1 norm of c if c
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is embedded in [−q/2, q/2]n. The recovering algorithm in Gentry et al. shows, a

trapdoor T of A enables us to decode a received word p = AT s + x mod q into s if

the Lee weight of x is small.

13.4.1 Basic Schemes

Peikert [Pei09c] improved the invert method of the LWE trapdoor function men-

tioned in [GPV08]. Now, the obtained scheme has a flavor of the GGH encryption

scheme in Section 12.5.

Scheme 13.4.1 (LWETrap [Pei09c]).

Setup(1n): Given the security parameter 1n, output 1n.

KeyGen(1n): Using ExtLattice, obtain A ∈ Zn×m
q and T ∈ Zm×m, where ‖T‖ ≤ L.

Eval(ek = A,msg = s): Let s ∈ Zn
q. Choose x← Ψm

α and compute p← 1
q

AT s +

x ∈ Tm. Output gA(s, x) = p̄ = ⌊q′ · p⌉ mod q′.

Inv(dk = T, p̄): Given p̄ = gA(s, x) ∈ Zm
q′ , let p′ ← p̄/q ∈ Tm, compute y ←

T−T ·
⌊
TT p′

⌉
mod 1, and computes s′ from y by solving y = 1

q
AT s ∈ Tm. (It

can also output x′ ← p′ − 1
q

AT s ∈ Tm.)

The correctness of decryption follows from the similar argument in the proof

of Lemma 12.5.1. For appropriately chosen α, we can show that the norm of x is

short.

Theorem 13.4.2 (Correctness, [Pei09c, Lemma 4.2]). Let q′ = q′(n) ≥ 2L
√

m and

1/α ≥ L · ω(
√

log n). Then for any s ∈ Zn
q and for x drawn from Ψm

α , the inversion

algorithm on input p̄ = gA(s, x) correctly outputs s with overwhelming probability

over the choice of x.

Using this trapdoor function, we can construct key-encapsulation mechanism

with key space {0, 1}l which resembles Dual in Section 12.9.

Scheme 13.4.3 (LWE-KEM, combinded, [Pei09c] and [Pei09b]). Let LWETrap =

(L.KeyGen, L.Eval, L.Inv) as in the above.

Gen(1n): Generate (A,T) ← L.KeyGen. Generate U ← Zn×l
q . It outputs ek =

(A,U) and dk = (T, ek).

Encaps(ek): Choose a key k ← {0, 1}l. Generate a random vector s ← Zn
q

and generate xp ← χm and xv ← χl. Then compute p̄ ← gA(s, xp) =

L.Eval(A, s; xp) and v̄ ← gU(s, xv). Compute c̄ ← v̄ + ⌊q′/2⌋ k mod q′. Fi-

nally, output k and ct = ( p̄, c̄).

Decaps(dk, ct = ( p̄, c̄)): Retrieve s ← L.Inv(dk, p̄). Compute v ← UT s/q mod

1. Then, compute d ← c̄ − ⌊q′v⌉ mod q′. Finally, output k← t−1(d).

Theorem 13.4.4. The above KEM is ind-cpa secure if dLWE(q, χ) is hard. More
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precisely, for any polynomial-time adversaryA,

Adv
ind-cpa

LWE-KEM,A(n) ≤ AdvdLWE(q,χ)(n) + negl(n).

Proof. Consider three games;

Game0: The original game.

Game1: In the game, we change the generation method for A, U, p̄, and v̄; Take

m + l samples from As,χ. Let us name the first m samples (A, p) and (U, v).

Compute p̄ = ⌊q′p⌉ mod q′ and v̄← ⌊q′v⌉ mod q′ and use them in the game.

Game2: In the game, we change the generation method for A, U, p̄, and v̄; Take

m + l samples from U(Zn
q × T). Let us name the first m samples (A, p) and

(U, v). Compute p̄ = ⌊q′p⌉ mod q′ and v̄ ← ⌊q′v⌉ mod q′ and use them in the

game.

Apparently, the statistical distance between Game0 and Game1 is at most

negl(n) since they only differ the generation method of A. In addition, the distance

between Game1 and Game2 is at most AdvdLWE(q,χ)(n); otherwise,A distinguishes

As,χ and U(Zn
q × T). This completes the proof. �

13.4.2 CCA Schemes

Using the LWE trapdoor function, Goldwasser and Vaikuntanathan [GV08] and

Peikert [Pei09c] constructed IND-CCA2 secure encryption schemes by employing

the Rosen–Segev construction [RS09]. (We note that Dowsley, Müller-Quade, and

Nascimento [DMQN09] also constructed an IND-CCA2 secure encryption scheme

from the McEliece encryption scheme based on the assumption on the coding prob-

lems.)

The Rosen–Segev construction is summarized as follows:

Scheme 13.4.5 (The Rosen–Segev Construction [RS09]). Let Trap =

(T.Gen,T.Eval,T.Inv) be one-way functions. Let OTS = (O.Gen,O.Sign,O.Ver)

be a one-time secure signature scheme with verification-key space is {0, 1}v. As-

sume that the trapdoor function fa : {0, 1}n → {0, 1}n is one-way. We also as-

sume that fa(s) = ( fa1
(s), . . . , fak

(s)) is also one-way. Additionally, a function

h : {0, 1}n → {0, 1}l is a hardcore function of fa.

P.KeyGen(1n): For i ∈ [v] and b ∈ {0, 1}, obtain (a
(b)
i
, t

(b)
i

) ← T.Gen. Output

ek = {a(b)
i
} and dk = ({t(b)

i
}, ek).

P.Enc(ek,msg): Generate (vk, sk)← O.Gen(1n). Generate a random string s←
{0, 1}n. Compute c1 ← ( f

a
(vk1)

1

(s), . . . , f
a

(vkv)
v

(s)) and c2 ← h(s) ⊕ msg. Obtain a

signature σ← O.Sign(sk, (c1, c2)). Output the ciphertext ct = (vk, c1, c2, σ).

P.Dec(dk, ct): Verify the signature σ; output ⊥ if O.Ver(vk, (c1, c2)) = 0. Then,

by using T.Inv, invert f
a

(vk1)

1

(s) and obtain s. Confirm the other f
a

(vki)

i

(s) by

T.Eval; output ⊥ if not. Then, obtain a message msg = h(s) ⊕ c2.
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Showing that the scheme is IND-CCA2 secure is educationally simple as Rosen

and Segev noted [RS09]. The intuition is that the simulator implants given fa =

( fa1
, . . . , fak

) into { f
a

(vki)

i

} for its chosen vk∗, and simulates the decryption oracle if

vk∗ , vk.

Returning to the lattice-based scheme, the function gA(s, x) is secure with

respect to the distribution U(Zn
q) × χm×k; It is obvious that the new function

gA(s, x) = (gA1
(s, x1), . . . , gAk

(s, xk)) is also one-way under the sLWE assump-

tion, where A = [A1| . . . |Ak], x = x1 ◦ . . . ◦ xk, s is chosen from Zn
q uniformly at

random, each xi is a sample from χm. It is also true that the above function gA is

pseudorandom under the dLWE assumption.

There are some difficulties for direct applying the Rosen–Segev technique.

Since we cannot recover x (we recover x′ in the above trapdoor function), this

noise will be exploited by the IND-CCA2 adversary. In addition, the simulator in

the IND-CCA2 game have to able to check some p′ is correctly generated under fA

even if it does not know its trapdoor. To circumvent this difficulties, Peikert defines

the preimage verification algorithm for gA.

PreVer(A, (s, x′), p̄): Compute p′ ← p̄/q′ ∈ Tm. Accept if ‖x‖∞ < α · t and

b′ = 1
q

AT s + x′ ∈ Tm and reject otherwise.

Lemma 13.4.6 ([Pei09c, Lemma 4.4]). For q′ ≥ 1/(αt) ≥ 2L
√

m ≥ 8, the algo-

rithm PreVer and LWETrap satisfies the following conditions:

Completeness: For any s and x drawn from Ψm
α , and x′ output by the inver-

sion algorithm given p̄ = gA(s, x) and T, PreVer(A, (s, x′), p̄) accepts with

overwhelming probability over the choice of x.

Unique preimage: For every p̄ ∈ Zm
q′ , there is at most one legal preimage (s, x′)

under gA; that is, PreVer(A, (s, x′), p̄) accepts for at most one value of (s, x′).

Findable preimage: For any p̄, the inversion algorithm, given inputs p̄ and T,

always outputs the unique legal preimage (s, x′), i.e., the (s, x′) that makes

PreVer accept, if such pair exists.

Assuming the sLWEq,Ψα is hard, we can show that (A, gA(s, x)) ∼c (A, p∗),
where s← Zn

q, x← Ψm
α , and p∗ ← Zm

q′ .

We here construct KEM rather than public-key encryption. This eliminates use

of the hardcore functions. The following scheme is the obtained KEM applying

the Rosen–Segev construction.

