

CryptoNET:
Generic Security Framework

for
Cloud Computing Environments

Abdul Ghafoor Abbasi
A

Doctoral Dissertation in
Communication Systems

School of Information and Communication Technologies (ICT)
KTH ‐ Stockholm, Sweden, 2011

2 | P a g e

3 | P a g e

TRITA ‐ ICT ‐ COS ‐1102 KTH, School of Information and
ISSN: 1653‐6347 Communication Technology
ISRN: KTH/COS‐‐11/02‐‐SE SE‐16440 Stockholm
ISBN: 978‐91‐7415‐964‐6 SWEDEN

Academic dissertation for the Degree of Doctor of Philosophy in Communication
Systems at Kungliga Tekniska Högskolan to be publicly defended on May 16, 2011 at
13:00 in Sal D, Forum, Isafjordsgatan 39 Kista.

© Abdul Ghafoor Abbasi, 2011

4 | P a g e

5 | P a g e

Acknowledgements

The research presented in this doctoral dissertation has been performed at the Royal

Institute of Technology, Stockholm, Sweden. Activities towards the completion of this

thesis span four years of research and many people have contributed and guided me to

the full understanding of the presented work. I wish to express my deep appreciation and

gratitude to all of them in my humble acknowledgments.

First and foremost, I offer my sincerest gratitude to my supervisor, Prof. Sead Muftic,

who mentored and guided me throughout my research with his patience, expert

knowledge and invaluable suggestions. His encouragement and support from the initial

to the final step enabled me to develop an understanding of the subject and finish my

thesis. One simply could not wish for a better or a friendlier supervisor. I am indebted to

him more than he knows.

I gratefully acknowledge support by Dr. Arshad Ali and Dr. Farooq Ahmed for providing

me the opportunity to study at the Royal Institute of Technology (KTH). I also wish to

express my deep appreciation to all the faculty members and administrative staff of

School of ICT and DSV department for their support and valuable assistance in the

completion of my thesis.

I am as ever especially indebted to my parents for their love and inseparable support and

prayers throughout my life. Words fail me to express my appreciation towards my

parents whose dedication, love and persistent confidence in me, has taken the loads off

my shoulders. I couldn’t have achieved all this in the absence of their prayers. I simply

cannot thank my parents enough. I also wish to thank my brothers and sisters for their

continuous support and love during my studies. I would like to thank my wife Nazia

Afzal and my son Muhammad Shahwaiz Abbasi for their patience, love, understanding

and bearing with my late night hours during my studies.

I also would like to acknowledge National University of Sciences and Technology

(NUST), Pakistan, Royal Institute of Technology (KTH), Sweden and Higher Education

Commission (HEC), Pakistan for providing financial support for my PhD studies and

research publications.

I also feel blessed by having wonderful colleagues, M. Awais Shibli, Chenchen Yuan,

and Gernot Schmölzer, Matei Ciobanu Morogan, Feng Zhang, Hao, A. Haseeb, Ammar,

M. Qaisar and Adnan Lateef for creating a very friendly environment in Stockholm and

providing me with technical help and support wherever I needed. Lastly, I offer my

regards and blessings to all my friends and everyone who supported me in any respect

during the completion of this thesis.

Abdul Ghafoor Abbasi
Stockholm, Sweden

6 | P a g e

7 | P a g e

Dedication

To my parents

M. Riaz Abbasi
and

Shahnaz Akhtar Bibi

8 | P a g e

9 | P a g e

Abstract

The area of this research is security in distributed environment such as cloud

computing and network applications. Specific focus was design and implementation of

high assurance network environment, comprising various secure and security-enhanced

applications. “High Assurance” means that

− our system is guaranteed to be secure,

− it is verifiable to provide the complete set of security services,

− we prove that it always functions correctly, and

− we justify our claim that it can not be compromised without user neglect

and/or consent.

We do not know of any equivalent research results or even commercial security

systems with such properties. Based on that, we claim several significant research and

also development contributions to the state–of–art of computer networks security.

In the last two decades there were many activities and contributions to protect data,

messages and other resources in computer networks, to provide privacy of users,

reliability, availability and integrity of resources, and to provide other security properties

for network environments and applications. Governments, international organizations,

private companies and individuals are investing a great deal of time, efforts and budgets

to install and use various security products and solutions. However, in spite of all these

needs, activities, on-going efforts, and all current solutions, it is general belief that the

security in today networks and applications is not adequate.

At the moment there are two general approaches to network application’s security.

One approach is to enforce isolation of users, network resources, and applications. In this

category we have solutions like firewalls, intrusion–detection systems, port scanners,

spam filters, virus detection and elimination tools, etc. The goal is to protect resources

and applications by isolation after their installation in the operational environment. The

second approach is to apply methodology, tools and security solutions already in the

process of creating network applications. This approach includes methodologies for

secure software design, ready–made security modules and libraries, rules for software

development process, and formal and strict testing procedures. The goal is to create

secure applications even before their operational deployment. Current experience clearly

shows that both approaches failed to provide an adequate level of security, where users

would be guaranteed to deploy and use secure, reliable and trusted network applications.

Therefore, in the current situation, it is obvious that a new approach and a new

thinking towards creating strongly protected and guaranteed secure network

environments and applications are needed. Therefore, in our research we have taken an

approach completely different from the two mentioned above. Our first principle is to use

cryptographic protection of all application resources. Based on this principle, in our

system data in local files and database tables are encrypted, messages and control

parameters are encrypted, and even software modules are encrypted. The principle is that

10 | P a g e

if all resources of an application are always encrypted, i.e. “enveloped in a

cryptographic shield”, then

− its software modules are not vulnerable to malware and viruses,

− its data are not vulnerable to illegal reading and theft,

− all messages exchanged in a networking environment are strongly

protected, and

− all other resources of an application are also strongly protected.

Thus, we strongly protect applications and their resources before they are installed, after

they are deployed, and also all the time during their use.

Furthermore, our methodology to create such systems and to apply total cryptographic

protection was based on the design of security components in the form of generic security

objects. First, each of those objects – data object or functional object, is itself encrypted.

If an object is a data object, representing a file, database table, communication message,

etc., its encryption means that its data are protected all the time. If an object is a

functional object, like cryptographic mechanisms, encapsulation module, etc., this

principle means that its code cannot be damaged by malware. Protected functional

objects are decrypted only on the fly, before being loaded into main memory for

execution. Each of our objects is complete in terms of its content (data objects) and its

functionality (functional objects), each supports multiple functional alternatives, they all

provide transparent handling of security credentials and management of security

attributes, and they are easy to integrate with individual applications. In addition, each

object is designed and implemented using well-established security standards and

technologies, so the complete system, created as a combination of those objects, is itself

compliant with security standards and, therefore, interoperable with exiting security

systems.

By applying our methodology, we first designed enabling components for our security

system. They are collections of simple and composite objects that also mutually interact

in order to provide various security services. The enabling components of our system are:

Security Provider, Security Protocols, Generic Security Server, Security SDKs, and

Secure Execution Environment. They are all mainly engine components of our security

system and they provide the same set of cryptographic and network security services to

all other security–enhanced applications.

Furthermore, for our individual security objects and also for larger security systems,

in order to prove their structural and functional correctness, we applied deductive scheme

for verification and validation of security systems. We used the following principle: “if

individual objects are verified and proven to be secure, if their instantiation,

combination and operations are secure, and if protocols between them are secure, then

the complete system, created from such objects, is also verifiably secure”. Data and

attributes of each object are protected and secure, and they can only be accessed by

authenticated and authorized users in a secure way. This means that structural security

properties of objects, upon their installation, can be verified. In addition, each object is

maintained and manipulated within our secure environment so each object is protected

and secure in all its states, even after its closing state, because the original objects are

encrypted and their data and states stored in a database or in files are also protected.

11 | P a g e

Formal validation of our approach and our methodology is performed using Threat

Model. We analyzed our generic security objects individually and identified various

potential threats for their data, attributes, actions, and various states. We also evaluated

behavior of each object against potential threats and established that our approach

provides better protection than some alternative solutions against various threats

mentioned. In addition, we applied threat model to our composite generic security

objects and secure network applications and we proved that deductive approach provides

better methodology for designing and developing secure network applications. We also

quantitatively evaluated the performance of our generic security objects and found that

the system developed using our methodology performs cryptographic functions

efficiently.

We have also solved some additional important aspects required for the full scope of

security services for network applications and cloud environment: manipulation and

management of cryptographic keys, execution of encrypted software, and even secure

and controlled collaboration of our encrypted applications in cloud computing

environments. During our research we have created the set of development tools and also

a development methodology which can be used to create cryptographically protected

applications. The same resources and tools are also used as a run–time supporting

environment for execution of our secure applications. Such total cryptographic protection

system for design, development and run–time of secure network applications we call

CryptoNET system. CrytpoNET security system is structured in the form of components

categorized in three groups: Integrated Secure Workstation, Secure Application Servers,

and Security Management Infrastructure Servers. Furthermore, our enabling components

provide the same set of security services to all components of the CryptoNET system.

Integrated Secure Workstation is designed and implemented in the form of a

collaborative secure environment for users. It protects local IT resources, messages and

operations for multiple applications. It comprises four most commonly used PC

applications as client components: Secure Station Manager (equivalent to Windows

Explorer), Secure E-Mail Client, Secure Web Browser, and Secure Documents Manager.

These four client components for their security extensions use functions and credentials

of the enabling components in order to provide standard security services (authentication,

confidentiality, integrity and access control) and also additional, extended security

services, such as transparent handling of certificates, use of smart cards, Strong

Authentication protocol, Security Assertion Markup Language (SAML) based Single-

Sign-On protocol, secure sessions, and other security functions.

Secure Application Servers are components of our secure network applications:

Secure E-Mail Server, Secure Web Server, Secure Library Server, and Secure Software

Distribution Server. These servers provide application-specific services to client

components. Some of the common security services provided by Secure Application

Servers to client components are Single-Sign-On protocol, secure communication, and

user authorization. In our system application servers are installed in a domain but it can

be installed in a cloud environment as services. Secure Application Servers are designed

and implemented using the concept and implementation of the Generic Security Server.

It provides extended security functions using our engine components. So by adopting this

approach, the same sets of security services are available to each application server.

12 | P a g e

Security Management Infrastructure Servers provide domain level and infrastructure

level services to the components of the CryptoNET architecture. They are standard

security servers, known as cloud security infrastructure, deployed as services in our

domain level could environment.

CryptoNET system is complete in terms of functions and security services that it

provides. It is internally integrated, so that the same cryptographic engines are used by

all applications. And finally, it is completely transparent to users – it applies its security

services without expecting any special interventions by users. In this thesis, we

developed and evaluated secure network applications of our CryptoNET system and

applied Threat Model to their validation and analysis. We found that deductive scheme

of using our generic security objects is effective for verification and testing of secure,

protected and verifiable secure network applications.

Based on all these theoretical research and practical development results, we believe

that our CryptoNET system is completely and verifiably secure and, therefore, represents

a significant contribution to the current state-of-the-art of computer network security.

13 | P a g e

Scientific Contributions

The following are research papers published as journal articles or conference paper:

[1] Abdul Ghafoor, Sead Muftic, and Gernot Schmölzer, “CryptoNET: Design and

Implementation of the Secure E‐mail System”, published in the Proceeding of International
Workshop on Security and Communication Networks (IWSCN‐2009), pp.75‐80, Trondheim,
Norway, May 20‐22, 2009.

[2] Abdul Ghafoor, Sead Muftic, Gernot Schmölzer, “CryptoNET: Secure Federation Protocol

and Authorization Policies for SMI”, published in the Proceeding of The International
Conference on Risks and Security of Internet and Systems 2009 (CRiSIS‐2009), pp. 19‐26,
Toulouse, France, October 19‐22, 2009.

[3] Abdul Ghafoor, Sead Muftic, Gernot Schmölzer, “A Model and Design of a Security

Provider for Java Applications” published in the proceeding of The International Conference
for Internet Technology and Secured Transactions (ICITST‐2009), pp. 794‐800, London, UK,
November 9‐12, 2009.

[4] Abdul Ghafoor, Sead Muftic, “CryptoNET: Integrated Secure Workstation”, published in the

International Journal of Advanced Science and Technology, (IJAST), SERSC, pp. 1‐10, Vol 12,
November 2009.

[5] Abdul Ghafoor, Sead Muftic “CryptoNET: Software Protection and Secure Execution

Environment”, published in the International Journal of Computer Science and Network
Security (IJCSNS), pp. 19‐26, Vol 10, February 2010.

[6] Abdul Ghafoor, Sead Muftic, “Web Contents Protection, Secure Execution and Authorized

Distribution”, published in the Proceeding of The 5th IEEE International Multi‐Conference on
Computing in the Global Information Technology (ICCGI‐2010), pp. 157‐162, Valencia, Spain,
September 20‐25, 2010.

[7] Abdul Ghafoor, Sead Muftic, and Gernot Schmölzer, “CryptoNET: A Model of Generic

Security Provider”’, published in the International Journal of Internet Technology and
Secured Transactions, Vol. 2, Nos. 3/4, pp.321–335, November 2010.

[8] Abdul Ghafoor, Sead Muftic, “CryptoNET: Security Management Protocols”, published in

the Proceeding of The 9
th WSEAS International Conference on Data Networks,

Communication, Computers (DNCOCO‐2010), Faro, Portugal, pp. 15‐20, November 3‐5,
2010.

[9] Abdul Ghafoor, Sead Muftic, Shahzad Ahmed Mumtaz, “Security Extensions of Windows

Environment based on FIPS 201 (PIV) Smart Card”, published in the Proceeding of The World
Congress of Internet Security, London, UK, pp. 100‐106 February 21‐23, 2011.

15 | P a g e

Table of Contents

1. INTRODUCTION...25
1.1. Concept and Principles... 25
1.2. Research Focus .. 27
1.2.1. Enabling Components.. 28
1.2.2. Secure Network Applications .. 28
1.3. Research Methodology .. 29
1.4. Overview of Research Contributions and Results ... 29
1.4.1. Enabling Components.. 29
1.4.2. Integrated Client for Secure Applications ... 31
1.4.3. Secure Network Applications .. 31
1.4.4. Cloud Security Infrastructure .. 32
1.5. Organization of The Thesis.. 33
1.6. Summary .. 33

2. RELATED WORK ...35
2.1. Overview and Analysis of Existing Solutions ... 35
2.1.1. Security Providers (Libraries and Middleware)... 35
2.1.2. Security Management Protocols .. 37
2.1.3. Generic Security Server... 38
2.1.4. Secure SDK and Execution Environment.. 39
2.1.5. Integrated Secure Workstation .. 41
2.1.6. Secure E-mail System.. 43
2.1.7. Secure Web System ... 44
2.1.8. Secure Documents System .. 45
2.2. Summary .. 47

Part I: Generic Components and Their Validation

3. GENERIC SECURITY OBJECTS ...51
3.1. Approach and Methodology... 51
3.2. Design of Generic Security Objects... 52
3.2.1. Types of Generic Security Objects .. 52
3.2.2. Actions of Generic Security Objects (Security Protocols) 55
3.2.3. States of Generic Security Objects .. 55
3.3. Features of Generic Security Objects... 56
3.4. Summary .. 57

4. GENERIC SECURITY PROVIDER ..59
4.1. Overview and Features of Generic Security Provider.. 59
4.2. Model of The Generic Security Provider ... 60
4.2.1. Abstraction Layer .. 61
4.2.2. Encapsulation Layer .. 61
4.2.3. Cryptographic Engines Layer .. 62
4.2.4. Resource Management Layer .. 62
4.3. Generic Security Provider for Java Applications... 62
4.3.1. Applets for Security Extensions .. 63
4.3.2. Symmetric Key Object .. 64
4.3.3. Asymmetric Keys Object... 65
4.3.4. Hashing Object .. 66

16 | P a g e

4.3.5. Digital Signature Object .. 66
4.3.6. Encapsulation Objects ... 67
4.3.7. Resource Management (Resource Interfaces) ... 67
4.3.8. Logging.. 68
4.3.9. Abstraction Module (Cryptographic Services Interfaces) 68
4.4. Eclipse Packages (Plug-Ins)... 69
4.5. Summary .. 70

5. GENERIC SECURITY PROTOCOLS ...71
5.1. Overview and Features of Generic Security Protocols .. 71
5.2. Design of Security Protocols.. 72
5.2.1. Local User Authentication Protocol .. 72
5.2.2. Remote User Authentication Protocol ... 72
5.2.3. Single-Sign-On Protocol.. 74
5.2.4. Secure Sessions.. 75
5.2.5. Authorization Protocol... 75
5.2.6. Key Management Protocol .. 76
5.3. Summary .. 76

6. GENERIC SECURITY SERVER ...79
6.1. Overview and Features of Generic Security Server ... 79
6.2. Design of The Generic Security Server ... 80
6.2.1. Initialization and Management Functions.. 81
6.2.2. Administrative Actions.. 82
6.2.3. APIs and Libraries for Extended Security Functions .. 83
6.3. Eclipse Packages (Plug-Ins)... 85
6.4. Summary .. 85

7. SECURE EXECUTION ENVIRONMENT..87
7.1. Overview of Software Protection and Secure Execution Environment 87
7.2. Secure SDKs .. 87
7.3. Secure Execution Environment.. 89
7.4. Summary .. 90

8. FORMAL VALIDATION ..91
8.1. Introduction.. 91
8.2. Validation and Evaluation Model .. 92
8.3. Formal Evaluation of Generic Security Objects .. 92
8.3.1. SymmetricKey Object ... 92
8.3.2. AsymmetricKey Object ... 93
8.3.3. Digital Signature.. 95
8.3.4. PKCS7 and SMIME objects .. 97
8.3.5. Strong Authentication Protocol ... 98
8.3.6. Single-Sign-On Protocol.. 99
8.3.7. Secure Sessions Protocol ... 100
8.3.8. SAML Authorization Protocol .. 101
8.4. Validation of Methodology and Results .. 102
8.5. Performance Evaluation of Generic Security Objects.. 103

Part II: Security Architecture and Applications

9. CRYPTONET ARCHITECTURE ..109
9.1. Overview of CryptoNET Architecture... 109
9.2. Layered Model of the CryptoNET Architecture .. 110

17 | P a g e

9.2.1. Layer 1: Integrated Secure Workstation .. 110
9.2.2. Layer 2: Secure Application Servers ... 113
9.2.3. Layer 3: Security Management Servers... 114
9.2.4. Layer 4: Infrastructure Servers .. 116
9.3. Summary .. 117

10. INTEGRATED SECURE WORKSTATION...119
10.1. Overview and Features of The Integrated Secure Workstation........................... 119
10.2. Common Security Functions... 119
10.2.1. User Registration ... 119
10.2.2. Local User Authentication... 120
10.2.3. Handling of Certificates... 120
10.2.4. Single-Sign-On and Secure Communication... 121
10.2.5. User Authentication with Application Servers .. 121
10.3. Application–Specific Security Functions.. 121
10.3.1. Secure Station Manager... 121
10.3.2. Secure E-Mail Client ... 122
10.3.3. Secure Web Browser ... 123
10.3.4. Secure Documents Manager .. 123
10.4. Evaluation of the Integrated Secure Workstation.. 124
10.5. Summary ... 125

11. SECURE E-MAIL SYSTEM ...127
11.1. Overview and Featues of The Secure E-mail System ... 127
11.2. The Concept of Secure E-mail System.. 127
11.3. Operations of Secure E-mail System .. 129
11.3.1. Strong Authentication and Secure Communication... 129
11.3.2. Secure E-mail Letters and Attachments... 129
11.3.3. Secure Address Book... 130
11.3.4. Confirmation Messages ... 130
11.3.5. E-mail Authorization Policies.. 130
11.3.6. Validation of Domain Names .. 131
11.3.7. Federation of SEM and SMI Servers... 131
11.4. Evaluation of the Secure E-mail System... 134
11.5. Summary ... 135

12. SECURE WEB SYSTEM...137
12.1. Overview and Features of The Secure Web System ... 137
12.2. Design of The Secure Web System... 137
12.3. Operations of The System... 138
12.3.1. Web Contents Protection ... 138
12.3.2. Secure Execution Environment for Web Contents .. 139
12.3.3. Authorization and Distribution of Secure Web Contents 140
12.4. Evaluation of the Secure Web System .. 141
12.5. Summary ... 142

13. SECURE DOCUMENTS SYSTEM ..143
13.1. Overview and Features of The Secure Documents System................................. 143
13.2. The Concept of Secure Documents System .. 144
13.3. Operations of The System... 145
13.3.1. Protection of Documents in Workstations ... 145
13.3.2. Distribution of Documents .. 145
13.3.3. Enforcement of XACML Authorization Policies .. 147
13.4. Evaluation of The Secure Documents System .. 149

18 | P a g e

13.5. Summary ... 150

Part III: Overview of Significant Contributions and Future
Research

14. OVERVIEW OF SIGNIFICANT CONTRIBUTIONS...........................155
14.1. Future Research... 158

References ... 161

Appendix A ... 169

Appendix B ... 171

Appendix C ... 172

Appendix D ... 174

19 | P a g e

Table of Figures

Figure 3.1. SymmetricKey Object with Data and Operations ... 53

Figure 3.2. Composite DigitalSignature Generic Security Object and its
Decomposition... 54

Figure 3.3. Various States of The SymmetricKey Object.. 56

Figure 4.1. Layered Model of Security Provider.. 60

Figure 4.2. The Components of Java Security Provider and Their Mutual Interactions 63

Figure 6.1. Components of The Generic Security Server... 81

Figure 7.1. Components of Software Protection and Distribution System............................. 88

Figure 7.2. XML file with information about protected software modules and applied security
standards.. 88

Figure 7.3. Components of Secure Execution Environment .. 89

Figure 8.1. Various States and Operations of SymmetricKey Object and potential Attacks
... 92

Figure 8.2. States, Operations and Threat Model of The AsymmetricKey Object 94

Figure 8.3. Various potential Threats of The DigitalSignature Object....................... 95

Figure 8.4. Identification of Assets and Operations of The PKCS7/SMIME Objects along
with Potential Attacks ... 97

Figure 8.5. Performance comparison of security functions .. 104

Figure 9.1. Components of Integrated Secure Workstation.. 111

Figure 9.2. Secure Application Servers and Components of The Integrated Secure
Workstation ... 113

Figure 9.3. Credential Servers of the CryptoNET Architecture and Interactions between them
... 115

Figure 9.4. Layered Model of the CryptoNET System .. 116

Figure 10.1. Generic Log-in Module for Local User Authentication................................... 120

Figure 10.2. Certificate Management Functions of Secure Station and View of Protected
Files and Actions in Data Panel (Listing of Files). Running on Linux environment. 121

Figure 10.3. Secure Documents System based on OpenOffice with Security Extensions. It
saves documents in encrypted format with *.p7e extension. .. 123

Figure 11.1. Architecture of Secure Mail Infrastructure and Interactions between Components
... 128

Figure 11.2 a. Unilateral Registration Protocol and communication between SEM and SMI
Server... 133

Figure 11.2 b. Mutual Registration Protocol and communication between SMI Initiator and
SMI Responder.. 133

Figure 12.1. Secure Web Browser and Secure Web Server ... 138

20 | P a g e

Figure 12.2. Components of secure Execution Environment and Interactions between them
for processing of protected and encapsulated Web Pages. .. 139

Figure 13.1. An Example of a Section in The XML Structure... 146

Figure 13.2. Relationship between Sections, Sensitivity Levels, Roles, and Users 146

Figure 13.3. Verification of Signature, decryption of Sections using section-symmetric-keys
and opening of Documents in OpenOffice Environment .. 148

21 | P a g e

List of Tables

Table 8.1. Evaluation and Validation of SymmetricKey Object.. 93

Table 8.2. Evaluation and Validation of AsymmetricKey object 94

Table 8.3. Evaluation and Validation of The DigitalSignature Key Object 96

Table 8.4. Evaluation and Validation of The PKCS7/SMIME Object 97

Table 8.5. Evaluation and Validation of The Strong Authentication Protocol 98

Table 8.6. Evaluation and Validation of The Single-Sign-On Protocol 99

Table 8.7. Evaluation and Validation of The Secure Session Protocol 100

Table 8.8. Evaluation and Validation of The SAML Authorization Protocol 101

Table 8.9. Summarized Results of Evaluation and Validation of our Generic Security Objects
... 102

Table 10.1. Threat Model for the Evaluation of Integrated Secure Workstation.................. 125

Table 11.1. Threat Model for the Evaluation of Secure E-mail System. 135

Table 12.1. Threat Model for the Evaluation of Secure Web System. 142

Table 13.1. Threat Model for Evaluation of The Secure Documents System. 149

 CryptoNET: Generic Security Framework for Cloud Computing Environments

25 | P a g e

1. Introduction

In this chapter we give a brief introduction to security principles, concepts and

issues for network applications and cloud computing environments. We highlight

motivations for scientific objectives of our research by emphasizing deficiencies

in current approach and by describing our security framework for cloud

computing environments and network applications based on standard security

technologies and protocols.

Our primary focus is protection of IT resources, operations and communications

in network applications based on innovative and new approach to security. Our

framework is based on a simple principle that all resources and operations of

network applications are maintained in cryptographically protected form and

used in a cryptographically protected environment.

1.1. Concept and Principles
It is general opinion today that security for network applications is their very

important feature and property. Its scope includes protection of data, messages, software

modules and other resources, privacy of users, reliability, availability and integrity of

resources and other properties. In the last 20 – 25 years there are many contributions in

the area of computer networks security: standards, research projects, conference and

journal papers and commercial products. Governments, companies, banks and other

users of network services invest great deal of time, effort and budgets installing and

using various security products and solutions.

However, in spite of all these activities, on-going efforts and current solutions, it is

general belief that security in today networks and applications is not adequate. We are

daily witnessing various problems – infection of computers by malware, distribution of

E–mail spam, phishing of Web pages, penetrations by hackers, software bugs, stolen

industrial secrets and credit cards, disclosure of sensitive documents, and so on.

All these interests and current problematic situations justify efforts and activities

towards creating effective security solutions for network applications and environments.

At the moment, there are two general approaches to network applications security:

• One approach is based on isolation, that is protecting them by isolating

operational environments at their periphery using firewalls, port scanners,

intrusion–detection tools, spam and phishing filters, “demilitarized zones”, E-

mail spam filters, etc. and also using virus/malware scanners, virus signatures,

encrypted disk files, etc.

• Another approach is called software security which is based on methodology to

create secure, robust and protected applications, bug–free and not vulnerable to

attacks, by using well–established methodology for design of applications,

software tools for their development, and testing methodology and environments

for their debugging and testing.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

26 | P a g e

Although both approaches give some degree of security and protection, current

situation in open networks indicates that in principle none of the current approaches is

effective and does not produce secure, reliable and protected network applications and

cloud environments. This means that current, mainly single point–solutions and

approaches, reactive to emerging problems, have limited scope and effectiveness. This

indicates that the two current approaches, one based on solving individual problems

(“point–solutions”) in a reactive mode and the other based on conceptual methodology

for design and development of secure software, so far have not produced satisfactory

results and are not capable to create the ultimate solution – secure and reliable network

environment and its applications.

Therefore, in the current situation, new approach and new thinking towards creating

strongly and guaranteed secure network environments and applications are needed. This

new approach was the focus and the concept of our research. The background,

motivation and the essence of our new approach is the following:

Most of secure applications today were usually developed first with their basic

functionality, and security was added later, if at all, as an add–on extension or as

additional, optional feature. If some already developed and operational application is to

be enhanced with security, then the usual approach today is to invoke application

programming interfaces (APIs) of some crypto library [1] [2] or use some, so called,

crypto services provider [3][4]. However, security tools and libraries today are not

broadly available, sometimes not fully functional, and usually very complicated to use.

Furthermore, in this process security functions are usually applied only to resources and

functions of a specific application. In addition, if an application offers some security

services, then end-user has to configure various options and parameters prior to use of

these security services. The procedures for that are usually inconvenient, especially for

non-technical users. Finally, those applications are protected by additional external

modules, like firewalls and virus scanners, after their installation and deployment.

Such add–on security extensions of applications, analysis of consequences and

damages after network penetrations, recovery after destruction of resources, analysis of

vulnerabilities of software modules for infection and other “post–factum” methods so far

have shown their weaknesses and inadequate protection effects.

Therefore, in our research we have taken completely different approach. Our first

principle is to apply cryptography to protection of all application resources: data in local

files and database tables, messages, control parameters, and even software. The principle

is that if an application is completely encrypted, “enveloped in a cryptographic shield”,

then (a) its software modules are not vulnerable to malware and viruses, (b) its data are

not vulnerable to illegal reading and theft, (c) its messages exchanged in a networking

environment are strongly protected, and (d) all other resources of an application are also

strongly protected. Thus, we protect applications and their resources before they are

installed and deployed.

We have also solved some additional important aspects of this approach:

manipulation and management of cryptographic keys, execution of encrypted software,

and even collaboration of encrypted applications in a distributed environment and cloud

computing environment. During our research we have created a set of development tools

and also development methodology which can be used to create such cryptographically

protected applications. The same resources and tools are also used as the run–time

 CryptoNET: Generic Security Framework for Cloud Computing Environments

27 | P a g e

supporting environment for execution of secure applications. Such total cryptographic

protection system for design, development and run–time support of secure network

applications we call CryptoNET system.

CryptoNET is an integrated secure collaborative environment comprising the most

popular standalone and distributed applications and associated security protocols. We

have created several client components, such as Secure Station Manager (equivalent to

Windows Explorer), Secure E-Mail Client, Secure Documents Manager (security

extensions of Open Office), and Secure Web Browser. In addition to those workstation

components, we also designed and implemented corresponding servers: Secure E-Mail

(SEM) Server, Secure Library Server, Secure Web Server and Secure Software

Distribution Server. Security protocols between clients and servers are Strong

Authentication, SAML–based Single-Sign-On, Secure Sessions, and some application–

specific security protocols. All our applications and security protocols use functions and

credentials of our single Generic Security Provider, which also transparently uses FIPS

201 Personal Identity Verification (PIV) [5] smart cards, if they are configured and

attached. The components of our CryptoNET environment may also be connected to our

cloud security infrastructure, so standard network security protocols, such as certification

protocol [6], SAML authorization protocol, secure sessions, etc., are also supported in a

large-scale network environment.

Our CryptoNET system is complete in terms of functions and security services that it

provides, it is integrated so that the same cryptographic engines are used by all

applications, and finally, it is completely transparent to users – it applies its security

services without expecting any special interventions by users. With all the principles and

resources used for design of applications and their components, CryptoNET can also be

used as a practical environment for future research, design and development of a generic

security framework, what represents major goal of our research.

1.2. Research Focus
Our research focus was to design a security system for network applications and cloud

environments that will completely protect their resources, attributes, messages, software

modules and execution environment against various attacks. Some of the most common

attacks are described in Appendix A.

Our methodology to create complex security systems and to apply total cryptographic

protection is based on the design of security components in the form of generic security

objects. Those objects can be data object, functional object or composite object. Each

object is completely secure means its data attributes are protected, its functions can only

be accessible to authenticated and authorized users, and its executable binaries are also

protected. Furthermore, for our individual security objects and larger security systems, in

order to prove their structural and functional correctness, we apply deductive scheme for

verification and validation of security systems. So, verification of complex security

systems is based on the principle that is: if individual objects are verified and proven to

be secure, if their instantiation, combination and operations are secure, and if protocols

between them are secure, then the complete system, created from such objects, is also

verifiably secure.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

28 | P a g e

Our security system, CryptoNET, is based on our generic security objects, well-

established secure technologies and security standards. Therefore, the components

designed based on this methodology will also be generic and compliant with security

standards. The core components of our security system are Security Provider, Secure

Execution Environment, and Security Protocols. They contain security engines of our

security system, where each component provides the same set of tested security services.

These components are complete with respect to their functionality, so developers can use

these components to extend their applications with security features.

1.2.1. Enabling Components
Security Provider provides security services to various components. The Provider is

designed using the concept of generic security objects. Each generic object encapsulates

security functions and attributes of some security service. The Provider transparently

handles security credentials and hardware tokens, which are easy to integrate with other

components.

Security protocols component comprises various network security protocols that

provide authentication, authorization, secure communication, and identity verification

services. These protocols are based on generic security objects, security standards and

well-established security technologies. Some of protocols are FIPS 196 strong

authentication, Single-Sign-On, SAML authorization, and secure sessions protocol.

These protocols also use Security Provider for various software-based or FIPS 201 (PIV)

smart cards-based cryptographic functions.

Generic Security Server is another complex object which provides core components

for implementation of Secure Application Servers supporting standard and extended

security functions. All security functions are based on well-established security

standards, technologies and protocols. Furthermore, several components, actions and

libraries are available in this template in the form of Eclipse plug-ins in order to provide

easy management of Secure Application Server, extendable with customized security

functions, and several implemented actions for administration.

In order to use our secure applications, we also designed extended secure execution

environment. It uses cryptographic services provided by the Security Provider. The

extended environment executes encrypted and verifiable components in a

cryptographically protected run-time environment. In addition, we provide the solution to

generate and encapsulate protected software modules. The extended secure execution

environment supports various network security protocols which are designed as a

security protocols component of our security system.

1.2.2. Secure Network Applications
Based on above four enabling technologies, we also designed several secure network

applications. Some of them are client components and some are application servers.

Client components are part of our Integrated Secure Workstation (ISW). The ISW uses

single Security Provider which provides extended security functions and features. Client

components provide application-specific security functions and features. This approach

provides the same set of cryptographic functions and security protocols across multiple

 CryptoNET: Generic Security Framework for Cloud Computing Environments

29 | P a g e

applications. ISW may also be connected to various servers of our cloud security

infrastructure, so it supports security protocols, certification protocols, SAML protocols,

strong authentication protocol, etc.

Application servers are components of our network applications. These are Secure E-

Mail Server, Secure Mail Infrastructure (SMI) Server, Secure Web Server, Secure

Library Server, and Secure Software Distribution Server. These servers are deployed in a

domain as services in order to provide application-specific services to the client

components. For example, Secure E-Mail Server provides secure communication with

Secure E-Mail Client, handling of secure Emails, secure management of address books

and cryptographic keys, and confirmation messages. Application servers provide security

functions and secure communications using our designed engine components, so by

adopting this approach, the same set of security services are available with each of the

four servers.

1.3. Research Methodology
Research methodology is an activity which provides a systematic process to conduct

research in various disciplines. It defines the procedures for data collection,

investigation, analysis, and interpretation. In this research activity, we adopted Design

Science research methodology which is more suitable for the artifact development

scientific research projects [103]. This research methodology follows certain steps in

order to make scientific contributions to information sciences. These steps are: problems

identification, design, artifact development, and then evaluation. In the problem

identification phase, we critically analyzed current security systems, solutions,

methodologies and techniques and then formulated our hypothesis. In the design phase,

we used the concepts of generic security objects and component-based software

engineering methodology to define the core and application-level generic objects and

components of our security system. To test the hypothesis, we developed cloud security

infrastructure and network applications based on engine components. In the evaluation

phase, we used attack resistant techniques and quantitative analysis to evaluate the

performance of our generic security objects.

1.4. Overview of Research Contributions and Results
This section presents the summary of our research contributions and results.

1.4.1. Enabling Components

Generic Security Provider

Generic Security Provider is an engine component in our system. It provides a

comprehensive set of security services, mechanisms, encapsulation methods, and security

protocols for other components of our security system and for secure applications. The

Provider is structured in four layers; each layer provides services to the upper layer and

the top layer provides services to applications. Security services reflect requirements

derived from a wide range of applications: from small desktop applications to large

 CryptoNET: Generic Security Framework for Cloud Computing Environments

30 | P a g e

distributed enterprise environments. Starting from an abstract model, we describe design

and implementation of an instance of the provider comprising various generic security

modules: symmetric key cryptography, asymmetric key cryptography, hashing,

encapsulation, certificates management, creation and verification of signatures, and

various network security protocols. We describe the properties, extensibility, flexibility,

abstraction, and compatibility of the Security Provider which is implemented using Java

(see Chapter 4).

