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CRYSCOR is a periodic post-Hartree–Fock program based on local functions in direct space, i.e., Wannier

functions and projected atomic orbitals. It uses atom centered Gaussians as basis functions. The

Hartree–Fock reference, as well as symmetry information, is provided by the CRYSTAL program.

CRYSCOR presently features an efficient and parallel implementation of periodic local second order

Møller–Plesset perturbation theory (MP2), which allows us to study 1D-, 2D- and 3D-periodic systems

beyond 1000 basis functions per unit cell. Apart from the correlation energy also the MP2 density

matrix, and from that the Compton profile, are available. Very recently, a new module for calculating

excitonic band gaps at the uncorrelated Configuration-Interaction-Singles (CIS) level has been added.

Other advancements include new extrapolation techniques for calculating surface adsorption on semi-

infinite solids. In this paper the diverse features and recent advances of the present CRYSCOR version are

illustrated by exemplary applications to various systems: the adsorption of an argon monolayer on the

MgO (100) surface, the rolling energy of a boron nitride nanoscroll, the relative stability of different

aluminosilicates, the inclusion energy of methane in methane–ice-clathrates, and the effect of electron

correlation on charge and momentum density of a-quartz. Furthermore, we present some first tentative

CIS results for excitonic band gaps of simple 3D-crystals, and their dependence on the diffuseness of the

basis set.

I. Introduction

In the past decade, quantum chemical wavefunction (Wf)

based methods started to enter the field of solid state physics

and chemistry, a realm dominated almost exclusively by

(Kohn–Sham) density functional theory (DFT) with local

exchange–correlation functionals. Standard DFT is known
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to possess certain deficiencies, like the self-repulsion and self-

correlation of electrons (a single electron has a non-vanishing

correlation energy), or the lack of long-range van der Waals

dispersion (important in any 3D extended system,1 and totally

crucial for molecular crystals). Furthermore, within the DFT

method alone there is virtually no systematic way to estimate

or improve the quality of the results. The absence of dispersion

in DFT can be to some extent circumvented by Grimme’s

empirical D-corrections.2,3 However, the empiricism of this

approach and the double counting of the correlation energy

derogate accuracy and predictive power of the method (see e.g.

ref. 1, 4 and 5 and also Sections IV B and IV C of this paper).

A more rigorous but also computationally much more expensive

approach to van der Waals dispersion in the context of DFT is

the use of the random phase approximation as the correlation

functional.6

Wf-based methods do not share the inherent problems of

DFT and, moreover, offer a hierarchy of methods to systematically

improve the accuracy of a calculation. On the other hand,

Wf-based methods are more complicated and thus

computationally much more demanding than DFT. In parti-

cular, the unfavorable scaling of the computational cost with

system size of Wf-based methods is problematic, and, in the

context of infinite (2D or 3D periodic) systems, like surface

slabs or crystals, even devastating: the simplest post Hartree–

Fock method, Møller–Plesset perturbation theory (MP)

of second order (MP2), has a scaling of O(N5) with system sizeN

(e.g. the number of electrons), which increases to even O(N7) for

coupled cluster singles doubles with perturbative triples correction,

CCSD(T), which is the ‘‘gold standard’’ of quantum chemistry.

This scaling wall has been overcome in molecular quantum

chemistry by exploiting the fact that electron correlation in

insulators is a short-range effect. The use of Slater determinants

built from local and not necessarily mutually orthogonal

one-electron functions (orbitals) allows for approximations

that exploit the short-range character of electron correlation.

Local correlation methods of that sort were already proposed

and implemented in the eighties,7–11 and later it was shown

that indeed O(N) methods can be devised on that basis,12 even

at the level of coupled cluster theory.13–16 A next step was the
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use of density fitting (DF) in local correlation methods, which

lead to very efficient programs for calculating electron correlation

effects in extended molecular systems.17–19

The first real periodic local correlation method, which was

applicable to 3D crystals, was first presented conceptually in

200320 and then formally in 2005.21 This was the start of the

CRYSCOR program, driven by the Torino and Regensburg

theoretical chemistry groups.22,23 At that time, the program

could calculate the correlation energy of crystals with a small

unit cell (like diamond or boron nitride) at the MP2 level.

The reference Hartree–Fock crystalline orbitals, expanded

in a basis set of Gaussian-type orbitals (GTO), are provided by

a Crystal calculation.24,25 The occupied and virtual orbital

spaces are spanned by localized Wannier functions (WF)26–28

and projected atomic orbitals (PAO), respectively. The list of

WF pairs as well as the pair specific excitation spaces (so-called

pair domains) are truncated according to distance criteria in

direct space, in analogy to the local correlation methods for

molecules. Translational as well as point group symmetry is

fully exploited.