Scheme 13.4.7 (Pei-KEM, combinded, [Pei09c] and [Pei09b]). Let OTS =

(O.Gen,O.Sign,O.Ver) be a strongly one-time secure signature scheme with

verification-key space {0, 1}v. Let LWETrap = (L.Gen, L.Eval, L.Inv) as in the

above.

Gen(1n): For i = 1, . . . , v and b ∈ {0, 1}, generate 2v key pairs (A
(b)
i
,T

(b)
i

) ←
L.Gen(1n) such that ‖T̃(b)

i
‖ ≤ L. Generate U ← Zn×l

q . It outputs ek =
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({A(b)
i
}i,b,U) and dk = ({T(b)

i
}i,b, ek).

Encaps(ek): Choose a key k ← {0, 1}l. Next, generate a key pair (vk, sk) ←
O.Gen(1n). Generate a random vector s ← Zn

q and generate xp,i ← χm for

i = 1, . . . , v and xv ← χl. Then compute p̄i ← g
A

(vki)

i

(s, xp,i) and v̄← gU(s, xv).

Compute c̄← v̄+ ⌊q′/2⌋ k mod q′. Sign p̄i and c̄ as σ← O.Sign(sk, ({ p̄i}, c̄)).

Finally, output ct = (vk, { p̄i}, c̄, σ).

Decaps(dk, ct): Check if O.Ver(vk, ({ p̄i}, c̄), σ) = 1; if not, output ⊥ and

halt. Next, invert s from p̄1. Compute x′
i

from s and p̄i. Check if

PreVer(A
(vki)
i

, (s, x′
i
), p̄i) = 1 for any i; if not, output ⊥ and halt. Finally,

retrieve k from c̄ and output k.

Combining this KEM and some ind-otcca DEM, we obtain ind-cca2 secure

public-key encryption scheme.

Theorem 13.4.8 ([Pei09c]). The above Pei-KEM is ind-cca2 secure if OTS is

strongly one-time secure and dLWE(q, χ) is hard.

The proof is obtained combining the arguments of Peikert, and Rosen and

Segev. We give only the proof sketch here.

Consider the following games;

Game0: The original game. In the challenge phase, the challenger works as

follows: k0, k1 ← {0, 1}l, (vk∗, sk∗) ← O.Gen(1n), s ← Zn
q, xp,i ← χm,

xv ← χl,

p∗i ←
1

q
A

(vk∗i )

i
s + xp,i, p̄∗i ←

⌊
q′p∗i

⌉
mod q′,

v∗ ← 1

q
Us + xv, v̄∗ ← ⌊

q′v∗
⌉

mod q′,

c̄∗ ← v̄ +
⌊
q′/2

⌋
k mod q′, σ← O.Sign(sk∗, { p̄∗i }, c̄∗).

Game1: We change the timing of the generation of vk∗; A priori to the game,

the challenger obtains (vk∗, sk∗)← O.Gen(1n).

Game2: We change the specification of the decryption oracle: the decryption

oracle returns ⊥ on the query ct = (vk∗, c1, c2, σ).

Game3: We modify the decryption oracle: On the query (vk, { p̄i}, c̄, σ), if vk =

vk∗ then returns ⊥ as in the previous game. If not, it scans vk and vk∗ and finds

an index j ∈ [t] such that vk j , vk∗j . Then, invert p̄j and obtain s. The other

procedure is same to the original. Here, the decryption procedure has no need

to use T
(vk∗i )

i
.

Game4: We change the key-generation method. For i ∈ [v], A
(vk∗i )

i
← Zn×m

q .

Game5: We change the key generation and the generation method for the target

ciphertext. The challenger takes mv + l samples from As,χ. Then, name them
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(A
(vk∗i )

i
, p∗

i
) and (U, v∗).

Game6: We again change the generations. The challenger takes mv + l samples

form U(Zn
q × T).

You can show the distances between each games are negligible. It is obvious

that Game0 and Game1 are identical since we only change the timing. It is also

easy to verify that Game1 and Game2 are computationally indistinguishable if

OTS is strongly one-time secure. The use of PreVer immediately ensures the sta-

tistical indistinguishability between Game2 and Game3. In addition, the distance

between Game3 and Game4 is negligible following from the statistical correct-

ness of L.Gen. Game4 and Game5 are computationally indistinguishable because

dLWE(q, χ) is hard. Hence, we have the following inequality,

2 · Advind-cca2
Pei-KEM(n) ≤ Advot

OTS(n) + AdvdLWE(q,χ)(n) + negl(n).

13.5 The Stehlé–Steinfeld–Tanaka–Xagawa PKE

Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09] proposed an ideal-lattice version

of Peikert’s scheme. It is very natural to consider the replacement A with ǎ in

LWETrap yields a secure one-way trapdoor function. But this replacement induces

several difficulties. Before discussions, we describe the ILWETrap.

Scheme 13.5.1 (ILWETrap [SSTX09]).

Setup(1n): Given the security parameter 1n, output 1n.

KeyGen(1n): Using ILPSF.TrapGen, obtain ǎ ∈ Rm
f,q

and T ∈ Rm×m
f

of a short

basis of M⊥(ǎ). In the following, T′ denote Rotf(T). We suppose that ‖T′‖ ≤
L.

Eval(ek = ǎ,msg = s): Suppose s ∈ Zn
q. Choose x ← Ψmn

α and compute p ←
1
q

Rotf(ǎ)T s + x ∈ Tmn. Output gǎ(s, x) = p̄ = ⌊q′ · p⌉ mod q′.

Inv(dk = T, p̄): Given p̄ = gA(s, x) ∈ Zm
q′ , let p′ ← p̄/q ∈ Tm, compute y ←

T′−T ·
⌊
T′T p′

⌉
mod 1, and computes s′ from y by solving y = 1

q
Rot(ǎ)T s ∈ Tm.

(It can also output x′ ← p′ − 1
q

Rotf(ǎ)T s ∈ Tm.)

The problems are twofold. The one is an efficiency issue and the other is that

the function is not pseudorandom if we assume the f-sLWE assumption.

Recovering the efficiency: The transpose operation generally kills the efficiency

advantage of the ideal-lattice version, since Rotf(a)T may be not suited for the

computation. Hence, we need Õ(n2) steps to multiply Rotf(a)T and s.

Here, we set f = xn + 1 and recall the reciprocal polynomial in Section 10.7;

rec(a) = a(1/x) in Rf .
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Then, we have that

Rotf(a)T · s = Rotf(rec(a)) · s = rec(a) ⊗ s.

The operation rec takes only a small cost and we can compute Rotf(a)T s with Õ(n)

steps as in the before.

On pseudorandomness: Since Rotf(a)T is very structured, we cannot show the

pseudorandomness of (a, rec(a) ⊗ s + x), where s ← Rf,q and x ← Ψ̄m
α opposite

to the success of the reduction from dLWE to sLWE. To circumvent this, Stehlé

et al. [SSTX09] used the hardcore function extract the pseudorandomness. They

employed the Goldreich–Levin hardcore functions with Toeplitz matrices [GL89,

AC02, HMS04, KY06, KX09] which extract constant bits. In their paper, they

assumed that the super-polynomial hardness of sLWE and extract l = o(n) bits.

We left the two open problems; The one is efficient hardcore functions with

tighter reductions to f-sLWE problem. The other is showing f-dLWE is hard on

the average from the lattice assumptions.
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14
Identity-Based Encryption

Organization: We give the brief introduction in Section 14.1. Section 14.2 gives

the definitions of schemes and security notions. Section 14.3 reviews the Gentry–

Peikert–Vaikuntanathan identity-based encryption. In Section 14.4 we review the

construction of hierarchical identity-based encryption schemes.

14.1 Introduction

After proposal of the concept of identity-based cryptosystems by Shamir [Sha85],

many researchers have made the efforts on construction of identity-based encryp-

tion (IBE) schemes.

This was long-standing open problem in cryptography until 2001. The concrete

IBE schemes are constructed by Sakai, Ogishi, and Kasahara [SOK01], Boneh and

Franklin [BF03], and Cocks [Coc01]; the first and second ones are based on the

pairing assumptions and the last one is based on the quadratic residue assumption.

Roughly speaking, these schemes are obtained by combining the signature

schemes and the encryption schemes; Let H : {0, 1}∗ → Kn be the random or-

acle, where Kn is an encryption-key space of the underlying encryption scheme.

The master makes a key pair (vk, sk) ← Sig.KeyGen(1n) and publishes vk. The

user encryption key is ekid = H(id) and the user decryption key is dkid = σid ←
Sig.Sign(sk, id). Such correspondence yields an IBE scheme in the random oracle

model.

Turning our eyes on lattice-based IBEs. The first proposal was done by Gentry,

Peikert, and Vaikuntanathan [GPV08], which is obtained by combining GPV-FDH

with Dual. After their construction, Agrawal and Boyen [AB09], Cash, Hofheinz,

and Kiltz [CHK09], and Peikert [Pei09b] proposed IBE schemes secure in the stan-
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dard models. Cash et al. and Peikert also gave HIBEs on which the techniques are

essentially same again. In addition, Cash et al. discussed the use of admissible hash

functions to enhance the security to be fully secure and gave a concise proof (see

the original paper [CHK09]).