Generic Security Protocols

Generic Security Protocols play an important role for implementing security services

in distributed applications and cloud computing environments. In this contribution, we

designed several security protocols. They are based on the concepts of generic security

objects and on a modular approach. The objects of security protocols are complete in

terms of their functionality, so each object provides features to client and server

applications. The protocols are designed using on well-established secure technologies

and standards in order to make their host components interoperable with other

components. Some of our authentication protocols are specifically designed for a specific

operating system, while other protocols are platform independent and generic. Therefore,

they can be integrated with any application for secure communication, authorization, key

distribution, Single-Sign-On and strong authentication. These protocols are based on our

Generic Security Provider in order to perform cryptographic functions and

communications with smart cards. In addition, these protocols are generic what makes

them easy to use by developers for building secure cloud computing applications. The

complete description of Generic Security Protocols is described in Chapter 5.

Generic Security Server

Generic Security Server is also engine component which provides basic structure to

implement secure application servers (see Chapter 6). It is designed as a template which

provides complete set of standard security and administration functions along with a

number of extended security functions and features. These functions are based on well-

established security standards and services. It provides basic structure for developers in

order to develop customized Secure Application Servers. We already implemented

several initialization and management functions and several administrative actions. We

also included APIs and libraries for cryptographic functions and security protocols in

order to provide the same set of security services for all instances of Secure Application

Servers. The structure of our Generic Security Server is flexible and it is available in the

form of Eclipse-plug-ins, which is easy to extend according to customization

requirements of each application.

Secure SDK

Secure SDK is a set of various security components which are protected using strong

encryption techniques (see Chapter 7). For protection of software modules, we designed

a solution using strong encryption techniques. This solution comprises Secure Software

Distribution Server and Web Server in order to generate and distribute protected software

 CryptoNET: Generic Security Framework for Cloud Computing Environments

31 | P a g e

modules only to authorized users. Our solution encapsulates these modules in the form of

specially designed eXtensible Markup Language (XML) file which represents general

syntax of protected software modules. Secure SDK and encapsulation of software

modules are based on well-established secure technologies and standards, like FIPS 201

(PIV) smart cards, FIPS 196 strong authentication, and authorization policies based on

eXtensible Access Control Markup Language (XACML).

Secure Execution Environment

Secure Execution Environment is also key component of our system. It executes

protected software modules in controlled environment. In our design, all software

modules and all other components of the CryptoNET are encrypted in order to protect

them against reverse engineering, illegal tempering, program-based attacks, BORE

(Break-Once-Run-Everywhere) attack, and unauthorized use of software. We extended

standard execution environment with special security features and functions. Our

extended Secure Execution Environment supports standard security services and network

security protocols. These are: transparent handling of certificates, use of FIPS-201

compliant smart cards, Single-Sign-On protocol, strong authentication protocol, and

secure sessions.

1.4.2. Integrated Client for Secure Applications
In the most of current applications security is usually provided individually. This

means that various applications use their own security mechanisms and services, applied

only to their own resources and functions. Furthermore, procedures to configure security

parameters are usually inconvenient and complicated for non-technical users. As an

alternative to this approach, we have designed and implemented Secure Workstation,

which represents an integrated security environment and protects local IT resources,

messages and operations across multiple applications. It comprises several components,

i.e. four most commonly used PC applications: Secure Station Manager (equivalent to

Windows Explorer), Secure E-Mail Client, Secure Documents System, and Secure Web

Browser. These four components for their security extensions use functions and

credentials of our enabling components, Security Provider and Security Protocols. With

this approach, we provide standard security services (authentication, confidentiality,

integrity and access control) and also additional, extended security services, such as

transparent handling of certificates, use of smart cards, strong authentication protocol,

SAML-based Single-Sign-On, secure sessions, and other security functions, to all

applications with the same set of security modules and parameters.

1.4.3. Secure Network Applications

CryptoNET: Secure E-mail System

This section describes the design and implementation of a secure, high assurance and

very reliable E-mail system. The system handles standard E-mail security services –

signing and encryption of E-mail letters and, in addition, provides a number of extended

 CryptoNET: Generic Security Framework for Cloud Computing Environments

32 | P a g e

and innovative security features. These new features are: transparent handling of

certificates, strong authentication between Secure E-Mail Client and Secure E-Mail

Server, archiving and recovery of encrypted address books, simple and secure handling

of cryptographic keys, security sessions management, tracking of E-mail letters using

confirmation messages, elimination of spam messages, prevention of fraudulent and

infected attachments, and usage of smart cards. The system is based on the concepts of

proxy architecture that makes it compatible with existing E-mail infrastructure. We also

used XACML–based authorization policies at the sending and receiving Secure E-Mail

(SEM) Servers in order to provide complete protection against spam. In our system,

these policies are enforced by the Policy Enforcement Point (PEP), a component of the

SEM server. In order to interconnect Secure E-mail systems deployed in individual

domains, we introduced new infrastructure-level servers in order to develop trust

between domains, exchange SEM registration information, and certify and verify domain

names.

CryptoNET: Secure Web System

Our Secure Web System represents the design and implementation of a

comprehensive system for protection of Web content stored at Web Servers, for

execution of protected Web pages, and for their distribution to authorized users. We

introduced additional components and added extended security features to a standard

Web Server in order to provide confidentiality and integrity of Web content. We also

designed and implemented an extended secure execution environment for Java Web

Server, which is capable to process and execute different types of encrypted and digitally

signed Web pages encapsulated in PKCS7SignedAndEnvelopedData format. This

system follows component-based architecture what makes it compatible with the exiting

Web infrastructure.

CryptoNET: Secure Documents System

We designed a Secure Documents System in order to protect documents in local and

collaborative environment. Our Secure Documents System comprises a set of security

functions, features and components functioning as security extensions of the Open

Office. The extended security features are: protection of documents in local

environments, distribution of secure documents to group members, group key

management, enforcement of section level XACML policies for access control, smart

card-based cryptographic functions, and transparent handling of security credentials. The

design of the system is based on our generic security objects and plug-in architecture,

what makes it easy to extend and integrate with existing document systems. In addition,

Secure Documents System is linked to our cloud security infrastructure which provides

security services in global environments by using certificates and SAML technologies.

1.4.4. Cloud Security Infrastructure
Cloud security infrastructure is an environment in which several standard security

components are deployed as services. These components are: Local Certification

 CryptoNET: Generic Security Framework for Cloud Computing Environments

33 | P a g e

Authority, Policy PKI Server, Top PKI Server, Identity Management System (IDMS),

XACML Policy Server, and Strong Authentication Server.

1.5. Organization of The Thesis
This thesis is organized in four parts, each part comprises several chapters. Part I

comprises two chapters, Part II comprises six chapters, Part III comprises five chapters,

and the last part has one chapter.

Chapter 2 describes security requirements and limitations of various applications by

highlighting the existing research efforts and gaps in existing solutions. Based on

Chapter 2, in Chapter 3 we describe our formal approach for designing generic security

objects. We also describe the structure and various types of generic security objects. In

Chapter 4 we describe the model and design of Security Provider, a key component of

our framework. In Chapter 5 we describe various security protocols for authentication,

authorization, secure communication, and key distribution. In Chapter 6 we describe our

design of a Generic Security Server template for implementing customized secure

application servers with extended security features. In Chapter 7 we explain the design of

software modules protection and their execution in a secure execution environment. In

Chapter 8 we evaluated and validated individual generic security objects and our formal

approach using threat model.

Using our enabling components, we designed several network applications described

in Part III. In Chapter 9 we describe the design of our CryptoNET System and its layered

model. We described Integrated Secure Workstation in Chapter 10, Secure E-mail

System in Chapter 11, Secure Web System in Chapter 12, and Secure Documents System

in Chapter 13.

In Chapter 14 we give conclusions of our research and describe significance of our

contributions.

1.6. Summary
Currently two main approaches are used for network applications security. One is

isolation and the second is software security. These techniques do not provide an

adequate level of security against ever increasing threats. Contrary to these approaches,

we designed and implemented a security system for network applications which

cryptographically protects and manipulates IT resources, attributes, messages, software

modules, and the overall execution environment. With this approach, we believe that if

all the components and environments are shielded with cryptographic protections, then

the overall system will be secure. The design and implementation of our security system

is based on generic security objects and components, based on well-established security

standards and technologies. We designed some core security components in order to

provide the same set of security functions to other components of the system. Our

components are complete in terms of their functionality, they are easy to integrate with

various applications, and they transparently handle all their configurations and security

credentials.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

34 | P a g e

 CryptoNET: Generic Security Framework for Cloud Computing Environments

35 | P a g e

2. Related Work

In this chapter we overview and analyze existing security solutions, products and

architectures currently available for protection of resources and messages in

network applications. Based on the analysis, we identify the shortcomings and

problems with existing solutions.

2.1. Overview and Analysis of Existing Solutions
In this section we analyze existing security systems, solutions and products. We

structured this section into subsections based on the components of our security system,

explained in Chapter 1. We also analyze security functions and features of various

network applications available in our CryptoNET system.

2.1.1. Security Providers (Libraries and Middleware)
Security providers are usually crypto libraries or middleware modules exporting their

functionality through the set of Application Programming Interfaces (APIs).

Generic Security Services Application Programming

Interface (GSS-API)

One of the first efforts to standardize cryptographic security platform was Generic

Security Services Application Programming Interface (GSS-API) standard [7]. GSS-API

itself does not provide security services, it is only a framework that offers security

services to callers in a generic fashion, supported by a range of underlying mechanisms

and technologies, such as Kerberos or public key cryptography.

Microsoft Security Support Provider Interface (SSPI)

One of the implementations of GSS-API was by Microsoft in the form of Security

Support Provider Interface (SSPI) [8]. SSPI is a set of interfaces between transport level

applications and network security service providers and it is commonly known as

Security Support Provider (SSP) or Cryptographic Service Provider (CSP) [9][10]. CSP

is collection of providers: Microsoft Base Cryptographic Provider, Microsoft Enhanced

Cryptographic Provider, Microsoft DSS Cryptographic Provider, Microsoft Base DSS

and Difie-Hellman Cryptographic Provider, and Schannel Cryptographic Provider. Some

of these providers are available with Windows 2000 and later versions and some

enhanced are only available at selected locations due to export restriction policies. All

these providers are proprietary solutions, so they can not be used in open source projects

and even for extensibility. Furthermore, Microsoft CSP is platform-dependent provider

and is digitally signed only by Microsoft.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

36 | P a g e

Java Security Architecture

Sun Microsystems developed its own security provider [11]. Initially, its purpose was

to sign and verify Java applets. Later, Sun Microsystems introduced Java Extensible

Security Architecture (JSA) based on a set of Application Programming Interfaces

(APIs), tools and security mechanisms. It includes a set of frameworks to provide

security services to Java applications. These frameworks are Java Cryptography

Architecture, Java Cryptographic Extension, Java Certification Path, Java Authentication

and Authorization Services, and Java Secure Socket Extensions. Design of JSA

framework is generic and extendable, so some third parties, like IBMJSSE [12], IAIK-

JCE [13], J/Crypto [14], VIA-JCP [15], OC4J [16] implemented these interfaces with

extended security features. Moreover, JSA provides cryptographic services transparently

to applications by invoking underlying available security provider(s). JSA follows

incremental and replaceable component model in order to add other security providers.

CrypTool

CrypTool is open source crypto library [17]. The aim of this project is to provide a

platform for e-learning of cryptography and cryptanalysis in a modular and easy-to-use

way. Currently, the team of CrypTool is working on JCrypTool and CrypTool 2.0.

CrypTool 2.0 is based on C++ programming language, while JCrypTool is based on Java

and Eclipse. JCrypTool provides security features using modular plug-in approach. It is

structured in the form of plug-ins, which are structured based on their functionality e.g.

logging, core engine, data objects, etc. The objective of this separation is to provide

flexibility and extensibility to end-users.

Other Providers

Some commercial companies developed also their own security providers, but they

are mainly client-oriented, like NSP’s (Network Security Provider) [18]. NSP adopted a

layered approach in order to protect networks from viruses, worms and intruders.

Similarly, Entrust Entelligence® Security Provider uses digital identities to clearly

identify users, machines to access network, and other resources, either local or through

VPN [19]. This solution provides encryption and digital signing cryptographic

techniques in order to protect access to sensitive proprietary information either stored

locally or in transit.

Analysis of Security Providers

Existing security providers are very limited in functionality and usage, because they

were developed using conventional programming approach. These are modeled for

specific tools and technologies. Most of them are very complicated and difficult for

developers to use. Furthermore, categorization of cryptographic services was not

addressed according to the functionality of each service, using modular plug-in approach.

Based on above shortcomings, we modeled and designed our Generic Security Provider

which is generic, modular, easy to understand and complete in terms of functionality.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

37 | P a g e

2.1.2. Security Management Protocols
Client-server paradigm is widely used in distributed applications. Various security

protocols for authentication, authorization and secure communications have been

designed and developed. For authentication, the most popular protocol is Password

Authentication Protocol. This protocol is based on a use of a secret password, which is

known only by the end-user and the server. This protocol is considered weak protocol,

because a password can be cracked by using various techniques, for example, guessing

password, dictionary attack, and brute force attack. A comparatively secure protocol is

Challenge Handshake Authentication Protocol. In this protocol, random numbers are

exchanged between a client and a server for authentication. This protocol is also not

secure, because it does not provide source authentication and replay attack can be used

for impersonation. A modified version of this protocol uses asymmetric-key

cryptographic functions. Secure Shell (SSH) and Strong Authentication protocol are

examples of such protocols. SSH uses self generated asymmetric keys, while Strong

Authentication is based on X.509 certificates. Another authentication protocol is

Extensible Authentication Protocol (EAP), described in RFC 3748 [36]. EAP is used for

authentication of wireless LANs and most of operating systems support it. The extended

version of EAP is Protected Extensible Authentication Protocol (PEAP) [37], which is

based on TLS for certificates-based authentication and secure communications.

Secure Socket Layer (SSL) protocol is widely deployed in most of commercial

products for secure communications between clients and servers. SSL uses X.509

certificates and hash functions for confidentiality and integrity of messages. Most of

companies integrated this protocol in their products with authentication and authorization

protocols. OpenSSL [1] is one of them. This library provides the set of cryptographic

functions and security protocols. OpenSSL is an open source implementation of SSL,

which can be used with other applications for secure communications. Another product

is eToken [38]. It provides USB smart-card-based strong user authentication and

password management for enterprises. This solution is compliant with industry

regulations and internal security policies. This solution also provides SSO services where

a user can store more than one account information in a single token.

Lexar® JumpDrive SAFE S3000 [39] is another products which provides hardware

based encryption and smart card based authentication for multiple operating systems. In

this solution, smart card securely generates and stores cryptographic keys which is

eventually used to encrypt and decrypt user’s stored data.

ASECard for Windows Smart Card Starter Kit [40] is smart card-based solution for

Windows Login. This product provides various security services to applications like MS

Outlook, IIS SSL, and Adobe Acrobat. AuthLite [41] uses USB as a storage device to

store security credentials. It provides strong account protection without any specific

driver and hardware.

The SafesITe PIV client module installed on user machine securely performs strong

authentication, encryption, decryption, and generates smart card-based digital signature

for application data. Gemalto in collaboration with IBM also developed solution for web

based Single-Sign-On protocol based on smart cards for physical and logical access

control. This product supports public key cryptography and is fully compliant with FIPS-

201 and Europe Identification Authentication Signature standards.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

38 | P a g e

Smart Card Alliance [42] is an organization which provides platform to different

member’s organizations for smart card manufacturing, middleware development and

smart card-based applications. The core objective of Smart Card Alliance is to promote

smart card technologies for identification, payment and other user applications to ensure

user privacy, data security and integrity.

Analysis of Security Management Protocols

By reviewing various existing solutions and commercial products, we established that

most of security products are designed using some proprietary technology. Therefore,

these products cannot be extended with new security features. We also found that various

solutions support security functions applicable only to specific resources of individual

applications. In addition, these applications need intervention of an end-user for

configuration and integration of hardware tokens and security credentials. Most of them

are based on some proprietary technology, so each product uses a different type of

personalized smart cards for security functions and protocols, which cannot be integrated

with other applications to extend them with security functions.

2.1.3. Generic Security Server
Currently available most important APIs and libraries for rapid development of

application servers are available in the form of Eclipse plug-ins. They provide basic

structure and functions like start server, strop server, publishing, targeting projects,

adding and removing modules, etc. This is a generic framework, so new servers can also

be added. It further provides servers’ view, wizards, editor framework, etc. Some of the

core packages of Eclipse generic server are org.eclipse.jst.server.generic.core,

org.eclipse.jst.server.generic.serverdefinition and org.eclipse.jst.server.generic.ui. For

implementing security services, application developers use third party Security Provider,

APIs and security libraries. Another concept of generic application server is described in

[102]. It addressed scalability issues and provides solutions to handle multiple clients and

requests. Therefore, it provides session management and client authentication. Each

default message contains a header and a block of request specific data. The header

includes packet size and a request type identifier, while data contains the actual

information. In addition, the header may include security information, such as an

authentication token, checksum, etc.

IBM provided the concept of a generic server which is managed in the WebSphere

Application Servers administrative domain. WebSphere Application Server provides

features to define a generic server as an instance of application server within

the WebSphere Application Server administration domain.

In current situation, the most important deployed generalized server is Web server

[55]. It is a container for Web objects which are accessible to clients using HTTP

protocol. Web server provides various services to Web modules. It provides

transportation facilities, SSL based security features, basic access control services, and

local and remote administration.

Another application server is Lotus Domino [90]. It is a generalized server, but it

expands services horizontally. Lotus Domino provides Web services, mail and

 CryptoNET: Generic Security Framework for Cloud Computing Environments

39 | P a g e

newsgroup services. It supports Simple Mail Transfer Protocol (SMTP), Post Office

Protocol (POP3), Internet Message Access Protocol (IMAP), Network News Transfer

Protocol (NNTP), Lightweight Directory Access Protocol (LDAP) and Domino Internet

Inter-ORB Protocol (DIIOP). This server provides access control using Access Control

List (ACL). This mechanism determines whether or not users have access to the database

and which levels of permissions are granted to users. This server provides transport level

security services to all the components using SSL protocol. Furthermore, it provides

username and password-based authentication.

Analysis of Generic Security Server

We analyzed some of general most popular servers and their behaviors. We found that

some of existing products use third party security components to extend them with

security services. They are very complicated to integrate and it is inconvenient to

configure their security parameters. If security is already implemented, then it is only

applied to individual resources of specific resources. In addition, we analyzed that they

follow different standards, methodologies and proprietary solutions. Therefore, they may

not be interoperable in global environments with other solutions. We also found that

existing APIs and libraries provide only basic structure for implementing application

servers. They do not provide certain security management functions and features,

because most of developers give more importance to functional requirements, while less

importance is given to security functions. Therefore, current implementations do not

provide certain security libraries in order to implement extended security functions.

2.1.4. Secure SDK and Execution Environment
In this section we overview and analyze security functions and features of some

existing products, applications, proposed solutions, and industry software protection

standards. Most of the software protection solutions can not effectively combat major

attacks. We structured software protection systems in three aspects and analyzed security

functions and requirements of each approach. These aspects are: (a) protection of

software modules, (b) secure software distribution, and (c) controlled execution

environment.

Protection of Software Modules

Software Protection Initiatives (SPI) group [20] initiated a process to develop

strategies and technologies to protect sensitive code, like engineering, scientific,

modeling and simulation software. SPI focused on availability, authentication,

confidentiality, integrity and non-repudiation services in order to protect value-added

software. One of the first solutions against reverse engineering and illegal modifications

of software executable modules was explained by Kent in 1980 [21]. Kent defined both

cryptographic and physical temper-resistance techniques for software protection.

Obfuscation is another technique, which automatically transforms the original code into

equivalent obfuscated code, discussed in [22] [23] [24]. In the early 1990s this technique

was used to protect software from viruses, but with some modifications it is being used

 CryptoNET: Generic Security Framework for Cloud Computing Environments

40 | P a g e

to protect binary code from reverse engineering and illegal modifications. This technique

does not require special execution environment on a host platform.

Currently, the most important method for protection of software modules is

verification of software against viruses. Some solutions, like [25], provide protection of

software modules using asymmetric cryptography. This approach allocates

Cryptographic Function Area (CFA) to store private key and software encryption key.

The binaries server generates software encryption key which is seeded by the fingerprints

(the identity of a host machine). Similarly, UltraProtect [26] uses asymmetric key to

protect software executables against piracy and illegal distribution. A hybrid software

protection technique, described in [27] [28], protects software modules against reverse

engineering. This technique embeds a plaintext decryptor in an encrypted program, but

the plaintext decryptor is obfuscated using code obfuscation technique. The role of

descriptor is to decrypt executable binaries.

Secure Software Distribution

Currently, open source and free software distribution community is only concerned

with integrity of software modules. With this approach, software owner generates hash

value of executable modules and uploads it to Internet with static hash value [29]. Client

downloads software and generates its hash value to compare with the published hash

value for integrity assurance. This mechanism ensures the integrity of software

guaranteeing that it was not altered during downloading phase. Similarly, vendors of

commercial products may sign software modules which are verified by the client during

the installation phase [30]. These two techniques do not provide integrity or resistance

against software tempering of executable modules after deployment phase. Software

distribution technique explained in “Secure Code Distribution” [31] verifies integrity of

software (Applets) after downloading and verifies signature before execution. Applet

developer signs the code using private key which is verified by the secure class loader

embedded in the JVM. Similarly, J2ME based applications for mobile phones and Point

of Sale (PoS) applications for PoS devices must be signed before loading into devices.

The run-time environment of devices verifies applications in the installation phase.

Furthermore, the paper [31] also mentioned that S/MIME can be used to securely

distribute software.

Controlled Execution Environment

Currently, a well known software execution environment is Java Virtual Machine

which verifies signed Java applets before execution. Trusted Computing Group [32]

provided hardware-based solution, known as Trusted Platform Module, which is a

combination of different components to protect local resources, like files, software

modules, keys, etc. Another hardware-based secure execution environment is described

in [33] which use cryptographic functions in a low cost memory chip. Microsoft is

working on the concept of “Next-Generation Secure Computing Base (NGSCB)” [34]

which relies on hardware technology to provide a number of security-related features,

like fast random number generation, secure cryptographic co-processor, and the ability to

protect cryptographic keys to make them impossible to retrieve. The goal of this

 CryptoNET: Generic Security Framework for Cloud Computing Environments

41 | P a g e

approach is to execute software in a secure environment. Apple is also working on

incorporating a Trusted Platform Module (TPM) into their Apple Macintosh line of

computers for the integrity and confidentiality of software modules [35].

Analysis of Secure Execution Environments

By reviewing various existing software protection and secure execution

environments, we established that most of techniques are only used to ensure the

integrity of software modules. Execution environments can only verify it before

execution. Current solutions do not protect software modules using strong encryption

techniques against reverse engineering and BORE attacks. Furthermore, middleware

platforms do not support execution of protected software modules, enveloped in a

standard cryptographic format. We also found that the current software protection

standards and techniques are focused on security services and functions, but we did not

find any standard to describe the format of protected software modules.

2.1.5. Integrated Secure Workstation
In this section we analyze security features and principles of some of the most popular

and widely used PC applications. With respect to security, we classify various PC

applications in three groups:

• Security Applications that provide protection of PC resources against intruders,

malicious code, theft, destruction, etc. Popular such applications are McAfee

[43], Norton [44] or Symantec [45];

• Proprietary products, open source or commercial, that provide mainly encryption

and/or access control to local resources. Examples of such products are eCryptf

[46], Ubuntu File Browser [47], AxCrypt [48] or Crypt Manager [49];

• Standard PC applications, available on every desktop, with some security

extensions: Web browsers (with SSL), E-mail clients (with S/MIME), and

applications handling files and documents (with possibilities for encryption or

creation of digital signatures). Examples are security extensions of E-mail clients

to send/receive signed/encrypted E-mails, SSL for browsers, or digital signing of

PDF documents in Adobe Acrobat.

Security Applications

End-user installs anti-virus software (security applications) at a workstation to protect

PCs from viruses, worms and malicious code. Examples are McAfee [43], Norton [44]

and Symantec [45]. These tools use signatures or pattern-based database to detect

malicious code. In order to effectively detect ever increasing threats, signature or patterns

database must be updated regularly.

Protection of Local Resources

File or directory encryption functions, if available in file browsers, use symmetric key

cryptography. These applications store symmetric keys either in the same folder or file

they protect or in a separate encrypted private directory [50]. Some commercial products,

 CryptoNET: Generic Security Framework for Cloud Computing Environments

42 | P a g e

like McAfee and Symantec, provide Endpoint Encryption Suites, which automatically

encrypt files and devices using AES-256 symmetric key algorithm. In addition, this type

of products sometimes also provides local access control and key management functions

for sharing information in collaborative environments. Another example, eCryptfs [46],

provides security features like encryption of files, key management and access policies.

This product stores cryptographic metadata in the header of each file, so that encrypted

files can be copied between hosts without keeping track of the cryptographic keys. In

general, currently available commercial and open-source products do not provide strong

and comprehensive security using advanced security functions, such as asymmetric key

cryptography, support of certificates, cryptographic encapsulation technique (PKCS#7),

or strong authentication protocol.

Security of Standard PC applications

File Browser, E-mail client, Web Browser and Document Management software are

standard PC applications. Most of E-mail clients, like MS Outlook, Eudora or

Thunderbird provide end-to-end security for E–mail letters using S/MIME. These

applications do not provide enhanced security features, like protection of their address

books, key-management, transparent handling of certificates, use of smart cards, strong

authentication protocol, Single-Sign-On, and protection against spam. Thus, E–mail is

usually used to transfer malicious content, spam, viruses, etc.

Browsers are another application with serious security weaknesses and privacy

threats. Current browsers do not protect browsing history, cookies, passwords, and data

filled in Web forms. Furthermore, some browsers automatically download ActiveX

controls from Web servers [51], which are major source of vulnerabilities, viruses and

worms. Eavesdropping, man-in-the-middle, spyware, malicious scripts are additional

threats in most of the current browsers. Moreover, the integration of smart cards and

strong authentication are not properly addressed.

Document processing applications are also part of standard PC applications. For

example: MS Office [52] and OpenOffice [50][53]. Both provide features to encrypt

documents using symmetric keys. Keys are stored internally in the protected file. This

represents security weakness, since an attacker can discover the key by applying

dictionary or brute-force attacks. Document Security Systems [54], a commercial

product, provides security functions like: illegal scanning, copying, digital imaging,

protection of personal identification, authentication and authorization. Jakarta Slide [55]

and JLibrary [56] provide security functions and services like security locks, constraints

on documents, authentication and authorization. Protection of documents using advanced

cryptographic techniques was explained in [57]. That research addressed security issues

of documents stored at a local station and shared in group environments. In addition, the

solution structures documents in sections accessible only by authorized group members.

The enforcement of authorization policies and protection of sections are achieved by

using Role–Based Access Control and symmetric key cryptography. The system was

implemented as an extension of OpenOffice using XACML [58], XACML Policy

Server, and Policy Enforcement Point (PEP) Server.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

43 | P a g e

Analysis of Secure Client Applications

It may be emphasized that all examples of current security features and applications

are (a) limited in scope, (b) available only locally in individual applications, (c)

applicable only to resources of specific applications, (d) not extendable or replaceable

with stronger solutions, and finally, (e) complicated to set-up and use.

2.1.6. Secure E-mail System
E-mail security is normally based on signature and encryption of E-mail contents

using S/MIME standard, while transmission level security is achieved using TLS/SSL

[59]. Most of E-mail security solutions are based on the concept mentioned in [59]. For

example in [60], new E-mail architecture is proposed based on web services, but it also

provides security services using TLS/SSL. Furthermore, this solution provides

prevention from viruses using virus scanning and spam mails protection by enforcing E-

mail acceptance policy. Intelligent E-mail Management System [61] is another solution

that is based on inclusion of “intelligent” code to identify malicious E-mails and

protection of inboxes from spam mail. This code is actually interpreted by client and

server to manage rules and policies for sending and receiving E-mails.

eSecure Mail system [62] provides security solution to secure E-mails using

deployment of eSecureMail software at gateways. This system ensures that each E-mail

entering into local network is coming from legitimate sender and does not contain any

viruses. They are using header and contents filtering mechanisms to eliminate spam

mails and anti-viruses were used to protect network from viruses. Furthermore, Gateway

software is responsible to handle security issues. The author of the paper [63] describes

another certificates–based solution to check the authenticity of users. In this case,

recipient presents his/her certificate prior to fetching E-mail or downloading attachments.

Smart card is considered a good option to protect user credentials. Solutions proposed

in [64] [65] present E-mail software integrated with smart card used to store secret user

credentials. According to a recent survey, most of users still send and receive E-mail

without using security features, because they are unable to configure security settings.

One such solution is “Attribute-Based Usefully Secure E-mail System” [66] that

introduces even additional burden on users to define their own attributes for receiving

and sending E-mails.

Current E-mail systems protect E-mail letters using signed and enveloped MIME and

use SSL/TLS for secure communication purposes. But some software does not support

protection of E-mail letters from source machine, because they provide cryptographic

services at gateway level. Moreover, some systems provide security features as optional

and assume that end-user have sufficient technical knowledge about security

configuration. Most of current spam solutions work at a Gateway or E-mail server level,

but this feature is usually not available for individual users. However, in [67] it is

mentioned that none of these methods are 100% effective against spam.

Analysis of E-mail Security

Our analysis established that current E-mail systems protect E-mail letters using

signed and enveloped MIME standard and use SSL/TLS for secure communication. But

 CryptoNET: Generic Security Framework for Cloud Computing Environments

44 | P a g e

some software does not support protection of E-mail letters from a source machine,

because they provide cryptographic services at a gateway level. Moreover, some systems

provide security features as optional and assume that end-users have sufficient technical

knowledge about security configuration. Current systems do not provide transparent

handling of certificates, strong authentication, protection of address books, management

of protected address books, efficient handling of attachments, and confirmation E-mails.

Most of currently anti-spam solutions work at a Gateway or E-mail server level, but this

feature is usually not available for individual users. We also found that trust between

sender and receiving domains is not properly established using some cryptographic

functions. In addition, current E-mail clients do not protect entries in address books and

do not provide effective key management.

2.1.7. Secure Web System
In this section, we analyzed some of the solutions which are being used for protection

and authorization of Web content. Existing solutions are categorized as follows:

Web Shields

Attackers primarily target workstations for exploitation and spreading malicious code

by devising various sophisticated techniques. These techniques [68] can be categorized

in two groups: pull-based and push-based. The purpose of both techniques is to

download and execute malicious code on workstations via E-mails or insecure Web

contents. Drive-by-download attack is one of them. It uses pull-based techniques to

download malware binaries [69]. It uses HTTP protocol as a carrier and Web mobile

components for hiding and obfuscation purposes. Examples of Web mobile components

are ActiveX [70], Java Applets [71], Flash scripts [72], plug-ins, etc. Some of these

spyware exploit network connection of compromised workstation with the attacker to

reveal weaknesses of the targeted for further exploitation. Most effective tools to combat

against such types of attacks are Web shields, which are normally bundled with antivirus

software. Some examples are Symantec Web Security Monitoring [73], Norton Internet

Security [74], AVG [75], Avast [76], etc. These tools use virus/threat pattern and

signature database to effectively detect the latest viruses and threats.

Intrusion Detection Systems

Various Intrusion Detection Systems (IDS) are developed to monitor network traffic

and system activities. The purpose of such software is to detect malicious activities or

policy violations in workstations or in a network, which are eventually reported to the

administrator of a management station, but these systems do not prevent workstations

from various Web threats. SNORT [77] is an example of such an IDS, which is an open

source cross-platform lightweight network intrusion detection tool used for network

traffic monitoring in order to detect suspicious network activities. It has rules-based

logging to perform content pattern matching and to detect a variety of attacks and probes,

such as buffer overflows, stealth port scans, CGI attacks, etc. Another IDS, nCircle [78],

provides security risk and compliance management solutions. Reflex Security's Intrusion

Prevention™ [79] solutions provide end-to-end enterprise network protection. Reflex

 CryptoNET: Generic Security Framework for Cloud Computing Environments

45 | P a g e

IPS applies packet inspection with signature, anomaly and rate-based algorithms to

inspect and control network traffic flows. This detection methodology already proved to

produce either high rate of false positives or false negatives. Nessus™ [80] is another

vulnerability scanner that provides a couple of good features, like efficient discovery of

vulnerabilities, network configuration and auditing, asset profiling, etc. However, the

major problem with Nessus is that it requires significant involvement of security

administrators.

Protection and Authorization of Web Content

Most of Web sites provide SSL-based connections (HTTPS) in order to protect

communication channels. SSL protocol uses certificate-based security solution for

authentication and content protection. Normally, SSL-enabled Web sites dynamically

download certificates into the client browser. However, in some cases, user may select a

wrong option and browser overrides certificates verification, what increases the

probability of man-in-the-middle attack over HTTPS. The same weakness of SSL is

pointed out by T. Burg [81], which can be prevented by properly handling and

verification of certificates. Along with Web contents protection, some Web servers

implement access control mechanisms in order to restrict provision of Web contents to

authorization users. Password-based access control and Access Control Lists are

representative examples of such mechanisms.

Analysis of Web Security

After reviewing existing security products and solutions, we found that dynamic code

loading, Web contents modification, and hacking of legitimate Web sites are major

security threats in current Web systems. Currently available Web shields and Intrusion

Detection Systems require a regular update of signature database. Thus they do not

provide an adequate level of protection to workstations against ever increasing Web

threats. In addition, these tools do not ensure the integrity and confidentiality of Web

contents downloaded to a workstation. SSL provides confidentiality and integrity at a

message level, but Web pages stored on a Web server are in a clear text. Thus, there is a

possibility that the attacker may illegally insert malicious scripts in those Web pages

after gaining illegal access to a Web server. In order to prevent such illegal access, some

access control products and technologies are available, such as firewalls, access control

systems, etc. However, they are compromised as well [82]. Furthermore, execution

environment of current Web servers do not support processing of encrypted Web pages.

2.1.8. Secure Documents System
The concept of storing data in an encrypted form was suggested in 1990s by Blaze92

[83] and designed as the Cryptographic File System (CFS) for UNIX operating system.

Later, it was extended by Cattaneo97 [84], Zadok98 [85], and Hughes99 [86]. The

system encrypts every file before storing it in a local repository or before sending it to

remote servers. It decrypts the requested file before presenting it either to the client or to

the intended server. Furthermore, the system provides security for communication

channel between the sending host and networked file server. CFS transparently manages

 CryptoNET: Generic Security Framework for Cloud Computing Environments

46 | P a g e

protection of documents based on symmetric keys, while access control is handled by

applying key-level access control mechanisms. The author proposed a secure document

distribution system based on Public-Key Cryptography [87] and Secure Socket Layer

(SSL) [88] for secure distribution of documents.

Oracle Beehive is one of the products which provides unified single platform for all

communication and collaboration services and documents sharing. This product uses

user name /password-based authentication, access control lists for authorization, Secure

Hypertext Transfer Protocol (HTTPS) [89], and SSL for secure communication. This

product also provides audit capabilities, so that system administrator processes audit trail

on log files generated by the system during day-to-day actions.

IBM Lotus Notes [90] is another popular tool for collaborative and team work.

Similar to Oracle’s Beehive, it is also a combination of different applications and

document sharing is one of them. This product supports certification protocol,

username/password authentication, Single-Sign-On, SSL with support of AES, and it is

complaint with FIPS 140-2 [91] standard. It uses access control lists for access control

services. This product uses .ID file to store user credentials which are protected by

user’s password. In addition, this product applies different levels of encryption according

to the sensitivity of documents stored in a local workstation.

Protection of documents using advanced cryptographic techniques was explained in

[92] [93]. That research addressed security issues of documents stored at a local station

and shared in group environments. In addition, the solution structures documents in

sections accessible only by authorized group members. The enforcement of authorization

policies and protection of sections are achieved by using Role–Based Access Control and

symmetric key cryptography. The system was implemented as an extension of

OpenOffice using XACML [93], XACML Policy Server, and PEP.

Another major example is Xerox DocuShare [94]. This solution implements security

features like user name/password authentication, SSL to secure communication, different

level of access policies to access contents, different roles to access encrypted contents,

etc. Adobe [95] solution for trusted document sharing brings a new product for exchange

of documents in government organizations. This product uses asymmetric key

cryptography to encrypt and digitally sign documents and distribute them securely in a

grouped environment.