It should be mentioned at this point that there have been

earlier cluster based approaches to tackle 3D-periodic systems

in the framework of quantum chemical Wf-based methods,

like the incremental scheme proposed by Stoll.29 The latter has

been successfully applied to many different crystals over the

years.30–34 However, such cluster based approaches are not

really periodic and thus require a careful and non-trivial

embedding to simulate the quasi infinite system.35 Furthermore,

recently, non-local canonical MP2 and CCSD methods based

on the projector-augmented-wave method and using plane

waves have been presented.36,37 A discussion of these methods

in more detail is beyond the scope of the present paper. Here,

we focus on the local correlation approach for periodic systems,

which features quasi-O(N) scaling of the computational cost

with respect to the unit cell size and therefore allows for a

treatment of systems with large unit cells.

The first version of the CRYSCOR program21 was very

inefficient due to the four-index integral transformation, and

it turned out that the DF technique constitutes indeed a

prerequisite to arrive at an efficient local correlation approach

for periodic systems. DF allows for a decomposition of the

transformed four-index integrals in terms of three-index quantities.

DF for periodic systems turned out to be much more complicated

than for the molecular case, and different schemes have been

implemented over the years, like the local direct-space fitting,

the multipole-corrected reciprocal fitting and the direct-

reciprocal-decoupled fitting.23,38,39 Very recently, also a parallel

implementation of the density fitted periodic local MP2 (LMP2)

method has been realized.40 It has been demonstrated that the

new program yields reasonable speedups of up to 50 cores, which

substantially extends the application range of the method.

In this contribution we highlight the capabilities of the

CRYSCOR program by several exemplary applications on physically

relevant systems. Section III is devoted to the adsorption problem,

for which we have chosen the physisorption of argon on the MgO

(100) surface. The scaling of the computational cost with unit cell

size within the sequential version of the code is also probed in this

section, by considering a MgO 3-layer slab with a progressively

expanded unit cell of up to 150 atoms. In Section IV three

prototypical examples for LMP2 applications using the parallel

CRYSCOR version are presented: here we study the formation

energy of a 1D Boron Nitride (BN) nanoscroll, the relative

stability of 3D covalent aluminosilicate crystals and the cohesive

energy of a molecular clathrate crystal.

Apart from the computation of the second-order correlation

energy, CRYSCOR can also evaluate the (orbital unrelaxed)

MP2 one-electron position density matrix41 and from that

(via six-dimensional Fourier transform) the MP2 one-electron

momentum density matrix, whose diagonal parts are the

electron charge density r(r) and the electron momentum

density p(p), respectively. The electron charge density, experi-

mentally accessible through diffraction experiments, faithfully

reflects the chemical composition and geometry of the system.

Furthermore, Bader’s theory of ‘‘atoms in molecules’’42 and its

application to crystals43 provide specific information on the

chemical features of the system via a topological analysis of

r(r) and its derivatives. Through a 2D integration of p(p) over

a plane perpendicular to a given crystallographic direction, the

directional Compton profiles are obtained, which are directly

comparable to the outcome of Compton scattering experiments.44

With CRYSCOR it is thus possible to calculate momentum space

properties at the correlated level.

Note that Kohn–Sham (KS) DFT, footing directly on r(r)

rather than on the density matrix, has no direct link to

momentum space. The KS density matrix is constructed from

KS orbitals, which refer to the fictitious system of non-interacting

electrons with the only constraint of reproducing the exact r(r).

The KS density matrix therefore has not much to do with the

density matrix of the real system, and KS DFT cannot be

expected to provide a reasonable description of the momentum

density matrix and its derived properties like the directional

Compton profile.45–49 The topic of calculating the density matrix

and related quantities using the CRYSCOR code is covered in

Section V.

Another new feature of CRYSCOR is a periodic formulation

of the local configuration interaction singles (CIS) method for

calculating excitonic band gaps, as a first step towards further

and more sophisticated correlated approaches. A first version of

the program was limited to 1D periodic systems (polymers),50 yet
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in the mean time it has been generalized to 3D crystals. Some

preliminary results for CIS band gaps of simple 3D crystals with

focus on basis set effects are presented in Section VI.