We note that there is another IBE scheme by Boneh and Boyen [BB09], how-

ever, we cannot confirm their security.

14.2 Definitions

14.2.1 Model of Identity-based Encryption Schemes

An IBE scheme IBE is a quadruplet of algorithms (Setup,Ext,Enc,Dec).

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param and a master secret key msk.

Ext(msk, id): An extraction algorithm, given msk and an identity id, outputs a

decryption key of the user dkid.

Enc(param, id,msg): An encryption algorithm, given param, id, and a message

msg, outputs a ciphertext ct.

Dec(dkid, ct): A decryption algorithm, given dkid and ct, returns a message msg.

14.2.2 Model of Hierarchical Identity-based Encryption Schemes

A HIBE scheme HIBE is a tuple of algorithms (Setup,Ext,Delg,Enc,Dec). id =

(id1, . . . , idl). id|i = (id1, . . . , idi) the i-th prefix of id.

Setup(1n): A setup algorithm, given the security parameter 1n, outputs public

parameters param and a master secret key msk.

Ext(msk, id): An extraction algorithm, given msk and an identity id of length at

most d, outputs a decryption key of the user dkid.

Delg(dkid|l−1
, id): A secret-key delegation algorithm, given a decryption key

dkid|l−1
for a parent id|l−1 and an identity id of length at most d, outputs a

decryption key of the user dkid for the user id.

Enc(param, id,msg): An encryption algorithm, given param, id of length at

most d, and a message msg, outputs a ciphertext ct.

Dec(dkid, ct): A decryption algorithm, given dkid and ct, returns a message msg.

14.2.3 Security Notions

Roughly speaking, the security denotes the adversary cannot distinguish two ci-

phertexts of its chosen messages even if it can access to the extraction oracle. We

note that there are two modes of attacks. The one is a selective ID mode, where
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the adversary must commit the target identity at the start of the game. The other is

a full ID mode, where the adversary can choose the target identity at the challenge

phase. Obviously, if IBE is goal-fID-atk-secure it is also goal-sID-atk-secure.

We start to recall the weaker security notion ind-sID-atk security. Consider the

experiment Expind-sID-atk
IBE,A (n) between the challenger C and the adversaryA.

Experiment Expind-sID-atk
IBE,A (n):

Initiating Phase: The adversary commits an identity id∗ to the challenger,

which is the target identity of the adversary.

Setup Phase: The challenger C takes the security parameter 1n and obtains

(param,msk)← Setup(1n). It gives param to the adversaryA.

Learning Phase 1: The adversary can issue queries to the oracle Extract.

Additionally,A can issue queries to the oracle Dec if atk ∈ {cca1, cca2}.
• The oracle Extract receives input id. If id = id∗, the challenger out-

puts 0 and halts. Otherwise, the oracle responds dkid ← Ext(msk, id).

• The oracle Dec receives inputs ct and returns msg← Dec(dk, ct).

Challenge Phase: The adversaryA outputs two plaintexts msg0 and msg1.

The challenger flips a coin b ← {0, 1}, sets the target ciphertext to be

ct∗ ← Enc(param, id∗,msgb), and sends ct∗ to the adversary.

Learning Phase 2: Again, the adversary can issue queries to the oracle

Extract. If atk = cca2, it also can issue queries to the oracle Dec.

• The oracle Extract receives input id. If id = id∗, the challenger out-

puts 0 and halts. Otherwise, the oracle responds dkid ← Ext(msk, id).

• The oracle Dec receives inputs id and ct. If id = id∗ and ct = ct∗, the

challenger outputs 0 and halts. Otherwise, the oracle returns msg ←
Dec(dkid, ct).

Guessing Phase: Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b the

challenger outputs 1, otherwise 0.

Definition 14.2.1. Let IBE = (Setup,Extract,Enc,Dec) be an identity-based en-

cryption scheme,A an adversary, and n a security parameter. We define the advan-

tage ofA as

Advind-sID-atk
IBE,A (n) =

∣∣∣∣∣Pr
[
Expind-sID-atk

IBE,A (n) = 1
]
− 1

2

∣∣∣∣∣ .

We say that IBE is ind-sID-atk secure if Advind-sID-atk
IBE,A (·) is negligible for every

polynomial-time adversaryA.

We next define the full ID security. In this mode, the adversary can determine

a target ID in the challenge phase.

Consider the experiment Expind-fID-atk
IBE,A (n) between the challenger C and the ad-

versaryA.

195



14.3. THE GENTRY–PEIKERT–VAIKUNTANATHAN IDENTITY-BASED

ENCRYPTION SCHEME

Experiment Expind-fID-atk
IBE,A (n):

Setup Phase: The challenger C takes the security parameter 1n and obtains

(param,msk)← Setup(1n). It gives param to the adversaryA.

Learning Phase 1: The adversary can issue queries to the oracle Extract.

Additionally,A can issue queries to the oracle Dec if atk ∈ {cca1, cca2}.
• The oracle Extract receives input id. The oracle responds dkid ←

Ext(msk, id).

• The oracle Dec receives inputs ct and returns msg← Dec(dk, ct).

Challenge Phase: The adversaryA outputs two plaintexts msg0 and msg1,

and a target identity id∗. If id∗ is queried to the oracle Extract in the

learning phase 1, the challenger C outputs 0 and halts. Otherwise, the

challenger flips a coin b ← {0, 1}, sets the target ciphertext to be ct∗ ←
Enc(param, id∗,msgb), and sends ct∗ to the adversary.

Learning Phase 2: Again, the adversary can issue queries to the oracle

Extract. If atk = cca2, it can issue queries to the oracle Dec.

• The oracle Extract receives input id. If id = id∗, the challenger out-

puts 0 and halts. Otherwise, the oracle responds dkid ← Ext(msk, id).

• The oracle Dec receives inputs id and ct. If id = id∗ and ct = ct∗, the

challenger outputs 0 and halts. Otherwise, the oracle returns msg ←
Dec(dkid, ct).

Guessing Phase: Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b the

challenger outputs 1, otherwise 0.

Definition 14.2.2. Let IBE = (Setup,Extract,Enc,Dec) be an identity-based en-

cryption scheme,A an adversary, and n a security parameter. We define the advan-

tage ofA as

Advind-fID-atk
IBE,A (n) =

∣∣∣∣∣Pr
[
Expind-fID-atk

IBE,A (n) = 1
]
− 1

2

∣∣∣∣∣ .

We say that IBE is ind-fID-atk secure if Advind-fID-atk
IBE,A (·) is negligible for every

polynomial-time adversaryA.

To extend these notation to HIBE, we add the new oracle Delegate. We omit

the details of the definitions.

14.3 The Gentry–Peikert–Vaikuntanathan Identity-

Based Encryption Scheme

This is the first identity-based encryption scheme based on lattice problems. In-

tuitively, the public parameter and the master key corresponds the verification key

and the secret key of the GPV signature scheme. The decryption key of the iden-
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tity id is the signature σ on the message id. Notice that the decryption key of Dual

corresponds to σ.

14.3.1 Description

Scheme 14.3.1 (GPV-IBE [GPV08]). We model H : {0, 1}∗ → Zn×l
q as the random

oracle.

Setup(n): On input the security parameter n, invoke the trapdoor algorithm

LPSF.TrapGen(1n) in Chapter 10 and obtain A ∈ Zn×m
q and its basis T ∈ Zm×m

such that ‖T̃‖ ≤ L. Output param = A and msk = T.

Extract(param = A, id): On input the identity id, compute [uid,1, . . . ,uid,l] =

Uid ← H(id). Then, invoke the GPV sampling algorithm eid,i ←
LPSF.SamplePre(A,T, s,uid,i). Output dkid = Eid = [eid,1, . . . , eid,l] as user’s

decryption key.

Enc(id,msg = b): First generate Uid ← H(id). Then, generate s ← Zn
q and

x ← χm. Compute p = AT s + x ∈ Zm
q . For message b ∈ Zl

p, compute

w = encode(b) ∈ Zl
q. Then, the ciphertext is (p, c = UT s + w).

Dec(dkid = Eid, ct = (p, c)) . Compute d = c − ET
id

p ∈ Zl
q. Output the plaintext

b ∈ Zl
p by computing decode(d).

Theorem 14.3.2 (Correctness, [GPV08]). Let χ = Ψ̄α, s ≥ L · ω(
√

log n), q ≥
5(m + 1)ps and 1/α ≥ ps

√
m + 1 · ω(

√
log n). Then the scheme is correct.

The proof is obtained by an analogy of one of Theorem 12.9.2.

14.3.2 Security Proof

The security proof is obtained by combination of ones of Theorem 12.9.3 and The-

orem 11.3.3. Hence, we omit the proof.

Theorem 14.3.3 (Security, [GPV08]). Let χ = Ψ̄α, m ≥ 2(n + l) log q and

s = ω(
√

log m). The above IBE is IND-fID-CPA secure under the dLWE(q, χ)

assumption.