Analysis of Document Management Systems

We analyzed and found that most of the current products and solutions focus on user

authentication and access control of documents in a distributed environment. Some of

solutions provide cryptographic protections of documents. In most of available solutions,

security functions and features are available only locally for individual application

resources. Some products are very complicated to setup and very difficult for end-user to

understand, because each application has different settings and interfaces. Currently

available document management applications do not provide end-to-end security. In

addition, existing applications provide document-level security, but other than [92] and

[93] do not provide sections level security and access control.

 CryptoNET: Generic Security Framework for Cloud Computing Environments

47 | P a g e

2.2. Summary
In this review and analysis section, our strategy was to investigate security features,

functions, design and development methodologies of various components of secure

distributed applications and cloud computing environments. As concluded, it may be

emphasized that all examples of current security features and applications are (a) limited

in scope, (b) available only locally for individual applications, (c) applicable only to

resources of specific applications, (d) not extendable or replaceable with stronger

solutions, (e) complicated to set-up and use, (f) based on various models and

methodologies, (g) based on proprietary technologies and finally, (h) some are based on

non-standard formats and protocols.

These shortcomings of the current security solutions represented motivations,

framework, and scope of our research activities and results. As explained further in this

thesis, we have successfully solved most of the stated shortcomings and deficiencies.

Thus, we claim that our system and methodology represents significant contribution to

the state-of-the-art of computer networks and applications security.

Part I: Generic
Components and
Their Validation

CryptoNET - Generic Components and Their Validation

51 | P a g e

3. Generic Security Objects

In this Chapter we describe the concept of generic security objects. They support

various alternatives and options to provide a complete set of security functions

and features. We categorized our generic security objects in three types: Entity

object, Functional object, and Composite object. We protect object source code,

its instantiation, usage, attributes, actions, states and communication with other

objects. So each of our generic security objects is protected in all aspects.

3.1. Approach and Methodology
An object is a basic concept of a modern object-oriented software engineering

methodology. An object may contain internal data available to other objects by exposing

them through public interfaces. In general, some objects may contain only data and

support only get() and set() public interfaces to manipulate those data. Such objects

are called data or entity objects. The best examples are database template

classes in Java, representing entities in DB tools. Other types of objects perform also

some functions. Therefore, they are called functional objects. The best example

may be objects representing crypto algorithms, with public interfaces such as

encrypt() or decrypt(). We extended standard concept and design of objects and

we created the concept of generic security objects for developing secure applications.

Like standard objects, they also contain data and functions, but data attributes are

protected and functions are only accessible to authenticated and authorized objects and

users. Furthermore, our objects support multiple alternatives, so that selection of

different options and variations is simplified. Individual generic security objects provide

complete set of functions related to some specific aspect of security. For example,

Symmetric Key object supports various symmetric key algorithms along with

different key sizes, but it also provides complete set of functions which are required for

standard symmetric key cryptography. It also provides various symmetric key

management functions like save, load and create symmetric key. These functions can be

invoked only by authenticated and authorized users or other objects in order to securely

store, retrieve or create Symmetric Key object. For storing symmetric key, it either

uses standard key-file or it can be stored in a smart card, which is transparently handled

by this generic object.

Each generic security object is protected in all of states. Its attributes are encrypted

and hashed, so it enforces confidentiality and integrity of object’s internal data. Various

actions of an object can be performed only by authenticated and authorized objects or

users in a secure way. These actions are: instantiation, usage, method calling, and its

interactions with other objects. Each generic security object is also protected when it is

stored in a local file system. Furthermore, each object protects all of its states which are

securely maintained and manipulated in a secure execution environment.

In object-oriented software engineering methodology, an object may be combined

with other objects. Similarly, each of our generic security objects may also be linked or

interconnected with other generic security objects in order to perform complex security

CryptoNET - Generic Components and Their Validation

52 | P a g e

functions. The link between objects is defined as security protocol. For example

DigitalSignature is a complex generic security object which instantiates Hash

object to compute hash value while private key of Asymmetric Key object is used to

encrypt hash values in order to generate digital signature. The Asymmetric Key

instance provides access to private key after authenticating and authorizing caller object.

Therefore, security protocol provides secure way for accessing its methods by other

objects.

In our system, each generic security object is individually tested and verifiable. So

based on our deductive scheme when a security system is designed and implemented

using such objects, it is also secure, tested and verifiable.

3.2. Design of Generic Security Objects
A generic security object is the basic component of our security system which

supports multiple alternatives and options. Such objects are easy to understand, they are

individually verifiable, they are based on well-established security standards and

technologies, and they transparently handle security credentials, if required.

Multiple alternatives of each object are handled by designing and implementing

several types of constructors for each object. They are carefully designed according to

the requirements of various secure applications. Furthermore, we considered

authentication and authorization parameters, which are passed as arguments for

instantiation of each generic security object. We also implemented various cryptographic

functions and most of functions accept security parameters along with operational data.

Security parameters can be password, if software-based cryptographic functions are used.

Otherwise, our generic security objects accept PIN, if they are using smart card-based

cryptographic functions. In the implementation of our generic security objects, the name

of an object and its functions are very close to natural language. They are very easy to

understand. Furthermore, they are structured in the form of high–level objects, so that

understanding of their concepts, functionality, invocation, and use is very simple and

easy for developers.

The operations of our generic security objects are based on well-established security

standards. If some security service has various standards, then our objects provide

flexible procedure to incorporate all the standards. Based on our approach and

methodology, attributes of generic security objects are protected, their methods are

accessible only to authorized users and their states are secure, so each generic security

object is secure, tested, and verifiable.

Using our approach and methodology, we designed generic security objects for

cryptographic functions, cryptographic encapsulation techniques, security protocols, and

transparent handling of security tokens.

3.2.1. Types of Generic Security Objects
Some objects contain and maintain data in the form of attributes, while some objects

perform actions with those attributes. Similarly, each generic security object is designed

for specific roles and responsibilities in order to provide extended security functions and

features in open, distributed and cloud computing environments. Based on roles and

CryptoNET - Generic Components and Their Validation

53 | P a g e

construction of each generic security object, we categorized them in three groups: (1)

entity objects, (2) functional objects, and (3) composite objects.

Entity Objects
Entity objects contain only data and provide various functions to expose attributes of

the object. For example, DistinguishedName is a complex generic security object

which supports alternative X.500 attributes and their values. It is generic in nature, so it

contains various attributes depending on requirements of applications and supports

various formats. This object provides data to various other generic security objects used

to uniquely identify users, applications, and resources like Certificate or

AsymmetricKey. An object DistinguishedName can be instantiated using one of

the following constructors with different attributes:

DistinguishedName()

DistinguishedName(String countryName, String stateOrProvinceName,

String localityName, String organizationName, String

organizationalUnitName, String commonName, String emailAddress,

String urlAddress)

DistinguishedName(String dn)

DistinguishedName(byte dn[])

Functional Objects
The second type is functional objects, as shown in Figure 3.1, which contains data and

various functions to provide features related to a specific security aspect. For example,

SymmetricKey is a functional object. It contains symmetric key as data and provides

various functions for symmetric key cryptography. This object can be instantiated using

one of the following constructors:

SymmetricKey()

SymmetricKey(String key)

SymmetricKey(byte[] key)

SymmetricKey(String seed, int hashAlgo, String salt, int skAlgo)

SymmetricKey(String workingDir, String password, String alias)

Figure 3.1. SymmetricKey Object with Data and Operations

 Alias

 SymmetricKey

save()

encrypt()

decrypt() name

unit

....
key

data

functions

hashAlgo

skeyAlgo

CryptoNET - Generic Components and Their Validation

54 | P a g e

An instance of the SymmetricKey object provides various functions related to

symmetric key cryptography and encapsulates all functions and features of symmetric

key cryptography. Some of its public methods are: encrypt(), decrypt(),

save(), saveWithPassword(), and toConvertXXX(). These actions for

invocation require a password as an authentication token.

Composite Objects
The third type of generic security objects are composite objects. Composite objects

may contain entity objects and/or functional objects. In some cases a composite object

may also be part of some other composite object in order to provide tested and verifiable

functionality. DigitalSignature object is one of them. This object uses an instance

of the Hash object and the AsymmetricKey object.

Figure 3.2. Composite DigitalSignature Generic Security Object and its Decomposition

The Hash object is used to compute hash value and PrivateKey of the

AsymmetricKey object is used to encrypt that hash value to generate digital signature.

As shown in Figure 3.2, AsymmetricKey object comprises instances of

PrivateKey and PublicKey objects while PrivateKey object calls functions of

the SmartCardHandler object in order to perform smart card-based cryptographic

functions. For verification of a digital signature, it also uses PublicKey object.

DigitalSignature object can be instantiated using Signature(int algo)

constructor. Some of its most useful functions are shown in the following code:

createDigitalSignature(String password, AsymmetricKey keyRf, int

hashAlg, String data)

createDigitalSignature(String workigDir, String password,

DistinguishedName dn, int hashAlg, String data)

verifySignature(signedData AsymmetricKey keyRf, int

hashAlg,String data)

 Asymmetric
Key

 Hash

 Public
Key

 Private
Key

 SmartCard
Handler

 DigitalSignature

CryptoNET - Generic Components and Their Validation

55 | P a g e

The above functions are accessible only to authorized users, where password is used

as authentication token. If DigitalSignature object is using smart card-based

cryptographic functions, then this password is treated as PIN to open smart card.

The complete set of generic security objects, designed for Generic Security

Framework for cloud computing environments, is described in subsequent chapters.

3.2.2. Actions of Generic Security Objects (Security
Protocols)

Each generic security object performs some actions while some actions are also

performed on data contained in generic security objects. We described the concept of

actions in generic security object using examples. One example is SymmetricKey. The

SymmetricKey object can be instantiated using one of the constructors described in

Section 3.2.1. When a user or object wants to perform save operation, then the object has

to provide password in order to open key-file or it must provide PIN to authenticate user

to open the smart card before storing symmetric key in a smart card. Similarly, when

user performs generateSignedData() action of the PKCS7 object, then

authenticated user or object provides its DistinguishedName and password. The

purpose of password is to access PrivateKey of AsymmetricKey in order to

digitally sign input data. If smart card is attached, then the user or object provides PIN in

order to open smart card. After that, the instance of PKCS7 object transparently sends

hashed value to smart card to encrypt it using private key stored in a smart card. Each

action of generic security object is performed only by authenticated and authorized user

or object which contains required security credentials. Various actions of complex

generic security objects, performed in a secure way, are described in Chapter 4.

3.2.3. States of Generic Security Objects
The state of an object is defined as the values of its attributes protected in each of our

generic security objects. Normally, in a standard software engineering methodology,

object state starts from Init (Instantiate) and ends at an Exit state. Lifecycle

of generic security objects may contain various states and during transitions from one

state to another state, we take various security measures. We considered security of each

object during its instantiation, usage, function invocation, and its communication with

other generic security objects. For example, in Figure 3.3, we describe various states of a

Symmetric Key object and each state is secured using well-established security

standard. In the Pre-Init state our Secure Execution Environment, described in Chapter 7,

fetches protected class files from local-file-system and then, verifies signature and

decrypts it in order to extract class contents. This state ensures that the class file is not

altered for malicious purposes. In the Instantiate state, security system permits only

authorized users, which have valid credentials, to instantiate the Symmetric Key

object. During execution, the Symmetric Key instance may change its state. For

example, in Figure 3.3, State-1 loads symmetric key from smart card or key-file. For

loading symmetric key, it uses security credentials of a current user to identify the key

from the key-file and to decrypt of protected symmetric key. If smart card is connected,

CryptoNET - Generic Components and Their Validation

56 | P a g e

symmetric key instance uses PIN to open a smart card in order to fetch stored symmetric

key. In each state, it performs actions in order to transition to a new state after proper

authentication and authorization. In addition, it protects sensitive attributes in each state

after transition. For example, in State III, it uses password to protect symmetric key

before saving it in a Key-file. When an instance transitions into Exit state, it deletes its

temporary data and external libraries (like dlls etc.) from local files.

Figure 3.3. Various States of The SymmetricKey Object

Similarly, all the designed generic security objects, described in Chapters 4, 5, and 6,

perform their actions in a secure way and protect their data and states.

3.3. Features of Generic Security Objects
The following are the main features of generic security objects:

• They encapsulates multiple alternatives, so that selection of different options and

variations is simplified;

• They are protected and secure in all aspects: their attributes, methods, actions and

states.

• They are complete in terms of their functions which are only accessible to

authenticated and authorized users.

• Each generic security object is structured in the form of a high–level object, so

that understanding of their concepts, functionality, invocation, and use is very

simple and easy;

Instantiate
Protected

Class
SEE loadKey

Encrypt

saveKey-File

Password

isSCConnected

Hardware Token

Yes

Key-File

No

PasswordPIN

Exit

State-I

State-II

State-III

State-IV

CryptoNET - Generic Components and Their Validation

57 | P a g e

• They handle transparently their security credentials and hardware tokens.

• Each generic security object performs its actions based on well-established

security standards.

• Generic security objects are used to create a uniform and consistent security

system.

• The instances of secure, evaluated, and verified generic security objects produced

secure, tested and verifiable security system.

3.4. Summary
Generic security objects are basic units of our security system. Each object is generic,

since they support various alternatives and options. Attributes of each object are

protected using well-established security standards. Objects are accessible through their

public functions and interfaces only to authenticated and authorized users. Each generic

security object protects its states which are maintained and manipulated in a secure

environment. We designed several generic security objects and each of them has well-

defined role. Based on the role, a generic security object can be either entity object,

functional object or composite object. Entity objects contain data, functional objects

implement security functions, while composite objects are combination of entity and

functional objects. All actions of generic security objects, like their instantiation, use,

invocation of methods, and communications between objects are secure (Security

Protocol). Therefore, all objects are protected, all their users are authenticated, and all

their actions are performed in a secure way.

CryptoNET - Generic Components and Their Validation

58 | P a g e

CryptoNET - Generic Components and Their Validation

59 | P a g e

4. Generic Security Provider

Generic Security Provider provides a comprehensive set of security services,

mechanisms, encapsulation methods, and security protocols for Java, C, C++,

and .NET applications. The Provider is structured in four layers; each layer

provides services to the upper layer and the top layer provide services to

applications. The services reflect security requirements derived from a wide

range of applications; from small desktop applications to large distributed

enterprise environments. Based on the abstract model, we describe design and

implementation of an instance of the Provider comprising various generic

security modules: symmetric key cryptography, asymmetric key cryptography,

hashing, encapsulation, certificates management, creation and verification of

signatures, and various network security protocols. We also designed security

applets which provide various FIPS 201 (PIV) smart cards based cryptographic

functions and security services. The design of Security Provider describes its

properties for extensibility, flexibility, abstraction, and compatibility.

4.1. Overview and Features of Generic Security
Provider

Generic Security Provider is an enabling component of our security system. It

provides security services using standard security technologies. The model of our

Security Provider is based on a layered architecture. It may be used as a reference model

for implementation of security provider using any programming language. We describe

conceptually related security services of each layer.

Based on the model, we also designed and implemented one instance of our generic

Security Provider for various applications. Several versions of Security Provider are

implemented using Java, C, C++ and .Net technologies. The design of Security Provider

is based on generic security objects, described in the previous Chapter. In this Chapter

we describe implementation of our Security Provider with examples in the form of

Eclipse plug-ins using Java technology. Other then support to standard security

mechanisms and services, the distinctive features and properties of our Security Provider

are the following:

• It is structured as a combination of high–level generic security objects, so that

understanding of their concepts, functionality, invocation, and use is very simple

and easy;

• Each object included in the Security Provider is generic, i.e. it encapsulates

multiple alternatives, so that selection of different options and variations is

simplified;

• Java Security Provider uses alternative supporting security technologies: software

modules, smart cards, or various security tokens, which can be easily configured

and switched, even in run–time environments;

CryptoNET - Generic Components and Their Validation

60 | P a g e

• The Provider is structured in the form of several Eclipse plug–ins, it also contains

sample code and the full documentation; and

• All the modules included in the Security Provider are encrypted, thus not

vulnerable to viruses, worms, malicious code, illegal use or any other forms of

threats and problems.

The Provider is combined with our security protocols: strong authentication protocol,

Secure Sessions, SAML authorization and several security management modules. Most

of these protocols support dynamic behavior and can be used both for client and server

components. Security Provider provides security services to the components of the

CryptoNET system (described in Chapter 9) in order to support the same set of functions

and features for multiple applications.

In addition, our Security Provider transparently uses smart cards for various

cryptographic functions and for management of security protocols, if smart cards are

installed. We designed security applet for FIPS 201 (PIV) smart cards and Security

Provider uses these credentials for smart card-based cryptographic services without

extracting private keys from a smart card. Furthermore, attributes of security applets are

accessible to various applications using Security Provider.

4.2. Model of The Generic Security Provider
Security Provider is based on modular approach and uses the concept of generic

security objects. It is structured in four layers. The layered model of the Security

Provider is shown in Figure 4.1. Each layer has distinct role and responsibility, what

helps to clearly identify its functions and services. Furthermore, each layer has interfaces

in order to provide services to lower layers. The following are the layers:

• Abstraction Layer

• Encapsulation Layer

• Cryptographic Engines Layer

• Resource Management Layer

Figure 4.1. Layered Model of Security Provider

Resource Management Layer

Cryptographic Engines Layer

Encapsulation Layer

Abstraction Layer

Applications

CryptoNET - Generic Components and Their Validation

61 | P a g e

Applications are located at the top of the Security Provider and they invoke the

required security functions and features. They are not part of the Security Provider and

may be developed based on user’s requirements. As mentioned above, Security Provider

is implemented in the form of plug-in modules. Therefore, in order to use them an

application simply includes the required Security Provider plug-ins in its working space.

The developer of security applications may use functions and objects of the Security

Provider just with the basic knowledge of the implementation details and the structure of

its complex objects. Some of our security applications are developed using services of

the Security Provider: Secure E-Mail Client, which invokes security functions of the

Security Provider to generate S/MIME messages to protect the contents of E-mail letters,

Secure Document System uses PKCS7 object to protect and encapsulate documents in

the PKCS7SignedAndEnvelopedData format using the required credentials, and so

on.

4.2.1. Abstraction Layer
Abstraction layer is the top layer of the Security Provider. It provides interfaces for

generic applications and security protocols. The interfaces are user-friendly and complete

in terms of their functionality. They hide implementation details of generic security

objects and support the functionality of implemented objects and protocols without

changing applications. Furthermore, components and concrete objects at this layer are

designed and managed as non-replaceable components and can’t be added at run-time.

This feature protects against tempering of components from viruses and worms.

As mentioned earlier, this layer provides interfaces to applications, so it also contains

log-in module which provides authentication of resources. Login module provides this

feature by interacting with Cryptographic Engines Layer. This module is generic, so it

acquires authentication credentials based on the configuration of upper layer

applications. If some secure application is configured to use hardware tokens, then it uses

PIN and/or fingerprints. Otherwise it uses username and password which is default

authentication protocol for our Security Provider.

Abstraction Layer interacts with Encapsulation Layer and Cryptographic Engines

Layer for accessing generic security objects and for security packaging functionalities.

4.2.2. Encapsulation Layer
Encapsulation layer envelopes data and security credentials and thus creates complex

security objects. For this, it uses cryptographic engine objects, user credentials, and

encoding techniques. All enveloped security objects are based on various security

standards. For example, PKCS7 signed and/or enveloped object follows standard defined

in PKCS#7. Similarly, certificates, S/MIME, SAML, resource registration messages,

security protocols and other cryptographic messages are packaged according to relevant

standards. Encoding and decoding schemes, used in encapsulation process, are also

provided by this layer. These encoding and decoding schemes are BASE64, ASN.1,

DER, and HexNotations. Furthermore, applications invoke these objects through the

Abstraction Layer in order to use them in application-level security protocols.

CryptoNET - Generic Components and Their Validation

62 | P a g e

4.2.3. Cryptographic Engines Layer
Cryptographic Engines Layer implements various cryptographic algorithms and

techniques, which include: hashing, signature generation and verification, encryption and

decryption, secret key generation, key pair generation, random number generation, and

key distribution. This layer acts as an engine of the Security Provider, so accuracy,

efficiency and strength of the Security Provider is highly dependent on this layer.

This layer plays important role in extensibility and inclusion of new algorithms.

Therefore, generic security objects and interfaces for each security service are carefully

designed.

Cryptography may sometimes be a subject of control or export restrictions. So, this

layer is also used to enforce export restriction policies for specific algorithms, according

to the export or import restrictions for a specific country. Security Provider restrictions

are enforced through enforcement of object-level authorization policies and only

authorized objects are allowed to be loaded into memory after getting locality

information from host computer. This layer interacts with other layers through interfaces

used to provide access to cryptographic engine objects. For example, it interacts with

Resource Management Layer for fetching or storing user credentials using local storage

or hardware tokens.

4.2.4. Resource Management Layer
Resource Management Layer manages security resources used by the Security

Provider. Management of these resources is more important than management of general

purpose resources, since the overall security of applications depends on them. These

security resources are: database with certificates, private and symmetric key files, policy

files, configuration properties, and hardware devices (like smart cards or hardware

tokens, along with their drivers). The structure and format of these resources is based on

relevant standards in order to make them compatible with other implementations.

Implementation of interfaces between hardware and cryptographic objects is also

managed by this layer.

Hardware devices require drivers in order to make them compatible with Security

Provider. This layer manages these drivers as replaceable components and it manages the

context and functionality of each device. This functionality enables Security Provider to

integrate devices at run-time and to make them operational in order to support running

applications.

Errors reporting and exceptions handling along with a logging mechanism in this

layer assist applications for debugging processes. These errors and exceptions propagate

to the Abstraction Layer which passes them to applications for displaying them in the

form of user-friendly messages.

4.3. Generic Security Provider for Java Applications
Design of Security Provider plug-ins for Java applications, based on our abstract

model, is shown in Figure 4.2. This figure shows generic security components of the

Java Security Provider and interactions between them. These components are categorized

CryptoNET - Generic Components and Their Validation

63 | P a g e

based on their services and functionalities. Each component in this design uses an

interface to interact with other components. As mentioned above, the model and design

of Security Provider follows plug-in architecture, so in our implementation, groups of

components are designed as Eclipse plug-ins. Furthermore, this concept also provides

well-defined extension points for accessibility and extensibility of Java Security

Provider.

Figure 4.2. The Components of Java Security Provider and Their Mutual Interactions

Security Provider provides transparent handling of security credentials and hardware

tokens. We designed security applets for cryptographic functions and management of

security attributes of various security protocols. Most of the generic security objects of

the Provider transparently use smart cards for cryptographic functions, if smart cards are

installed.

4.3.1. Applets for Security Extensions
Security Provider uses two security applets for FIPS 201 (PIV) smart cards. These

applets contain security credentials which may be used by the components of the

CryptoNET System in order to provide various security services. These security applets

store identity information, cardholder’s security credentials and attributes for a secure

session protocol. The purpose and model of each applet is specified in the following

subsections:

 Cryptographic Engines Layer

Resource Management

Modules

Encapsulation Modules

Symmetric
Cryptography

Asymmetric
Cryptography

Hashing

Cryptographic Services Interfaces

Java Applications

L

o

g

g

i

n

g

M

o

d

u

l

e

Secure Transport Protocols Authorization Protocols

Engines

(Authentication and Application
specific Protocols)

Certificate PKCS S/MIME SAML . . .

Login Module

Signature

Native Drivers

Interfaces like CryptoKi, OCF

Crypto Service

Provider

Resources

Resource Interfaces

CryptoNET - Generic Components and Their Validation

64 | P a g e

PIV Applet

The Security Provider uses security credentials which are already managed by the

PIV applet for various cryptographic functions. This applet contains the following

attributes:

• PIV Authentication Credentials: PIV Authentication Private Key, PIV

Authentication Public Key and PIV Authentication Certificate. PIV

Authentication Private Key is used to digitally sign messages which are verified

by the authenticator using PIV Authentication Public Key. PIV Authentication

Certificate is a X.509 certificate and can be verified by the authenticator from

certificate issuer authority.

• Key Exchange Protocol Credentials: These security credentials comprise Key

Exchange Private Key, Key Exchange Public Key and Key Exchange Certificate.

The purpose of these credentials is to establish secure session and to exchange

session key between secure application and corresponding secure server. In

addition, these credentials are also used for protection of symmetric keys. Key

Exchange Certificate is a X.509 certificate. In our system, we are using these

credentials for SSL protocol in our Secure Web System and for protection of E-

mail letters.

• Digital Signature Credentials: This attribute contains Digital Signature Private

Key, Digital Signature Public Key and X.509 Digital Signature Certificate. The

purpose of Digital Signature Private Key is to digitally sign messages, exchanged

between secure application and application server which are verified by the

recipient using Digital Signature Public Key of the sender. In our system, these

credentials are also used to digitally sign local files, E-mail letters, and SSL

messages.

• Card Management Credentials: The purpose of these credentials is to authenticate

card management authority in order to perform card management functions, like

setting PIN, generating security credentials for card owner, etc.

• Security option file: This file may contain access control policies of security

applets.

Security Applet

The purpose of this applet is to manage security credentials which are required by

applications for authentication, authorization and secure communication. This applet

stores user name, password, domain name, SAML ticket, symmetric key and attributes of

a secure session protocol. The roles of these applets are described in the following

chapters.

4.3.2. Symmetric Key Object
Symmetric Key component provides secret key cryptography services. It contains

generic objects to generate, manipulate, and protect secret keys. Symmetric key

encryption and decryption techniques are implemented in this component. Some of

supported Symmetric Key algorithms are AES, Blowfish, Cast5, DES, TripleDES, RC4,

CryptoNET - Generic Components and Their Validation

65 | P a g e

and Twofish. These algorithms can be used in different modes to encrypt and decrypt

data. As mentioned above, this model and design follows the concept of generic security

objects, so during the implementation various alternatives are considered like keysize,

algorithm and cipher-mode.

In the following Java code, a customized instance of ISymmetricKey is

generated, with parameters: seed, hash algorithm, salt, and name of symmetric cipher

with mode. Its function calls are: encrypt(data) for encryption and

decrypt(encrypted_data) for decryption using sk object. Similarly, for

protecting key, getProtected(...) function can be used which encrypts a key

using password and stores it in a working directory, in a designated keyfile or in a

hardware token.

ISymmetricKey sk = sp.createSymmetricKey("seed",Hash.NID_sha1,

"salt", ISymmetricKey.DES_CBC);

byte[] encrypted_data = sk.encrypt(data);

byte[] cleartext = sk.decrypt(encdata);

sk.getProtected("pwd_PIN");

This module also uses Resource Management component for hardware based

symmetric cryptographic services.

4.3.3. Asymmetric Keys Object
Asymmetric Key component implements functions supporting public key

cryptography. It is structured in the form of a generic security object

(AsymmetricKeys) which generates public and private keys based on object

arguments. These arguments are key size and/or algorithm id.

Both, Public and Private Key objects support functions to encrypt and decrypt data.

Like Symmetric Key component, functions of Asymmetric Key object are accessible by

other components through interface that provides access to public and private key’s

attributes and their methods. For example, the following code creates an instance of

IAsymmetricKeys and then invokes encrypt function using privateKey.

Furthermore, the same instance can be used to protect private key using

protectWithPassword(…) function.

IAsymmetricKeys ask = sp.createAsymmetricKey(1024);

byte[] d = ask.privateKey().encrypt(data);

ask.privateKey().protectWithPassword("password");

Similarly, the following code creates public key pk using the function

getPublicKey(…) of ask and then pk object is used to encrypt and decrypt data

using public key. pk also implements getValue(…) function to return the value of

public key.

PublicKey pk = ask.getPublicKey ();

byte b[] = pk.encrypt(data);

byte clear[] = pk.decrypt(b);

CryptoNET - Generic Components and Their Validation

66 | P a g e

byte [] kValue= pk.getValue();

This component interacts with the Resource Management module, if a smart card or

cryptographic hardware device is attached for encryption or decryption. Furthermore, if

cryptographic hardware token is connected, it generates Asymmetric Key using hardware

token and does not permit to extract private key.

4.3.4. Hashing Object
Hashing component provides functions and features to generate message digests for

integrity of messages. This module contains implementation of various standard hashing

algorithms. Some of these are Message Digest-2 (MD2), Message Digest-5 (MD5),

HMAC, SHA-1, and SHA-256. Hashing services are available to other components

through interfaces. For example, the following Java code creates a reference of IHash

interface which implements functions like compute(…) for computation of hash value

and verify(…) for comparing hash values using SHA1 algorithm.

IHash h = sp.createHash(IHash.NID_SHA1);

byte [] hash = h.compute(data);

boolean result= h.verify(hash, data);

4.3.5. Digital Signature Object
Signature component implements algorithms required for generation and verification

of signatures. Implementation of ISignature interface supports alternatives and

combines different types of digital signature generation techniques that act according to

input given as arguments by end–user or application. Some of these are Digital Signature

Algorithm (DSA), RSA, etc. This component uses other components of Cryptographic

Engines Layer to generate and verify digital signature. For example, the following Java

code creates an instance sg of ISignature class which uses RSA algorithm to

generate and verify digital signature. By using sg, the developer may invoke

createDigitalSignature(…) method to generate signature using specified

hashing algorithm and keyRef. The developer may call verifySignature(…)

method to verify signature using required arguments.

ISignature sg=sp.createSignature(ISignature.RSA);

byte [] sign= sg.createDigitalSignature(password, keyRf, hashAlg,

data);

boolean result = sg.verifySignature(signedData, keyRef,hashAlg);

Signature module also checks the presence of various hardware devices attached to

the Java Security Provider. If a required hardware device is attached, then it invokes

Resource Management module for signature generation and verification using that

hardware device.

CryptoNET - Generic Components and Their Validation

67 | P a g e

4.3.6. Encapsulation Objects
Packaging and enveloping services are implemented by several encapsulation

components. These components envelope data and relevant information into PKCS#7,

PKCS#10, S/MIME, SAML messages, certificate, keys packages, Kerberos tickets and

domain specific secure messages. Encapsulated objects are implemented using the

concept of generic security objects, so these encapsulated objects provide the complete

set of functions and methods. Furthermore, the name of interfaces and functions are

developer’s friendly. For example, in the following Java code the developer creates an

instance of ISmime and then invokes createSmimeSignedData (…) method and

createSmimeEnvelopedData (…) method. These methods get input from user

and then interact with other components to generate signed and enveloped S/MIME

messages. In this code the createSmimeSignedData(…) method generates signed

data in standard S/MIME format. It stores the result in a file which is created in the same

directory.

ISmime smime = sp.createSmime();

smime.createSmimeSignedData(sender, password, inputFilePath);

smime.createSmimeEnvelopedData(sender,recipients,password,

 inputFilePath);

Implementation of encoding and decoding schemes is also part of this component.

These schemes are BASE64, ASN.1, DER and HexNotation. They are also developed

using generic objects model and provide interfaces to other objects. Encapsulation

module interacts with other components, like Symmetric Key, Asymmetric Key, and

Signature, to invoke cryptographic functions. Furthermore, it can directly contact

Resource Management component to interact with hardware devices or certificate–

related functions. The interactions with other components are performed through

interfaces.

4.3.7. Resource Management (Resource Interfaces)
Resource Management component is a facilitator component in the system and

performs functions explained in the Section 4.2.4. Resource Management Module

contains Resource Interface to interact with resources using resource specific interface. It

provides implementation of various security functions which may invoke other modules

either to perform cryptographic functions using cryptographic hardware devices or

storage of security credentials in files or hardware tokens. This module encapsulates

functionality of implemented functions and features. Some of the functions are:

createCertificate(…), requestCertificate(…), getDigitalSigna-

ture(…), encrypt(…), decrypt(…), generateSCSymmetricKey(…). These

functions are accessible to Cryptographic Engines Layer’s modules using our designed

interfaces. For example, Java code described in Section 4.3.5 is used to generate

signature. This function invokes functions of Hashing module to compute message digest

and passes it to the Resource Interface which calls getDigitalSignature(…)

method. This method invokes hardware specific interface or library and sends message

CryptoNET - Generic Components and Their Validation

68 | P a g e

(Application Protocol Data Unit) to a hardware token for encryption of hash value using

the referenced private key.

Resource Management module provides context for different security devices and

resources attached to a computer for execution of various cryptographic functions and for

storage of security credentials. This layer also supports standard interfaces required to

communicate with specific hardware devices. These interfaces are Cryptographic Token

Interface Standard (PKCS#11), Open Card Framework (OCF), and Personal Identity

Verification (PIV). Resource Management module integrates drivers and interfaces as

replaceable components, because this features helps the Provider to use new devices

attached at a run-time.

4.3.8. Logging
Logging component plays vital role for managing the log about various activities and

operations of each object. Each log entry provides information about object, operation,

nature of activity, class name, logging date and time. For example, in the following Java

code, LogFactory creates an object of Log which encrypts log entry before storing it

into log file. Log messages are grouped based on the type of message. Each group

provides specific information about event which are implemented in separate methods.

For example: log.info(…) method stores information message, log.error(…)

method writes errors along with exception.

Log logger_ = LogFactory.getLog(className);

logger_.info("Some message");

logger_.error("Some message", exp);

Log file is stored on a local hard disk in the encrypted format. Upon user request,

logging module decrypts log file and displays log information in a user–friendly form.

This helps to find anomalies and to analyze the behavior of the Java Security Provider.

4.3.9. Abstraction Module (Cryptographic Services
Interfaces)

Abstraction module provides cryptographic service interfaces offered by different

components in order to access implementation of each component. The names of

interfaces and methods are user–friendly and provide complete functionally of a

particular component.

Abstraction module provides SecurityProvider interface which is used to get

an instance of different components. For example, in the following Java code

SecurityProvider creates an instance of the Certificate object named cert.

Then by using cert, different methods like save(…) or request(…) can be called.

Furthermore, ICertificate interface provides also functions to get PublicKey

and PrivateKey. These objects can be further used for encryption and decryption.

SecurityProvider sp= new SecurityProvider();

ICertificate cert = sp.createCertifiacte();

CryptoNET - Generic Components and Their Validation

69 | P a g e

ASN1ncoding asnCert = cert.request(subject);

cert.save(asnCert);

byte [] enc = cert.getPrivateKey("pwd").encrypt(data);

byte [] data = cert.getPublicKey().encrypt(enc);

To perform some security functions, applications may use cryptographic services of

hardware tokens. For that, Login module is used to authenticate resources stored on a

local system in files, database or in hardware tokens. Implementation of the Login

module is also based on the concept of generic security objects, so it supports PIN-based

authentication, if smart cards or hardware tokens are connected. Otherwise, it uses

username/password-based authentication.

Abstraction module invokes logging, symmetric key, signature and resource

management components for cryptographic services and maintenance of log files. In

addition, this module contains a generalized higher level exception

SecurityProviderException, which is extended by other components for run-

time errors.

4.4. Eclipse Packages (Plug-Ins)
Java Security Provider is organized in the form of the following Eclipse plug-ins.

• com.cryptonet.securityprovider

• com.cryptonet.securityprovider.symmetrickey

• com.cryptonet.securityprovider.asymmetrickey

• com.cryptonet.securityprovider.signature

• com.cryptonet.securityprovider.ecapsulation

• com.cryptonet.securityprovider.logging

• com.cryptonet.securityprovider.engines

• com.cryptonet.securityprovider.resources

Each plug-in may contain various packages which group logically correlated objects.

For example, com.cryptonet.securityprovider.engines contains

com.cryptonet.securityprovider.engines.strongauthenticatio,

com.cryptonet.securityprovider.engines.securesession, etc.

com.cryptonet.securityprovider.strongauthentication package

contains only those objects which are required for strong authentication. This packaging

structure provides extensibility feature and it can be extended with new security

functions and protocols.

It is important to emphasize that all modules of the Java Security Provider are

digitally signed and encrypted. Therefore, they are loaded by a special Secure Class

Loader which verifies digital signature and decrypts modules at execution time (see

Chapter 7). Furthermore, Java Security Provider loads available plug-ins at start-up and

does not load any other security plug-in(s) after verification of digital signature. This

CryptoNET - Generic Components and Their Validation

70 | P a g e

feature protects security modules from viruses, worms, malicious code, illegal use or any

other forms of threats and problems.