In the next section we quickly review the basic aspects of the

periodic local post-Hartree–Fock methods. Technical data

(geometries, computational parameters, etc.) are provided as

ESI.w51

II. Periodic local post-HF methods

Formalism and implementation of the periodic local MP2 and

CIS programs in CRYSCOR have been discussed in detail

before21–23,50,52 and will not be reiterated here. Instead we

focus on the present capabilities of the code due to recent

advances, which are illustrated by several applications. It is

expedient, however, to briefly outline the fundamentals of the

method. Both the local MP2 and CIS techniques are essentially

based on the local direct space representation of the occupied

and virtual spaces. The former is spanned by symmetrized

Wannier functions as constructed according to the procedure

described in ref. 27 and 28, the latter by projected AOs (PAOs),

i.e., AOs, projected onto the virtual space. These are relatively

well localized and possess the symmetry of the underlying AOs,

but are mutually non-orthogonal and even redundant. Parts of

the calculations (e.g. the PAO construction53) are carried out in

reciprocal space when more convenient. Individual objects in

direct and reciprocal space representation are connected by

Fourier transformation.

The benefits of spanning occupied and virtual spaces by

local functions in direct space are two-fold. Firstly, the

relevant objects, i.e., integrals, amplitudes (coefficients in the

determinantal expansion), etc., are naturally sparse in direct

space, and this must be exploited in extended systems to reach

efficiency. Secondly, local approximations can be imposed by

a priori truncating the amplitudes to a much smaller set of

local amplitudes considered as relevant on the basis of the

short-range nature of dynamic correlation effects. For the

LMP2 method this is done in the following way:

(i) The virtual space is truncated according to WF-pair

domains Dij; all amplitudes related to excitations from the

WFs i, j to PAOs outside Dij are zero by construction. Dij is

constructed as the union of the two WF domains Di and Dj. Di

comprises the PAOs assigned to centers spatially close to

WF i, and can be determined either automatically54 or manually.

(ii) The WF pair list is truncated according to a distance

criterion Rmax
p applied to the distance Rp between the centers

of the WFs in a pair (or between the atoms in the corres-

ponding domains). This pair approximation exploits the

R�6
p decay behaviour of pair energies in the local representation.

Thus, very distant pairs with Rp greater than the cutoff distance

Rmax
p are disregarded when solving the LMP2 equations.21,22

The pair approximation is vital in the periodic context, since

otherwise the number of unknowns in the LMP2 equations

becomes infinite. The missing energy contribution of the

omitted very distant pairs can, however, be restored a posteriori

by means of a C6-extrapolation
22 (cf. Section III B).

A further pair approximation concerns the evaluation of the

electron repulsion integrals in the WF/PAO basis. These

integrals are calculated efficiently via periodic density-fitting

techniques.23,39 However, for pairs with very small overlap of

their orbital product distributions it is still much more

economical to approximate these integrals by multipole

expansion.22 Therefore, for WF pairs with Rp 4 Rmax
DF the

algorithm switches from density-fitting based integral evaluation

to multipole expansion.Rmax
DF must be set to a value beyond which

the overlap of the orbital product distributions is negligible.

III. Molecular adsorption on surfaces

One important application area for periodic local correlation

methods is molecular adsorption on crystalline surfaces.

Representing the periodic surface by means of finite cluster

models is difficult, non-unique, and requires sophisticated

embedding schemes, especially for adsorption on surfaces of

ionic solids.55,56 Besides, realistic models might require clusters

of prohibitively large size. The periodic local MP2 method

adequately represents the periodicity of the surface and, at

the same time, includes the short- and long-range electron

correlation effects on the same footing. The method has been

already successfully employed in several applications devoted

to adsorption.57–60

A. Scaling with unit cell size

The local approximation is of particular importance in the

context of adsorption. Often, the adjustment of the adsorbate

to the surface geometry implies large supercells, and only the

quasi-linear scaling of the computational cost with the number

of atoms per cell makes such calculations feasible. Further-

more, since an accurate correlation treatment is much more

demanding with respect to (wrt) basis set quality than DFT

(especially so for a proper description of van der Waals

dispersion), the use of the density fitting technique becomes

crucial. It reduces the scaling of the MP2 method wrt basis set

size from quartic to cubic, and thus allows for the use of

reasonably large basis sets (e.g. triple-zeta sets) in conjunction

with large unit cells.

In order to demonstrate the scaling behavior of our periodic

local MP2 implementation we present results from test calcu-

lations performed for the MgO three layer (100) slab with a

progressively expanded formal unit cell of up to 150 atoms per

cell. A triple-zeta (for Mg) and augmented (d- and f-functions)

triple-zeta (for oxygen) basis set, extended WF domains and

tightened HF integral screenings parameters24,61 have been

employed in the calculations (see the ESIw for details51).