14.4 The Cash–Hofheinz–Kiltz Hierarchical Identity-

Based Encryption Scheme

Very recently three papers, Agrawal and Boyen [AB09], Cash, Hofheinz, and

Kiltz [CHK09], and Peikert [Pei09b], proposed identity-based encryption schemes

without the random oracles. Here, we omit description of the Agrawal–Boyen IBE

since it is included by the Cash–Hofheinz–Kiltz HIBE in the standard model by

setting the depth d = 1.
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Ideas for identity-based encryption: We first give the idea of the IBEs, which

often appears in cryptography. Recall the Peikert KEM. In the scheme, the public

key for vk ∈ {0, 1}l is Avk = [A
(vk1)
1
| . . . |A(vkv)

v ]. We replace vk with id ∈ {0, 1}v and

the encryption is done as Dual.

Let ({A(b)
i
},u) be the public parameter (master’s public key). The master has

corresponding trapdoors {T(b)
i
}. The extraction is done by as follows: (1) generate

Aid = [A
(id1)
1
| . . . |A(idv)

v ] and generate Tid by “extending control” in Section 10.8

and (2) obtain eid ∈ Zml such that Aideid ≡ u (mod q). The user secret key is eid.

Then, the encryption and decryption procedures are the same to the one of Dual.

To show the security in the standard model, the simulator must extract for any

id , id∗. Thus, the simulator, given id∗ from the adversary, implant the challenge

into A
(id∗i )

i
and generate trapdoors T

(1−id∗i )

i
. If id , id∗, there is some index j ∈ [λ]

such that id j , id∗j . Hence, using the trapdoor T
(id j)

j
, the simulator can generate eid.

The extraction is simplified by adding A0 into the public parameter. The master

generates (A0,T0) and generates random matrices A
(b)
i

for i ∈ [λ] and b ∈ {0, 1}.
Then, the use public key is defined as Aid = [A0|A(id1)

1
| . . . |A(idλ)

λ
].

To expand the identity space {0, 1}λ to {0, 1}∗, we can use the collision-

resistant hash function H : {0, 1}∗ → {0, 1}λ. Let t ← H(id) and redefine

Aid = [A0|A(t1)
1
| . . . |A(tλ)

λ
].

Ideas for hierarchical identity-based encryption: In order to delegate the

power of the extraction, we can use “randomized control” in Section 10.8. The

maximal depth is set to d. Consider id = (id1, . . . , idk) ∈ ({0, 1}∗)k for k ∈ [d].

The master generates A0 ∈ Zn×m
q and C

(
i, j

b) ∈ Zn×v
q for i ∈ [d], j ∈ [λ], and

b ∈ {0, 1} and choose Hi : {0, 1}∗ → {0, 1}λ for i ∈ [d].

The user encryption key is defined as follows: For idi, let us define Ai,idi
=

[C
(t1)
i,1
| . . . |C(tλ)

i,λ
], where (t1, . . . , tλ) = Hi(idi). For id = (id1, . . . , idk), Aid =

[A0|A1,id1
| . . . |Ak,idk

].

This does not change the spirit of the user encryption key. The split enables us

to delegate the basis. For any id = (id1, . . . , idk), define id|k − 1 = (id1, . . . , idk−1),

the parent of id. Suppose that the parent id|k − 1 has a basis Tid|k−1 with quality

L(k−1) of a latticeΛ⊥q (Aid|k−1). Cash et al. [CHK09] and Peikert [Pei09b] proposed

“delegation of the basis” (or “randomized control”) which allows id|k− 1 to gener-

ate a basis Tid of a latticeΛ⊥q (Aid); Compute a basis T′ of the latticeΛid = Λ
⊥
q (Aid)

and take samples from DΛid,s(k−1), where s(k−1) will be defined later. The obtained

basis has a quality L(k) = s(k − 1) ·
√

m(k − 1), where m(k − 1) = m + (k − 1)λv.

We have introduced the parameters m(k), L(k), s(k) for k = 0, . . . , d. They are

defined inductively as follows:

m0 = m, L0 = L, s0 = L · ω(
√

log n),

mk = m + kλv, Lk = sk−1 ·
√

mk−1 · ω(
√

log mk−1), sk = Lk · ω(
√

log n).
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For simplicity, we let g(n) = ω(
√

log n) and obtain

md = m + dλv,

Ld ≤ L · (md)d/2 · gd · ω(logd/2 md),

sd ≤ L · (md)d/2 · gd+1 · ω(logd/2 md).

14.4.1 Descriptions

Cash et al. defined v = m and use the Alwen–Peikert constructions 1 and 2 (see

Section 10.3.2 and Section 10.3.3).

Scheme 14.4.1 (CHK-HIBE [CHK09]). The maximal depth is d. We use Hn =

{H : {0, 1}∗ → {0, 1}λ} a family of hash functions.

Setup(n): On input the security parameter n, invoke the trapdoor algorithm

LPSF.TrapGen(1n) in Chapter 10 and obtain A0 ∈ Zn×m
q and its basis T ∈

Zm×m such that ‖T̃‖ ≤ L. Next, generate random matrices C
(b)
i, j
← Zn×m

q for

i ∈ [d], j ∈ [λ] and b ∈ {0, 1}. Additionally, choose U = [u1, . . . ,ul] ← Zn×l
q

and Hi ← Hn. Output param = (A0,U, {C(b)
i, j
}, {Hi}) and msk = T.

Ext(param = A0,msk = T, id): For an identity id = (id1, . . . , idk), define Aid =

[A0|A1,id1
| . . . |Ak,idk

] ∈ Zn×(λk+1)m
q , where Ai,idi

← [C
(t1)
i,1
| . . . |C(tλ)

i,λ
] ∈ Zn×λm

q

for (t1, . . . , tλ) ← Hi(idi) ∈ {0, 1}λ. Using a short basis T of Λ⊥q (A0),

it samples a basis Tid of Λ⊥q (Aid) and Eid = [e1, . . . , el], where ei ←
LPSF.SamplePre(Aid,Tid, s(k),ui). Output dkid = (Tid, Eid).

Delg(param = A0, uskid|k−1 = (Tid|k−1, Eid|k−1), id): It will output uskid =

(Tid, eid). Define Aid as in the above. Using a short basis Tid|k−1 ofΛ⊥q (Aid|k−1),

it construct a short basis T′ of the lattice Λ⊥q (Aid). Then, it samples a basis Tid

of Λ⊥q (Aid) and Eid = [e1, . . . , el] where ei ← SamplePre(Aid,T
′, s(k),ui).

Output dkid = (Tid, Eid).

Enc(param, id,msg = b ∈ Zl
p): First generate Aid as in the above. Then, gen-

erate s ← Zn
q and x ← χkm. Compute p = AT

id
s + x ∈ Zkm

q . Compute

c = UT
id

s + x′ + encode(b), where x′ ← χl. Then, the ciphertext is (p, c).

Dec(uskid = (Tid, Eid), ct = (p, c)) . Compute d = c − ET
id

p ∈ Zl
q. Output the

plaintext b ∈ Zl
p by computing decode(d).

They define admissible hash functions as a variant of the definition

from [BB04]. For the details, see the original papers [BB04, CHK09]. Cash et

al. showed the following security results.

Theorem 14.4.2 ([CHK09]). Let q ≥ 5 · sd · (m + l), χ = Ψ̄α, 1/α ≥ sd ·√
(λd + 1)m + l · ω(

√
log n). If Hn is collision resistant, then the above HIBE is

ind-sID-cpa secure. If Hn is a family of admissible hash functions, then the above

HIBE is ind-fID-cpa secure.
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14.4.2 Another Scheme

Cash et al. [CHK09] also proposed the HIBE secure in the random oracle model.

This scheme can be considered as the direct generalization of GPV-HIBE.

Scheme 14.4.3 (CHK-HIBEinROM [CHK09]). We model G : {0, 1}∗ → Zn
q and

H : {0, 1}∗ → Zn×m
q as the random oracles.

Setup(n): On input the security parameter n, invoke the trapdoor algorithm

LPSF.TrapGen(1n) in Chapter 10 and obtain A0 ∈ Zn×m
q and its basis T ∈

Zm×m such that ‖T̃‖ ≤ L̃. Output param = A0 and msk = T.

Ext(param = A0,msk = T, id): Define Aid = [A0|A1| . . . |Ak] ∈ Zn×(k+1)m
q ,

where Ai ← H(id, i) ∈ Zn×m
q , and uid ← G(id) ∈ Zn

q. Using a

short basis T of Λ⊥q (A0), it samples a basis Tid of Λ⊥q (Aid) and eid ←
LPSF.SamplePre(Aid|k−1,Tid|k−1, s(k),uid). Output dkid = (Tid, eid).

Delg(param = A0, uskid|k−1 = (Tid|k−1, eid|k−1), id): uskid = (Tid, eid). Define Aid

and uid as in the above. Using a short basis Tid|k−1 of Λ⊥q (Aid|k−1), it samples

a basis Tid of Λ⊥q (Aid) and eid ← LPSF.SamplePre(Aid|k−1,Tid|k−1, s(k),uid).

Output dkid = (Tid, eid).