4.5. Summary
The Security Provider for Java Applications is complete in terms of functionality

which provides security services, mechanisms and protocols. The interfaces and methods

of the Security Provider are user friendly and generic. Furthermore, the packages of the

Provider are self-protected and loaded by the special Secure Class Loader which verifies

digital signature and performs decryption of packages. The implementation of Generic

Security Provider is platform independent, so it supports Windows and Linux operating

systems.

CryptoNET - Generic Components and Their Validation

71 | P a g e

5. Generic Security Protocols

In this chapter we describe several network security protocols used by various

components of the CryptoNET system. The protocols are based on the concept of

generic security objects, well-established security standards, and technologies.

Distinctive features of our security protocols are: (1) they are complete in terms

of their functionality, (2) they are easy to integrate with applications, (3) they

transparently handle security credentials and protocol-specific attributes using

FIPS 201 (PIV) smart cards, and (4) they are based on generic security objects.

These protocols are: initial user authentication protocol, remote user

authentication protocol, Single-Sign-On protocol, SAML authorization protocol,

secure sessions, and key distribution protocol. Security protocols use Security

Provider as a collection of cryptographic engines implemented either in software

or using FIPS 201 (PIV) smart cards supporting protocols’ attributes by security

applets.

5.1. Overview and Features of Generic Security
Protocols

Generic security protocols are enabling components of our security system that

provide network security services to various components of the CryptoNET system.

These protocols are: initial user authentication protocol, remote user authentication

protocol, Single-Sign-On protocol, SAML authorization protocol, secure sessions, and

key distribution protocol.

Design of the protocols is based on the concepts of generic security objects and

modular approach. Each protocol is complete in terms of its functionality, each is easy to

integrate with other components, and each transparently handles security credentials and

attributes. In addition, they provide the same set of secure network services to all

components of the CryptoNET system.

Security Protocols use Security Provider as a collection of cryptographic engines.

Security Protocols described in this chapter provide user authentication, secure

communication, user authorization, and key distribution services to the components of

the CryptoNET system. For example, initial user authentication protocol provides user

authentication using FIPS 201 (PIV) smart card. Remote user authentication provides

remote authentication based on FIPS 196 strong authentication protocol. Single-Sign-On

authentication protocol provides user authentication at application servers using SAML

tickets. Secure communication protects messages exchanged between clients and

application servers. Key distribution services support distribution of keys between clients

and servers and also in group environments. The following are the main features of our

security protocols:

• They are all based on generic security objects and modular, so the same protocols

provide the same set of security services to all components of the CryptoNET

System;

CryptoNET - Generic Components and Their Validation

72 | P a g e

• They are all fully compliant to well-established security standards, like FIPS 196,

SAML, GSAKMP, etc.;

• They use the same Security Provider in order to provide the same set of

cryptographic services;

• Security protocols are easy to understand, so developers can easily integrate them

with their applications.

5.2. Design of Security Protocols
Design of security protocols is based on modular approach and each module is

implemented using the concept of generic security objects. Security protocols are initial

user authentication using FIPS 201 (PIV) smart cards, FIPS 196 based strong

authentication protocol, Single-Sign-On, secure session, SAML authorization, and key

distribution protocol. In our system we used security protocols to provide network

security services to various components of the CryptoNET system.

5.2.1. Local User Authentication Protocol
Local user authentication protocol is designed as a generic login module. It supports

username/password-based authentication, IDMS-based authentication, and certificates-

based authentication. Upon starting the system, the workstation automatically checks

installation environment and its configuration and then selects the appropriate protocol.

If it is configured for username/password-based authentication, our system acquires PIN

and/or PIN plus fingerprint from a user in order to activate a smart card. It fetches

username and password from the Security Applet (see Chapter 4) and presents them to

the login module of the native operating system. Login module consults user accounts

database for authentication. The main problem with this type of authentication is that

username and password stored in the smart card must be mapped to the operating

system’s user accounts database. The change of a password requires administrative

privileges and also requires a change of the password in a smart card. To solve this

problem, we store a symmetric-key in a smart card instead of a password and we keep

encrypted password in the IDMS. The purpose of the symmetric-key is to encrypt a

password before storing it in the IDMS. When user performs IDMS-based

authentication, our local login module fetches encrypted password from the IDMS and

decrypts it using symmetric key. After that, it presents username and password to the

operating system’s login module. Our generic local user authentication module also

supports certificate-based authentication. In that protocol, our login module fetches PIV

authentication certificate from a FIPS-201 (PIV) based smart card and presents it to the

windows login module for domain level authentication.

5.2.2. Remote User Authentication Protocol
In our system remote user authentication is performed using mutual Strong

Authentication protocol. It is an extension of the FIPS-196 strong authentication

protocol. Its extended security functions are verification of certificates by the Local

Certificate Authority (LCA) Server and verification of identities by the IDMS Server. As

CryptoNET - Generic Components and Their Validation

73 | P a g e

mentioned above, Security Protocols use Security Provider for software or smart card-

based cryptographic functions. So our mutual Strong Authentication protocol also uses

PIV credentials and smart card-based cryptographic functions.

In our system client initiates mutual strong authentication protocol with the Strong

Authentication (SA) Server and sends PIV authentication certificate to the SA Server

instead of the Hello message, as specified in the FIPS 196 standard:

Client SA Server: CertPIV-a

SA Server receives the certificate and verifies it by sending it to the LCA Server. In

addition, it also verifies the distinguished name of the user using IDMS Server. Upon

successful verification, SA Server generates random number Rs and sends it to the client.

Otherwise, if verification fails, it informs the client and stops conversation with the

client.

Server Client: Rs

Client receives Rs and signs it using private key corresponding to the PIV

authentication certificate. The following cryptographic functions are used to generate

signature of the Rs:

h = H (Rs) …………………………………………………………………………………………… (5.1)

S(Rs) = E (h, private key) …………………………………………………… (5.2)

In these equations H is a hash function and h is the output of the hash function. E is an

encryption function which encrypts h using private key corresponding to the PIV

authentication certificate. In the next step, client generates a random number Rc and

returns it with S(Rs) to the SA Server:

Client Server: {S(Rs), Rc}

SA Server receives the message and verifies client’s signature using the following

cryptographic functions:

h = H (Rs)

h`= D (S(Rs), public key) ……………………………………………………………… (5.3)

In equation (5.3), SA Server uses public key, extracted from the PIV authentication

certificate of the client, for verification of the signed challenge (S(Rs)).

If h is equal to h`, SA Server sends digitally signed Rc and its digital signature

certificate to the client. Cryptographic functions are the same as explained in Equations

(5.1) and (5.2):

Server Client: {S(Rc), Certsa}

CryptoNET - Generic Components and Their Validation

74 | P a g e

Client receives signed random number and verifies its digital signature using Equation

(5.1) and Equation (5.3). But, in this case it uses public key extracted from the digital

signature certificate of the SA Server. In addition, it also verifies digital signature

certificate from the LCA Server and the identity of the SA Server using IDMS Server.

Client Server: S(Rc), Certsa

Upon successful authentication, SA Server creates connection with the XACML

Policy Server and sends the identity of the client (distinguished name) requesting SAML

Ticket. XACML Policy Server validates client’s identity using IDMS Server and

generates SAML Ticket. SAML Ticket contains ticket-id, identity of the client,

timestamp, and IP address of the XACML Policy Server. XACML Policy Server also

digitally signs SAML Ticket (ST) using its own private key corresponding to its digital

signature certificate. It sends signed ST to the SA Server which then sends it back to the

client. Client receives ST and stores it in the security applet in a smart card.

5.2.3. Single-Sign-On Protocol
When client establishes connection with some Secure Application Server, that Server

initiates Single-Sign-On protocol. Upon receiving the initiation message, client fetches

ST from a smart card and digitally signs it using private key corresponding to the digital

signature certificate. It sends ST to the Policy Enforcement Point (proxy associated with

the application server) along with digital signature certificate:

Client PEP :: Request(STs, CertDSc)………………………………… (5.4)

The PEP component also signs ST and concatenates to it multi-party signature STss.

The PEP component encapsulates STss in the SAMLAuthenticationRequest

message and sends it to the XACML Policy Server for validation:

PEP XACMLPolicyServer::SAMLAuthenticationRequest(ST,STss,CertDSc)

 … (5.5)

XACML Policy Server verifies both signatures. Successful verification of signatures

proves that SAML Ticket was received from the PEP and presented by the owner of the

SAML Ticket, which provides source authentication. After this, XACML Policy Server

consults SAML-Ticket database, in order to validate ST. If OK, it sends

SAMLAuthenticationResponse message to the PEP component, as shown in

Equation (5.6), which contains authentication decision:

XACML Policy Server PEP :: SAMLAuthenticationResponse

 (Permit/Deny) …………………………… (5.6)

If the decision is Deny, PEP informs the client and terminates the connection without

any further correspondence. If it is Permit, PEP component establishes secure session

with the client.

CryptoNET - Generic Components and Their Validation

75 | P a g e

5.2.4. Secure Sessions
In our system secure session is established after a Single-Sign-On protocol is

successfully completed. Secure Application Server requests KeyExchange certificate

from a client, as shown in (5.7).

Secure Application Server Client:: Request(KeyExchangeCertc)

 ………….(5.7)

The purpose of the KeyExchange certificate is to securely exchange session-key and

session-id between a client and Secure Application Servers. To manage secure sessions’

attributes at the application server, PEP creates an active session object for the specific

client in a session’s container. Each object in the session container contains the identity

of the authenticated client, session key, and session id.

Upon receiving of certificate request, the client fetches KeyExchange certificate from

a smart card and sends it back to the Secure Application Server, as shown in (5.8).

Client Secure Application Server:: Response(KeyExchange

Certc) ………… (5.8)

Since Single-Sign-On protocol is capable to authenticate clients in a cloud computing

environment, there is still a possibility that the attacker may launch replay or

impersonation attacks by presenting valid SAML Ticket. To counter such attacks, Secure

Application Server receives KeyExchange certificate and compares its distinguished

name with the identity stored in the session container. In addition, PEP also verifies the

certificate chain. Upon successful verification, Secure Application Server generates a

session-symmetric-key and session id which is digitally signed by using private key

corresponding to its own digital signature certificate and enveloped using public key

corresponding to the KeyExchange certificate of the client. It then sends session key

exchange message to the client, as shown in (5.9).

Secure Application Server Client :: P(SK, SID), KeyExchange

 Certas …………(5.9)

Client receives the message and verifies the signature. Upon successful verification, it

opens the envelope using private key corresponding to the KeyExchange certificate in

order to extract session-symmetric-key and session id. Client stores both session

attributes in a smart card, if it is installed. Otherwise, it stores them in a key-file. Client

uses session-symmetric-key and smart card-based cryptographic functions to create

secure messages in the standard format – PKCS#7SignedAndEnvelopedData

[17]. The purpose of session-id is to enable the secure application and secure application

server to perform secure asynchronous communication.

5.2.5. Authorization Protocol
Authorization policies in our security system are based on the XACML standard

[101]. We adopted Role-Based Access Control model, so an authorized person (for

CryptoNET - Generic Components and Their Validation

76 | P a g e

example Security Administrator (SAd)), creates a group and defines access level for each

group member along with his/her role and permitted actions. SAd generates a Policy

Token which includes Target object used to identify the role of each group member in

a group. Target contains the name of a group member, the name of a resource, and

actions permitted to perform by a group member with the specified resource. In addition,

SAd can also specify Policy and Rules objects, if required. SAd saves newly created

policy in an XACML policy file.

When an authenticated group member requests an access to a specific resource, it

fetches SAML Ticket from a smart card and sends it to the PEP component, along with

the name of the requested resource. The PEP component creates

SAMLAuthorizationRequest message and sends it to the XACML Policy Server.

Since, the PEP component and XACML Policy server has required certificates, so the

PEP protects the contents of SAMLAuthorizationRequest using XML Security

standards (XML Signature standard and XML Encryption standard). The XACML

Policy Server receives the authorization request and verifies signature, and then extracts

its contents. The XACML Policy Server consults XACML policy file and generates

SAMLAuthorizationResponse message, which contains authorization decision.

SAMLAuthorizationResponse is sent back to the PEP component in order to

enforce authorization policy.

5.2.6. Key Management Protocol
Some of secure applications in the CryptoNET system operate in a collaborative

environment and use key exchange protocol to exchange group-key between group

members. For this purpose, we designed Generic Key Distribution (GKD) component

compliant with the GSAKMP standard [15]. GKD performs key-related functions like

key creation, key distribution, and rekeying. GKD supports both Push and Pull-based

operations to distribute shared-key. In addition, it works with Secure Application Server

in order to perform key-distribution functions. This module works with application

servers as a component, so it uses PEP component of a host application server for

enforcement of authorization policies for shared-keys.

When a group member requests a group-key, he/she performs Single-Sign-On, and

establishes secure session with Secure Application Server, as described in Sections 5.2.3

and 5.2.4. After that, group member fetches SAML ticket from a smart card and sends it

to the PEP associated with the Secure Application Server. PEP enforces authorization

policies based on procedure described in Section 5.2.5. After successful authorization,

GKD sends group-key to the authorized group member using secure communication

channel.

5.3. Summary
We designed Security Protocols for authentication, secure communication and

authorization between various components of CryptoNET system. Our protocols are

based on the concept of generic security objects, well-established security standards and

technologies. They transparently handle security credentials and handle protocol-specific

attributes using FIPS 201 (PIV) smart cards. In addition, the same attributes can be used

CryptoNET - Generic Components and Their Validation

77 | P a g e

by our designed protocols. Our generic security protocols are initial user authentication

protocol, remote user authentication protocol, Single-Sign-On, SAML authorization

protocol, secure sessions, and key distribution protocol. Our security protocols use

Security Provider as a collection of cryptographic engines implemented either in

software or using FIPS 201 (PIV) smart cards managing protocols’ attributes by security

applets.

CryptoNET - Generic Components and Their Validation

78 | P a g e

CryptoNET - Generic Components and Their Validation

79 | P a g e

6. Generic Security Server

In this chapter we describe the design of Generic Security Server which

represents basic structure for developers for implementation of various specific

Secure Application Servers, supporting as default various standard and extended

security functions. All security functions are based on well-established security

standards, technologies and protocols. Furthermore, several components, actions

and libraries are readily available in the form of Eclipse plug-ins which provide

Secure Application Server easy to manage, extended with customized functions,

and several actions for its administration.

6.1. Overview and Features of Generic Security
Server

Generic Security Server is a template for developers to develop various specific

Secure Application Servers. It provides the basic structure for implementing customized

secure application servers with extended security features, functions and actions. In the

design of our Generic Security Server we have taken completely different approach. In

our design, security services are an integral part of each application server in order to

provide the same set of security features to all application servers in a domain. These

common security services are protection of messages, strong authentication, XACML

based authorization, and transparent handling of security credentials. Second, we used

generic security objects for modeling of our Generic Security Server. Generic security

objects provide complete functionality, support various alternatives and they are secure,

tested and individually verifiable. Third, we “vertically” expanded functions of

application servers to add new security features. These functions are generic local and

remote user’s authentication, transparent handling of security credentials, secure server

administration, secure session management, scalability of servers, enforcement of

authorization policies, and encrypted AuditLog management.

We designed and implemented our Generic Security Server using Eclipse plug-in

architecture which further improved the design, development and deployment of our

security server using Java technology. The approach was to use software modules,

structured in the form of plug-ins, as basic building blocks to create specific secure

application servers. Therefore, not only that better template of Generic Security Server

was created for other secure application servers, but they are also available in the Eclipse

environment in the form of Eclipse generic security plug–ins.

We believe that this contribution will play significant role for a rapid development of

secure application servers, which are based on well-established security standards and

technologies. In addition, by using template of our Generic Security Server to develop

other secure application servers, the developer has to implement only specific functional

requirements of each server. Other then support to standard functions and extended

security services, the distinctive features and properties of our Generic Security Server

are the following:

CryptoNET - Generic Components and Their Validation

80 | P a g e

• Generic Security Server is complete in terms of standard functions and extended

security features;

• Generic Security Server is based on well-established security standards and

services such as PKCS#7, X.509 Certificates, SAML Protocols, Single-Sign-On,

etc.;

• It supports rapid development of other, specific secure application servers with

the same set of security services for each of those application server;

• It provides secure local and remote administration;

• It supports SAML-based Single-Sign-On protocol;

• It enforces authorization policies using XACML standard; and

• It is implemented as an Eclipse plug-in, so it is available in the Eclipse

environment for rapid development of customized secure application servers.

6.2. Design of The Generic Security Server
Generic Security Server is designed as a complex generic security object which is a

combination of several secure, tested and verifiable individual generic security objects.

They are shown in Figure 6.1. Extended security functions and features of Generic

Security Server are categorized in three groups. They are: Initialization and Management

Functions, Administration Functions, and Client functions. Some of Client functions are

already implemented and the developer can extend Client function list using our crypto

APIs and libraries. In order to design our Generic Security Server, we extended current

design of application servers with generic and extended security features.

All Initialization and Management functions are implemented in the main process

(main thread). This group provides certificate management, secure session management,

databases connection management, AuditLog management, activation of local and

remote user authentication, Single-Sign-On component, and transparent handling of

security credentials. We implemented some of management functions in the form of

Actions, while some of components are initialized in order to provide services. Our

implemented Actions for administration are Start-server, Login-server, Stop-server,

View AuditLog, View Certificate, List Current Users, and Settings.

In the current implementations, client thread receives and processes messages from

both, server administrator and clients. If these messages are from the administrator, then

it is called administrator thread. Otherwise, it is called client thread. To distinguish

between administrative messages and client messages, we used XACML based

authorization policies in order to define access of each user to perform authorized action.

In order to implement client specific functions, we provided security APIs and libraries

for developers. In our design, secure communication and authentication security services

are implemented in the client thread, while the required services for clients are

implemented using our crypto APIs and libraries.

Various generic security objects of Generic Security Server are shown in Figure 6.1.

These are Generic Login Module, Certificate Management, Policy Enforcement Point,

AuditLog Management, Security Protocols, Security Provider and Database object. We

described operational, functional and implementation details of our generic security

object in the following sections.

CryptoNET - Generic Components and Their Validation

81 | P a g e

Figure 6.1. Components of The Generic Security Server

6.2.1. Initialization and Management Functions
Generic Security Server supports various initialization and management functions to

initialize and manage its components and also various other actions needed to administer

secure application servers and their security services. Those functions are Certificate

Management, Secure Session Management, Database Connection Management, and

AuditLog Management.

At the startup, our Generic Security Server loads database components, Security

Provider and all required Security Protocols. It creates connection with the IDMS and

Certification Authority Server. Certificate Management component transparently fetches

application servers’ identity from the IDMS Server and then it checks local certificate

database to ensure the presence of the required certificates. If certificates do not exist,

Certificate Management module acquires two new certificates from the LCA Server.

They are: digital signature and key exchange/non-repudiation certificates. If the LCA

Server is not configured, then Certificate Management module generates transparently

these two self-signed certificates for Generic Security Server. In addition, our Generic

Security Server uses its own password to protect private keys in the private-key-file.

Our Generic Security Server initializes database component and creates the pool of

database connections used to store and retrieve server’s and application specific data. In

order to create connection to the DB server, it transparently fetches DB-URL, port

number, username and encrypted password from the configuration file. After that, it

decrypts password and then creates connection with the database. Furthermore, it creates

database connection pool for execution of application specific database functions.

Login m
odule

D
a

ta
b

a
s

e

Logger

SecurityProvider

S
e

c
u

rity
P

ro
to

c
o

ls

Cert Manager

Generic Security Generic Security

ServerServer

Secure Session
Container

Server Util

Activator

Actions

Server
Components

Home

Administration

Policy

Enforcement

Point

CryptoNET - Generic Components and Their Validation

82 | P a g e

Session management is an important function of our Generic Security Server. It

maintains information about each session. It creates a session container at the startup

which contains all session attributes. These attributes are used for secure communication

and unique identification of clients. Attributes of the session object are SAML Ticket,

Distinguished Name, Session ID, and Session Symmetric Key. For protecting session

symmetric key, we encrypt it using public key corresponding to key-exchange certificate.

The session object is also a generic security object which is accessible only to the session

owner in order to access and add application specific attributes.

AuditLog management is also an important aspect of the Generic Security Server. It

manages protected logs containing entries describing various activities and operations

performed by administrators and clients. Each log entry provides information about the

session owner, object, operation, nature of activity, class name, logging date, and time.

AuditLog object transparently creates symmetric key which is used to encrypt Log

entries before storing them into the log file. Our Generic Security Server protects

symmetric key using public-key corresponding to the key exchange certificate of the

server and stores it in the key-file.

During the initialization phase, Generic Security Server also instantiates Policy

Enforcement Point (PEP) to provide Single-Sign-On and XACML-based authorization

services. Furthermore, it provides various features like validation of SAML Ticket,

evaluation of authorization policies from XACML Policy Server and enforcement of

authorization policies.

6.2.2. Administrative Actions
Generic Security Server provides several Actions which are required for its

administration. Server administrator can perform these functions from a remote computer

or they can be performed locally. If the administrator administers Generic Security

Server locally, then the server only verifies that the user is authorized to administer

secure server. If the administrator performs theses actions remotely, then in addition to

the above security functions, our Generic Security Server establishes also secure session

with the Administrative Station.

We defined some of default and most common security functions in the form of

Actions. In order to invoke those actions, our Generic Security Server enforces

transparently authorization policies and permits only authorized roles to perform these

Actions. If a user does not belong to an authorized group, then our Generic Security

Server does not allow him/her to activate administrative actions.

The default actions available in the Generic Security Server are standard application

server operations, certificate management functions, audit log management, and client

management actions. Operating Actions are StartServer, StopServer, and

LoginServer. StartServer action starts the Server. During this action it checks

servers’ certificates; if they exist, then the action continues; otherwise, it transparently

downloads the required certificates from the LCA Server. After successful completion of

this Action, it starts accepting requests from users. LoginServer verifies the

credentials of the Administrator using IDMS and then checks the role of the user. If

he/she is authorized, then it permits him/her to perform other actions; otherwise it denies

him/her to perform further actions. For certificate management, we provided several

CryptoNET - Generic Components and Their Validation

83 | P a g e

actions. They are AcquireServerCertificates, ListServer

Certificates, ViewCertificate, VerifyCertificate and Delete

Certificate. These functions are dependent on a specific role and any user that has

an authorized role can perform these actions, because Generic Security Server uses its

own password to protect servers’ security credentials.

AcquireServerCertificates action is used to acquire new certificates for the

Generic Security Server from the LCA Server. ListServerCertificates action

displays certificates stored in the certificate database, while ViewCertificate action

displays attributes of the selected certificate. VerifyCertificate action verifies

the selected certificate. To delete a certificate, DeleteCertificate action is used

for this purpose.

Generic Security Server provides also several actions to manage AuditLog. They are

ListServerLog, ArchiveServerLog and DearchiveServerLog.

ListServerLog action fetches encrypted log entries from the log file and decrypts

them. After that, it displays log entries. ArchiveServerLog action compresses log

file and then encrypts it before storing it in the archive file with a new password. The

DearchiveServerLog decrypts archive file and then decompresses it before listing

its entries for the administrator. In addition to the above actions, our Generic Security

Server provides ViewCurrentUsersAction used to display the list of current users

and their identity attributes.

6.2.3. APIs and Libraries for Extended Security
Functions

In addition to the above described security functions, our Generic Security Server

template provides APIs and libraries for cryptographic functions and security protocols.

Developers may use these APIs and libraries to implement extended security functions

according to the security requirements of their customized application servers.

In order to provide cryptographic functions, we integrated our Security Provider so

developers can instantiate specific generic security objects for specific security aspects.

Our Security Provider is based on well-established cryptographic standards and also

provides the same set of cryptographic functions to all instances of Generic Security

Servers. Security Provider can be instantiated using the following code:

SecurityProvider sp = ServerComponentsHome.

getSecurityProvider();

ISymmetricKey sk = sp.createSymmetricKey();

Our libraries provide an instance of an active database connection in a client thread in

order to store and retrieve application specific data to/from database. In the following

example, application servers’ developer can create an instance of the EntityManager

object by calling getDbComponent() function of the ServerComponentsHome

object. By using object entityMgr, developer may implement application servers’

specific functional requirements related to persistent storage. In the following code

CryptoNET - Generic Components and Their Validation

84 | P a g e

createQuery() is a function of the entityMgr which is used to fetch the results

from a database:

EntityManager entityMgr = ServerComponentsHome.

getDbComponent().getEntityManagerFactory().createEntityManager();

Query query = entityMgr.createQuery(queryStr);

List resultData = query.getResultList();

The developer of some secure application server can access attributes of the current

user’s session using ServerComponentsHome.getSecureSession() function,

as shown in the following code. This function returns an instance of the

SecureSession with the local name ss. It contains the state and values of various

properties of the session of the current user. In addition, this object has also functions to

send and receive secure messages. In the send() function, it uses SymmetricKey

object to encrypt message data using session key of the current user. It further signs

encrypted data using private key corresponding to the digital signature certificate before

transmitting. In the receive() function it receives data, transparently verifies its

signature, and then decrypts data using session key before instantiating msg object. The

attributes of the Message object are Message-Header, SessionID, and data:

SecureSession ss= ServerComponentsHome.getSecureSession();

Message msg = new Message();

msg.setData(“Hello”);

msg.setHeader(Message.AUTHENTICATION);

int result = ss.send(msg);

msg = ss.receive();

String data = msg.getData();

In addition, we provide generic security object for enforcement of SAML

authorization policies. In the following example the developer calls

getPolicyEnforcementPoint() method of the ServerComponentsHome

object in order to create an instance of the PolicyEnforcementPoint object which

implements isAuthorized(…) function. This function transparently fetches IP

number and port number of the XACML Policy Server from the IDMS database and

creates a connection with it. This function accepts SAML Ticket (users’ identity),

resource name and action. This function transparently digitally signs SAML Ticket and

then encapsulates resource name and action in the SAMLAuthorizationRequest

object before sending it to the XACML Policy Server. The same function receives the

response SAMLAuthorizationResponse object from the XACML Policy Server

and processes it. It finally returns the decision and the developer may implement logic

accordingly in order to provide access to resources.

PolicyEnforcementPoint pep = ServerComponentsHome.getPolicy

EnforcementPoint();

String decision = pep.isAuthorized(sAMLTicket, resource, action);

CryptoNET - Generic Components and Their Validation

85 | P a g e

In our Generic Security Server we also provide an instance of the LogFactory

object in order to log various actions of clients and administrators. In the following

example LogFactory creates an instance logger_ of the Log object. In this

instance, we implement error(…) and info(…) functions for storing error messages

and information messages respectively. This object transparently encrypts an entry of the

audit log and stores it in the log file:

Log logger_ = LogFactory.getLog(this.getClass());

logger_.error(errorMessage);

logger_.info(infoMessage);

6.3. Eclipse Packages (Plug-Ins)
Generic Security Server is organized in the form of the following Eclipse plug-ins:

• com.cryptonet.gss

• com.cryptonet.gss.sessionmanagement

• com.cryptonet.gss.server

• com.cryptonet.gss.actions

• com.cryptonet.gss.engines

• com.cryptonet.gss.components

• com.cryptonet.gss.utils

This packaging structure provides extensibility feature and it can be extended with

new security functions and protocols. Furthermore, all modules of the Generic Security

Server are digitally signed and encrypted. They are loaded by the special Secure Class

Loader which verifies digital signature and decrypts modules at the execution time.

6.4. Summary
We designed a template of the Generic Security Server which provides complete set

of standard functions along with the list of extended security functions and features.

These functions are based on well-established security standards and services. The server

provides the structure for developers to develop their own components, functions, and

protocols for their customized Secure Application Servers. We already implemented

several initialization and management functions and several administrative actions. We

also included APIs and libraries for cryptographic functions and security protocols in

order to provide the same set of security services for all instances of Secure Application

Servers. The structure of our Generic Security Server is flexible and is available in the

form of Eclipse-plug-ins, which are easy to extend according to the customized

requirements of each specific distributed application.

CryptoNET - Generic Components and Their Validation

86 | P a g e

CryptoNET - Generic Components and Their Validation

87 | P a g e

7. Secure Execution Environment

In this chapter we describe our solution for protection of software modules and

their execution in a secure execution environment. The solution is based on

strong encryption techniques and well established security technologies. We use

Hudson server for generation of binaries and Web server for software

publication. We introduced a new component, Software Protection Module,

which is responsible to protect binaries and their secure distribution using Web

server. In this system, protected software modules are packaged in XML files

which specify general syntax and provide meta information about software

modules. We also extended existing standard execution environment with Secure

Software Loader which loads protected software modules for execution.

7.1. Overview of Software Protection and Secure
Execution Environment

Secure Execution Environment and Software Protection describes a comprehensive

solution for encryption of software modules and their secure execution. It provides

software confidentiality, tempering resistance, and even protection against illegal coping

and distribution of software modules. Software protection system comprises: Concurrent

Versioning System (CVS), Hudson Server, Software Protection Module, and Web Server

for software distribution. Software protection is performed by our Software Protection

Module which encapsulates software modules in XML files. Each XML file describes

general format of protected software modules and supports several cryptographic syntax

and standards. Protected software modules are published using Web Server. In addition,

we designed and implemented an extended secure execution environment, which is not

only capable to execute encrypted and signed software modules, but also supports

various security management procedures and protocols, such as certification protocol,

secure session handling, use of smart cards, and Single-Sign-On protocol. We believe

that our system is an effective solution against reverse engineering, software tempering,

and BORE attacks, because it protects software modules using authentication, access

control, integrity, and confidentiality. In particular, we also solved a critical issue of

secure execution of such protected software modules.

As mentioned in chapter 4, for the development of our software modules we used

Eclipse Plug-in Architecture. Therefore, we implemented this solution for Eclipse

Plugins and extended existing Plugin Loader (Standard Eclipse OGSI framework Class

Loader) to load and execute our protected software modules for the standard Java Virtual

Machine (JVM).

7.2. Secure SDKs
For management of source code in our development environment, we used CVS [99].

CVS is combined with Hudson Server [100], as shown in Figure 7.1. Hudson Server

CryptoNET - Generic Components and Their Validation

88 | P a g e

generates executable binaries from the source code. Product Manager initiates the

process of generation of binaries and Hudson server generates the binaries. Hudson

server stores newly generated binaries in a local file system and instantiates Software

Protection Component.

Figure 7.1. Components of Software Protection and Distribution System

Software Protection Component (SPC) encrypts and signs compiled software

modules. In this system, SPC is administrated by a Security Administrator (in this case a

Product Manager) who acquires digital signature certificate and key exchange certificate

from the LCA server. SPC fetches software binaries from the local file system and

encapsulates them in the PKCS7SignedAndEnvelopedData format.

SPC packages protected software modules in an XML file, which describes the

general syntax of protected software modules. The structure of XML file supports

several different cryptographic syntax and standards. In this scenario, we used

PKCS7SignedAndEnvelopedData as a cryptographic syntax. Security

Administrator uses his/her security credentials to generate

PKCS7SignedAndEnvelopedData. After that, he/she generates XML file, whose

format is shown in Figure 7.2. It contains information about the cryptographic standard

used for protection and enveloping of software modules. Description of each element of

the XML file is given in Appendix B. After encapsulating protected software modules in

XML files, SPC publishes them using Web Server.

Figure 7.2. XML file with information about protected software modules and applied security
standards

CVS

Hudson Server

Web Server

Software Protection
Component

Product Manager Client

<SPS>

<Version>1.0</Version>

<Content-Type>SIGNED-ENCRYPTED</Content-Type>

<Encapsulation-Standard>PKCS7</Encapsulation-Standard>

<SM-Type>Native</SM-Type>

<SM-Name>Name of Software module</SM-Name>

<Content-Description>A description</Content-Description>

<Contents>Signed and Enveloped contents encapsulated in PKCS7</Contents>

</SPS>

CryptoNET - Generic Components and Their Validation

89 | P a g e

Local File

System
Smart Cards or Hardware Tokens

Operating System

Software

Decryptor

Software Verifier

I/O

L

o

g

g

e

r

Generic

Security

Provider

Standard Class

Loader

7.3. Secure Execution Environment
Secure execution environment provides support for execution of protected executable

software modules. We extended the existing standard Java Class Loader with security

features. Secure Class Loader is a key component of our Secure Execution Environment,

downloaded by the client from our Web Server in order to extend the existing

environment to load protected Plug-in modules. Secure Class Loader interacts also with

cloud security infrastructure to verify and decrypt protected software modules. In our

system Security Administrator signs Secure Class Loader according to the procedure

described in [96]. In addition, Security Administrator packages it with software modules

to form a complete installable product.

As mentioned above, the SPC publishes product on the Web Server, so authorized

end-users can download it using Web Interface. For authentication and authorization

services, we use Web based authentication and authorization solution described in

Chapter 12. In this section, we focus only on operations of the Secure Execution

Environment.

Authorized users download the product form the Web Server and install it. During

system setups the signature is verified in order to ensure that it is downloaded from an

authenticated server and it is not tempered before or during the downloading phase. For

this solution, we assume that the workstation has basic execution environment to execute

verifiable components. Java Virtual Machine (JVM) is one of them.

Figure 7.3. Components of Secure Execution Environment

In the execution phase standard Java Virtual Machine verifies the signature of Secure

Plugin Loader and then activates it in order to extend existing execution environment

with security features.

The Secure Execution Environment comprises five components, as shown in Figure

7.3. These components are: Generic Security Provider, Software Verifier, Software

Decryptor, Standard Class Loader, and Logger. Security functions and features of

Generic Security Provider are explained in Chapter 4. Software Verifier fetches protected

software modules from the Local File System. It reads the header of the XML file and

processes it accordingly. As mentioned above, we encapsulate software modules in

CryptoNET - Generic Components and Their Validation

90 | P a g e

PKCS7SignedandEvenlopedData format, so it verifies the signature of loaded

software modules. If this verification fails, Software Verifier logs the event and stops its

execution. Upon successful verification, software modules are passed to the Software

Decryptor. Software Decryptor decrypts the value of the Contents element of the XML

file according to the standards specified in the header of the XML file. The output of this

process is executable files. Software Decryptor takes the following actions depending on

the value of SM-Type element:

• If SM-Type is Native, then it transfers the module to the Standard Class Loader for

loading into memory. Examples are java classes, executable jars, etc.;

• If SM-Type is Configuration, then it only uses the required information on-the-fly.

Examples are server configuration file, help files, etc.; or

• If SM-Type is External, then it saves decrypted modules in the temporary

directory. They will be loaded by a specific class loader at the execution time. At

closing time, Secure Plugin Loader deletes these temporary files. Examples are so,

dlls, and exe files.

7.4. Summary
In this chapter we described the solution for protection of software modules using

strong encryption techniques. The solution comprises CVS Server, Hudson Server,

Software Protection Component, and Web Server in order to generate and distribute

protected software modules to authorized users. Our solution encapsulates these modules

in the form of specifically designed XML file which describes the format and procedures

of protected software modules. We extended standard execution environment with

special security features and functions in order to load protected plug-ins. Our extended

Secure Execution Environment supports standard security services and also network

security protocols.

8. Formal Validation

In this chapter we consider formal verification and validation of our generic

security objects. We evaluated individual generic security objects using

threat model and Common Criteria. We qualitatively analyzed behavior of

our generic security against various potential attacks and found that, using

our methodology and approach, each generic security object provides

comprehensive mechanisms in order to protect its code, states, attributes,

operations and communication against potential attacks, Therefore, if

binaries, instantiation, usage, attributes, states, and communications

between objects are protected against potential attacks, then the complete

security system designed and implemented using such objects is protected

and verifiable.

8.1. Introduction
The basic objective of our security system is that each generic security object

should be secure. Furthermore, generic security objects should not have any security

breaches and weaknesses that could be exploited by attackers. Various standards,

procedures and metrics exist in order to qualitatively and quantitatively measure

security of the systems. We used Common Criteria and Threat Model techniques to

evaluate security and assurance level of our generic security objects. Common

Criteria provide comprehensive procedures for security functional requirements and

security assurance requirements, while threat model provides a systematic procedure

to identify assets, threats, and their mitigation. So a combination of both techniques

provides better evaluation and validation procedure of our security system.