The plots of elapsed times vs. unit cell size displayed in

Fig. 1 show low (quasi-linear) scaling of the LMP2 and HF

calculations. Full linear scaling of the LMP2 part is not

expected due to the presence of some higher scaling steps

(e.g. the PAO construction) with low prefactor. Moreover, for

larger supercells some of the buffers can no longer be kept in

memory and have to be swapped out on disk, causing I/O

overhead and the kinks in the curve. The use of point group

symmetry reduces the computational times substantially,

particularly so for the HF case.

These supercell calculations also reveal the stability (and size

extensivity) of the calculation. Comparing the initial primitive with

the largest supercell the HF energy per atom deviates only in the

sub-microhartree range. For the MP2 correlation energy the
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deviation is still smaller than a few microhartrees per atom, i.e., an

order of magnitude less than the density fitting error.23,39 Prob-

ably, these deviations are caused by some small variations in the

WFs between the initial primitive, and the supercells

(for further discussions see ESIw51). In any case, they can safely

be disregarded in any application. The memory consumption in

the largest supercell calculations is relatively high (up to 20 GByte

in the 150 atom case), but is substantially reduced in the

parallelized version of the program.40

B. Adsorption of argon on the MgO (100) surface

As an example for the adsorption problem we consider the case of

the 2 � 2 square argon monolayer adsorbed on the MgO (100)

surface. MgO (100) and the 2 � 2 argon monolayer are commen-

surate with respect to each other, but not to the ideal hexagonal

argon monolayer, leading to geometrical frustration. The manifold

of energetically more favorable and competitive adsorption

arrangements of the argon monolayer on MgO (100) (requiring

large supercell calculations) was recently studied by some of us;

the results of this detailed study will be published elsewhere.57

1. Physics of the adsorption process. Fig. 2 shows, as a

function of the argon-surface distance, the individual curves of

the adsorption energies for argon 2 � 2 adsorbed on three

different sites of MgO (100), i.e., on oxygen, on magnesium, and

on the midpoint between two adjacent Mg atoms, respectively

(the artificial 2 � 2 square argon monolayer is constructed such

that the individual argon atoms adsorb on equivalent sites of

the MgO (100) surface). Due to the sphericity of the argon

atoms there is no electrostatic contribution to the adsorption

energy. At long range the attraction is governed by van der

Waals dispersion. The three potential curves (related to the

three adsorption sites) virtually coincide at long range, which

exemplifies the isotropy of dispersive interactions. At short

range the dominating component is the exponentially growing

exchange repulsion. The first-order exchange repulsion is

already captured at the HF level. The HF adsorption energy

curves, also shown in Fig. 2, do not exhibit any recognizable

minima, but at short range their repulsive onsets sensitively

depend on the individual adsorption site. For the on-O position

the repulsive onset starts at larger distance, which is due to the

fact that in the MgO slab the electron density is concentrated

around the oxygen atoms. Appreciating the isotropy of long

range dispersion on the one hand, and the anisotropy of

exchange repulsion on the other hand, the most preferable

adsorption site is the on-Mg position, as is evident from Fig. 2.

Since local correlation methods employ localized orbitals the

correlation part of the adsorption energy can be partitioned

into intra-slab, intra-adsorbate, and inter-slab-adsorbate (to be

referred to as inter-) components (cf. Fig. 3).62,63 Such a

decomposition is useful for the analysis of the physics of the

adsorption process. Furthermore, the individual components

can be scaled to compensate for missing higher-order contributions

or basis set deficiencies,57,64 or, if negligible for the adsorption,

Fig. 1 Elapsed times for HF (red/squares), localization/symmetrization

of the WFs (black/triangles) and LMP2 (blue/circles) calculations on a

single 8-processor Xeon node. For the calculations the parallel version of

Crystal, and sequential version of CRYSCOR (yet with parallel precompiled

BLAS libraries) with (filled symbols) and without (open symbols) inclusion

of the actual point group symmetry of the slab (16 symmetry operations)

has been used.

Fig. 2 The interaction energy and its components (HF, intra-slab, inter-

slab-adsorbate and intra-adsorbate) between a three-layer MgO (001)-slab

and the argon monolayer in the 2 � 2 supercell arrangement (one argon

atom per two Mg atoms on the surface). The on-O (blue/spheres/dashed),

on-Mg (red/triangles/solid), andMg–Mg bridging (green/stars/dash-dotted)

adsorption positions are considered. The crosses show the C3R
�3 +C5R

�5

curve with the C3 and C5 parameters obtained in a single-point calculation

in the on-oxygen geometry with the slab–argon separation of 3.6 Å.