Enc(param, id,msg = w ∈ Zp): First generate Aid|k−1 as in the above. Then,

generate s ← Zn
q and x ← χkm. Compute p = AT

id|k−1
s + x ∈ Zkm

q . Com-

pute c = uT
id

s + x′ + encode(w), where x← χ. Then, the ciphertext is (p, c).

Dec(uskid = (Tid, eid), ct = (p, c)) . Compute d = c − eT
id

p ∈ Zq. Output the

plaintext w ∈ Zp by computing decode(d).

14.5 Peikert’s “Bonsai” Key-Encapsulation Mechanism

Peikert also proposed hierarchical identity-based encryption scheme. This scheme

can be considered as optimized variant of the CHK-HIBE.

First, if each component idi of id is restricted to λ-bit, we have no need to

introduce the hash function Hi (because the identity map is collision resistant).

Second, using LWE-KEM = (K.Gen,K.Encaps,K.Decaps) (Section 13.4), eid is

eliminated since the basis Tid suffices to decrypt. Third, he and Alwen improved

the trapdoor generation (the third construction in Section 10.3.4).

14.5.1 Descriptions

Scheme 14.5.1 (Bonsai-HIBKEM [Pei09b]). Suppose that the maximal depth is d.

Let m = m1 + m2.

Setup(n): On input the security parameter n, invoke the trapdoor algorithm

LPSF.TrapGen(1n) in Chapter 10 and obtain A0 ∈ Zn×m
q and its basis T ∈

Zm×m such that ‖T̃‖ ≤ L. Next, generate random matrices C
(b)
i, j
← Zn×m2

q for
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i ∈ [d], j ∈ [λ] and b ∈ {0, 1}. Additionally, choose U = [u1, . . . ,ul] ← Zn×l
q .

Output param = (A0,U, {C(b)
i, j
}, {Hi}) and msk = T.

Ext(param = A0,msk = T, id): For an identity id = (id1, . . . , idk), define Aid =

[A0|A1,id1
| . . . |Ak,idk

] where Ai,idi
← [C

(t1)
i,1
| . . . |C(tλ)

i,λ
] ∈ Zn×λm2

q for t = idi.

Using a short basis T of Λ⊥q (A0), it samples a basis Tid of Λ⊥q (Aid). Output

dkid = Tid.

Delg(param = A0, uskid|k−1 = Tid|k−1, id): Define Aid as in the above. Using a

short basis Tid|k−1 of Λ⊥q (Aid|k−1), it construct a short basis T′ of the lattice

Λ⊥q (Aid). Then, it samples a basis Tid of Λ⊥q (Aid). Output dkid = Tid.

Enc(param, id): It outputs (k, σ)← K.Encaps(Aid).

Dec(Tid, σ): It outputs k← K.Decaps(Tid, σ).

Remark 14.5.2. Using the miniature “Bonsai” techniques, we can obtain the ideal-

lattice-based IBE and HIBE as in [SSTX09].
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15
Proxy Re-Encryption

Proxy re-encryption enables a proxy to convert a ciphertext for some user to a ci-

phertext for another user, but a proxy cannot learn information of messages. All of

the proxy re-encryption and identity-based proxy re-encryption schemes are based

on the number-theoretic assumptions. This paper proposed proxy re-encryption

schemes based on the learning with errors problem. They are first schemes based

on combinatorial problems.

Organization: Section 15.1 gives the brief introduction of proxy re-encryption,

gives the idea from the ElGamal-based proxy re-encryption scheme. Section 15.2

defines model and the security notions on proxy re-encryption. Section 15.3 studies

the Xagawa–Tanaka proxy re-encryption scheme, which adds feature to Regev’s

encryption scheme. Section 15.4 also studies the variant of the above scheme.

15.1 Introduction

Suppose that Alice wants to forward a received encrypted e-mail to Bob in the

public channel. She decrypts it by her secret key, encrypts the message with Bob’s

public key, and sends it to him. However, decryption and encryption are costly for

her mobile phone in general. Therefore, she wants a mail server to forward her

mail to Bob automatically. In this case, she does not trust the server, hence, she

does not want to give her secret key to the server. The one of solutions is proxy

re-encryption [BBS98].

In a proxy re-encryption (PRE) scheme, the server is given a re-encryption key

rkA↔B between Alice and Bob. The server, given a ciphertext ctA for Alice, can

convert it to a ciphertext ctB for Bob by using the re-encryption key rkA↔B and
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without decrypting ctA. In addition, proxy re-encryption ensures that even if the

server knows rkA↔B, it cannot learn the message of ctA.

The study of proxy re-encryption is initiated by Blaze, Bleumer, and

Strauss [BBS98]. They formalize a proxy re-encryption and gave an exam-

ple based on the ElGamal encryption scheme. There are several proxy re-

encryption schemes [BBS98, AFGH06, CH07, LV08, DWLC08, ABH09, MNT10]

and identity-based proxy re-encryption schemes [Mat07, GA07, CT07] in the liter-

ature. However, their underlying problems are the decisional Diffie-Hellman prob-

lem or its variants.

In this paper, we propose proxy re-encryption schemes based on other prob-

lems, the learning with errors and lattice problems. Our constructions are obtained

by extending Regev’s encryption scheme [Reg09].

Ideas from the ElGamal-based PRE: We note that some lattice-based crypto-

systems have similar structure on the DDH-based cryptosystems while inherent

noises of lattice-based cryptosystems disturb the structure.

Consider the ElGamal encryption scheme overG = 〈g〉with order a large prime

q. The key pair is (x, y = gx) for randomly chosen x. The ciphertext of w ∈ G under

the encryption key y is (gk,w · yk) for randomly chosen k. Let (xA, yA = gxA) and

(xB, yB = gxB) denote Alice’s and Bob’s key pair, respectively. Assume that the

proxy has the re-encryption key rA↔B = xA − xB and has the ciphertext (c1, c2) to

be converted. Then, the conversion is done by

(c′1, c
′
2) = (c1, c2 · c−rA↔B

1
)

= (gk,w · gkxA · gk(xB−xA)) = (gk,w · yk
B).

It can be shown that this proxy re-encryption scheme is based on the hardness of

the DDH problem.1

We here recall Regev’s encryption scheme. The key pair is computed by

(s, (A, p = sT A + x)), where s ∈ Zn
q, A ∈ Zn×m

q , x ∈ Z1×m
q and the magnitudes

of the elements of x are relatively smaller than q/4m, say the l1-norm of x is at

most q/4. The encryption of the message w ∈ {0, 1} under the encryption key

(A, p) is (u, v) = (Ae, pe + w ⌊q/2⌋), where e← {0, 1}m.

The decryption procedure is as follows: (1) compute d = v− sT u and (2) output

0 if the absolute value of d is at most q/4 and output 1 otherwise.

Let (sA, (AA, pA = sT
A

AA+ xA)), and (sB, (AB, pB = sT
B

AB+ xB)) denote Alice’s

and Bob’s key pair, respectively. Let rA↔B = sA − sB. Then, the conversion from

(u, vA) to (u, vB) is done by (u, vB) = (u, vA − rT
A↔B

u), which is similar to that of

the ElGamal-based proxy re-encryption scheme. The decryption by Bob works

correctly since

dB = vB − sT
Bu = vA − (sA − sB)T u − sT

Bu = vA − sT
Au = dA.

1 In the BBS scheme [BBS98], the re-encryption key is rA↔B = xA/xB. The ciphertext of w is

(c1, c2) = (w · gk, yk
A
). The conversion is done by (c′1, c

′
2) = (c1, c

1/rA↔B

2
) = (w · gk, yk

B
).
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The proof strategy for security is also similar to that of the ElGamal-based

proxy re-encryption scheme.

The leftover hash lemma often appears in the context of lattice-based cryptog-

raphy. We summarize the arguments which appeared in many papers on lattice-

based cryptography. See [Reg09] for the proof.

Lemma 15.1.1 (The uniformity lemma for lattice-based hash functions). Consider

H = {hA : {0, 1}m → Zn+l
q | A ∈ Z(n+l)×m

q }, where hA(e) = Ae. Let H be the

uniform distribution overH , and X and U random variables distributed uniformly

over {0, 1}m and Zn+l
q , respectively. Applying the variant of the leftover hash lemma,

we have

Pr
H

[∆(H(X),U) ≥ 2−
1
4 (m−(n+l) log q)] ≤ 2−

1
4 (m−(n+l) log q).

In particular, if m = ((1 + δ)n + l) log q, then we have that

Pr
H

[∆(H(X),U) ≥ q−δn/4] ≤ q−δn/4.

15.2 Definitions

In this paper, we consider bidirectional and multi-hop proxy re-encryption. A PRE

scheme is called bidirectional, if a proxy has a re-encryption key rki↔ j, it can

convert a ciphertext for the user i to a ciphertext for the user j, vice versa. A PRE

scheme is said to be multi-hop, a proxy can re-encrypt a ciphertext for the user i

into a ciphertext for the user j and it can re-encrypt that into one for the user k and

so on.