For evaluation of our security system, we identified assets, points, and states of

each of our generic security objects that could be potential target of an attacker. We

also specified trust boundaries for each generic security object and identified various

attributes where an attacker can launch attack(s). After that, we identified various

attacks that can be launched against identified assets and operations. For security

evaluation and validation of our methodology, we applied these attacks to our

designed and implemented generic security objects in order to assess the resistance

of our objects against these attacks. We also qualitatively described how our generic

security objects resist various attacks.

Since the complexity of distributed applications is increasing, it is very difficult

to ensure that the application is secure, trusted and reliable. Our evaluation scheme,

which is based on deductive approach, provides effective and better solution for

evaluation of complex security systems. In this chapter we also established that if an

individual object is secure and resists various attacks, then the security system which

is developed using such objects, will provide the same level of security against those

attacks.

CryptoNET - Generic Components and Their Validation

92 | P a g e

8.2. Validation and Evaluation Model
We adopted threat modeling, which is a formal approach to assess security and

risk of our generic security framework for cloud computing environments. Threat

model provides a formal approach to classify potential threats that makes evaluation

easy to understand. It also provides mechanism to assign priorities to each threat. By

using this scheme, we identified assets and resources of each generic security object,

potential attacks, weak points, and their mitigations. Furthermore, we used Common

Criteria to specify security functional and assurance requirements of each generic

security object.

The most popular attacks are considered in this modeling. They are: Spoofing,

Tampering, Information Disclosure, Repudiation, and Elevation of Privilege. In the

evaluation of our system, we extended threat list and included brute force attacks,

replay attacks, and session hijacking attacks. We identified attacks for each generic

security object from the above list and then we described below how our generic

security objects protect themselves against each potential attack.

8.3. Formal Evaluation of Generic Security Objects
We analyzed each generic security object individually in this section and

qualitatively analyzed its behavior and protection mechanisms against each potential

threat.

8.3.1. SymmetricKey Object
Figure 8.1 shows various states and operations of the SymmetricKey object.

Figure 8.1. Various States and Operations of SymmetricKey Object and potential Attacks

Instantiate
Protected

Class
SEE loadKey

Encrypt

saveKey-File

Password

isSCConnected

Hardware Token

Yes

Key-File

No

PasswordPIN

Exit

Tampering
Reverse Engineering

(Information Disclosure)

Elevation of
Privilege

Information

Disclosure

Bruteforce

CryptoNET - Generic Components and Their Validation

93 | P a g e

We identified various possible areas where an attacker can attack. Furthermore,

in Table 8.1 we described protection mechanisms against each attack.

Table 8.1. Evaluation and Validation of SymmetricKey Object

No. Threat Solution/Mitigation

1 Attacker can tamper

binaries to alter logic of

SymmetricKey object

(Tampering).

Binaries of this object are digitally signed by the

Product Manager which is verified by the Secure

Execution Environment (SEE) before

instantiating. During this process any modification

can be detected, so our solution is resistant against

tampering of binaries.

2 Adversary accesses the

binaries for reverse

engineering (Information

Disclosure)

Our binaries are encrypted using public-key

corresponding to user’s certificate which protects

this object against illegal reverse engineering and

code analysis. The object can only be decrypted

using private-keys, which is accessible to

authorized user using valid password and

DistinguishedName.

3 Adversary accesses

symmetric key from the

key-file (Brute force)

If symmetric key is stored in the key-file protected

using password that is low assurance system. A

brute force attack can be launched, but if it is

configured with a smart card, i.e. high assurance

system, then this object automatically blocks

smart card after three wrong attempts. This policy

protects SymmetricKey object against brute

force attacks.

4 Adversary accesses

symmetric key without

authorization (Elevation

of Privilege)

Symmetric key is stored in the key-file accessible

only to authorized users using valid password.

If the object is used in the high assurance system

then an user provides PIN in order to authenticate

on smart card to access Symmetric Key.

5 Adversary reveals

symmetric key

(Information Disclosure)

Symmetric key is either protected with

password in the Key-file or it is stored in a

smart card which in only accessible to a valid PIN

holder.

8.3.2. AsymmetricKey Object

Figure 8.2 shows various states and operations of AsymmetricKey object

along with various attacks. We describe solutions against various attacks shown in

Table 8.2. Table 8.2 shows that our generic security object for asymmetrickey

CryptoNET - Generic Components and Their Validation

94 | P a g e

cryptography is completely protected and secure. Furthermore, we also verify that it

performs every operation after proper authentication and authorization.

Figure 8.2. States, Operations and Threat Model of The AsymmetricKey Object

Table 8.2. Evaluation and Validation of AsymmetricKey object

No. Threat Solution/Mitigation

1 Attacker can tamper

binaries to alter logic of

AsymmetricKey

object (Tampering)

Binary of this object is digitally signed by the

Product Manager which is verified by the Secure

Execution Environment (SEE) before

instantiating. So, this protects binaries of

AsymmetricKey object against binaries

tampering.

2 Adversary accesses the

binaries for reverse

engineering (Information

Disclosure)

Our binaries are encrypted using public-key

corresponding of user’s certificate which protects

this object against illegal reverse engineering and

code analysis.

3 Adversary accesses

private key (Asymmetric

key) from key-file

(Brute force)

Private key is stored in key-file, in low assurance

system, which is protected using password and

mapped with public key. While, public key is

mapped with DistinguishedName and can

only be accessible, if user provides valid

DistinguishedName and password. If

AsymmetricKey object is using smart card,

high assurance policy, then our object does not

permit to extract private key from smart card, so

in this case brute force attack is not effective.

Instantiate
Protected

Class
SEE loadKeys

Encrypt

isSCConnected

No

Password, distinguishedName
(Public & Private Key)

Exit

Data Decrypt

PrivateKeyPublicKey

isSCConnected

Yes

No

SmartCardAPDU

No

Exit

Yes

distinguishedName
(Public Key)

Key-File

Elevation of
Privilege

Spoofing

Tampering
Reverse Engineering

(Information Disclosure)

Elevation of

Privilege

Bruteforce

CryptoNET - Generic Components and Their Validation

95 | P a g e

4 Adversary accesses

Asymmetric keys

without authorization

(Elevation of Privilege)

In the low assurance systems, asymmetric keys are

stored in the key-file accessible only to authorized

users using password and

DistinguishedName. If a smart card is

connected, then user provides PIN in order to get

access to the smart card to the use asymmetric

keys.

5 Adversary reveals

private key which is part

of Asymmetric keys

(Information Disclosure)

In the low assurance system, private key is stored

in Key-file encrypted using password so it is

protected. On other hand, if a smart card is

connected, then it is stored in a smart card,

accessible only to a valid PIN holder.

8.3.3. Digital Signature
Figure 8.3 shows various states, operations and attributes of the

DigitalSignature object along with various attacks. This is complex object

and it instantiates Hash object and AsymmetricKey objects for various functions

of digital signature. We already proved that AsymmetricKey object is tested and

secure, so in this section we only evaluated DigitalSignature object, as

described in Table 8.3.

Figure 8.3. Various potential Threats of The DigitalSignature Object

Asymmetric
Key

Protected
Class

SEE loadKeys

Exit

PrivateKey PublicKey

Instantiate

Hash

Data

generateSignature

verifySignature

isSCConnected Yes

No

SmartCard

APDU

Elevation of
Privilege

Spoofing

Repudiation

Tampering

Tampering
Reverse Engineering

(Information Disclosure)

Information
Disclousar

CryptoNET - Generic Components and Their Validation

96 | P a g e

Table 8.3. Evaluation and Validation of The DigitalSignature Key Object

No. Threat Solution/Mitigation

1 Attacker can tamper

binaries of the object to

alter logic of

DigitalSignature

object (Tampering).

Binary of this object is digitally signed by the

Product Manager which is verified by the

Secure Execution Environment (SEE) before

instantiating. During this process, any

modification made by adversary can be

detected.

2 Adversary accesses the

binaries of

DigitalSignature

object for reverse

engineering (Information

Disclosure)

Binaries of this object is encrypted using

public-key corresponding to user’s certificate,

so binaries of this object are protected against

illegal reverse engineering and code analysis.

3 Adversary illegally tries to

generate signature

(Evaluation of Privilege)

DigitalSignature object uses

DistinguishedName and password in

order to access private key stored in the key-

file. If DigitalSignature performs

cryptographic functions using smart card, then

a valid PIN is used as authorization token to

open smart card in order to encrypt hash value

for signature generation.

4 Adversary accesses private

key to generate fake digital

signature for impersonation

(Spoofing)

DigitalSignature object uses valid

DistinguishedName and password as

authentication token to extract private key

from the key file. If DigitalSignature

object is used with a smart card, then PIN is

used as authentication token to open smart

card.

5 Sender denies his/her

message (Repudiation)

The sender is authorized and authenticated to

generate signature, so he/she cannot repudiate.

6 Adversary alters message

(Tampering)

During the digital signature process, a message

is hashed using standard Hash algorithms.

Tampering of a message can be detected using

digital signature verification process.

7 Adversary tries to extract

actual hashed value in order

to generate fake messages

(Information Disclosure)

Hashed value is encrypted using private key

and only authenticated and authorized user can

generate it.

CryptoNET - Generic Components and Their Validation

97 | P a g e

8.3.4. PKCS7 and SMIME objects
In this section we analyze various potential attacks on PKCS7 object as shown in

Figure 8.4 and their mitigations. As SMIME is also an extension of the PKCS7

object, the same evaluation criteria and threat model, as shown in Table 8.4, is used

to evaluate SMIME object.

Figure 8.4. Identification of Assets and Operations of The PKCS7/SMIME Objects along
with Potential Attacks

Table 8.4. Evaluation and Validation of The PKCS7/SMIME Object

No. Threat Solution/Mitigation

1 Attacker can tamper

binaries to alter logic of

the PKCS7 object

(Tampering).

Binary of this object is digitally signed by the

Product Manager, which is verified by the

Secure Execution Environment (SEE) before

instantiating. During this process any

modification of binaries can be detected.

2 Adversary accesses the

binaries of the PKCS7

object for reverse

engineering (Information

Disclosure)

Our binaries are encrypted using public-key

corresponding to user’s certificate, what protects

this object against illegal reverse engineering

and code analysis.

3 Adversary accesses

encapsulated data by

impersonating as a valid

user (Spoofing)

PKCS7 object uses our DigitalSignature,

so only valid users with valid identity and

password, or with PIN can create signed data

and open enveloped data.

Instantiate
Protected

Class
SEE createSignedData

createSigned
EnvelopedData

createEnvelopedData

Exit

AsymmetricKey

Encapsulation

DigitalSignature

verifySignature

openEnvelopedData

openSignedAnd
EnvelopedData

Tampering
Reverse Engineering

(Information Disclosure)

Elevation of
Privilege

Spoofing

Repudiation

Tampering

Confidentiality

CryptoNET - Generic Components and Their Validation

98 | P a g e

4 Adversary accesses

security credentials and

data from encapsulated

data (Evaluation of

Privilege)

PKCS7 object uses our DigitalSignature

object for creating PKCS7SignedData of

input data, so the same authorization mechanism

is applied to the PKCS7/SMIME object.

In order to open PKCS7EnvelopedData,

only authorized recipients which have valid

private key and identity

(DistinguishedName) can open it.

5 Sender denies his message

(Repudiation)

The message is signed with sender’s private key

corresponding to the digital signature certificate,

so sender cannot repudiate, because he/she is

authorized to access private key.

6 Adversary alters message

(Tampering)

In order to create PKCS7SignedData and

PKCS7SignedAndEnvelopedData, our

PKCS7 object uses createSignature

functions of the DigitalSignature object

in order to provide data integrity. Any

modification made of encapsulated data by

attacker can be detected in digital signature

verification phase. For

PKCS7EnvelopedData, our system does not

guarantee the integrity of data, because in the

standard, it is only used for data confidentiality.

7 Adversary tries to extract

actual data from the

PKCS7 encapsulated

packet (Information

Disclosure)

PKCS7EnvelopedData and

PKCS7SignedAndEnveloped data is

protected using the public key of the recipient,

so only recipients who have valid private key

can open it.

8.3.5. Strong Authentication Protocol
In Table 8.5 we describe various attacks and our counter-measures in order to

protect our strong authentication protocol.

Table 8.5. Evaluation and Validation of The Strong Authentication Protocol

No. Threat Solution/Mitigation

1 Adversary tries to access

password (Password

compromise)

Our strong authentication protocol uses two-

factor authentication. It uses challenge and

digital signature to authenticate both parties,

what eliminates the threat of password

compromising, because it does not use

password as authentication token.
2 Adversary tries to

impersonate (Masquerade)

Our strong authentication protocol uses private

key (stored in the key file) or smart cards to

generate digital signature which is

CryptoNET - Generic Components and Their Validation

99 | P a g e

 computationally infeasible for adversary to

impersonate as valid user.
3 Adversary can use previous

authentication messages

(Replay attacks)

Since our strong authentication is based on

random numbers challenges generated for

every new authentication request, they cannot

be reused by attackers as authentication token

at a later time. Our strong authentication server

simply discards theses messages.
4 Signing of pre-defined data

Our strong authentication protocol uses

random number challenges, which is generated

for each authentication request. It prevents

signing of pre-defined data attack, because

signature of pre-defined data is the same for

every authentication request.
5 Adversary can present valid

certificate (Elevation of

Privileges)

Our strong authentication protocol does not

only rely on the successful verification of

digital signature certificates, but also validates

its identity from the IDMS what ensures that

valid domain user is performing strong

authentication.
6 Adversary can impersonate

as Strong Authentication

Server (Destination

Authentication Attack)

Our strong authentication protocol uses mutual

authentication protocol, so the client also

verifies the servers’ digital signature certificate

and asserts its identity from the IDMS. This

step prevents our client for performing strong

authentication with other strong authentication

servers, which do not belongs to user’s

domain.
7 Adversary can tamper

SAML ticket (Tampering)

After successful authentication, our Strong

Authentication Server consults XACML Policy

Server in order to issue SAML Ticket to a

client. SAML Ticket is signed by the XACML

Policy Server, so any change in SAML Ticket

can be detected in the SAML Ticket

verification phase.

8.3.6. Single-Sign-On Protocol
Various attacks on Single-Sign-On protocol and their counter measures are

described in Table 8.6.

Table 8.6. Evaluation and Validation of The Single-Sign-On Protocol

No. Threat Solution/Mitigation

1 Adversary modifies SAML

Ticket (Tampering)

The SAML Ticket is digitally signed by

XACML Policy Server, so any modification in

CryptoNET - Generic Components and Their Validation

100 | P a g e

 SAML Ticket can be detected using SAML

Ticket verification and validation phase.
2 Adversary impersonates

using valid SAML Ticket

of another user

(Masquerade)

The user signs SAML Ticket which provides

source authentication. In addition, with the

combination of secure session protocols, our

system is strongly protected against

impersonation attack.
3

Adversary impersonates

using valid SAML Ticket

of another user (Replay

Attack)

The user signs SAML Ticket which provides

source authentication. In addition, our Secure

Session Protocol compares distinguished name

of digital signature certificate with

distinguished name of key exchange certificate

of SAML Ticket owner, and it uses random

number as session ID which protects our

system from Replay Attack.

8.3.7. Secure Sessions Protocol
We qualitatively analyzed our secure session protocol. It is designed for secure

communication between two components of our security system. Our threat model

for this generic security protocol and their countermeasures are described in Table

8.7.

Table 8.7. Evaluation and Validation of The Secure Session Protocol

No. Threat Solution/Mitigation

1 Adversary tries to access

session symmetric key

(Information Discloser)

Secure Application Server encrypts session

symmetric key using public key corresponding

to the key exchange certificate of user. It is

computational infeasible for adversary to

decrypt encrypted message.
2 Adversary tries to hijack

session (Session Hijacking)

In Session establishment process both Secure

Application Server and user verifies

certificates and associated identities from

IDMS. After that they use public key

corresponding to key exchange protocol to

encrypt messages. These steps prevent our

system from session hijacking.

3 Adversary tries to extract

information from message

(Message Confidentiality)

The messages between Application Server and

user are encrypted with session key, which is

only shared between Application Server and

user.
4 Adversary can alter

messages

(Tampering/Message

Integrity)

All messages exchanged between Secure

Application Server and users are digitally

signed, so any alteration in messages at

transport level can be deducted in verification

phase.

CryptoNET - Generic Components and Their Validation

101 | P a g e

8.3.8. SAML Authorization Protocol
The SAML Authorization protocol is designed according to the SAML standard

with additional security features. Different potential attacks on SAML Authorization

protocol and their countermeasures are described in Table 8.8.

Table 8.8. Evaluation and Validation of The SAML Authorization Protocol

No. Threat Solution/Mitigation

1 Adversary tries to access the

contents of SAML

Authorization messages

(Information Discloser)

SAML Authorization object encrypts its

consents using the public key corresponding to

the key exchange certificate of recipient (if it

is SAMLAuthorizationRequest then

recipient will be XACML Policy Server. if it

is SAMLAuthorizationResponse then it

will be PEP server). It is computational

infeasible for adversary to decrypt encrypted

message to extract contents, so the only

authorized recipient can view the contents.

2 Adversary modifies the

contents of SAML

Authorization Protocol

(Tampering)

SAML Authorization object digitally signs

SAMLAuthorizationRequest and

SAMLAuthorizationResponse

messages using the private key corresponding

to the digital signature certificate of message

generator. Any modification in message can be

detected during the signature verification

process.

3 Adversary sends fake

message in order to gain

illegal access of resources

The messages between PEP server and

XACML Server are digitally signed which

provides a notion of source authentication.

Any fake message generated by adversary can

be identified during the digital signature

verification phase.

4 Impersonation All SAML Authorization messages exchanged

between PEP Server and XACML Policy

Server are encrypted and digitally signed. So

adversary cannot use these messages for reply

attacks and impersonation because only

authorized users with required security

credentials can process these messages.

CryptoNET - Generic Components and Their Validation

102 | P a g e

8.4. Validation of Methodology and Results
We designed and implemented our generic security objects using our described

methodology. We qualitatively analyzed behavior of each object against potential

threats in above sections. The aggregated results of our evaluation of generic

security objects are shown in Table 8.9. We found that our generic security objects

resist against software tampering and reverse engineering attacks because binaries of

each object is digitally signed and encrypted.

We also found that our generic security objects resist to tampering, information

disclosure, unauthorized access and non-repudiation attacks because attributes of

each generic security object are stored securely and they are manipulated in secure

execution environment. Furthermore, states, usage and communication between

objects are protected and they are only accessible to authenticated and authorized

users. So our generic security objects are protected against information disclosure,

illegal access, spoofing and brute force attacks.

Table 8.9. Summarized Results of Evaluation and Validation of our Generic Security Objects

Threats and Attacks

Generic
Security
Objects

B
in
a
ri
e
s
T
a
m
p
e
ri
n
g

B
in
a
ri
e
s

 A
n
a
ly
si
s

T
a
m
p
e
ri
n
g

In
fo
rm

a
ti
o
n

 D
is
cl
o
su
re

S
p
o
o
fi
n
g

 (M
a
sq
u
e
ra
d
e
)

E
le
v
a
ti
o
n

 o
f P

ri
v
il
e
g
e

B
ru
te

 fo
rc
e

N
o
n

‐R
e
p
u
d
ia
ti
o
n

P
a
ss
w
o
rd

 C
o
m
p
ro
m
is
e

R
e
p
la
y

 a
tt
a
ck
s

S
ig
n
in
g

 o
f p

re
‐d
e
fi
n
e
d

d
a
ta

S
e
ss
io
n

 H
ij
a
ck
in
g

SymmetricKey
Object

× × - × × × × - × - - -

AsymmetricKey
Object

× × - × × × × - × - - -

DigitalSignature
Object

× × × × × × - × - - - -

PKCS7 and SMIME
Object

× × × × × × - × - - - -

Strong
Authentication
Protocol

× × × × × × - × - × × -

Single‐Sign‐On
Protocol

× × × × × × - × × × - ×

Secure Session
Protocol

× × × × × × - × - - × ×

SAML
Authorization
Protocol

× × × × × × - × - × - -

CryptoNET - Generic Components and Their Validation

103 | P a g e

We validated that states of each of our generic security objects are protected,

their usage is protected, their actions are protected and their communications with

other objects are also protected. Therefore, security system designed using such

objects is completely secure, because our generic security objects provide complete

set of security services which are required for implementing secure applications for

cloud computing environments.

8.5. Performance Evaluation of Generic Security
Objects

We quantitatively evaluated the performance of some of our generic security

objects and compared their execution time with the objects of most popular Crypto

Services Providers. We designed and implemented test-cases using our Generic

Security Provider, Java Crypto Provider (JCP) and MS Crypto Services Provider

(MS-CSP) using .NET (C#). After that we calculated execution time in order to

compare performance of various security aspects. In this section we described

summarized results of our experiments as shown in Figure 8.5. Complete

information about the test-bed, hardware specifications and evaluation results are

described in Appendix D. In these experiments, we considered both basic and

advanced cryptographic functions. Basic functions are: symmetric key cryptography,

asymmetric key cryptography and hash functions. The advanced and complex

security functions are: certificate generation, encapsulation standards like

PKCS7SignedData cryptographic standard and SMIME standard.

For symmetric key cryptography, we created an instance of our

SymmetricKey object which encrypts and decrypts a predefined data using DES

algorithm (with PKCS7 padding). We also implemented same functions using

standard Java Crypto Provider and MS Crypto Services Provider. After evaluating,

we found that our generic security object takes 16 milliseconds (ms) to encrypt and

decrypt data using symmetric key cryptography. We also calculate that the Java

Crypto Provider takes 377 ms and .NET Provider takes 3 ms for same functions. The

analysis shows that our generic security object for symmetric key is efficient than

Java Crypto Provider but the .NET Provider provides better results for symmetric

key cryptography.

For asymmetric key cryptography, we created asymmetric key pair (RSA-1024)

using our AsymmetricKey object, standard Java Crypto Provider and .NET

Provider. We used public key to encrypt predefined text and private key to decrypt

cipher text. After calculating execution time, we found that our generic security

object takes 33 ms, Java Crypto Provider takes 328 ms, and .NET Provider takes

290 ms. The experiment results of asymmetric key cryptography show that our

designed solution is efficient than the competitors.

For performance evaluation of hash functions, we created an instance of our

Hash object in order to compute hash value using SHA-1 algorithm. We also

implemented test cases using Java Crypto Provider and .NET Provider for hash

computation. We compared execution time and found that every provider takes less

than 1 ms.

CryptoNET - Generic Components and Their Validation

104 | P a g e

Figure 8.5. Performance comparison of security functions

We also implemented test-cases for complex security functions using above

mentioned providers to compare their execution time. We considered

X509Certificate, PKCS7 and SMIME objects. After evaluating, we found that our

generic security object Certificate takes 589 ms to generate X.509 Certificate

while Java Crypto Provider takes 692 ms, and .NET Provider takes 281 ms. For

PKCS7, our generic security object PKCS7 takes 84 ms to generate

PKCS7SignedData while Java Crypto Provider and .NET Provider takes 108 ms and

78 ms respectively. For SMIME, our generic security object SMIME takes 53 ms,

Java Crypto Provider takes 130 and .NET Provider takes 63 ms in order to generate

digital signature of E-mail letters using SMIME standard.

After analyzing and comparing the results of our experiments we established that

our generic security objects are efficient and provides better results for Java

applications. We also analyzed and compared security functions of MS Crypto

Services Provider and found that some of our security functions are efficient and

some are slightly slower than our Generic Security Provider.

In this comparison, we also compared lines of code and found that using our

generic security objects, a developer can implement security functions using in

fewer lines of code (as shown in Appendix D) than Java Crypto Provider and MS

Crypto Services Provider. Therefore, it justifies our claim that our methodology

decreases the complexity of secure software development; they are easy to

understandable and support rapid development methodology.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

T
im

e
(m

s)

Java Crypto

Provider/Bouncy Castle
Greneric Security Provider

MS Crypto Provider using

C# (.NET)

Asymmetric

Key

Cryptography

(RSA-1024)

HASH

Functions

(SHA-1)

Certificate

Generation

PKCS7

Signed

Data

SMIME

Signed

Data

Symmetric

Key

Cryptography

(DES)

Part II: Security
Architecture and
Applications

CryptoNET - Security Architecture and Applications

109 | P a g e

9. CryptoNET Architecture

In this chapter we describe the objectives of our framework for protection of IT

resources, messages, operations and software modules. The framework is

structured as a layered model. We elaborate security features, functions and

components of each layer. In addition, in this chapter we describe the roles and

responsibilities of each component.

9.1. Overview of CryptoNET Architecture
CryptoNET is designed based on simple principle that all applications’ resources are

protected using encryption. If all the resources, operations, attributes, messages and

software modules are maintained and manipulated in a cryptographic environment, then

all workstations and servers are protected against mobile code, malicious software,

intruders and incorrect operations. The design of CryptoNET is based on generic security

objects, components, well established secure technologies, and security standards. The

components of CryptoNET are categorized into the following four groups:

• The first group comprises security engine components which are basic

components of our security system. These components are: Security Provider,

Security Protocols, Secure SDK and Secure Execution Environment. These

components are complete in terms of their functionality, they transparently handle

security credentials, and they are easy to integrate with other components and

applications. The details of each component were described in Chapter 4, Chapter

5 and Chapter 6 respectively.

• The second group comprises various application components. These components

implement security functions using a single Security Provider. Furthermore,

application components use security protocols for various network services. All

application components are protected and executed in our secure execution

environment.

• The third group of components comprises application servers and domain level

security servers. The components of this group provide security services to the

components of the second group. Domain level security servers are part of our

cloud environment and provide security services and credentials to all components

that exist in a domain.

• The fourth group of components comprises global security infrastructure servers

which are deployed in our cloud computing environment. These servers support

standard protocols in order to develop trust between domains. The roles and

functionality of these servers are described in Section 9.2.4.

The components of the last three groups are structured into four layers. The

components of the first group are enabling components. Therefore, they exist at each

layer for providing the same set of security services and network security protocols to all

other components.

CryptoNET - Security Architecture and Applications

110 | P a g e

CryptoNET is complaint with FIPS 201 (PIV) smart cards for cryptographic

functions, local and remote authentication, authorization, Single-Sign-On and secure

communication. In addition, we designed additional security applets for the CryptoNET

system. The detailed description of security applets was given in Chapter 4.

9.2. Layered Model of the CryptoNET Architecture
The model of CryptoNET architecture is structured into four layers. Various

components located at individual layers, together with their interconnecting security

protocols, comprise security architecture of our CryptoNET system. Layering of

CryptoNET components is based on the following principles:

• Components at an upper layer provide services to the multiple components at the

lower layer;

• Component at upper layer link the same types of components at lower layers in

different domains;

• Components at an upper layer complement functionality of components at lower

layers.

Therefore, based on these principles, it appears that our CryptoNET architecture is

hierarchical. This means that it possesses properties of interconnectivity of multiple

components, scaling, expansion, and interoperability.

The bottom layer of our CryptoNET architecture is Integrated Secure Workstation

which provides various security features and services to users. The next layer is Secure

Application Servers. It comprises Secure E-Mail Server, Secure Web Server, Secure

Library Server, and Secure Software Distribution Server. Above that is Credential

Servers layer. It contains various components in order to distribute security credentials,

provide authentication and authorization services to various components exist in a

domain. These are: Issuing PKI Server, XACML Policy Server, Strong Authentication

Server (SA Server) and Identity Management Server (IDMS). In our system, these three

layers are deployed inside an organization (Security Domain) and administrated by a

Security Manager. The fourth layer is global security Infrastructure layer. It contains PKI

Top Server, PKI Policy Server and SMI Server. The components of this layer used for

developing relationships and trust between domains. These servers are administered by

Network Security Administrators and normally deployed outside of an organization or a

domain.

9.2.1. Layer 1: Integrated Secure Workstation
Integrated Secure Workstation (ISW) is located at the bottom layer of the CryptoNET

architecture, as shown in Figure 9.1. The workstation comprises various security

components that provide security services to end-users. These components are: Secure

Station Manager, Secure E-Mail Client, Secure Documents Manager, and Secure Web

Browser extended with proxy. The workstation protects local IT resources, messages and

operations for multiple applications. It implements security functions using Security

Provider, which provides standard and extended security functions and features.

Furthermore, Security Provider transparently handles security credentials and integrates

CryptoNET - Security Architecture and Applications

111 | P a g e

security hardware tokens, like smart cards, if available. The purpose of smart cards is to

perform two-factor authentication. The cards support cryptographic functions, operating

systems’ authentication, application login, strong authentication, Single-Sign-On, and

secure sessions. In addition, ISW supports network aspects of its applications by

connecting to Secure E-Mail Server, Secure Web Server, Secure Library Server, Secure

Software Distribution Server and to servers located in the global security infrastructure.

Figure 9.1. Components of Integrated Secure Workstation

The following are the main components and functions of the workstation:

Secure Station Manager

Secure Station Manager (SSM) is an important component of this layer. Functionally,

it is equivalent to the Windows Explorer. This component performs various security

management and operational functions. The end-user (Security Manager) uses this

component to register new users in a domain. The Security Manager also issues smart

cards to the newly registered users which are personalized with required applets and

credentials (see Chapter 4).

One of the most important functions of Secure Station Manager is transparent

handling of certificates. This component transparently checks the availability of current

users’ certificates. If they are not available, SSM generates three self-signed certificates.

These certificates are digital signature certificate, key-exchange certificate, and non-

repudiation certificate. Secure Station Manager also detects smart card. If smart card is

installed, then Secure Station Manager generates key-pairs in a smart card and also stores

certificates in it. If Local CA Server (PKI Issuing Server) is configured, then Secure

Station Manager requests and receives three certificates from Local CA Server and

overrides self-signed certificates. In addition, Secure Station Manager facilitates end-

users to perform various certificate management functions.

Using Secure Station Manager, users can perform standard file management

functions. It generates local-resource-symmetric-key to encrypt local files and IT

resources, using standard cryptographic format – PKCS#7. It stores local-resource-

Client

Mail
Client

Secure Station
Manager

Web
Browser

Doc
Manager

E-mail Server Web Server Hudson Server

Integrated Secure Workstation

Application Servers

CryptoNET - Security Architecture and Applications

112 | P a g e

symmetric-key in a smart card, if it is installed. Otherwise, it stores it in key-file,

protected by public key corresponding to key-exchange certificate of the current user.

Furthermore, it also creates encrypted AuditLog file and decrypts it upon current user’s

request for inspections of its entries. The end-user can also use this module to configure

various servers for other applications.

Secure E-Mail Client

Secure E-Mail Client performs standard e-mail functions: sending and receiving

secure e-mail using Secure/Multipurpose Internet Mail Extensions (S/MIME) standard. It

uses standard mail transport protocols: Simple Mail Transfer Protocol (SMTP) and Post

Office Protocol-3 (POP3). Secure E-Mail Client stores contacts into the address book

which are encrypted. For encryption of the address book entries, Secure E-Mail Client

uses local-resource-symmetric-key. It encrypts address book entries before storing them

into address book and decrypts them before displaying on the display panel.

Furthermore, this application is connected with Secure E-Mail Server to upload and

download protected address book for recovery and portability.

Secure E-Mail Client uses only Signed and/or Enveloped e-mail letters. It also sends

and receives only E-mail to/from authorized users. In order to provide authorization,

each Secure E-Mail Server applies authorization polices, specifying other authorized

“Sending To” and “Receiving From” Secure E-Mail Servers. The complete functionality

of Secure E-Mail System is explained in Chapter 11.

Secure Web Browser

Secure Web Browser is a component located in front of a standard Web Browser in

order to provide various security functions. This component performs standard exchange

information with Secure Web Server using HTTP protocol. It creates secure session with

the Secure Web Server to fetch Web contents. Furthermore, Secure Web Browser

encrypts cookies and browsing history in order to provide user-privacy. Key features of

this component are Single-Sign-On, secure commutation, XACML authorization

policies, and management of cryptographic keys. The detail operations of the Secure

Web Browser are explained in Chapter 12.

Secure Documents Manager

Secure Documents Manager is an extension of the OpenOffice application with

security functions. OpenOffice provides standard functions to end-users, like

manipulation of documents, spreadsheets, image editing and presentations. This

component provides security features like protection of files in

PKCS#7SignedAndEnvelopedData format, sharing of files in a group environment,

management of cryptographic group-keys, enforcement of section level XACML

authorization policies, SAML based Single-Sign-On and secure communication. In order

to share files in a group environment, this component is connected to the Secure Library

Server and also to security servers in our global security infrastructure. The detail

operations of the Secure Documents Manager are described in Chapter 13.

CryptoNET - Security Architecture and Applications

113 | P a g e

9.2.2. Layer 2: Secure Application Servers
The second layer of the CryptoNET system is Secure Application Servers layer,

shown in Figure 9.2. This layer comprises Secure E-Mail Server, Secure Web Server,

Secure Library Server, and Secure Software Distribution Server. Each server

transparently acquires the required certificates from the Local Certification Authority

(LCA) Server. In the CryptoNET deployment environment, these servers are managed

by a Security Manager. Some of application servers’ functions are mentioned in the

previous sections, so in the following sections we will briefly mention the features and

roles of each server in our framework. The detail functions and their operations are

explained in subsequent chapters.

Figure 9.2. Secure Application Servers and Components of The Integrated Secure
Workstation

Secure E-Mail Server

Secure E-Mail Server is a proxy server. It is located between Secure E-Mail Client

and standard E-mail Server. The Server is responsible to forward secure E-mails to

standard E-mail server and fetches secure E-mails on behalf of E-mail client. In addition,

this component provides extended security functions to Secure E-Mail Clients like

protection and management of address books, management of address-book-symmetric-

keys, handling of attachments, confirmation messages, enforcement of authorization

policies, Single-Sign-On, and secure communication. In addition, this Server also

cooperates with Secure E-mail Infrastructure servers for registration and validation of

domain addresses in order to protect user’s inboxes from SPAMs.

Secure Web Server

Secure Web Server is located in front of a standard Web Server as its security proxy.

It generates encrypted Web pages and deploys them at a standard Web server. It

transparently integrates secure execution environment for Web server in order to process

Secure E-Mail
Server

Secure Messages

Client

Mail
Client

Secure Station
Manager

Web
Browser

Doc
Manager

Secure Web
Server

Secure Library
Server

Secure Software
Distribution Server

E-mail Server Web Server Hudson Server

Integrated Secure Workstation

Secure Application Servers

CryptoNET - Security Architecture and Applications

114 | P a g e

encrypted web pages. Secure Web Server is responsible for sending/receiving protected

HTTP pages, handling of certificates, enforcement of XACML authorization policies,

and secure communication with Secure Web Browser.

Secure Library Server

In the CryptoNET system we also introduced Secure Library Server. This Server

provides security services for protection and distribution of secure documents in group

environments. It enforces XACML authorization policies in order to provide access of

documents and sections of documents to authorized users. It is also responsible to

manage and distribute cryptographic group keys using the Group Secure Association

Key Management Protocol (GSAKMP). Secure Library Server supports Single-Sign-On

protocol, secure communication protocol, transparent handling of certificates, and

management of groups.

Secure Software Distribution Server

Secure Software Distribution Server interacts with Hudson Server and Secure Web

Server to generate and distribute secure software modules to authorized users. It

generates executable binaries and then encapsulates them in our designed XML file.

Secure Software Distribution Server uses authentication and authorization of Secure Web

Server in order to distribute protected binaries to authorized users. In addition, this

component also digitally signs secure execution environment in order to execute

protected software modules.

9.2.3. Layer 3: Security Management Servers
This section describes various Credential Servers, shown in Figure 9.3. These servers

are in principle Security Management Servers in our CryptoNET architecture. They are

deployed in our cloud computing environment and are responsible for distribution and

management of certificates, creation and management of XACML policies, management

of identities, and strong authentication services. These servers are based on well-

established security standards and are interoperable with servers in other domains. The

components of the CryptoNET architecture, located at the lower layers, are connected

with these servers in order to obtain security services. In our framework, an instance of

these Credential Servers must be deployed in a domain, but multiple instances may also

be used.