15.2.1 Model of Proxy Re-Encryption Schemes

A PRE scheme PRE is a sextuplet of algorithms:

Setup(1n): The setup algorithm, given the security parameter n, outputs param-

eters param.

Reg(param, i): The registration algorithm, given the parameters param and a

user identity i, outputs the pair of an encryption key and a decryption key

(eki, dki).

ReKeyGen(dki, dk j): The re-encryption key generation algorithm, given two

decryption keys dki and dk j, outputs a re-encryption key rki, j.

Enc(param, eki,msg): The encryption algorithm, given the parameters param,

the encryption key eki of the user i, and a message msg, outputs a ciphertext

cti.

ReEnc(rki, j, cti): The re-encryption algorithm, given the re-encryption key rki, j

between the users i and j, and a ciphertext cti for the user i, it outputs a cipher-

text ct j for the user j.
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Dec(dk, ct): The decryption algorithm, given the decryption key dk and the ci-

phertext ct, outputs a plaintext msg.

Our definition of correctness is slightly weaker than the standard one [CH07].

We say a PRE scheme PRE is correct if an underlying public-key encryption

scheme PKE = (Setup,Reg,Enc,Dec) is correct. Formally, it holds that if for

any valid msg, there exists some negligible function negl(n) such that for any i

Pr


msg , m̃sg :

param← Setup(1n);

(eki, dki)← Reg(param, i);

ct ← Enc(param, eki,msg);

m̃sg← Dec(dki, ct);


≤ negl(n).

Additionally, we say a PRE scheme PRE is multi-hop correct if for any valid msg

and for any integer k > 1, one can correctly decrypt the ciphertext of msg converted

k times into msg, that is,

Pr



msg , m̃sg :

param← Setup(1n);

(eki, dki)← Reg(param, i);

rki↔i+1 ← ReKeyGen(dki, dki+1);

ct1 ← Enc(param, ek1,msg);

cti+1 ← ReEnc(rki↔i+1, cti);

m̃sg← Dec(dkk, ctk);



≤ n−ω(1),

where i runs from 1 to k.

15.2.2 Security Notions

We describe the formal definition of CPA security of proxy re-encryption, denoted

by IND-PRE-CPA. Consider the following experiment Exp
ind−pre−cpa

PRE,A (n) between

the challenger C and the adversaryA.

Setup Phase: The challenger takes a security parameter n. It sets HU,CU ← ∅,
runs the algorithm Setup with 1n, and obtains parameters param, where HU

and CU denote the sets of honest users and corrupted users, respectively. It

givesA the parameters param.

Challenge Phase: In this phase, the adversary issues queries to the following

oracles in any order and many times except to the constraint in the oracle

Challenge.

• The oracle Init receives an index i. If i ∈ HU∪CU then it returns ⊥. Oth-

erwise, it obtains (eki, dki) ← Reg(param, i), adds i to HU, and provides

A with eki.

• The oracle Corr receives an index i. If i ∈ HU ∪ CU then it returns ⊥.

Otherwise, it generates (eki, dkk) ← Reg(param; ri), adds i to CU, and

providesA with (eki, dki) and ri.
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• The oracle ReKey receives two indices i, j ∈ HU ∪ CU. If i, j ∈ HU or

i, j ∈ CU returns rki↔ j ← ReKeyGen(dki, dk j). Otherwise, the oracle

returns ⊥.

• The oracle ReEnc receives two indices i, j ∈ HU∪CU and a ciphertext ct.

If i, j ∈ HU or i, j ∈ CU, then it obtains rki↔ j ← ReKey(dki, dk j), obtains

c̃t ← ReEnc(param, rki↔ j, ct), and provides A with the new ciphertext

c̃t. Otherwise, the oracle returns ⊥.

• The oracle Challenge can be queried only once. This oracle receives

two plaintexts msg0,msg1 and a target user i∗. If i∗ is not in HU then

it provides ⊥ with the challenger and C outputs 0 and halts. Otherwise,

the oracle flips a coin b ∈ {0, 1}, sets the target ciphertext to be ct∗ ←
Enc(eki∗ ,msgb), and sends ct∗ to the adversary and b to the challenger.

Guessing Phase: Finally,A outputs a guess b′ ∈ {0, 1}. If b′ = b, the challenger

outputs 1, otherwise 0.

Definition 15.2.1 (IND-PRE-CPA security). Let PRE be a PRE scheme, A an

adversary, and n a security parameter. We define the advantage ofA as

Adv
ind−pre−cpa

PRE,A (n) =
∣∣∣∣2 Pr

[
Exp

ind−pre−cpa

PRE,A (n) = 1
]
− 1

∣∣∣∣ .

We say that PRE is IND-PRE-CPA secure if Adv
ind−pre−cpa

PRE,A (·) is negligible for ev-

ery polynomial-time adversaryA.

Since we only consider IND-PRE-CPA security, we prohibit the adversary to

re-encrypt ciphertexts from an honest user to a corrupted user. This is because that

this access can simulates a decryption oracle of the honest user.

15.3 The Xagawa–Tanaka Proxy Re-Encryption Scheme

We employ the variant by Peikert, Vaikuntanathan, and Waters [PVW08] of

Regev’s public-key encryption scheme [Reg09]. The main algorithms are the same

as those in the PVW scheme. We add to it a re-encryption key generation algorithm

and a re-encryption algorithm appeared in Section 1.

15.3.1 Description

Our PRE scheme LWEPRE is defined as follows:

Setup(1n): Given a security parameter n, it outputs ⊥ as param.

Reg(⊥, i): It generates Ai ← Zn×m
q , Si ← Zn×l

q , and Xi ← χl×m, and computes

Pi = ST
i

Ai + Xi ∈ Zl×m
q . It outputs eki = (Ai, Pi) and dki = Si.

ReKeyGen(dki = Si, dk j = S j): It outputs Ri↔ j = Si − S j ∈ Zn×l
q .
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Enc(ek = (A, P),w): The message space is Zl
p. It, given w, computes t = t(w) ∈

Zl
q, where t(w) = ⌊wq/p⌉ ∈ Zq and chooses a vector e ← {0, 1}m ⊂ Zm

q

uniformly at random. It outputs a pair (u, v) = (Ae, Pe + t) ∈ Zn
q × Zl

q as a

ciphertext.

ReEnc(rki↔ j = Ri↔ j, (u, vi)): It computes v j = vi − RT
i↔ j

u and outputs (u, v j).

Dec(dk = S, (u, v)): It computes d = v − ST u ∈ Zl
q and outputs the plaintext

w ∈ Zl
p such that d − t(v) ∈ Zl

q is closest to 0.

We add ReKeyGen and ReEnc to the variant of Regev’s encryption scheme by

Peikert, Vaikuntanathan, and Waters [PVW08]. The parameters setting for correct-

ness appeared in [PVW08].

Theorem 15.3.1 (Correctness [PVW08]). Let χ = Ψ̄α. Let q ≥ 4pm, let α ≤
1/(p

√
m · g(n)) for any g(n) = ω(

√
log n). Then, the above scheme is correct.

The multi-hop correctness is easily derived by the correctness.

Theorem 15.3.2 (Multi-hop correctness). Let q, α, and g be as in the above. Then,

the above scheme is multi-hop correct.

Proof. Consider the users 1, . . . , k. Suppose that (u, v1) is the valid ciphertext un-

der the encryption key (A1, P1) of the user 1 and the re-encryption procedure is

performed from 1 to k through 2, . . . , k − 1. By the re-encryption procedures, we

have that

vk = v1 −
k−1∑

i=1

RT
i↔i+1u = v1 −

k−1∑

i=1

(Si − Si+1)T u = v1 − (S1 − Sk)T u,

where Si denotes the decryption key of the user i. In the decryption procedure by

the user k, dk is computed as follows:

dk = vk − ST
k u = v1 − (S1 − Sk)T u − ST

k u = v1 − ST
1 u.

So, we have that dk = d1. Therefore, the multi-hop correctness follows from

Theorem 15.3.1 straightforwardly. �

15.3.2 Security Proofs

The security of the scheme is based on the dLWE assumption.

Theorem 15.3.3 (Security). Let m ≥ ((1 + δ)n + l) log q for δ > 0. The above

scheme is IND-PRE-CPA secure if dLWE(q, χ) is hard on average.

Proof. It follows by combining the claims below. �

Sequence of games: We define the sequence of the games and bound the distance

between the games.
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Game0: The original IND-PRE-CPA game. First, the challenger feeds ⊥ to the

adversary. The challenger simulates the oracles in the challenge phase. If the

oracle Challenge receives (i∗,w0,w1), it flips a coin b ∈ {0, 1} and returns the

target ciphertext (u∗, v∗) = (Ai∗e
∗, Pi∗e

∗ + t(wb)), where e∗ ← {0, 1}m. Finally,

the adversary outputs a guess b′. If b = b′, then the challenger outputs 1,

otherwise 0.

Game1: We modify the above game, by changing the generation methods of

keys. At the beginning of the challenge phase, the challenger first generates

re-encryption keys R1↔ j ← Zn×l
q for j = 2, . . . ,Q. The other re-encryption

key Ri↔ j is computed by Ri↔ j = R1↔i − R1↔i. Next it chooses S1 ← Zn×l
q ,

A1 ← Zn×m
q , and X1 ← χl×m, and computes P1 = ST

1
A1 + X1. If Init is

called with an input i, the challenger chooses Ai ← Zn×m
q , and Xi ← χl×m, and

computes Pi = ST
1

Ai − RT
1↔i

Ai + Xi. If ReKey is called with i, j ∈ HU, then it

returns Ri↔ j. If ReEnc is called with i, j, (u, c), then it uses the re-encryption

key Ri↔ j to re-encrypt the ciphertext. The other conditions are the same as in

the original game, Game0.

Game2: We replace the generation method of keys. The challenger queries to

the oracle AS,χ and obtains Qm samples (Ā, P̄) ∈ Zn×Qm
q × Zl×Qm

q . Then, it

chops into (Āi, P̄i) ∈ Zn×m
q × Zl×m

q for i = 1, . . . ,Q. It sets (A1, P1) = (Ā1, P̄1)

and (Ai, Pi) = ( Āi, P̄i − RT
1↔i

Āi). The other conditions are the same as in the

previous game, Game1.

Game3: We replace the oracle AS,χ with U(Zn
q × Zl

q). Hence, the challenger ob-

tains Qm samples (A, P) from U(Zn
q×Zl

q) at first. Now, P is chosen uniformly

at random.

Let S i denote the event that the adversary wins, i.e., b′ = b in the game

Gamei. We denote by Adv
ind−pre−cpa

LWEPRE,A (n) the advantage of the adversary A in the

IND-PRE-CPA game with the security parameter n. By definition, we have that

Adv
ind−pre−cpa

LWEPRE,A (n) = |2 Pr[S 0] − 1| = |Pr[S 0] − Pr[S 1]|.

Claim 15.3.4. Game0 and Game1 are identical.

Proof. Recall that Ri↔ j = Si − S j by the definition. Hence, we have that Ri↔ j =

R1↔ j − R1↔i in Game0. This calculation corresponds to the computation of Ri↔ j

in Game1.

Additionally, in Game1 we have Si = S1 − R1↔i imaginary, since Pi = (S1 −
R1↔i)

T Ai + Xi. Therefore, two games are identical.

�

Claim 15.3.5. Game1 and Game2 are identical.

Proof. In Game1, we have that Pi = ST
i

Ai + Xi − RT
1↔i

Ai.

In Game2, we have that Pi = P̄i − RT
1↔i

Ai. Since the samples from AS,Ψ̄α
is

(Ā, P̄ = ST Ā + X), we conclude that two games are identical. �
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Claim 15.3.6. Game2 and Game3 are computationally indistinguishable if

dLWE(q, χ) is hard on average.

Proof. Notice that in both games, the challenger does not know the secret keys of

the honest users. Hence, if the adversaryA acts differently in Game2 and Game3,

one can distinguish AS,χ from U(Zn
q × Zl

q) with Qm samples. This concludes the

proof. �

Claim 15.3.7. In Game3, no adversary can obtain the information b if m ≥ ((1 +

δ)n + l) log q. Formally, we have that

∣∣∣∣∣Pr[S 3] − 1

2

∣∣∣∣∣ ≤ 2q−δn/4 = negl(n).

Proof. By the parameter setting, we can apply the leftover hash lemma to the target

ciphertext and this concludes the proof. �

15.4 Extension

We next consider a variant of LWEPRE, denoted by LWEPRE2. In this variant,

users share A as the public parameter as users share the group (G, q, g) in the El-

Gamal encryption scheme.

Setup(n): Given input the security parameter n, it outputs a random matrix A ∈
Zn×m

q as param.

Reg(A, i): It generates Si ← Zn×l
q , and Xi ← Ψ̄l×m

α , and computes Pi = ST
i

A +

Xi ∈ Zl×m
q . It outputs eki = Pi and dki = Si.

ReKeyGen, Enc, ReEnc, Dec: They are the same as in LWEPRE.

The correctness and the multi-hop correctness of LWEPRE2 follow from these

of LWEPRE. In order to show the security, we need a lemma on the Gaussian

below.

Key Lemma: The following lemma states that the discretized folded Gauss-

ian with variance α2/2π statistically hides the discretized folded Gaussian with

variance δ2α2/2π, when δ is negligible. The similar lemma appears in [Reg09,

GKPV10]. Additionally, the lemmas are used to construct a key-leakage resilient

secret-key encryption scheme [GKPV10] and a key-dependent-message secure

public-key encryption scheme [BGK09].

Binding two following claims, our lemma is obtained.

Lemma 15.4.1. Let q = q(n) be super-polynomial integer function of n and α =

α(n) > 0 and δ ∈ (0, 1) reals. If δ is n−ω(1), then the statistical distance between Ψ̄α
and Ψ̄α + Ψ̄δα is at most n−ω(1).
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A similar claim already appeared in [Reg09, Claim 2.2], the statistical distance

between Ψα and Ψ(1+δ)α = Ψα + Ψδα is at most 9δ for any δ ∈ [0, 1), whose

distributions are not discretized.

Proof. Let µ = δqαt be a natural number. Then, from Claim 15.4.2, we have that

Pr[|X̄| ≥ µ] is at most 1√
2πt

exp(−πt2). For µ ≤ µ′, we have that the statistical

distance between Ψ̄α and Ψ̄α + µ
′ is at most (µ + 2)/qα. Hence, the statistical

distance between Ψ̄α and Ψ̄α + Ψ̄δα is at most 1√
2πt

exp(−πt2) + 2δt. By setting t =

ω(
√

log n) ∈ poly(n) and δt = n−ω(1), we have that the upperbound is n−ω(1). �

For example, we set q(n) = n2 log n, α = 1/n2, δ = n− log n, t = log n. Then,

q · δα = nΘ(log n) is super-polynomial in n and δt = n−Θ(log n) is negligible in n.

Claim 15.4.2. Let X̄ be a random variable according to Ψ̄δα. Then,

Pr[|X̄| ≤ µ] ≥ 1 − B(q, α, δ, µ),

where

B(q, α, δ, µ) =
δqα

(µ + 1/2)
√

2π
· exp

(
−π(µ + 1/2)2

δ2q2α2

)
.

In particular, if µ = δqα · ω(
√

log n), Pr[|X̄| ≥ µ] is negligible in n.

Proof. Let Bδ =
δqα

(µ+1/2)
√

2π
exp(−π(µ + 1/2)2/δ2q2α2). In order to prove the claim,

it is sufficient to show that, for X ∼ Ψδα, Pr[|X| ≥ (µ + 1/2)/q] ≤ B(q, α, δ, µ).

Hence, we show that, for X ∼ N(0, (δα)2/2π), Pr[|X| ≥ (µ+ 1/2)/q] ≤ B(q, α, δ, µ).

Applying the tail bound for the Gaussian that Pr[|X| ≥ tσ] ≤ 1
t
· exp(−t2/2) for

X ∼ N(0, σ2), we have that

Pr[|X| ≥ (µ + 1/2)/q] ≤ δqα

(µ + 1/2)
√

2π
· exp

(
−π(µ + 1/2)2

δ2q2α2

)
.

This completes the proof. �

Claim 15.4.3. For any α > 0, any q ∈ N, and any µ ∈ N, the statistical distance

between Ψ̄α and Ψ̄α + µ is at most (µ + 2)/qα.

Proof. Let us consider a statistical distance ∆µ between dNq(α2/2π) and

dNq(α2/2π) + µ, where dNq(σ2) is the following distribution; samples X from

N(0, σ2) and returns ⌊qX⌉. Since ∆µ ≥ ∆(Ψ̄α, Ψ̄α + µ), we bound this distance by

(µ + 2)/qα.

It is obvious that ∆µ ≥ ∆µ′ if µ ≥ µ′. Hence, we assume that µ is even and show

that ∆µ ≤ (µ + 1)/qα. Now, since µ is even, the probability that µ/2 is the sample

from dNq(α2/2π) equals to the probability that from dNq(α2/2π) + µ. Therefore,
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we have that

∆µ ≤ 2
∑

k<µ/2

Pr
X∼dNq(α2/2π)

[X = k] − Pr
X∼dNq(α2/2π)+µ

[X = k]

= 2
∑

k<µ/2

∫ k+1/2

k−1/2

1

qα
ρqα(x)dx −

∫ k+1/2

k−1/2

1

qα
ρqα(x − µ)dx

= 2

(∫ µ/2+1/2

−∞

1

qα
ρqα(x)dx −

∫ µ/2+1/2

−∞

1

qα
ρqα(x − µ)dx

)

= Pr
X∼N(0,q2α2/2π)

[X ≤ µ/2 + 1/2]

− Pr
X∼N(0,q2α2/2π)

[X ≤ −µ/2 + 1/2]

≤ Pr
X∼N(0,q2α2/2π)

[|X| ≤ µ/2 + 1/2]

=

∫ (µ+1)/2

−(µ+1)/2

1

qα
exp

(
−π x2

q2α2

)
dx

≤
∫ (µ+1)/2

−(µ+1)/2

1

qα
dx =

µ + 1

qα
.