PKI Issuing Server

In our system, PKI Issuing Server is also known as Local Certification Authority

(LCA) Server. LCA Server is a standard Certificate Authority Server which issues and

distributes X.509 certificates to all components in a domain. This Server may be

configured as a Single Certification Authority, in that case it generates self-signed

certificates. This Server may also be linked to the PKI in order to exchange certificates

and support establishing trust between various domains. In this case, the upper level

trusted certification authority issues the certificate of the Issuing PKI Server.

CryptoNET - Security Architecture and Applications

115 | P a g e

Figure 9.3. Credential Servers of the CryptoNET Architecture and Interactions
between them

XACML Policy Server

XACML Policy Server is also known as Policy Decision Point (PDP). This Server

supports management of groups, roles, XACML policies, and policy sets. The Server

also creates and validates SAML tickets for the SSO protocol. In addition, this Server is

also responsible to distribute XACML policies to various components for local decisions.

The XACML Policy Server supports SAML Authorization protocol for evaluation of

authorization policies. It also supports SAML Authentication protocol for Single-Sign-

On.

Strong Authentication Server

Strong Authentication (SA) Server performs mutual strong authentication with clients

using extended strong authentication protocol, which is FIPS-196 compliant protocol.

The Server has also connection with XACML Policy Server to generate SAML Ticket

for authenticated clients.

Secure E-Mail
Server

SA Server

SAML Ticket Secure Message

Issuing
PKI Server

(LCA)

XACML Policy
Server

IDMS

Client

Security
Manager

Mail
Client

Secure Station
Manager

Web
Browser

Doc
Manager

Secure Web
Server

Secure Library
Server

Secure Software
Distribution Server

E-Mail Server Web Server Hudson Server

Secure Integrated Workstation

Secure Application Servers

Credential Servers

CryptoNET - Security Architecture and Applications

116 | P a g e

IDentity Management Server (IDMS)

Identity Management System is used to create, manage and delete identities in

collaborative environments. This system uniquely identifies users in a global

environment and provides identity verification services to other components.

9.2.4. Layer 4: Infrastructure Servers
This section describes various infrastructure level servers located in a cloud

computing environment. Their main purpose is to synchronize security policies and

functions across multiple domains. These servers are shown in Figure 9.4. The role of

each server is explained in the following sections.

Figure 9.4. Layered Model of the CryptoNET System

Security
Manager

SMI Server (.com) SMI Server (.se)

SSMMII

Secure E-Mail
Server

SA Server

SAML Ticket Secure Message

Issuing
PKI Server

(LCA)

XACML Policy
Server

IDMS

Policy
PKI Server

Top PKI
Server

Security
Administrator

Client

Mail
Client

Secure Station
Manager

Web
Browser

Doc
Manager

Secure Web
Server

Secure Library
Server

Secure Software
Distribution Server

E-Mail Server Web Server Hudson Server

Secure Integrated Workstation

Secure Application Servers

Credential Servers

Infrastructure Servers

PPKKII

CryptoNET - Security Architecture and Applications

117 | P a g e

PKI Top Server

PKI Top Server is the component of the global security infrastructure. PKI Top

Server is a root CA server and it generates self-signed certificates. The Server also

supports the concept of cross-certification in order to develop trust between two

domains.

PKI Policy Server

Below PKI Top Server is PKI Policy Server. In our system PKI Top Server issues

certificates to the PKI Policy Server and PKI Policy Server issues certificates to LCA

Servers. The purpose of PKI Policy Server is to regulate, impose and enforce certificate

policies to domain-level LCA Servers.

SMI Server

SMI Server is the component of our Secure E-mail System. The purpose of this

Server is to register SEM servers and certify domain names. SMI Server also coordinates

with other SMI servers to validate the domain names. We describe operations of the SMI

Server in Chapter 11.

9.3. Summary
CryptoNET is a collection of enabling components, client components, application

servers, and security servers. CryptoNET system is complete in terms of functions and

security services that it provides. CryptoNET is structured in the form of four layers and

each layer provides security services to other components using the same enabling

components, so the same cryptographic engines are used by all applications. CryptoNET

also supports global security protocols for interaction between various domains. In this

architecture, credentials servers and global security infrastructure servers are part of our

cloud computing environment. CryptoNET protects resources, operations, database

attributes, messages and software modules without any intervention from end-users using

well-established security standards and technologies.

CryptoNET - Security Architecture and Applications

118 | P a g e

CryptoNET - Security Architecture and Applications

119 | P a g e

10. Integrated Secure Workstation

In this Chapter we describe Integrated Secure Workstation which integrates

various client components in order to protect IT resources. This workstation

uses Security Provider for cryptographic functions and for transparent

handling of security credentials and smart cards. It also uses security

protocols for security of various distributed components. The Integrated

Security Workstation is protected, so it is executed using our extended secure

execution environment.

The Integrated Secure Workstation comprises several client applications:

Secure Station Manager, Secure E-mail Client, Secure Web Browser, and

Secure Documents Manager. Each component maintains and manipulates

user’s resources using single instance of enabling components and supports

multiplatform operating systems.

10.1. Overview and Features of The Integrated
Secure Workstation

Integrated Secure Workstation (ISW) comprises four secure client applications:

Secure Station Manager, Secure E-Mail Client, Secure Documents Manager, and

Secure Web Browser. It protects local IT resources, messages and operations across

multiple applications using enhanced security functions. It implements security

functions using Security Provider, which provides standard and extended security

functions and features. Furthermore, Security Provider transparently connects to

security hardware tokens, like smart cards, if available, which enables users to perform

login, create signatures, and store security credentials in smart cards.

ISW also supports security protocols that are used to connect to components of our

security infrastructure: LCA Server, IDMS, SA Server and XACML Policy Server.

Furthermore, in each domain, ISW supports network aspects of its applications by

connecting to Secure E-Mail Server, Secure Web Server, and Secure Library Server.

Security features of those application servers are discussed in the subsequent chapters.

To make it simple and understandable, we categorized security functions and features

into two groups: common security functions and application–specific security

functions. Common security functions are used across multiple applications, while

application–specific security functions are used only by individual applications.

10.2. Common Security Functions

10.2.1. User Registration
In our system Security Manager (SM) with administrator’s rights, registers users in

the IDMS. In that process SM provides complete profile of users like username,

address, telephone number, etc. In addition SM also specifies login-name, password,

role and associated domain for each user. The password of the system is protected

CryptoNET - Security Architecture and Applications

120 | P a g e

using local-resource-symmetric-key. In this system we are using two types of roles.

One is User which can only perform client-side functions. The other one is Security

Manager, who inherits capabilities of normal users, plus he/she can perform some

additional tasks, like management of applications servers, registration of users,

issuance of smart cards, etc. In our System, user’s registration information is used to

create a DistinguishedName for various certificates (see Section 10.2.3).

10.2.2. Local User Authentication
At start-up, the system activates generic login module, shown in Figure 10.1. This

module loads Security Provider in order to provide security functions. During this

process Secure Workstation creates connections with the IDMS Server and the LCA

Server, if these servers are accessible. The module is generic in a sense that it uses user

name and password, if smart card is not available; otherwise it requires PIN to

authenticate to the card. Local user authentication based on smart cards is compliant to

the FIPS 201 (PIV) standard [24], i.e. it supports PIN–only or PIN plus fingerprint

authentication. After successful authentication, it displays generic graphical interface,

as shown in Figure 10.2. In this phase, Integrated Secure Workstation also checks the

presence of certificates. If certificates are not available, then it notifies user to request

certificates from the LCA Server.

Figure 10.1. Generic Log-in Module for Local User Authentication

10.2.3. Handling of Certificates
One of the important functions of our Integrated Secure Workstation is transparent

handling of certificates. ISW fetches current user’s registration data from the IDMS

Server and creates user’s Distinguished Name, which is used for generation of the

three self–signed certificates. These are digital signature, key exchange, and non-

repudiation certificates. If connection to the LCA Server is established, then ISW

requests and receives certificates from the CA Server. It stores certificates in a smart

card, if it is connected; otherwise, it stores them in a local certificate database. In

addition, various certificate management functions are available with Secure Station

Manager, as explained in Section 10.3.1.

CryptoNET - Security Architecture and Applications

121 | P a g e

Figure 10.2. Certificate Management Functions of Secure Station and View of Protected
Files and Actions in Data Panel (Listing of Files). Running on Linux environment.

10.2.4. Single-Sign-On and Secure Communication
ISW supports Single-Sign-On protocol in order to gain access to various

application servers using SAML Ticket. ISW transparently performs Single-Sign-On

protocol, as described in Section 5.2.3, when it is required or invoked by client

applications. After Single-Sign-On is successfully completed, the Secure Station

establishes secure communication with a corresponding application server in order to

exchange secure messages.

10.2.5. User Authentication with Application
Servers

Some of application clients included in ISW may create connections with their

corresponding application servers. In that case authenticated client checks the presence

of SAML Ticket for a Single-Sign-On protocol. If SAML Ticket does not exist, then it

performs Strong Authentication Protocol with the SA Server, as described in Section

5.2.2, in order to acquire SAML Ticket.

10.3. Application–Specific Security Functions

10.3.1. Secure Station Manager
Station Manager is an application equivalent to Windows Explorer, but extended

with security. Using Station Manager users can perform standard file management

functions like copy, cut, paste, rename file and folder, open file, etc. Station Manager

generates a local-resource-symmetric-key to protect local files and other IT resources,

using standard cryptographic format – PKCS#7, as shown in the front data panel of

Figure 10.2. Station Manager stores local-resource-symmetric-key in the Security

CryptoNET - Security Architecture and Applications

122 | P a g e

Applet, if smart card is connected; otherwise it stores it in a key file, protected using

public key from the key-exchange-certificate. Local file protection works as follows:

When a user right-clicks on a file to encrypt it, our system encrypts it using local-

resource-symmetric-key. Our system also uses the same local-resource-symmetric-key

to decrypt the encrypted file(s). Similarly, when end-user performs “Sign” function our

system digitally signs a file using private key corresponding to the digital signature

certificate. Digital signature generation is performed by a smart card, if it is installed;

otherwise, software-based encryption is used. To encapsulate protected files and

resources, we use PKCS7SignedData for signed resources,

PKCS7EnvelopedData for encrypted resources, and

PKCS7SignedAndEnvelopedData for signed and encrypted resources. Our

system stores protected files with standard extensions: p7s for signed files, p7e for

encrypted files, and p7m for signed and enveloped data.

If a user right-clicks on a protected file our system automatically detects

encapsulation technique based on extensions of protected files. For example, if a user

clicks a file which has p7s extension, then Station Manager automatically verifies

digital signature using public key extracted from digital signature certificate. If

extension of a file is p7m, then the system automatically verifies signature before

decrypting the selected file using local-resource-symmetric-key.

In addition, Station Manager interacts with the Local CA Server in order to

generate, fetch, verify and list certificates, as shown in the background panel of Figure

10.2. All certification functions are based on various certificate management

standards. Station Manager also provides features for setting various servers and

configurations. Furthermore, it also creates encrypted AuditLog and decrypts it upon

user’s request for inspection of its entries.

10.3.2. Secure E-Mail Client
Secure E-Mail Client, a component of the Integrated Secure Workstation, performs

standard E-mail functions: sending and receiving secure E-mails using S/MIME

standard. It uses standard mail transport protocols: SMTP and POP3. Secure E-Mail

Client stores contacts into the address book. For their protection Secure E-Mail Client

uses address-book-symmetric-key. Secure E-Mail Client encrypts address book entries

before storing them into the address book and decrypts them before displaying them

on the display panel. Furthermore, the Client is connected to the Secure E-Mail Server

in order to upload and download protected address books and address-book-

symmetric-keys for recovery and portability purposes.

Secure E-Mail Client uses only Signed and/or Enveloped E-mail letters. This

approach reduces threats of viruses, spam and malicious code. In addition, in order to

be authorized to receive those mails, each Secure E-Mail Server applies authorization

polices, specifying authorized “Sending To” and “Receiving From” Secure E-Mail

Servers. The complete functionality of our Secure E-Mail Server is explained in

Chapter 11.

CryptoNET - Security Architecture and Applications

123 | P a g e

10.3.3. Secure Web Browser
Secure Web Browser is a component of Integrated Secure Workstation. In order to

provide extended security functions and features, it is logically located between Secure

Web Server and standard Web browser. This component redirects Web browsers’

HTTP requests to Secure Web Server, gets responses from Secure Web Server, and

sends them to Web browser. It also creates secure session with Secure Web Server in

order to protect web contents at the transport level. This component accepts only data

in PKCS7SignedAndEnvelopedData format, which also protects the

Workstation from viruses and malicious code. Furthermore, it uses local-resource-

symmetric-key to protect history and cookies information in order to provide privacy

and protection of Workstation from Web tracking. Detail functions of this component

are described in Chapter 12.

10.3.4. Secure Documents Manager
Secure Documents Manager offers standard documents handling functions to end-

users, like manipulation of word documents and spreadsheets, image editing and

presentations. This functionality is based on the OpenOffice, which is extended with

security features, as shown in Figure 10.3.

Figure 10.3. Secure Documents System based on OpenOffice with Security Extensions. It
saves documents in encrypted format with *.p7e extension.

Secure Documents Manager stores transparently protected files using

PKCS7SignedAndEnvelopedData format. This module also uploads and

downloads documents to and from the Secure Library Server, which is actually a

repository of documents in a cloud computing environment. Furthermore, it provides

options to securely distribute documents within the group of users.

Secure Documents Manager uses security protocols for distribution of documents

explained in the Chapter 5. The format of distributed documents is also

CryptoNET - Security Architecture and Applications

124 | P a g e

PKCS7SignedAndEnvelopedData. In addition, this application also manages

documents in group environments and structures documents into sections, where each

section is accessible only to authorized users. Enforcement of authorization polices

and key management is performed by the Secure Library Server using standard

protocols. The details of Secure Documents System are described in Chapter 13.

10.4. Evaluation of the Integrated Secure
Workstation

We qualitatively evaluated our Integrated Secure Workstation using threat model.

We also analyzed the behavior of our system against several potential threats. The

result of our evaluation is shown in Table 10.1. In User Registration process, our

system uses SymmetricKey object in order to protect password before storing it into

IDMS. This function is protected against Information Disclosure and Spoofing attacks.

The Login function of our system is protected against Information Disclosure,

Spoofing, Elevation of privileges and Repudiation attacks. Our login function either

uses username and password or smart card for local authentication. In both cases it

protects against the above attacks.

As shown in Table 10.1, Local Files Management functions protect files and IT

resources against Tampering, Information Disclosure, Spoofing, Elevation of

privileges and Repudiation, because we used PKCS7 object to encapsulate local files

and IT resources in standard cryptographic format;

PKCS7SignedAndEnvelopedData.

Our system handles transparently security credentials which are protected based on

well-established security standards. Furthermore, our Integrated Secure Workstation

generates certificate-requests for a current user after verifying his/her identity from the

IDMS server. In addition, it protects security credentials using our generic security

objects which are already in Chapter 8 proved that they are protected against

Tampering, Information Disclosure, Spoofing, Elevation of privileges and Repudiation

attacks. Similarly, our Workstation transparently handles smart card and smart card

based cryptographic functions after authenticating users to a smart card using PIN.

We described in earlier sections that our Integrated Secure Workstation comprises

several client components which interact with various corresponding Secure

Application Servers. For communication we use our secure session protocol which

protects messages from Tampering, Information Disclosure, Spoofing and Repudiation

attacks, since each message is encapsulated in the

PKCS7SignedAndEnvelopedData cryptographic format. AuditLog management

is a key feature of our Integrated Secure Workstation. In our system entries of our

AuditLog modules are protected using SymmetricKey object, so the system protects

Log files form various attacks, as shown in Table 10.1. After evaluating and validating

our Integrated Secure Workstation, we established that if a generic security object is

tested and protected against various attacks, then the whole system developed using

such objects is also secure, tested and verifiable.

CryptoNET - Security Architecture and Applications

125 | P a g e

Table 10.1. Threat Model for the Evaluation of Integrated Secure Workstation.

No. Security Threats

Functions

and

Features

T
a

m
p

er
in

g

In
fo

rm
a
ti

o
n

 D
is

cl
o
su

re

S
p
o
o
fi

n
g

E
le

va
ti

o
n

 o
f

p
ri

vi
le

g
e

R
ep

u
d

ia
ti

o
n

1 User Registration - × × - -

2 Login Function - × × × ×

3 Local Files Management × × × × ×

4 Security Credentials × × × × ×

5 Smart Cards Handling - × - × -

6 Communication × × × × ×

7 Audit Log Management - × × × -

10.5. Summary
Our Integrated Secure Workstation (ISW) provides comprehensive set of security

services for user Workstation environments and selected applications. The main

principle was to cryptographically protect local IT resources, properties and messages.

It transparently handles security functions and services. The design of ISW is based on

the concept of generic security objects, which can be used by any application included

in the Secure Workstation.

CryptoNET - Security Architecture and Applications

126 | P a g e

CryptoNET - Security Architecture and Applications

127 | P a g e

11. Secure E-mail System

In this Chapter we describe Secure E-mail System which uses security objects

from the Security Provider in order to send and receive secure E-mail letters, to

protect address books, to manage address-book-symmetric-key, to handle

confirmation messages, and to protect inboxes from spam. Furthermore, we

introduced Secure Mail Infrastructure Server which provides trust between

domains using Federation Protocol in order to register E-Mail Servers, to

exchange domain names and for validation of domain names.

11.1. Overview and Featues of The Secure E-mail
System

Secure E-mail System supports standard E-mail functions and their extended security

features. It comprises three core components. These are Secure E-Mail (SEM) Client,

Secure E-mail (SEM) Server, and Secure Mail Infrastructure (SMI) servers. All these

components use our security objects as engines which provide cryptographic and

network level security services. In addition, these Secure E-Mail System components are

also connected with our cloud security infrastructure that provide certification,

authentication, authorization, and secure communication services.

The following are the key features of our system:

• Supports strong authentication protocol complaint with FIPS 196 standard and

SAML-based Single-Sign-On;

• Transparent handling of security credentials and smart cards;

• Protection of mailboxes and E-mail letters (confidentiality, integrity, server’s and

receiver’s authenticity);

• Secure and efficient handling of E-mail attachments;

• XACML-based authorization policies applied to sending and receiving E-mail

letters in order to protect inbox from spam.

• Protection of address book entries and management of address-book-symmetric-

keys;

• Confirmation of delivery of E-mail letters;

• Management of Secure Mail infrastructure performing registration of SEM

Servers and exchange of domain names; and

• Validation of domain names to avoid spreading spam.

11.2. The Concept of Secure E-mail System
The architecture of our Secure E-mail System is shown in Figure 11.1. It is derived

from our CryptoNET framework. Each component of the Secure E-mail System is based

on our security objects and designed according to our research approach, described in

Chapter 1. We adopted proxy–based architecture in order to provide extended security

CryptoNET - Security Architecture and Applications

128 | P a g e

features and functions to E-mail clients. The core components of Secure E-mail System

are: Secure E-Mail Client, Secure E-Mail Server, and Secure Mail Infrastructure Servers.

Some of supporting components, shown in Figure 11.1, are already described in Chapter

9.

Figure 11.1. Architecture of Secure Mail Infrastructure and Interactions between Components

The first component of the system is Secure E-Mail Client, located at the bottom of

the system, as shown in Figure 11.1. It cryptographically protects E-mail resources. It

sends and receives digitally signed and/or encrypted E-mail letters encapsulated in

S/MIME standard. In addition, it cryptographically encrypts address book entries;

manages address-book-symmetric-keys; supports Single-Sign-On and secure sessions

protocols with the SEM Server.

The second component of the system is Secure E-Mail Server. This server acts as a

proxy between Secure E-Mail Client and standard E-Mail Server, as shown in Figure

11.1. Secure E-Mail Server is logically a separate component, but physically deployed on

the same machine where standard E-Mail Server is running. In our system Security

Manager manages this server. The Server transparently fetches two certificates (digital

signature + non-repudiation, key-exchange) from the LCA Server. Secure E-Mail Server

is responsible for sending and receiving E-mail letters to/from standard E-Mail Server

using SMTP and POP3 protocols. This Server supports Single-Sign-On, secure

communication with SEM Client, efficient handling of secure E-mail letters,

management of clients’ address books, management of address-book-symmetric-keys,

enforcement of E-mail sending and receiving authorization policies, registration with

SMI Server and exchange of client certificates with other SEM Servers.

The third component of Secure E-mail System is Secure Mail Infrastructure (SMI)

Server. SMI Server is logically located at the top of the infrastructure in order to support

Internet-wide cooperation and trust between various E-mail domains. SMI Server

Mail Client

Mail
Server

Recipient

E-mail letter

SEM Server

PP

Mail Client

Mail
Server

E-mail letter

Sender

Issuing
PKI Server

Internet

Policy PKI
Server

Policy
PKI Server

Top PKI
Server

XACML
Policy Server

SSeennddiinngg DDoommaaiinn

Security
Manager

Issuing
PKI Server

XACML
Policy Server

RReecceeiivviinngg DDoommaaiinn

SMI Server .com) SMI Server (.se) SSMMII

PEPPEP
SEM Server

CryptoNET - Security Architecture and Applications

129 | P a g e

acquires two certificates from the CA server. The key functions of SMI server are:

registers SEM Servers, certifies and validates domain names of SEM Servers, and

exchanges domain names between infrastructure level servers. We designed Secure

Federation Protocol (see Section 11.3.7) which creates federation of SEM Servers and

SMI Servers and performs federation management functions.

11.3. Operations of Secure E-mail System
The following are extended security functions of our Secure E-mail system.

11.3.1. Strong Authentication and Secure
Communication

At the startup SEM Client checks the possession of certificates, SAML tickets, and

other required security credentials. If certificates do not exist, then it notifies user to

acquire certificates using Secure Station Manager, as described in Section 10.2.3. If

certificates exist, then it checks SAML Ticket. If it does not exist, then it performs

Strong Authentication with the SA Server to acquire SAML Ticket, as described in

Section 5.2.2. After this, Secure E-Mail Client performs Single-Sign-On with SEM

Server and establishes secure session in order to exchange secure messages.

11.3.2. Secure E-mail Letters and Attachments
Protection of E-mail letters is based on the S/MIME standard. E-mail sender fetches

recipients’ certificate from the LCA Server in order to encapsulate E-mail letters in

S/MIME message. For efficient and secure handling of attachments, SEM Client

encapsulates attachments into signed and/or enveloped PKCS7 objects and uploads them

to the SEM Server. SEM Server sends back an URL corresponding to each attachment.

SEM client embeds URL(s) into the body of an E-mail letter before sending an E-mail

letter.

At the recipient’s side, SEM Client fetches new E-mail letters from SEM Server.

SEM Server fetches E-mail letters from a standard E-mail server and verifies domain

name (see Section 10.3.6) and applies receiving authorization policies (see Section

10.3.5). After that it sends authorized E-mail letters to SEM Client and sends

confirmation message to sender (see Section 11.3.4). SEM Client receives E-mail letters

and also requests SEM Server to provide certificate of the sender for verifying signature

of each E-mail letter. The SEM Server may interact with sender’s SEM server for

exchanging certificates. In this case, it requests SMI server to resolve domain name to

get the IP and Port number of the sender’s SEM Server. After acquiring sender’s

certificate, SEM Client verifies signature and opens Secure E-mail letter. SEM Client

stores protected E-mail letter in the inbox folder.

For downloading attachments SEM Client parses the body of the message and

extracts URL(s). SEM Client downloads the file from the received URL and decrypts it

before storing it in a local file system; as SEM Client already has sender’s certificate.

Deletion of stored files on the SEM server depends on the accessibility of particular E-

CryptoNET - Security Architecture and Applications

130 | P a g e

mail. If an attachment has already been downloaded, then it can be deleted from the SEM

server. Otherwise, it is deleted when user deletes E-mail from inbox.

11.3.3. Secure Address Book
Protection of address book is one of the key functions of our SEM Client. For this

purpose, Client generates an address-book-symmetric-key (also known as symmetric-key

in this chapter) for encryption of address book entries. If a user wants to add a new

contact, SEM Client uses the same symmetric-key to encrypt newly generated entry and

saves it in the address book. Furthermore, Client has also an option to upload encrypted

address book to the SEM Server to protect it against accidental loss. For management of

symmetric-keys, SEM Client can upload symmetric-key to the SEM server. In this

function, the symmetric-key is protected using public key extracted from key-exchange

certificate of the SEM Client. Furthermore, recovery of the address book from accidental

loss is performed by downloading of encrypted address book together with the relevant

symmetric-key from the SEM server.

11.3.4. Confirmation Messages
Tracking user’s E-mails is also a feature of our SEM system. It is achieved by

designing three types of confirmation messages: confirmation of delivery, confirmation

of receipt, and confirmation of acceptance. Confirmation of delivery message is sent by

the SEM server when it receives E-mail from the standard E-mail server. Confirmation

of receipt message is sent by the SEM server when recipient downloads E-mail.

Confirmation of acceptance message is sent by recipient’s SEM client when it opens the

message.

11.3.5. E-mail Authorization Policies
In our system spam E-mails are prevented by applying XACML authorization polices.

These policies are managed by the XACML Policy Server and enforced by the PEP

server. XACML policy file contains entries about the authorized users and domains.

Security Administrator of the SEM Server manages domain information, while

individual users specify the list of authorized recipients.

PEP Server, proxy of the SEM server, enforces authorization policies for outgoing E-

mails by consulting XACML Policy Server. PEP Server uses

SAMLPolicyAuthorizationRequest and SAMLPolicyAuthorization

Response messages to communicate with the XACML Policy Server in order to

handle authorization services when sending E-mails. Similarly, authorization policies for

incoming E-mails are handled by verifying “From” E-mails address and domain names

from the XACML Policy Server.

In the described authorization solution, it is still possible for an attacker to send spam

to a remote SEM server using “From” field with a valid E-mail address. To prevent

system from such attacks, E-mail address of each user must be certified by the Security

Administrator when he/she creates user account. Security Administrator encapsulates the

E-mail address in a verifiable format: PKCS#7SignedData. The Sender of an E-mail

CryptoNET - Security Architecture and Applications

131 | P a g e

inserts certified E-mail address in the header of E-mail, which is then verified by the

receiving SEM Server, before enforcing authorization policies. In addition, recipients’

SEM Server can validate the domain name of the sending SEM Server by interacting

with the SMI Server using Secure Federation protocols.

11.3.6. Validation of Domain Names
SMI Server registers Secure E-Mail Server. It stores IP address of the SEM Server, its

port number, and domain name into the SMI Domain Names List. The details of this

registration process are described in Section 11.3.7. SMI Server certifies domain name

and packages it into PKCS7SignedData format. When recipient Secure E-Mail Server

receives E-mail, it consults SMI server to validate the domain name. Validation of the

domain name is based on two functions: (1) existence of domain names in SMI domain

names list, and (2) verification of a signature generated by SMI server during

certification process. If both functions return positive results, then SMI server returns IP

address and port number of the sender’s SEM server. Otherwise it discards E-mail and

sends a failure notification to the sender that the E-mail is not coming from valid domain.

11.3.7. Federation of SEM and SMI Servers
Certification of domain addresses in the SEM System is achieved by introducing a

Secure Mail Infrastructure (SMI) Server. SMI Server is responsible to register SEM

Server, certify domain names, and then establish a federation of SEM and SMI Servers.

Each SEM Server in our system must be registered with a SMI Server and SMI

Servers must communicate with each other in order to exchange domain names and to

perform verification of domain names. To register SEM Server with an SMI Server, we

designed Unilateral Registration Protocol (URP). For creating SMI level federation and

exchange of domain names, we designed Mutual Registration Protocol (MRP).

URP performs functions related to registration of SEM Servers with an SMI server

and to certification of domain addresses, while MRP is used to exchange registration

information between SMI Servers. Furthermore, we also structured the following

messages for creation and management of the federation procedure at the infrastructure

level. The format of each message is shown in Appendix C.

Registration Request: The purpose of this message is to apply for registration with a

SMI server. This message contains originator’s name, receiver’s name, session ID,

domain name of SEM server (URL), IP, port and General Security Function (GSF).

URL, IP and port of SEM server are required by the SMI Server for registration, while

GSF is needed in order to verify the integrity of message contents. GSF field is

calculated using asymmetric cryptography, as shown in equation 8.1:

GSF = E (H(SessionID | URL | IP | Port) , PR) ……… (8.1)

Where E = Asymmetric encryption

H = Hash function

PR = Private Key of GSF creator

Verification of the GSF field at the receiver’s side is performed by using the

following functions:

CryptoNET - Security Architecture and Applications

132 | P a g e

HS = D (H (SessionID | URL | IP | Port) , PP) ……… (8.2)

H` = H (SessionID | URL | IP | Port)

Verification of GSF: if H` = H

Where

HS = Received hash from sender

H` =Hash calculated by receiver

PP = Public Key of sender

In the URP, GSF field is encrypted using public key from the certificate of the

Security Administrator, while in the MRP GSF field is encrypted using public key of the

certificate of the Administrator of the SMI Server.

Registration Reply: The purpose of this message is to receive acknowledgement from

SMI server regarding the registration of the domain name. Registration Reply message

contains originator’s, receiver’s, session ID, GSF, and certified URL. GSF field is

calculated using cryptographic functions specified in Equation 8.1, but in this case

session ID is only the input to this function, while the certified URL is in the format of

PKCS7SignedData.

Registration Reply-Request: The Registration Reply Request message is a special type

of a message which contains Reply and Request. The reply part is acknowledgement of

the Registration Request, while Registration Request is the request for registration of the

SMI server with the corresponding SMI server. The format of the reply message is

similar to the Registration Reply, but without certified URL field. Registration Request

message, which is nested in the reply message, contains information required by SMI

server for registration of the requested SMI server in order to establish trusted federation.

Deregistration: Deregistration message is used when SMI Administrator decides to leave

the federation. This message contains originator’s name, receiver’s name, session Id,

URL, VURL and GSI. GSI is the output of the GSF function, which takes session Id and

URL as input.

AddReferences: This message contains originator’s name, receiver’s name, session Id,

and the list of references. These references are separated by ‘;’. The GSI field is the

output of the GSF function. In this message GSF accepts session ID and list of references

as input.

DelReference: This message is sent by an initiator SMI server to other SMI servers in

the federation after deregistration of the particular SEM server. This step is needed in

order to synchronize the domain name list and makes it consistent. This message

contains originator, receiver, session Id and values of reference which is candidate for

removal from domain name list.

CryptoNET - Security Architecture and Applications

133 | P a g e

Unilateral Registration Protocol

As mentioned above, the Unilateral Registration Protocol registers SEM server with

an SMI server and SMI certifies the domain name of the SEM server. In this protocol

SEM server initiates the protocol and in the first phase performs strong authentication, as

shown in Figure 11.2 a. and as described in Section 5.2.2. After successful

authentication, SEM server sends Registration Request to the SMI server which verifies

the GSF field and compares session ID. Furthermore, the correctness of the session ID

gives a notion that the message is received from an authentic source.

Figure 11.2 a. Unilateral Registration
Protocol and communication between

SEM and SMI Server

Figure 11.2 b. Mutual Registration
Protocol and communication between

SMI Initiator and SMI Responder

Upon successful verification of the GSF field, SMI stores URL, IP and port number in

temporary storage accessible only by the Security Infrastructure Administrator. The

Administrator views stored information and certifies domain name. SMI Server then

stores the URL, IP and port number in the domain name database, cryptographically

protected to ensure integrity of stored domain names.

SMI server sends Registration Reply message back to the SEM server which contains

validated domain name. SEM Server processes Registration Reply and verifies the GSF

field. Furthermore, SEM Server keeps certified URL in a local storage. SMI Server also

sends a message to the SMI servers in the federation to notify them about newly

registered SEM server.

Mutual Registration Protocol

Mutual Registration Protocol registers SMI Server with the another SMI Server and

creates federation between infrastructure level servers. In this protocol any SMI Server

can be the initiator of the protocol. It initiates strong authentication process, as shown in

Figure 11.2 b. and as described in Section 5.2.2. The Initiator SMI Server sends

Registration Request to the Responder SMI Server which verifies the GSF field and

compares the session ID.

Upon successful verification of the GSF field, SMI stores URL, IP and port number in

temporary storage, which is accessible only by the Security Infrastructure Administrator.

Cert SEM

RSMI

S(RSMI + RSEM)

S(RSEM + RSMI), Cert

Registration Request

Registration Reply

SEM SMI
Cert SMIinit

RSMIres

S(RSMIres + RSMIinit)

S(RSMIinit + RSMIres), Cert

Registration Request

Registration Reply-Request

Registration Reply

SMIInit SMIRes

CryptoNET - Security Architecture and Applications

134 | P a g e

The Administrator views the stored information and declares the requested SMI Server is

the trusted one. The Responder SMI Server then stores the URL, IP and port number in a

domain names list and sends Registration Reply-Request message back to the Initiator

SMI Server. The Initiator SMI Server processes Registration Reply and verifies the GSF

field. After that, it processes Registration Request and stores URL, IP and port number in

a temporary storage. The Administrator views stored information, marks the requested

SMI Server as the trusted one, and sends Registration Reply message as

acknowledgement.

Trust between two domains inherently develops trust between SEM Servers of both

domains. SMI Server stores information cryptographically protected to ensure the

integrity of URLs.

Management of The Federation

Management of the federation includes exchange of newly registered domain names

with SMI servers in a federation and deregistration of domain names. When an SMI

Server certifies a new domain, it sends a message to other SMI servers that exist in a

federation to add new server into the domain name list as a reference. Similarly, if SMI

Server Administrator finds that the particular SEM Server is compromised, he can

deregister it by sending deregister reference message to other SMI servers.

Corresponding SMI Servers will upgrade domain names list accordingly. Furthermore,

manipulation messages are digitally signed in order to provide message source

authentication and integrity.

11.4. Evaluation of the Secure E-mail System
We qualitatively evaluated our Secure E-mail System by applying Threat Model on

its individual functions as shown in Table 11.1. The authentication in our system is

performed using Strong Authentication object which protects authentication mechanism

against Tampering, Spoofing and Repudiation attacks because it uses certificates and

digital signature of random numbers.

Secure E-mail system uses Secure Sessions protocol for secure communication so

each message between Secure E-mail Client and Secure E-mail Server is protected

against tampering, information disclosure, and spoofing attacks. Since, messages are

encapsulated in PKCS7SignedAndEnvelopedData cryptographic format so this

protocol also resists man-in-the-middle and impersonation attacks. E-mail letters in our

system are encapsulated in S/MIME format using S/MIME generic security object. So,

E-mail contents are protected against Tampering, Information Disclosure, Spoofing,

Elevation of Privileges, and Repudiation attacks. Similarly, our E-mail attachments are

encapsulated in PKCS7SignedAndEnvelopedData cryptographic format which

also protects our attachments against above mentioned attacks.

Our Secure E-mail Client protects address book entries using SymmetricKey object

which loads address-book-symmetric-key, either from smart card or from key-file. This

function protects our address book entries from Information Disclosure and Spoofing

attacks. The confirmation of E-mail delivery is a key feature of our system. These

messages are digitally signed, so they are protected against Tampering, Spoofing and

CryptoNET - Security Architecture and Applications

135 | P a g e

Repudiation, as shown in Table 11.1. Secure E-mail System interacts between domains

using our Secure E-mail Infrastructure servers. Domain name of each Secure E-mail

Server is certified by SMI server and each Sender Secure E-Mail Server adds it in the

header of E-mail before sending to the recipient Secure E-Mail Server. This feature

protects our domain names against Tampering, Spoofing and Repudiation threats.

After evaluating and validating our Secure E-mail System, we established that if

generic security objects are completely protected, tested and verifiable then the system

developed using those objects is also secure, tested, and verifiable.

Table 11.1. Threat Model for the Evaluation of Secure E-mail System.