�

Proof of Security: We define the sequence of the games and bound the distance

between the games.

Game0: The original IND-PRE-CPA game. First, the challenger feeds A ←
Zn×m

q to the adversaryA. The challenger simulates the oracles in the challenge

phase. If the oracle Challenge receives (i∗,w0,w1), it flips a coin b ∈ {0, 1} and

returns the target ciphertext (u∗, v∗) = (Ae∗, Pi∗e
∗+t(wb)), where e∗ ← {0, 1}m.

Finally, the adversary outputs a guess b′. If b = b′, then the challenger outputs

1, otherwise 0.

Game1: We modify the above game, by changing the generation methods of

keys. At the beginning of the challenge phase, the challenger first generates

re-encryption keys R1↔ j ← Zn×l
q for j = 2, . . . ,Q. The other re-encryption

key Ri↔ j is computed by Ri↔ j = R1↔ j−R1↔i. Next it chooses S1 ← Zn×l
q and

X1 ← χl×m, and computes P1 = ST
1

A+ X1. If Init is called with an input i, the

challenger chooses and Xi ← χl×m, and computes Pi = ST
1

A − RT
1↔i

A + Xi. If

ReKey is called with i, j ∈ HU, then it returns Ri↔ j. If ReEnc is called with

i, j, (u, c), then it uses the re-encryption key Ri↔ j to re-encrypt the ciphertext.

The other conditions are the same as in the original game, Game0.

Game1.5: We change the generation method of the noises. We replace

X1, . . . , XQ ← Ψ̄l×m
α with X + X1, . . . , X + XQ, where X ← Ψ̄l×m

δα
. Hence,

the key of the user i is Pi = ST
1

A − RT
1↔i

A + X + Xi.
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Game2: We replace the key of the user 1. The challenger queries to the oracle

AS,Ψ̄δα
and obtains m samples (Ā, P̄ = ST Ā + X̄) ∈ Zn×m

q × Zl×m
q . It computes

Pi = P̄− RT
1↔i

Ā+ Xi, where Xi ← Ψ̄l×m
α for i = 1, . . . , k. The other conditions

are the same as in the previous game, Game1.5.

Game3: We replace the oracle AS,Ψ̄δα
with U(Zn

q × Zl
q). Then, the challenger

obtains m samples (A, P) from U(Zn
q × Zl

q).

The main strategy of the security proof is similar to that in the previous one.

We note that Game1 and Game1.5 is statistically identical if the parameter settings

satisfy the conditions in Lemma 5.8. The other games are statistically or computa-

tionally identical as in the previous proofs. We omit the details since they are very

similar to the previous proof.

15.5 Concluding Remarks

We remark that anyone can obtain the re-encryption key by using the proxy; Let

us order the proxy to convert the ciphertext (ik, 0), where k ∈ [n], for the user i to

the user j. Then the proxy returns (ik,−RT
i↔ j

ik). By repeating the conversion with

k = 1, . . . , n, we obtain −RT
i↔ j

, that is, the re-encryption key between i and j.

In the real world, this can be considered as an attack. However, the IND-PRE-

CPA security does not capture this attacks. Hence, we should define the security

on leaks of the re-encryption keys in the CPA settings. We finally note that the

IND-PRE-CCA security captures this attacks, see [CH07, MNT10].

213





Acknowledgement

I would like to thank my supervisor Keisuke Tanaka for insightful suggestions and

creative comments. Without his guidance and wide knowledge, this thesis could

not be done. I would also like to thank Akinori Kawachi for thoughtful discussions

and supports, and the past that he have dragged me into lattice-based cryptography.

I want to thank you Kenji Yasunaga for several fruitful discussions.

I would like to thank all members of Tanaka Laboratory for their advice, en-

couragement, friendship, and enjoyable and delightful non-working hours. Thank

you, Keiji Omura, Ryoutaro Hayashi, Toshiyuki Isshiki, Akihiro Mihara, Takao

Onodera, Hiroki Hada, Manabu Suzuki, Naoyuki Yamashita, Shizu Kanauchi,

Takato Hirano, Christopher Alfred Portman, Harugana Hiwatari, Jun Nakajima,

Chihiro Ohyama, Masatoshi Yashiro, Ryo Nishimaki, Mario Larangeira Junior,

Kouich Sakumoto, Tatsunori Seki, Hirotoshi Takebe, Daisuke Inoue, Akira Nu-

mayama, Koichiro Wada, Hideaki Suzuki, Toshihide Matsuda, Yuki Tan, Hinako

Kamimura, Hitoshi Namiki, Akihiro Yamada, Manh Ha Nguyen, Chiaki Minato,

and Hapuarachchillage D. P. S. S. Kumara.

I am thankful to Osamu Watanabe for giving me a chance to intern in NTT. I

would like to express deep gratitude for the members of NTT Information Sharing

Platform Laboratories. I especially thank to Eiichiro Fujisaki, the mentor in NTT,

for his encouragements and fruitful discussions in the summer intern.

It gives me pleasure to thank you friends, Koji Takasu, Kazuhiro Shimmura,

and You Koseki. Thank you Yasuhito Higa, Youichi Kawanishi (as known as

Kirino), Yoshitsugu Kitagawa, and Keiichi Sakamoto to drag me into dangerous

games and spend delightful days. I have spent many non-working hours with

my room mates. I thank you, Yasuhito Higa, Alkin, Akira Tsurushima, Keiichi

Sakamoto, Futoshi Shirose, Hideaki Takahasi, Nazuna Tsuchida, Kouichiro Hotta,

Atsushi Takada, and Mayumi Kawamura. Finally, I would like to thank my family

for their kindness and financial supports.

I note that some parts of this thesis are supported by KAKENHI No.19-55201.

215





References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Nam-

prempre. From identification to signatures via the Fiat-Shamir

transform: Minimizing assumptions for security and forward-

security. In Lars R. Knudsen, editor, EUROCRYPT 2002, vol-

ume 2332 of Lecture Notes in Computer Science, pages 418–433.

Springer-Verlag, 2002.

[AABN08] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Nam-

prempre. From identification to signatures via the Fiat-Shamir

transform: Necessary and sufficient conditions for security and

forward-security. IEEE Transactions on Information Theory,

54(8):3631–3646, 2008.

[AC02] Mark Adcock and Richard Cleve. A quantum Goldreich-Levin

theorem with cryptographic applications. In Helmut Alt and

Afonso Ferreira, editors, STACS 2002, volume 2285 of Lecture

Notes in Computer Science, pages 323–334. Springer-Verlag,

2002. [arXiv:quant-ph/0108095].

[AB09] Shweta Agrawal and Xavier Boyen. Identity-based encryption

from lattices in the standard model. Manuscript, July 2009. Avail-

able at http://www.cs.stanford.edu/∼xb/ab09/.

[AEVZ02] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth

Zeger. Closest point search in lattices. IEEE Transactions on

Information Theory, 48(8):2201–2214, 2002.

[AMGH08] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz.

Additive homomorphic encryption with t-operand multiplica-

tions. Cryptology ePrint Archive, Report 2008/378, 2008.

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP cap

coNP. Journal of the ACM, 52(5):749–765, 2005.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (ex-

tended abstract). In Proceedings on 28th Annual ACM Sym-

posium on Theory of Computing (STOC ’96), pages 99–108,

Philadelphia, Pennsylvania, USA, May 1996. ACM. See also

ECCC TR96-007.

217

http://www.cs.stanford.edu/~xb/ab09/


REFERENCES

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for

randomized reductions (extended abstract). In Proceedings on

30th Annual ACM Symposium on Theory of Computing (STOC

’98), pages 10–19. ACM, 1998. See also ECCC TR97-047.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis prob-

lem. In Jirı́ Wiedermann, Peter van Emde Boas, and Mogens

Nielsen, editors, ICALP ’99, volume 1644 of Lecture Notes in

Computer Science, pages 1–9, 1999.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem

with worst-case/average-case equivalence. In Proceedings on

29th Annual ACM Symposium on Theory of Computing (STOC

’97), pages 284–293. ACM, 1997. See also ECCC TR96-065.

[AKS01] Miklós Ajtai, S.-Ravi Kumar, and D. Sivakumar. A sieve algo-

rithm for the shortest lattice vector problem. In Proceedings on

33rd Annual ACM Symposium on Theory of Computing (STOC

2001), pages 601–610. ACM, 2001.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Si-

multaneous hardcore bits and cryptography against memory at-

tacks. In Omer Reingold, editor, TCC 2009, volume 5444 of

Lecture Notes in Computer Science, pages 474–495. Springer-

Verlag, 2009.

[AKKV05] Mikhail Alekhnovich, Subhash Khot, Guy Kindler, and

Nisheeth K. Vishnoi. Hardness of approximating the closest vec-

tor problem with pre-processing. In 46th Annual IEEE Sympo-

sium on Foundations of Computer Science (FOCS 2005), pages

216–225. IEEE Computer Society, 2005.
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