No. Security Threats

Functions

and

Features

T
a

m
p

er
in

g

In
fo

rm
a
ti

o
n

 D
is

cl
o
su

re

S
p
o
o
fi

n
g

E
le

va
ti

o
n

 o
f

p
ri

vi
le

g
e

R
ep

u
d

ia
ti

o
n

1 Strong Authentication × - × - ×

2 Secure Communication × × × × ×

3 Protection of mail boxes and Email Contents × × × × ×

4 E-Mail handling × - × × -

5 E-mail attachments × × × × ×

6 Protection of Address book - × × - -

7 Address book Symmetric Key Management × × × × ×

8 E-mail Confirmation Status × - × - ×

9 Validation of Domain names × - × - ×

11.5. Summary
Our Secure E-mail System is a network application, designed and implemented based

on our security objects, components and principles. Enabling components of the security

system provide transparent handling of security credentials and interaction with FIPS

201 (PIV) smart cards. The system may be verified to provide solutions of all identified

problems. In this system, users are authenticated using strong authentication and Single-

CryptoNET - Security Architecture and Applications

136 | P a g e

Sign-On protocols, while communication is secured using secure session protocol. E-

mail letters are protected (in storage and in transit) using S/MIME standard, so the

system is interoperable with existing E-mail systems. The XACML authorization

policies, certified E-mail addresses, and domain names greatly eliminate spam, which

eventually decrease the threats of spreading malicious contents. Attachments are handled

very efficiently and securely, so our system does not unnecessarily increase network

traffic. Address books entries are encrypted, what eliminates theft of addresses. In

addition, management of address-book-symmetric-keys provides the feature to recover

address books from accidentals losses. Three types of confirmation messages provide full

tracking of E-mails by the sender. In a global environment, where multiple domains are

deployed, federation protocol establishes trust between SEM and SMI servers in order to

form a federated infrastructure. As a proof of the concept, we implemented and tested

this system which provides protection of E-mails’ resources, so it can be used for

exchange of business documents and important information between authorized users.

CryptoNET - Security Architecture and Applications

137 | P a g e

12. Secure Web System

In this chapter we describe the design of our Secure Web System whose purpose

is to protect workstations from various Web attacks. The design of the system is

based on our basic principles and the concept of generic security objects. For

this system we designed proxy architecture and we introduced two new

components for security extensions of existing Web systems. These components

are: Secure Web Browser and Secure Web Server. The system uses our enabling

components that provide the same cryptographic and network security services to

both components of the system. The key features of our Secure Web System are:

protection of Web pages stored at a Web server, execution of Web contents using

Secure Execution Environment, XACML based authorization policies, FIPS 201

(PIV) smart card-based authentication protocols, strong authentication, Single-

Sign-On, and secure distribution of Web contents.

12.1. Overview and Features of The Secure Web
System

Our Secure Web System is also based on the principle that all resources, messages,

operations and contents are cryptographically protected using strong encryption

techniques. Secure Web System uses enabling components for protection of Web

contents, both in storage and in transit. The system supports standard Web protocols,

extended security features, and network security protocols. We designed proxy

architecture, compatible with existing Web infrastructures without much modification.

The following are security features of our Secure Web system:

• Protection of Web pages and Web resources stored at Web Servers based on the

PKCS#7 encapsulation standard;

• Secure Execution Environment supporting processing of encrypted Web pages

and resources;

• XACML-based authorization policies for access to resources and execution of

Web applications at Web servers; and

• FIPS-196 based mutual strong authentication and single-sign-on protocols using

FIPS-201 (Personal Identity Verification) compliant smart cards.

In addition, our system supports standard network security protocols, such as

certification protocol, SAML protocol, and secure sessions protocol, as explained in

Chapter 5.

12.2. Design of The Secure Web System
The design of Secure Web System is based on the concept of proxy architecture. We

introduced two new components, shown in Figure 12.1: Secure Web Server (SWS) and

CryptoNET - Security Architecture and Applications

138 | P a g e

Secure Web Browser (SWB). SWS is located in front of a standard Web server and

performs security functions: strong authentication of clients, processing of protected

messages, creation of secure channels, enforcement of authorization policies, etc. The

detailed operations of these functions are explained in sections below.

Secure Web Browser is located between a standard browser and a network. This

component is responsible for redirection of HTTP requests and responses to/and from the

SWS. Communications (HTTP requests and responses) between SWB and SWS are

protected using secure sessions protocol described in Section 5.2.4.

Figure 12.1. Secure Web Browser and Secure Web Server

12.3. Operations of The System
Both SWS and SWB acquire certificates from the LCA Server, as described in

Chapter 9. Security Administrator of a Secure Web Server uses these certificates to

protect Web pages and resources. In addition, Security Provider is integrated with this

system in order to provide software-based or smart card-based cryptographic services.

12.3.1. Web Contents Protection
Security Administrator (SA) of a Secure Web Server is responsible for encryption of

Web pages using strong encryption techniques. SA generates symmetric-key for

encryption of Web pages and uses private key corresponding to the digital-signature

certificate in order to sign encrypted Web pages. Our system encapsulates protected Web

pages in the standard cryptographic format, PKCS#7, and structures them in our

designed XML file, which describes general syntax of protected software modules, as

explained in Section 7.2. After protecting Web pages, Security Administrator stores them

at a standard Web server in the Protected Web Files Repository. SA also stores

symmetric-key in a shared space. Symmetric-key is protected using public key

corresponding to the SSL certificate of a Web server. In addition, SA defines the

required roles and authorization policies at the XACML Policy Server in order to specify

authorization for access to Web resources for authorized users.

We categorized protected Web pages in four groups based on the type of Web page

and it’s processing at a Web server:

Standard
 Browser

Web Server

Secure

Web

Browser

Secure

Web

Server

Secure Channel

CryptoNET - Security Architecture and Applications

139 | P a g e

(1) Static Web Pages: These Web pages contain static code executed in a browser

environment at the client side. Examples of these Web pages are: HTML pages, Java

Scripts, CSS, etc.

(2) Active Web Pages: These Web pages contain HTML code and active code. These

pages are processed by a Web server. Furthermore during deployment, Web server

parses these Web pages and generates Web modules. Example of these Web pages is

Java Server Pages (JSP).

(3) Web Modules: These Web pages contain active code which embeds HTML tags.

These Web Modules are loaded using standard Execution Environment in order to

generate HTTP responses. Example is Java Servlets.

(4) Core Web Modules: These modules are normally stored in a compiled form, loaded

by the standard Java Class Loader. Examples of these core Web Modules are Java

classes or executable Jar files.

Execution environment of standard Web servers, specifically designed for Web

servers, cannot process and execute protected web pages. Therefore, we also designed an

execution environment extended with security features and functions in order to process

protected Web pages. Our secure Execution Environment is implemented in the form of

Eclipse plug-in using Java technology and it works with Apache Tomcat Web server.

12.3.2. Secure Execution Environment for Web
Contents

The components of our Web secure Execution Environment are shown in Figure 12.2.

Figure 12.2. Components of secure Execution Environment and Interactions between them for
processing of protected and encapsulated Web Pages.

 Web Security Interface

 Java Web Server (Tomcat)

Secure Web Files Loader

Secure Class Loader Secure Web Class Compiler

Protected Class Repository

Check-Modified

Event

HTTP

Request
HTTP

Response

Protected Web Files

Repository

Secure Execution Environment

CryptoNET - Security Architecture and Applications

140 | P a g e

When Security Administrator deploys protected web pages at a standard Web server,

Web server triggers Check-Modified Event to load modified or newly loaded encrypted

active Web pages. In response to this event, Secure Web Files Loader loads protected

Active Web Pages structured in the XML format. This component verifies signatures of

loaded Active Web Pages. Upon successful verification, it opens enveloped Active Web

Page, as requested by the client, and handovers it to the Secure Web Class Compiler.

This component transforms the received contents into Java source file, which is then

compiled by the standard compiler to generate byte-code. This component also protects

newly generated byte-code using its own credentials and stores it in the Protected Class

Repository.

When an authorized user requests a Web page, Web server activates Web Security

Interface (WSI), a component of the Secure Execution Environment (SEE) (see Section

12.3.2). WSI extracts physical path of the requested Web Page and checks the extension

of the file in order to find the type of the Web Page. Based on the type of the requested

Web Page, our system performs one of the following actions:

• If the requested file is a static Web page, then Web Security Interface sends the

request directly to the Secure Web Files Loader. The Loader fetches static file

from the Protected Web Files Repository and verifies its digital signature. Upon

successful verification, it fetches encrypted symmetric-key and extracts it in order

to decrypt the loaded Web page. Secure Web Files Loader passes clear Web page

to the Web server through the Web Security Interface. Standard Web server

processes the fetched Web file and generates HTTP response. After that, it sends

the response back to the Web client.

• If the requested file is an active Web page, then Web Security Interface invokes

Secure Class Loader in order to load protected classes. It reads header

information and verifies digital signature of the loaded classes. Upon successful

verification, it fetches encrypted symmetric-key and extracts it in order to decrypt

the encrypted loaded classes. In addition, it loads, verifies, and decrypts all

dependant classes and core business classes, if they are required. After

performing all those security functions, Secure Class Loader passes loaded files

to the standard Web server in order to generate HTTP response.

• If the requested file is a Web module, Web Security Interface invokes Secure

Class Loader in order to load protected classes from the Secure Web Files

Repository and processes Active Web Page.

12.3.3. Authorization and Distribution of Secure Web
Contents

When a user wants to use Web site extended with our security features, he/she has to

be registered as the user in the IDMS through a Web interface. Security Administrator

assigns a role User to newly registered users, based on the predefined policies. These

policies are flexible and can be changed according to the requirements of the Web site

administrator. After successful registration, Web server sends signed ActiveX control

back to the Web browser. This ActiveX control is extended with modules of our Security

CryptoNET - Security Architecture and Applications

141 | P a g e

Provider. ActiveX extends the functionality of the standard Internet Explorer (IE) in

order to communicate with the FIPS 201 (PIV) smart card for various cryptographic

functions and strong authentication. User uses ActiveX to fetch certificates from the

LCA Server and stores them into a smart card, if it is installed. Otherwise, Web browser

stores certificates in a certificate database.

In our system, a user provides PIN to open smart card and ActiveX component then

automatically performs smart card-based strong authentication with the SA Server in

order to acquire SAML Ticket. ActiveX stores SAML ticket in a smart card, as described

in Section 5.2.2. SAML Ticket is then used for Single-Sign-On authentication and

authorization services in the Secure Web System. For Single-Sign-On, Web browser

digitally signs SAML Ticket using ActiveX control and sends it to the SWB which

forwards it to the SWS for a Single-Sign-On, as described in Section 5.2.3. After this

step, SWS establishes secure session with the SWB.

When user requests a Web page, he/she sends URL to the SWS through the SWB.

PEP Server at the SWS filters the request and generates

SAMLAuthorizationRequest, which contains SAML Ticket (subject), URL

(object), and the requested action. PEP sends this request to the XACML Policy Server

which evaluates it using XACML policy. The decision about request is then sent back to

the PEP in the form of SAMLAuthorizationResponse. If response contains Deny,

SWS generates an Access denied error message and sends it to the Web browser.

Otherwise, SWS forwards the request to the standard Web server for further processing

(see Section 12.3.2). Web server processes the request and sends HTTP Response to the

Secure Web Server, which sends it back to a Web browser through the Secure Web

Browser.

12.4. Evaluation of the Secure Web System
We qualitatively evaluated our Secure Web System using Threat Model.

Comprehensive evaluation results of the Secure Web System are shown in Table 12.1. In

this system, Web pages, stored at a Web server, are protected using PKCS7 object which

encapsulates each Web page in PKCS7SignedAndEnvelopedData. This protection

mechanism protects our Web pages against Tampering, Information Disclosure,

Spoofing, Elevation of privilege and Repudiation threats. Similarly, in our system Web

contents distribution process is also protected against above mentioned attacks, as shown

in Table 12.1, because shared files are protected using shared-symmetric-key and

encapsulated in PKCS7SignedData. In order to access shared files, we used XACML

based authorization policies which are digitally signed, so our enforcement authorization

policies process is protected against Tampering, Spoofing and Repudiation threats.

Furthermore, as this function is specifically designed for authorization, this process also

protects against unauthorized access to Web pages.

Authentication in this system is implemented using Strong Authentication object

which protects authentication mechanism against Tampering, Spoofing and Repudiation

attacks. Furthermore, we used Single-Sign-On with SAML Ticket in order to

authenticate clients for multiple services. SAML Ticket is digitally signed, so our Single-

Sign-On process is protected against Tampering, Spoofing, Elevation of privileges, and

Repudiation attacks.

CryptoNET - Security Architecture and Applications

142 | P a g e

We evaluated this system and observed that it protects Web resources from several

attacks. We also analyzed that the system is designed and implemented using our generic

security objects what is a proof of our deductive approach that if generic security objects

are secure, tested and verifiable, then the system which is developed using such objects is

also secure, tested and verifiable.

Table 12.1. Threat Model for the Evaluation of Secure Web System.

No. Security Threats

Functions

and

Features

T
a

m
p

er
in

g

In
fo

rm
a
ti

o
n

 D
is

cl
o
su

re

S
p
o
o
fi

n
g

E
le

va
ti

o
n

 o
f

p
ri

vi
le

g
e

R
ep

u
d

ia
ti

o
n

1 Protection of Web Pages × × × × ×

2 Web Contents Distribution × × × × ×

3
Authorization Policy enforcement × - × × ×

4 Strong Authentication × - × - ×

5 Single-Sign-On × - × × ×

12.5. Summary
Our Secure Web System is based on extension of existing standard Web technologies,

on various security standards, and security protocols. The system provides confidentiality

and integrity of Web contents, either stored at a Web server or transmitted to authorized

clients. We also designed secure execution environment, which extends the functionality

of exiting Web servers in order to process protected Web pages. In our system the

authorization is based on XACML policies, which are enforced by the PEP Server before

processing user’s requests.

CryptoNET - Security Architecture and Applications

143 | P a g e

13. Secure Documents System

In this Chapter we describe our Secure Documents System which is an extension

of the OpenOffice. The system provides protection of documents in local

environments, internal documents security by structuring them into sections,

secure distribution of documents in a group environment, section-level XACML-

based authorization policies, key management, Single-Sign-On, and secure

communications between components. The design of the system is based on our

principles and it uses enabling components, Security Provider and Security

Protocol, to provide extended security services.

13.1. Overview and Features of The Secure
Documents System

Secure Documents System supports standard document processing functions extended

with security features in order to protect the documents in local environments and enable

their controlled sharing and distribution in a cloud computing environment. Two

important components of the system are: Secure Documents Manager and Secure Library

Server. Secure Documents Manager is an extension of the OpenOffice with security

functions and some additional features.

Secure Documents Manager cryptographically protects local documents using the

standard cryptographic format, PKCS7SignedAndEnvelopedData, against illegal

access and malicious alternation. In addition to the protection of complete documents, we

provide a feature to structure a document into several sections, which are stored in the

XML File Format [97].

In our system a document can be shared between group members. The author of a

document partitions a document into sections and assigns a sensitivity level to each

section. The author also creates groups and assigns a role and an access level to the

group members. Therefore, each group member is authorized to access only authorized

section(s). Authorization policies are based on the XACML standard, while symmetric-

key cryptography and XML signature standard is used to protect each section of a

document. In addition, we use GSAKMP protocol for management and for distribution

of section-symmetric-keys to the authorized group members.

For cryptographic functions and network level security services, we use our enabling

components as cryptographic engines. These components provide FIPS 201 (PIV) smart

card-based cryptographic services, if smart card is installed; otherwise, the system uses

software-based cryptographic services. The enabling components provide the same set of

cryptographic services and network security services to all the components of the system.

All the components of our Secure Documents System are integrated with various

cloud security infrastructure servers which provide certification, authentication, and

authorization services as described in Chapter 9. The following are the key features of

our system:

CryptoNET - Security Architecture and Applications

144 | P a g e

• Extension of the OpenOffice with standard security functions to protect

documents using PKCS7SignedAndEnvelopedData format;

• Protection and controlled distribution of documents in a group environment;

• Structuring of documents in sections and each section is accessible to authorized

users by enforcing section-level XACML-based authorization policies;

• Symmetric-key encryption and digital signature of section based on the XML

security standards;

• Key Management using GSAKMP protocol; and

• Transparent handling of the security credentials and integration of the FIPS 201

(PIV) smart cards using enabling components.

13.2. The Concept of Secure Documents System
The design of our Secure Documents System is based on our main CryptoNET

framework and our research methodology, as described in Chapter 9 and Chapter 1

respectively. Core components of the Secure Documents System are: Secure Documents

Manager, Secure Library Server, and Key Distribution Server. Some of the supporting

components, like LCA Server, XACML Policy Server, SA Server, and IDMS are also

part of the system those are already described in Chapter 9.

Secure Documents System uses enabling components of our security system to

provide the same set of security services to all the components of the system. In addition,

the design of the system is also based on our generic approach, so each component is

implemented in the form of a generic security object, which cryptographically protects

and distributes documents in a collaborative environment.

The first component of the system is Secure Documents Manager, which is part of our

Integrated Secure Workstation. It is an extension of the OpenOffice with security

functions. OpenOffice provides standard documents handling functions to the end-users,

like manipulation of documents, spreadsheets, image editing and presentations. This

component provides security features, like protection of documents in the

PKCS#7SignedAndEnvelopedData format, structuring of documents in several

sections and their storage in XML File Format, sharing of documents and sections in a

group environment, SAML based Single-Sign-On, and secure communication. In order

to share documents in a group environment, Secure Documents Manager is connected to

the Secure Library Server and also to the security servers which are components of our

cloud security infrastructure.

The second important component of the system is Secure Library Server. It is

administrated by the Security Administrator. It transparently acquires certificates from

the LCA Server, the same as our SEM Server, described in Chapter 10. Secure Library

Server provides management of documents repository, enforcement of XACML

authorization policies, management and distribution of section-symmetric-keys using

GSAKMP, Single-Sign-On, and secure sessions protocols. The description of each

operation is given in the following sections.

CryptoNET - Security Architecture and Applications

145 | P a g e

13.3. Operations of The System
Each component of the system is linked to our cloud security infrastructure. Secure

Documents Manager checks the certificates when a user activates it. If the required

certificates do not exist in a certificate database, then it suggests to a user to acquire

certificates from the LCA Server using Secure Station Manager, described in Section

10.2.3. Similarly, when Security Administrator activates Secure Library Server, it also

checks for certificates in the local certificate database. If they do not exist, then it

automatically acquires certificates from the LCA Server.

All the components of the system use enabling security components as cryptographic

engine of the Security Provider. These components provide smart card-based or

software-based cryptographic functions to the components of the system.

13.3.1. Protection of Documents in Workstations
Secure Documents Manager is part of our Integrated Secure Workstation. It integrates

security components with OpenOffice in order to provide to the end-users standard

document processing environment with extended security features. When a user presses

Save or Save As action, the Documents Manager activates the component of the Security

Provider which encrypts the document using local-resource-symmetric-key and digitally

signs it using private key corresponding to the digital signature certificate. It then

encapsulates protected document in the standard cryptographic format: PKCS#7. Secure

Documents Manager stores documents in the XML File Format with .p7m extension in a

local storage.

When a user executes Open document action, the system fetches the protected

document and verifies its digital signature. Upon successful verification, it fetches local-

resource-symmetric-key from a smart card, if it is installed, and then decrypts the

document. After that, it passes the document to the OpenOffice in order to open it in the

standard environment for viewing and/or editing purposes.

13.3.2. Distribution of Documents
Secure Documents Manager provides features to share documents in a group

environment. In addition, it can structure documents into sections, which may contain

one or more paragraphs. When a user starts Share Document process, a user creates a

group and then defines XACML authorization policies. The system also supports key

management functions in order to distribute section-symmetric-keys to authorized group

members.

In addition to that, our system transparently fetches SAML ticket from a smart card

and then performs Single-Sign-On with Secure Library Server, as described in Section

5.2.3. It also establishes secure session with the Secure Library Server in order to

exchange secure information.

Groups and Group Level Management

The author of the document, also known as Group Controller (GC), is responsible to

create a group, roles and sensitivity levels. GC creates various roles and assigns

CryptoNET - Security Architecture and Applications

146 | P a g e

sensitivity levels to each role. After that, GC selects various registered users from the

IDMS and then assigns a role to each user. In this system, each role has one-to-many

relationship with the sensitivity level, so a user which have specific role may be

authorized to access multiple sections of the document. In addition, the role is a logical

link between sensitivity level and users, so a role may also be assigned to one or more

users, because it provides flexible mechanism to assign the same level of access control

to multiple users.

Upon creation, GC sends group information to the Secure Library Server. It forwards

group-creation-request to the XACML Policy Server. XACML Policy Server

dynamically creates a group in a shared space.

Creation of Authorization Policies for Multilevel Documents

An author of a document creates it using OpenOffice. A document may be further

divided into various sections. Section starts and ends at paragraph boundaries and can

contain any number of paragraphs. Each section is tagged with the predefined XML

headers, as mentioned in [97]. Furthermore, we also defined additional XML tags to

implement security extensions. An author of a document identifies sections and then

adds additional tags in each section which identify group and sensitivity-level of the

section, as shown in Figure 13.1.

Figure 13.1. An Example of a Section in The XML Structure

The relationship between sections, sensitivity-levels, roles and users is shown in

Figure 13.2.

 Figure 13.2. Relationship between Sections, Sensitivity Levels, Roles, and Users

Role Sensitivity

Level
User

SL1

SL3

SL2

R1

R2

R3

U2, U4, U6

U1

U3, U5

Section

S3

S2

S1

S4

S5

S6

Document

<text:section>
 <text:name> Section 1 </text:name>
 <group-name> Security <group-name>
 <Sensitivity-Level> SL1 </Sensitivity-Level>
 <text:protection-key> Key-reference-1 </text:protection-key>
 <Section-Contents>

 Encrypted contents

 </Section-Contents>
 <Signature> Section-level XML signature </Signature>
</text:section>

CryptoNET - Security Architecture and Applications

147 | P a g e

Secure Documents Manager sends policy token to the Secure Library Server with all

necessary information, like document’s name along with section-names, sensitivity-

levels and group identification. Secure Library Server forwards this policy token to the

XACML Policy Server which dynamically creates XACML policies in a policy-file.

After successful creation of authorization policies, XACML Policy Server notifies

Secure Library Server which notifies further Secure Documents Manager that policy has

been successfully created.

Protection of Shared Documents

Generic Key Distribution component is located at the Secure Library Server. It is

compliant with the GSAKMP standard [15]. It is responsible for creation and distribution

of section-symmetric-keys. In our system the process of creation of the section-

symmetric-keys is started when Secure Library Server receives XACML policy creation

notification from XACML Policy Server. Secure Library Server, in cooperation with the

Generic Key Distribution component, creates section-symmetric-key for each section of

the document. This key distribution technique has the following advantages:

• Section-symmetric-keys are not dependent on each other. So, any group member

may insert a new section into a document without changing section-symmetric-

keys of other sections.

• The author of a document may change the role of a group member or remove a

user from a group, so in this case a rekeying action is required. In such situation,

the system only needs to re-encrypt relevant section with the new section-

symmetric-key.

• The author of a document may delete a specific section from a document. In this

case our system deletes only designated section from a document and the

corresponding section-symmetric-key.

Secure Library Server sends section-symmetric-keys along with key-references to the

Secure Documents Manager. Secure Documents Manager transparently encrypts a

section with relevant section-symmetric-key and then it inserts the key-reference at the

text:protection-key XML tag into the section, as shown in Figure 13.1.

In addition, it digitally signs XML Section by following the XML Signature standard.

In this process, Secure Documents Manager digitally signs the complete section and

inserts signature in the Signature XML tag. After protecting all sections, it creates the

complete document and uploads it to the Secure Library Server.

13.3.3. Enforcement of XACML Authorization
Policies

PEP Server at the Secure Library Server enforces authorization policies. When a

group member is interested to access the authorized document from the Secure Library

Server, it sends document name and SAML Ticket to the Secure Library Server. At the

Secure Library Server, the PEP processes the request and generates a composite

SAMLAuthorizationRequest object, which contains SAML Ticket (subject),

name of sections (resources) and action (Read). PEP sends

SAMLAuthorizationRequest to the XACML Policy Server which consults the

CryptoNET - Security Architecture and Applications

148 | P a g e

XACML policy file in order to evaluate the request against XACML policies. It

generates SAMLAuthorizationResponse which contains either Permit or Deny.

SAMLAuthorizationResponse is then sent back to the PEP Server which enforces

the decisions. If SAMLAuthorizationResponse contains Permit, Secure Library

Server fetches the document from shared repository and sends it back to the user along

with key-references and section-symmetric-keys. Secure Documents Manager receives

the document, key-references, and section-symmetric-keys. Secure Documents Manager

verifies the signature of each section and decrypts each section using relevant session-

symmetric-key. After that it removes additional XML tags and then combines all the

sections into a complete document, as shown in Figure 13.3. Secure Documents Manager

opens this document in an OpenOffice environment, which is a client component of our

Integrated Secure Workstation.

Figure 13.3. Verification of Signature, decryption of Sections using section-symmetric-keys and
opening of Documents in OpenOffice Environment

<text:section>
 <text:name> Section 1 </text:name>
 <group-name> Security <group-name>
 <Sensitivity-Level> SL1
 </Sensitivity-Level>
 <text:protection-key> Key-reference-1

 </text:protection-key>
 <Section-Contents>
 Encrypted contents

 </Section-Contents>
 <Signature>
 Section-level XML signature

 </Signature>
</text:section>

<text:section>
 <text:name> Section 1 </text:name>
 <group-name> Security <group-name>
 <Sensitivity-Level> SL1
 </Sensitivity-Level>
 <text:protection-key> Key-reference-1

 </text:protection-key>
 <Section-Contents>
 Encrypted contents

 </Section-Contents>
 <Signature>
 Section-level XML signature

 </Signature>
</text:section>

<text:section>
 <text:name> Section 1 </text:name>
 <group-name> Security <group-name>
 <Sensitivity-Level> SL1
 </Sensitivity-Level>
 <text:protection-key> Key-reference-1

 </text:protection-key>
 <Section-Contents>
 Encrypted contents
 </Section-Contents>
 <Signature>
 Section-level XML signature

 </Signature>
</text:section>

<text:section>
 <text:name> Section 1

</text:name>
 <Section-Contents>
 Encrypted contents
 </Section-Contents>
</text:section>

<text:section>
 <text:name> Section 1

</text:name>
 <Section-Contents>
 Encrypted contents

 </Section-Contents>
</text:section>

<text:section>
 <text:name> Section 1

</text:name>
 <Section-Contents>
 Encrypted contents
 </Section-Contents>
</text:section>

<text:section>
 <text:name> Section 1 </text:name>
 <Section-Contents>
 contents
 </Section-Contents>
</text:section>

<text:section>
 <text:name> Section 1 </text:name>
 <Section-Contents>
 contents
 </Section-Contents>
</text:section>

<text:section>
 <text:name> Section 1 </text:name>
 <Section-Contents>
 contents
 </Section-Contents>
</text:section>

</Document level Tags>

<Document level Tags>

Protected

Sections
Clear

Sections
Complete

Document

Open

Section
Symmetric

Key-1

Section
Symmetric

Key-2

Section
Symmetric

Key-2

CryptoNET - Security Architecture and Applications

149 | P a g e

13.4. Evaluation of The Secure Documents System
In this section we evaluated and analyzed the behavior of our Secure Documents

System in order to measure its resistance against several potential threats. As described

in the above sections, our system encapsulates documents in the

PKCS7SignedAndEnvelopedData cryptographic format using PKCS7 objects,

what protects documents against Tampering, Information Disclosure, Spoofing,

Elevation of privileges and Repudiation threats. In our system, each document is

structured into several sections. Each section is encrypted using shared group key and

digitally signed using XML Signature standard. Furthermore, documents are shared

between group members in a secure way, what protects these functions (Function 2 and

Function 3 as shown in Table 13.1) from above mentioned attacks.

For enforcement of authorization policies, we use well-established SAML standard

which protects our authorization process against Tampering, Spoofing and Repudiation

attacks. Furthermore, as this function is used specifically for authorization purposes, it

also protects against elevation of privileges in order to prevent unauthorized access to

shared documents. In order to manage group keys between group members, we use

GSAKMP protocol which protects key distribution mechanism against Tampering,

Spoofing, Elevation of privileges and Repudiation attacks.

The authentication in this system is implemented using Strong Authentication object,

which protects authentication mechanism against Tampering, Spoofing and Repudiation

attacks. Furthermore, in this system we used Single-Sign-On protocol with SAML Ticket

in order to authenticate clients for multiple services. SAML Ticket is digitally signed, so

our Single-Sign-On process is protected against Tampering, Spoofing, Elevation of

privileges, and Repudiation attacks.

 As described in the earlier sections, communication between both components is

protected using secure session protocol, which protects messages against Tampering,

Information Disclosure, Spoofing and Repudiation, since each message is encapsulated

in the PKCS7SignedAndEnvelopedData cryptographic format.

After evaluating Secure Documents System, we established that if each generic

security object is secure, tested and verifiable then the complete system developed using

such objects is completely protected and verifiable, what is a proof of our deductive

verification approach.

Table 13.1. Threat Model for Evaluation of The Secure Documents System.

No. Security Threats

Functions

and

Features

T
a

m
p

er
in

g

In
fo

rm
a
ti

o
n

 D
is

cl
o
su

re

S
p
o
o
fi

n
g

E
le

va
ti

o
n

 o
f

p
ri

vi
le

g
e

R
ep

u
d

ia
ti

o
n

1 Protection of Local Documents × × × × ×

2 Distribution of Documents × × × × ×

CryptoNET - Security Architecture and Applications

150 | P a g e

3 Protection of Shared Documents × × × - ×

4 Authorization Policy enforcement × - × × ×

5 Group Key Management × × × × ×

6 Strong Authentication × - × - ×

7 Single-Sign-On × - × × ×

8 Communication × × × - ×

13.5. Summary
Our Secure Documents System is an extension of the OpenOffice with standard

security functions in order to protect documents in the PKCS7SignedAndEnveloped

format. The system uses our enabling components to provide the same set of

cryptographic and network security services to all the components. The system protects

and distributes documents in a group environment. In addition, our system provides

feature to structure a document into sections, which can be shared by group members.

Section level access control policies are enforced using XACML-based authorization

policies. The system also manages section-symmetric-keys and provides all required

security credentials only to authorized group members.

Part III: Overview
of Significant

Contributions and
Future Research

Overview of Significant Contributions and Future Research

155 | P a g e

14. Overview of Significant
Contributions

The research presented in this thesis was focused on security in cloud computing

environments and applications. Currently two the most popular two security approaches

are Isolation and Software Security. In the first approach, various external software or

tools are used to protect installed information systems. Such tools and products are

Firewalls, Intrusion Detection Systems, Port Scanners, Packets filtering, Anti-viruses,

etc. These protection tools protect resources after their installation. The second approach

is Software Security. This approach includes methodologies for secure software design,

development of secure libraries, rules for secure software development process, and

formal and strict testing procedures. The goal of this approach is to create secure

applications, even before their operational deployment. Current surveys, reports, news

and experience clearly show that both approaches failed to provide an adequate level of

security, where users would be guaranteed to deploy and use secure, reliable and trusted

network applications.

Therefore, in the current situation, new approaches and new methodologies towards

creating strongly protected and guaranteed secure network applications and cloud

computing environments are required. In this thesis we proposed a new and innovative

methodology for design of inherently security components, protocols, applications and

large security systems. Our methodology is based on the concepts that if a system is

internally secure and designed using secure objects, then it provides effective protection

against viruses and external attacks. In order to achieve our objective, we designed a

complete set of strongly and verifiably secure generic objects. Completely means that our

generic security objects provide all five standard security services (integrity,

confidentiality, authentication, authorization and availability), all major crypto

algorithms, and all major security protocols. Strongly means that the generic security

objects must provide provably correct functions and they are not vulnerable to threats

and attacks. Generic means that each security object supports multiple alternatives and

options. It provides protection of its data, functions, usage, combinations and objects

instantiation. Furthermore, it dynamically integrates new algorithms and crypto objects

without re-designing and re-development of software.

Our generic security objects are basic building blocks of our security system. We

combined our generic security objects in order to design the complete and verifiably

secure generic components of large-scale security environments. The result comprises

several enabling components, such as Security Provider, Security Protocols, Generic

Security Server, and Secure Execution Environment.

Our first enabling component is Security Provider. It is modeled and designed as

collection of generic security objects in order to provide comprehensive set of

cryptographic services, mechanisms, encapsulation techniques, and security protocols to

all other components of our security system. The model of the Security Provider is

structured in four layers and each layer comprises several generic security objects. Based

Overview of Significant Contributions and Future Research

156 | P a g e

on our model and design, we implemented an instance of the Provider comprising

various objects: symmetric key cryptography, asymmetric key cryptography, hashing,

encapsulation, certificates management, creation and verification of signatures, and

various network security protocols.

We also designed Security Protocols for various distributed components, also a part of

our enabling components. These protocols are designed on well-established security

technologies and standards, which are interoperable with other components of the system

in a cloud computing environment. They can be integrated with any application for

secure communication, authorization, key distribution, Single-Sign-On, and strong

authentication. These protocols are using our Security Provider in order to perform

cryptographic functions and communications with smart cards. In addition, these

protocols are generic, what makes them easy to use by developers for building secure

distributed applications.

By using our Security Provider and Security Protocols, we further designed Generic

Security Server, which provides complete set of standard security functions along with a

number of extended security functions and features. It provides a template for developers

in order to develop customized Secure Application Servers. We already implemented

several initialization and management functions and several administrative actions. We

also included APIs and libraries for cryptographic functions and security protocols, in

order to provide the same set of security services in all instances of Secure Application

Servers.

We packaged our enabling components in the form of the Security SDKs, protected

using strong encryption techniques. Software protection solution comprises secure

Software Distribution Server and Secure Web Server used to generate protected software

modules and distribute them to authorized users. Our solution encapsulates these

modules in the form of specially designed XML file which represents general syntax of

protected software modules. We also extended current standard execution environments

with special security features and functions. Our extended secure execution environment

supports standard security services and network security protocols. Our solution protects

software modules against reverse engineering, illegal tempering, program-based attacks,

BORE (Break-Once-Run-Everywhere) attack and unauthorized use of software.

Furthermore, for our individual security objects and larger security systems, in order

to prove their structural and functional correctness, we applied deductive scheme for

verification and validation of security systems. We used the following principle: “if

individual objects are verified and proven to be secure, if their instantiation,

combination and operations are secure, and if protocols between them are secure, then

the complete system, created from such objects, is also verifiably secure”. Data and

attributes of each object are protected and secure, and they can only be accessed by

authenticated and authorized users in a secure way. This means that structural security

properties of objects upon their installation can be verified. In addition, each object is

maintained and manipulated in our secure environment, so each object is protected and

secure in all its states, even after its closing state, because the original objects are

encrypted and their data and state stored in a database or files are also protected.

We formally evaluated our approach and methodology of designing generic security

objects using Threat Model. We analyzed our generic security objects individually and

identified various potential threats for their data, attributes, actions and various states.

Overview of Significant Contributions and Future Research

157 | P a g e

We also evaluated behavior of each object against potential threats and established that

our software modules are not vulnerable to malware and viruses. Data of generic security

objects are not vulnerable to illegal reading and theft, all messages exchanged in a

networking environment are strongly protected, and all other resources of generic

security objects are also strongly protected.

We have also solved some additional important aspects required for the full scope of

security services for network applications and cloud environments: manipulation and

management of cryptographic keys, and even secure and controlled collaboration of our

encrypted applications in a cloud computing environments. During our research we have

created the set of development tools and also a development methodology which can be

used to create cryptographically protected applications. The same resources and tools are

also used as a run–time supporting environment for execution of our secure applications.

Such total cryptographic protection system for design, development and run–time of

secure network applications we call CryptoNET system.

As a proof of our concept and methodology, we designed and implemented several

applications for our CryptoNET environment. They are completely secure, protect their

resources, designed based on standards, and implemented using generic security objects.

We also applied deductive scheme in order to prove that each secure application is

verifiably secure and tested, since they are designed using individually verifiable and

secure objects and components. Following are our most popular secure applications:

- Integrated Secure Workstation is a client application which represents a collaborative

environment and protects local IT resources, messages and operations across

multiple applications. It comprises several components, i.e. four most commonly

used PC applications: Secure Station Manager (equivalent to Windows Explorer),

Secure E-Mail Client, Secure Documents Manager, and Secure Web Browser. These

four components for their security extensions use functions and credentials of the

enabling components Security Provider and Security Protocols. With this approach,

we provide standard security services (authentication, confidentiality, integrity and

access control) and also additional, extended security services, such as transparent

handling of certificates, use of smart cards, strong authentication protocol, SAML

based Single-Sign-On, secure sessions, and other security functions, to all PC

applications with the same set of security modules and parameters.

- We also designed a Secure E-mail System using our proposed methodology. The

system provides standard E-mail security services – signing and encryption of E-mail

letters and, in addition, a number of extended and innovative security features. These

new features are: transparent handling of certificates, strong authentication between

Secure E-Mail Client and Secure E-Mail Server, archiving and recovery of encrypted

address books, simple and secure handling of cryptographic keys, security sessions

management, tracking of E-mail letters using confirmation messages, elimination of

spam messages, prevention of fraudulent and infected attachments, and usage of

smart cards. The system is based on proxy architecture, what makes it compatible

with existing E-mail infrastructure. We also used XACML–based authorization

policies at the sending and receiving Secure E-Mail Servers (SEM) to provide

complete protection against spam. In our system, these policies are enforced by PEP,

Overview of Significant Contributions and Future Research

158 | P a g e

a component of the SEM server. In order to interconnect Secure E-mail systems in

individual domains, we introduced new infrastructure level servers in order to

develop trust between domains, exchange SEM registration information, and certify

and verify domain names.

- We also solved some very critical security issues of Web systems using our enabling

components. Features of our Web system are: protection of Web contents stored at

Web Servers, execution of protected web pages, and their distribution to authorized

users. We introduced additional components and added extended security features to

standard Web system and protocols in order to provide confidentiality and integrity

of Web contents. We also designed and implemented an extended secure execution

environment for Java Web Server, which is capable to process and execute different

types of encrypted and digitally signed Web pages encapsulated in

PKCS7SignedAndEnvelopedData format. This system follows component-

based architecture, what makes it compatible with the exiting Web infrastructure.

- We also deigned and implemented Secure Documents System in order to provide a

proof of the concept and our methodology. This system comprises a set of security

functions, features and components used as security extensions of the OpenOffice.

The extended security features of this application are: protection of documents in

local environments, distribution of secure documents to group members, group key

management, enforcement of XACML policies for access control, smart card-based

cryptographic functions, and transparent handling of security credentials. The design

of the system is based on generic security objects and plug-in architecture, what

makes it easy to extend and integrate with existing document systems. In addition,

Secure Document System is linked to the cloud security infrastructure in order to

provide security services in global environments by using certificates and standard,

well established, security technologies and protocols.

We evaluated our secure applications individually and found that each application

protects its data, resources, messages, usage and security credentials against potential

attacks. We proved that our system is guaranteed to be secure and it is verifiable to

provide the complete set of security services. We also proved that each application

always operates correctly, what justifies our claim that it can not be compromised

without user neglect and/or consent. We also established that if objects are individually

secure, tested and verifiable, then the security system designed using such objects is also

secure, tested and verifiable. Furthermore, we presented through implementation that the

deductive scheme is an effective methodology in order to verify complex security

systems. To the best of our knowledge, at the moment of this dissertation, we do not

know any equivalent methodology, design concept, available security components and

secure applications as achieved in this research.

14.1. Future Research
In our research, we already designed and implemented several generic security

objects and deployed Security Infrastructure Servers as a service in private cloud but still

Overview of Significant Contributions and Future Research

159 | P a g e

there are number of security challenges and issues has to be investigated for the

deployment of security and secure applications as a service in global cloud computing

environment. Furthermore, future research can be carried out in order to investigate the

solution of following issues:

• How personal information can be protected in cloud computing environments

using our methodology without compromising security services?

• How can mathematically measure and proof the effectiveness of deductive

verification in cloud computing environments?

• What is methodology to automate security services using 4th Generation

Development Tools?

• What is the security metric to measure security in hybrid environment (both

client-server and cloud computing environments)?

160 | P a g e

References

161 | P a g e

References

[1]. http://www.openssl.org/docs/OpenSSL, http://www.openssl.org/docs/, [visited: January
2009].

[2]. RSA Security, Inc. “BSAFE: A Cryptographic Toolkit”, Library Reference Manual
Version 4.0 http://www.rsa.com/products/bsafe/documentation /cryptoc_411_
reference.pdf.

[3]. SUN Corporation, “Java Cryptographic Extensions (JCE)”, www.sun.com, [visited:
February 2009].

[4]. Microsoft Corporation, “Cryptographic Services Provider (CSP)”, www.microsoft.com,
[visited: February 2009].

[5]. FIPS PUB 201-1, “Personal Identity Verification (PIV) of Federal Employees and
Contractors”, Computer Security Division, Information Technology Laboratory,
National Institute of Standards and Technology, March 2006

[6]. Adams, S. Farrell, T. Kause, T. Mononen, “RFC 4210, Internet X.509 Public Key
Infrastructure Certificate Management Protocol”, September 2005.

[7]. J. Linn, “Generic Security Service Application Program Interface”, RFC-2743, RSA
Laboratories, January 2000.

[8]. K. Brown, “Explore the security support provider interface using the SSPI workbench
Utility”, MSDN Magazine, Aug. Available at
http://msdn.microsoft.com/msdnmag/issues/0800/ Security/Security0800.asp, 2000.

[9]. Denis Piliptchouk, “Java vs. .NET Security, Part 2 Cryptography and
Communication”http://www.Onjava.com/pub/a/onjava/2003/12/10/javavsdotnet
.html?page=1, [visited: October 2008].

[10]. Microsoft Inc.,“Microsoft CryptoAPI and Cryptographic Service Providers”,
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/distrib
/dscj_mcs _xxgl.mspx?m fr =true build date on11/19/2009.

[11]. Scott Oaks, “Java Security (Security Providers)”, Chapter 8, Java Security”, First
edition, ISBN 1-56592-403-7E, publisher O'Reilly Media and published in May 1998.

[12]. Y. Zhang, A. Timkovich, and J. Peck, “IBM Security Providers: An Overview”, Oct.
2004.

[13]. Institute for Applied Information Processing and Communication (IAIK),
http://jce.iaik.tugraz.at/sic /products, [visited: December 2008].

[14]. J. Lee , J. Kim, J. Na, and S. Sohn, “ESES/j-Crypto and its application” published in
Proceedings of IEEE International Symposium on Industrial Electronics (ISIE 2001),
Pusan South Korea, pp. 1373-1377, vol.2, 2001.

References

162 | P a g e

[15]. Article: “VIA's New JAVA Cryptography Service Provider (VIA JCP)
Implementation”, downloaded from https://embeddedjava.dev.
java.net/community_site/articles /viajcp_embedded javacommunity_article.pdf, visited
on Jan. 13, 2009.

[16]. OC4J: Oracle Fusion Middleware “Feature Overview: Security”
http://www.oracle.com/technology/deploy/security/as_security/appserversec_1 0gr
3_fov.htm, visited on Dec 23, 2008.

[17]. T. Kern, “Next Generation Usability of Cryptography Combining FlexiProvider and
JCrypTool” http://ww w.cdc .informatik.tu-darmstadt.de/reports/reports /Tobias_Kern
.Diplom.pdf, Technische Universität Darmstadt Fachb- ereich Informatik Fachgebiet
Kryptographie und Computer Algebra, July 2008.

[18]. NSP, “NSP’s Layered Approach to Network Security”,
http://www.networksecurityprovider.com/approach.html, [visited: December 2008].

[19]. Entrust Entelligence, “Entrust Entelligence® Security Provider”, http://ww
w.businesssignatures.com/resources/download.cfm/21204/Security%20Provider_oct25_
07_web .pdf/?start, [visited: December 2008].

[20]. Mr. Jeff Hughes, Dr. Martin R. Stytz, “Advancing Software Security – The Software
Protection Initiative”, AT-SPI Technology Office, AFRL/SN, 2241 Avionics Circle,
WPAFB, OH 45433-7320, http://www.preemptive.com/
documentation/SPI_software_Protection_Initative.pdf, December 2001.

[21]. Stephen Thomas Kent, “Protecting externally supplied software in small computers”,
Laboratory for Computer Science, Massachusetts Institute of Technology, Sep, 1980.

[22]. G. Naumovich, and N. Memon, “Preventing piracy, reverse engineering, and
tampering”, published in the IEEE Computer Society, Vol. 36, No. 7, pp. 64-71, 2003.

[23]. Stytz, M., and J. Whittaker, “Software protection: Security’s last stand?”, published in
IEEE Security and Privacy, pp. 95–98, January, 2003.

[24]. Sivadasan, Praveen, Lal, P Sojan, Sivadasan, Naveen, “JDATATRANS for Array
Obfuscation in Java Source Code to Defeat Reverse Engineering from Decompiled
Codes”, http://cdsweb.cern.ch/record/1128190, September 2008.

[25]. Nicol, D.M., Okhravi, H., “Performance analysis of binary code protection”, published
in proceeding of Simulation Conference, ISBN: 0-7803-9519-0, 2005.

[26]. UltraProtect 1.05, Risco Software, Inc., http://wareseeker.com/publisher/risco-software-
inc./31829/, [visited: October 2009].

[27]. Grugq, and Scut, “Armouring the elf, Binary encryption on the unix platform”,
www.phrack.org/phrack/58/p58-0x05, 2001.

[28]. P.C. van Oorschot, “Revisiting Software Protection”, published in the proceeding of 6th
International Conference of Information Security, ISC 2003, Bristol, UK, pp.1–13,
October 2003.

References

163 | P a g e

[29]. Y. Chen , R. Venkatesan , M. Cary , R. Pang , S. Sinha and M. H. Jakubowski,
“Oblivious Hashing: A Stealthy Software Integrity Verification Primitive”, LNCS,
Springer Berlin / Heidelberg, Volume 2578/2003, ISBN-0302-9743, pp 400-414, 2003.

[30]. MSDN Microsoft, “Introduction to Code Signing”, http://msdn.microsoft.com/ en-
us/library/ms537361(VS.85).aspx, [visited: October 2009].

[31]. Zhang, X.N, “Secure Code Distribution”, published by IEEE Computer Society,
Volume: 30, Issue: 6, pp. 76-79, June 1997.

[32]. Trusted Computing Group, Incorporated, “TCG Specification Architecture Overview”,
Specification Revision 1.4, August 2007.

[33]. V. Costan, L. F. G. Sarmenta, M. Dijk, and S. Devadas, “The Trusted Execution
Module: Commodity General-Purpose Trusted Computing”, published in The eighth
Smart Card Research and Advanced Application IFIP Conference, London, UK, pp.
133-148, September 2008.

[34]. Microsoft, “Next-Generation Secure Computing Base (NGSCB)”,
 http://www.microsoft.com/resources/ngscb/default.mspx, [visited: September 2009].

[35]. Amit Singh, “Trusted Computing for Mac OS X”, http://osxbook.com/book
/bonus/chapter10/tpm/, written in October 2006.

[36]. B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H. Levkowetz, Request for Comments:
3748, Extensible Authentication Protocol (EAP), June 2004.

[37]. Urien P, Badra M, Dandjinou M., “EAP-TLS smartcards, from dream to reality”
published in the Proceedings of the Fourth Workshop on Applications and Services in
Wireless Networks, ASWN 2004, Boston, MA, 2004.

[38]. White Paper, Aladdin Knowledge Systems Ltd., “Authentication Tokens: The Key to
Secure PCs and Data”, http://www.aladdin.com/, [visited: July 2010].

[39]. Lexar Media, Inc., Lexar® JumpDrive SAFE S3000, http://www.lexar.com/, [visited:
July 2010].

[40]. Athena Smartcard Solutions Inc., ASECard for Windows Smart Card Starter Kit,
http://www.athena-scs.com/privacy.asp, [visited: July 2010].

[41]. Collective Software, LLC, “AuthLite”, http://www.collectivesoftware.com/, [visited:
July 2010].

[42]. Smart Card Alliance, http://www.smartcardalliance.org/, [visited: July 2010].

[43]. McAfee SECURE, “Data Sheet”, downloaded form http://www.mcafee.com
/us/local_content/datasheets/ds_endpoint_encryption.pdf downloaded on September,
2009.

[44]. Norton 360, “All in one Security”, http://www.symantec.com/norton/360, [visited:
January 2009].

References

164 | P a g e

[45]. Symantec, “White Paper: Enterprise Security, Critical System Protection and Endpoint
Encryption for the PCI Data Security Standard”, downloaded form
http://www.symantec.com/business/products/whitepapers.jsp?pcid=pcat_security&pvid
=endpt_encryption_1#, [visited: September 2009].

[46]. eCryptfs, “eCryptfs – Enterprise Cryptographic Filesystem”, https://launchpad.
net/ecryptfs, [visited: May 2009].

[47]. Ubuntu File Browser, http://www.ubuntu.com/, [visited: July 2009].

[48]. AxCrypt, “Introduction and Features”, Axantum Software AB, Sweden,
http://www.axantum.com /AxCrypt/Features.html, [visited: October 2009].

[49]. Crypt Manager, “User Guide", http://www.ubuntugeek.com/crypt-manager-an-
encrypted-folder-manager-for-ubuntu-linux.html, [visited: October 2009].

[50]. E. Filiol, J. Fizaine, “White paper, Open Office v3.x Security Design Weakness”,
Laboratorie de virology et de cryptologie operationnelles, France, March, 2003.

[51]. Information Security Awareness, “Browser Threats”
http://infosecawareness.in/isea/women/browser-threats Last modified: 2009-05-08.

[52]. Microsoft Corporation, “Using Microsoft Office 2003 security features”, http://www.
microsoft.com/protect /products/yourself/office2003.mspx, [visited: May 2009].

[53]. Sami Rautiainen “OPENOFFICE SECURITY” published in the processing of the 13th
Annual Virus Bulletin International Conference (VB2003), Toronto, Canada 25-26,
[visited: September 2003].

[54]. Document Security Systems, Inc. http://www.documentsecurity.com/, [visited: July
2009].

[55]. Jakarta Slide, http://jakarta.apache.org/slide/architecture.html, [visited: July 2009].

[56]. Open Source Project, JLibrary, “Tutorial: Security Management”,
http://jlibrary.sourceforge.net/1/tut6.html, downloaded on July, 2009.

[57]. M. Alhammouri, S. Muftic, “A Model for Creating Multi-level-security Documents and
Access Control Policies”, published in the Proceeding of SSI´2006 - 8th Intl
Symposium on System and Information Security, Sao Jose Dos Campos, Sao Paulo,
Brazil, November, 2006.

[58]. M. Alhammouri, S. Muftic, “A Design of an Access Control Model for Multilevel-
Security Documents” published in the Proceeding of The 10th International Conference
of Advanced Communication Technology (ICACT 2008), pp 1476-1481, Feb 2008,
Phoenix Park, Korea.

[59]. A. Kapadia, “A Case (Study) For Usability in Secure E-mail Communication” Security
& Privacy, IEEE Volume 5, Issue 2, March-April 2007, pp. 80-84.

References

165 | P a g e

[60]. S. Kaushik, D. Wijesekera, and P. Ammann, “BPEL orchestration of secure webmail”
published in the Proceeding of the 3rd ACM workshop on Secure web services
Alexandria, Virginia, USA, pp. 85-94, 2006 ISBN:1-59593-546-0.

[61]. C.-J. Tsai, S.-S. Tseng, and H.-T. Cheng, “Intelligent E-mail Management System”
published in the Proceeding of the IEEE Conference on Systems, Man, and Cybernetics,
1999 SMC '99, volume 5, pp. 824-829, ISBN: 0-7803-5731-0 Tokyo, Japan 1999.

[62]. https://esecure.evolve-online.com/solutions/esecure-mail.php,[visited: December 2008].

[63]. H.-M. Sun, B.-T. Hsieh, and H.-J. Hwang, “Secure E-mail protocols providing perfect
forward secrecy”, published in the Proceeding of the IEEE Communications Letters,
Volume: 9, Issue: 1 pp. 58-60 ISSN: 1089-7798, Jan. 2005.

[64]. G. Kardas and E. Celikel, “A Smart Card Mediated Mobile Platform for Secure E-Mail
Communication”, published in the Proceeding of the Fourth International Conference
on Information Technology, 2007. ITNG’ 07 Volume , Issue, pp. 925 – 928, April
2007.

[65]. T. Ichimura, A. Hara, Y. Kurosawa, T. Ichimura, A. Hara, and Y. Kurosawa, “A
classification method for spam e-mail by Self-Organizing Map and automatically
defined groups”, published in the Proceeding of IEEE International Conference on
Systems, Man and Cybernetics, 2007. ISIC. pp. 2044-2049 ISBN: 978-1-4244-0991-4,
Montreal, QC, Canada, October 2007.

[66]. C. Masone and S. Smith, “Towards usefully secure E-mail”, published in the IEEE
Technology and Society Magazine, Volume: 26, pp. 25-34, ISSN: 0278-0097 INSPEC,
Spring 2007.

[67]. “SPAM Problems?”, http://www.uni.edu/its/us/faqs/E-mail/SPAM/aboutSPAM .htm,
[visited: December 2008].

[68]. Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and Nagendra
Modadugu, “The Ghost In The Browser Analysis of Web-based Malware”, published in
the Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets (HotBots
’07), Cambridge, MA, pp. 4-13, April, 2007.

[69]. White paper, “Making Sense Of Man-In-The-Middle, Strategies For Mitigating A
Menacing Threat”, RSA, The Security Division of EMC, MITB WP 1009, January,
2010.

[70]. Roger A. Grimes, “Malicious Mobile Code, Virus Protection for Windows”, ISBN: 1-
56592-682-X, Chapter 11, August, 2001.

[71]. Vincenzo Ciaschini and Roberto Gorrieri, “Contrasting Malicious Applets by
Modifying The Java Virtual MACHINE, Security and Protection in Information
Processing Systems”, Published in the proceedings of the 18th World Computer
Congress, Toulouse, France, pp. 47-64, August, 2004.

[72]. Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng Guo, Xinhui Han, and Wei Zou,
“Studying Malicious Websites and the Underground Economy on the Chinese Web”,
Published by Springer in Managing Information Risk and the Economics of Security,
pp. 225-244, December, 2007.

References

166 | P a g e

[73]. Symantec, White Paper, “Critical System Protection and Endpoint Encryption for the
PCI Data Security Standard”, [Online], http://www.symantec.com
/business/products/whitepapers.jsp?pcid=pcat_security&pvid=endpt_encryption_1#,
[visited: February 2010].

[74]. Norton 360, “All in one Security”, [Online], http://www.symantec.com/norton /360,
[visited: February 2010].

[75]. AVG Internet Security, [Online], http://www.avg.com/us-en/homepage, [visited:
February 2010].

[76]. avast, [Online], http://www.avast.com/free-antivirus-download#tab2, [visited: February
2010].

[77]. Snort, “The defacto standard for intrusion detection/prevention”, http://www.snort.org/,
[visited: February 2010].

[78]. nCircle, “Proactive Network Security”, [Online], http://www.ncircle.com/ index.php,
[visited: February 2010].

[79]. “Network Security Switch, Intrusion Prevention System and
Policy”, REFLEX. http://www.reflexsecurity.com/, [visited: February 2010].

[80]. NESSUS. [Online],http://www.tenablesecurity.com/nessus/, [visited: February 2010].

[81]. Thomas Burg, “SSL Certificates and PKI in the NonStop World - and Other Worlds”,
Published in The Connection, pp. 17-20, June, 2004.

[82]. Robert McMillan, “Mass Web attack hits Wall Street Journal, Jerusalem Post”,
http://www.computerworld.com/s/article/9177904/
Mass_Web_attack_hits_Wall_Street_Journal_Jerusalem_Post, (June, 2010), [visited:
February 2010].

[83]. M. Blaze, “A cryptographic file system for UNIX”, published in the proceedings of 1st
ACM Conference on Communications and Computing Security, 1993.

[84]. G. Cattaneo, G. Persiano, A. Del Sorbo, A. Cozzolino, E. Mauriello and R. Pisapia,
“Design and implementation of a transparent cryptographic file system for UNIX”,
Technical Report, University of Salerno, 1997.

[85]. J. Hughes and D. Corcoran, “A universal access, smart-card-based, secure file system”,
Atlanta Linux Showcase, October 1999.

[86]. E. Zadok, I. Badulescu and A. Shender. “Cryptfs: A stackable vnode level encryption
file system”, Technical Report CUCS-021-98, 1998.

[87]. RSA laboratories, “What is public-key cryptography”, http://www.rsa.com/
RSALABS/node.asp? id=2165, [visited: November 2009].

[88]. T. Dierks, E. Rescorla, RFC No. 5246, “The Transport Layer Security (TLS) Protocol”,
SSL v3, August 2008.

References

167 | P a g e

[89]. E. Rescorla, A. Schiffman, RFC: 2660 “The Secure HyperText Transfer Protocol”,
August 1999.

[90]. W. Tworek, G. Chiesa, F. Dahm, D. Hinkle, A. Mason, M. Milza, A. Smith, “Lotus
Security Handbook”, First Edition, April 2004.

[91]. FIPS PUB 140-2, “Security Requirements for Cryptographic Modules”, Information
Technology Laboratory, National Institute of Standards and Technology, Gaithersburg,
MD 20899-8900, May 25, 2001.

[92]. M. Alhammouri, S. Muftic, “Management of Groups and Group Keys in Multi-level
Security Environments”, 26th International Conference Computer Safety, Reliability,
and Security (SAFECOMP 2007), Nuremberg, Germany, ISBN: 0302-9743, pp. 75-80,
September 2007.

[93]. M. Alhammouri, S. Muftic, “A Model for Creating Multi-level-security Documents and
Access Control Policies”, published in the proceeding of SSI´2006 - 8th Intl
Symposium on System and Information Security, Sao Jose Dos Campos, Sao Paulo,
Brazil, November, 2006.

[94]. White Paper: “Xerox DocuShare Security Features”, August 2009.

[95]. “Digital Signatures & Rights Management in the Acrobat Family of Products”, A guide
for administrators and advanced users for Acrobat® Family of Products 9.x,
Modification date: August 26, 2009.

[96]. Article, Signed Applets - How to sign an applet,
http://forums.sun.com/thread.jspa?threadID=174214, [visited: March 2009].

[97]. OpenOffice, “OpenOffice.org “XML File Format, Technical Reference Manual”,
Version 2, December 2002, Sun Microsystems, Inc.

[98]. Microsoft Corporation, “Winlogon and GINA”, http: //msdn.microsoft.com/ en-
us/library/aa380543(VS .85).aspx, , [visited: October 2009].

[99]. CVS Concurrent Version System, http://www.cvshome.org/eng/, [visited: January
2009].

[100]. Hudson Server, http://hudson-ci.org/, [visited: March 2009].

[101]. XACML OASIS , S. Cantor, J. Kemp, R. Philpott, E. Maler, “Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML) V2.0” OASIS Standard,
March 15, 2005, http://docs.oasis-open.org/security/saml/ v2.0/.

[102]. http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.webs
phere.base.doc/info/aes/ae/trun_genericsvr_create.html [visited: May 2010].

[103]. Peffers, Ken , Tuunanen, Tuure , Rothenberger, Marcus A. and Chatterjee, Samir, “A
Design Science Research Methodology for Information Systems Research”, Published
in the Journal of Management Information Systems, Vol. 24, No. 3, pp. 45 – 77, Winter
2008

168 | P a g e

Appendices

169 | P a g e

Appendix A

Following are the most popular and common attacks on digital assets in distributed

and integrated environments.

Name of Attack Description

Tampering An attacker may alter information either stored in local files,

database or is sent over public network.

Eavesdropping/Information

Disclosure

This type of attack occurs when attacker gains access in the data

path and gains access to monitor and read the messages.

Repudiation Sender tries to repudiate, or refute the validity of a statement or

contract which is sent by him/her.

Elevation of Privileges An attacker may access unauthorized to information and resources

Man-in-the-Middle Attack This type of attack occurs when an attacks infiltrates the

communication channel in order to monitor the communication

and modify the messages for malicious purposes. This type of

attack can be more effective when client and server are

exchanging time constraint data. For example: stock exchange

data, real time data

Replay Attack A replay attack is defined as when an attacker or originator sends a

valid data with intention to use it maliciously or fraudulently.

Identity Spoofing Identity spoofing occurs when an attacker impersonates the users

as the originator of the message in order to gain access on a

network.

Directory Attack In this type of attack, attackers some how get access in user’s

information stored in database or directory (LDAP) and steal

critical information like password or keys.

Reverser Engineering

Threat

In this type of attacks, an attacker can use some tools or

techniques to either get knowledge about weakness of software or

illegal modification.

Differential Analysis

Threat

When new versions are released, a differential analysis of the new

and old version would indicate where differences in the code exist.

This differential analysis would provide an opportunity to

attackers to locate the position where he/she can attack and

integrate malicious code.

Appendices

170 | P a g e

Viruses and Worms

Viruses and worms are very common and well known attacks.

These are piece of code that decrease the performance of hardware

and application even these malicious codes corrupts files on local

file system. This situation becomes more critical when such

malicious code damages the inner logic of software to make it

abnormal or worthless.

Appendices

171 | P a g e

Appendix B

This appendix explains different elements of an XML file, which is a format of

protected encapsulated software module.

SPS Starting element of XML file.

Version Current version of software protection file format.

Content-Type This element indicates the type of contents in contents field which

helps secure execution environment to process it accordingly. Some

examples are SignedAndEnvelped, Enveloped, Signed etc.

Encapsulation-

Standard

This field contains information about encapsulation standard, like

PKCS7.

SM-Type This element contains information about the type of software

modules. These types can be Native, Configuration or External. The

secure execution environment handles these files according to the

type of software module.

SM-Name Name of protected software modules/file.

Content-Description This field provides descriptions of encapsulated modules and is an

optional field.

Contents This element contains the actual contents of software modules

protected using cryptographic and encapsulation standards defined

in element Content-Type and encapsulated in the standard,

mentioned in Encapsulation-Standard element.

Appendices

172 | P a g e

Appendix C

C 1. Message Formats

In this protocol, each message class tag (MCL) and fields (tag/value) are part of the

message body. The value of each field is in hexadecimal format and each field

(tag/value) is separated by a space from other field. The following are the message

formats of Federation and Validation Protocols. These are based on modified ANSI

X9.26 specifications:

C 1.1. Unilateral Registration Protocol

• Registration-Request
Registration-Request = CSM(MCL/TFV ORG/orgVal RCV/rcvVal SID/sessionIdD
URL/localsem.com IP/130.237.158.18 PORT/9411 GSF/(sessionID|URL|valIP|valPort)
SLA/)

ORG Identity of message sender
RCV Identity of message recipient
SID Session Id

URL URL of SEM server’s domain

IP IP address of SEM server
PORT Port number of SEM server
GSI The output of the GSF generated by initiator
SLA Service Level agreement (optional parameter)

• Registration-Reply

Registration-Reply = CSM(MCL/SRF ORG/orgVal RCV/rcvVal SID/sessionID
GSF/sessionID VURL/localsem.com)

ORG Identity of message sender
RCV Identity of message recipient
SID Session ID

GSR The output of the GSF generated by responder
VURL The certified domain name of SEM server in the format of PKCS#7SignedData

C 1.2. Mutual Registration Protocol

• Registration-Request

Registration-Request = CSM(MCL/TFV ORG/orgVal RCV/rcvVal SID/sessionIdD
URL/localsem.com IP/130.237.158.18 GSF/(sessionID|URL|valIP))

ORG Identity of the message sender
RCV Identity of the message recipient
SID Session ID

URL URL of the SMI server
IP IP Address of SMI server
GSI The output of the GSF generated by initiator

• Registration-Reply-Request

Registration-Reply-Req = CSM(MCL/SRF ORG/orgVal RCV/rcvVal SID/sessionID
GSF/sessionID MESSAGE/Registration-Request)

Appendices

173 | P a g e

ORG Identity of the message sender
RCV Identity of the message recipient
SID Session ID
GSR The output of the GSF generated by responder
MESSAGE Registration request message but the GSF field is generated by responder

• Registration-Reply

Registration-Reply = CSM(MCL/SRF ORG/orgVal RCV/rcvVal SID/sessionID
GSF/sessionID)

ORG Identity of the message sender
RCV Identity of the message recipient
SID Session ID
GSI The output of the GSF generated by initiator. The session Id is the input of GSF

function.

C 1.3. Management of Federation

• AddReferences

AddReferences = CSM(MCL/SRF ORG/orgVal RCV/rcvVal SID/sessionID Ref/RefList
GSF/sessionID|RefList)

ORG Identity of the message sender
RCV Identity of the message recipient
SID Session ID
Ref List of domain names separated by ‘;’
GSI The output of the GSF generated by initiator. The session ID and list of references

is the input of GSF function.

• DelReference

DelReference = CSM(MCL/SRF ORG/orgVal RCV/rcvVal SID/sessionID Ref/valRef
GSF/sessionID|valRef)

ORG Identity of the message sender
RCV Identity of the message recipient
SID Session ID
Ref Domain name
GSI The output of the GSF generated by initiator. The session ID and list of references

is the input of GSF function.

• Deregistration

Deregistration = CSM(MCL/SRF ORG/orgVal RCV/rcvVal SID/sessionID Ref/valRef
GSF/sessionID|valRef)

ORG Identity of the message sender
RCV Identity of the message recipient
SID Session ID
URL Domain name of SEM server
VURL Certified URL or Domain Name
GSI The output of the GSF generated by initiator. The session ID and Domain Name

are the input of this function.

Appendices

174 | P a g e

Appendix D

We implemented basic and complex security functions using our Java Security

Provider, Java Crypto Provider (using standard Java security packages and Bouncy

Castle Provider), and MS - Crypto Services Provider (C#) in order to compare their

performance. We used following test bed and cases for comparison. Furthermore, we

also provide detailed results of our experiments in Section D 3.

D 1. Characteristics of Platform

Processor: Inter Core (TM)2 Duo T7300 @ 2.00 GHs

RAM: 2.00 GB

Operating System: Windows XP with SP-3

Integrated Development Environment: Eclipse 3.3

D 2. Sample Code

In this section, we only included code for Symmetric Key Cryptography as a sample

in order to justify our claim that our system is better for rapid development of security

services in applications.

D 2.1. Sample Code using Generic Security Provider

public long DESTest()
{

 long startTime = System.currentTimeMillis();
 // Instantiate an object of SymmetricKey
 SymmetricKey sk = new SymmetricKey();
 // Plain text
 String secretString = "Attack at dawn!";
 // Encrypt plain text using reference of instantiated symmetric key
 object
 byte encrypt[] = sk.encrypt(secretString.getBytes());
 // Decrypt cipher text using reference of instantiated symmetric
 key object
 byte dec[] = sk.decrypt(encrypt);
 long endTime = System.currentTimeMillis();
 return (endTime-startTime);
 }

D 2.2. Sample Code using Java Crypto Provider (using standard Java security

packages and Bouncy Castle Provider)

 public long DESTest()
 {
 long startTime = System.currentTimeMillis();
 // Define references of Cipher class for encryption and decryption
 Cipher ecipher=null;
 Cipher dcipher=null;
 SecretKey desKey=null;
 // plain Text
 String secretString = "Attack at dawn!";
 byte[] enc=null;
 try
 {
 // Generate symmetric key

Appendices

175 | P a g e

 desKey = KeyGenerator.getInstance("DES").generateKey();
 // Instantiate cipher and decipher objects
 ecipher = Cipher.getInstance(desKey .getAlgorithm());
 dcipher = Cipher.getInstance(desKey .getAlgorithm());
 // Initialize cipher and decipher objects
 ecipher.init(Cipher.ENCRYPT_MODE, desKey);
 dcipher.init(Cipher.DECRYPT_MODE, desKey);

 // Encrypt plain text using reference of cipher object
 enc = ecipher.doFinal(secretString.getBytes());
 // Decrypt cipher text using reference of decipher object
 byte[] utf8 = dcipher.doFinal(enc);

 } catch (BadPaddingException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (NoSuchPaddingException e) {
 System.out.println("EXCEPTION: NoSuchPaddingException");
 } catch (NoSuchAlgorithmException e) {
 System.out.println("EXCEPTION: NoSuchAlgorithmException");
 } catch (InvalidKeyException e) {
 System.out.println("EXCEPTION: InvalidKeyException");
 }
 long endTime = System.currentTimeMillis();
 return (endTime-startTime);
 }

D 2.3. Sample Code using MS - Crypto Services Provider (C#)

 public static long DESTest()
 {
 long l = System.Environment.TickCount;
 string PlainText=@"Attack on Dawn";
 // Create an instance of DESCryptoServiceProvider which is a
 // DES key
 DESCryptoServiceProvider key = new DESCryptoServiceProvider();
 // Create a memory stream for Crypto Stream.
 MemoryStream ms = new MemoryStream();
 // Create a CryptoStream using the memory stream and the CSP DES
 // key.
 CryptoStream encStream = new CryptoStream(ms,
 key.CreateEncryptor(), CryptoStreamMode.Write);

 // Create a StreamWriter to write a string to the stream.
 StreamWriter sw = new StreamWriter(encStream);
 // Write the plaintext to the stream.
 sw.WriteLine(PlainText);

 // Close the StreamWriter and CryptoStream.
 sw.Close();
 encStream.Close();

 // Get an array of bytes that represents
 // the memory stream.
 byte[] buffer = ms.ToArray();

 // Close the memory stream.
 ms.Close();

 // Create a memory stream to the passed buffer.
 ms = new MemoryStream(buffer);

 // Create a CryptoStream using the memory stream and the
 // CSP DES key.
 encStream = new CryptoStream(ms, key.CreateDecryptor(),
 CryptoStreamMode.Read);

 // Create a StreamReader for reading the stream.

Appendices

176 | P a g e

 StreamReader sr = new StreamReader(encStream);

 // Read the stream as a string.
 string val = sr.ReadLine();
 // Close the streams.
 sr.Close();
 encStream.Close();
 ms.Close();
 long l2 = System.Environment.TickCount;
 return (l2-l);

 }

D 3. Results

The detailed results of our experiments are shown in the following tables.

Greneric Security Provider

No.

SymmetricKey

Cryptography

(DES)

AsymmetricKey

Cryptography

(RSA-1024)

HASH

Functions

(SHA-1)

Certificate

Generation

PKCS7

SignedData

SMIME

SignedData

1 16 32 0 578 78 47

2 15 47 0 516 94 47

3 16 32 0 515 110 46

4 15 32 0 468 63 62

5 16 31 0 562 94 47

6 15 47 0 625 110 31

7 16 16 0 875 62 63

8 16 31 0 547 109 63

9 16 32 0 547 93 94

10 16 32 0 656 31 31

Avg. (ms) 15.70 33.20 0.00 588.90 84.40 53.10

Java Crypto Services Provider/Bouncy Castle

No.

SymmetricKey

Cryptography

(DES)

AsymmetricKey

Cryptography

(RSA-1024)

HASH

Functions

(SHA-1)

Certificate

Generation

PKCS7

SignedData

SMIME

SignedData

1 375 594 0 765 94 125

2 391 281 0 500 109 125

3 406 359 0 563 110 125

4 375 235 0 672 125 109

5 375 188 0 500 109 156

6 375 422 0 1750 94 125

7 359 437 0 579 110 140

8 360 312 0 672 94 125

9 375 250 0 469 125 125

10 375 203 0 453 109 140

Avg. (ms) 376.60 328.10 0.00 692.30 107.90 129.50

MS Crypto Services Provider using C# (.NET)

No.

SymmetricKey

Cryptography

(DES)

AsymmetricKey

Cryptography

(RSA-1024)

HASH

Functions

(SHA-1)

Certificate

Generation

PKCS7

SignedData

SMIME

SignedData

1 0 359 0 407 78 78

Appendices

177 | P a g e

2 0 422 0 328 78 78

3 0 235 0 343 79 62

4 0 250 0 453 78 78

5 0 203 0 563 78 62

6 16 203 0 297 78 78

7 0 203 0 343 79 78

8 0 219 0 250 78 62

9 16 484 0 235 78 62

10 0 328 0 281 78 63

Avg. (ms) 3.20 290.60 0.00 350.00 78.20 70.10

--