Fig. 3 Schematic representation of the correlation energy partitioning

in the local MP2 method and the model of the semi-infinite crystal for

the dispersion interaction.
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dropped from the calculation to reduce the computational cost

(vide infra).

Curves of the intra-slab, intra-adsorbate, and inter-components

for argon 2� 2 adsorbed on the three different sites of MgO (100)

are also displayed in Fig. 2. Evidently, apart from the inter-

component comprising long-range dispersion62,65 also the repulsive

intra-slab component is of importance. The latter originates from

the reduced ability of slab electrons to mutually correlate due to

exchange compression of the electron density caused by the argon

layer at short range.

Themagnitude of the intra-slab (or intra-adsorbate) components

is system-dependent. For some systems it is entirely negligible,

which can be exploited to study adsorption on zero or small band

gap materials,58 which by themselves cannot adequately be treated

by MP2. But even if the intra-slab component is large (as in

the present case) its value quickly converges wrt the pair

approximation specified by Rmax
p . This suggests that a different

pair approximation can be used for the inter-pairs Rmax
p-inter and

intra-pairs Rmax
p-intra. While the former has to be chosen rather

large to capture the relatively slow R�6 decay of the dispersion

energy with interorbital distance, this is not necessary for the

intra-pairs. Table 1 compiles the intra-slab and full correlation

interaction energies calculated with different intra-slab pair

approximations Rmax
p-intra-slab.

Evidently, the adsorption energy is already sufficiently

accurate for Rmax
p-intra-slab = 4–6 Å. The computational savings

due to such a truncation of the intra-slab pair list are not

dramatic for the case of the 3-layer MgO slab with C1
4v-

symmetry (a factor of 1.5–2), but for thick low-symmetry

slabs the vast majority of the pairs are of intra-slab type,

and there such a pair approximation leads to substantial

savings, especially concerning memory and disk usage.

2. Extrapolation of the long-range contribution. The intra/

inter-pair partitioning can also be used for improving the

results of MP2 itself. It is well known that the MP2 method

in many cases delivers quite accurate results, but sometimes

noticeably overestimates or underestimates the interaction energy.

The errors of the method are usually connected to the absence of

higher-order dispersion effects.63,66,67 This deficiency can be

corrected by up- or down-scaling the inter-component of the

LMP2 interaction energy, with scaling factors obtained from

finite-cluster based higher-order correlation calculations with

large basis sets.57 This allows us to substantially improve the results

for cases, where plain periodic local MP2 on the one hand fails to

deliver the desired accuracy, while on the other hand a higher-

order correlation treatment in the framework of the incremental

scheme29 is either too difficult or computationally too expensive.

The individual LMP2 pair energies beyond a certain WF

pair distance R decay as R�6. By analyzing this decay for

individual inter-pair energies, the correspondingWF- or atom-pair

specific C6 coefficients can be devised. These can be further utilized

to extrapolate the contributions from the WF- or atom-pairs not

explicitely included in the MP2 calculation. Furthermore, with

these coefficients the long-range dispersion between the argon

monolayer and the semi-infinite solid (formally constructed

by replicating the initial slab at progressively larger inter-slab-

adsorbate distances) can approximately be evaluated (cf. Fig. 3).

The inter-slab-adsorbate (dispersion) energy without and with

such an extrapolation technique is displayed in Fig. 4. Without

the extrapolation the calculated dispersive interaction is always

underestimated, independent of slab thickness. To approach the

reference value in this case one needs to increase both the cutoff

distance Rmax
p-inter and the thickness of the slab. By virtue of the

in-slab C6-extrapolation the converged value can be reached

already with moderately large Rmax
p-inter, yet requiring thick

enough slabs and thus a considerable computational effort.

But with the slab replication technique the dispersion energy is

nearly converged already in a 2-layer slab calculation.

The contributions from the replicated slabs, and the very

distant part of the initial slab are in fact quite small. Nevertheless,

they are essential for the correctR�3 decay behaviour of the van der

Waals attraction with slab-adsorbate separation.68 The atom-pair

C6 (and C8) coefficients, or the global slab-adsorbate C3 (and C5)

coefficients, which are computed within one single-point calculation

(eventually including a higher-order correction based on finite-

cluster calculations, vide supra), could also be utilized in the

context of less expensive methods like DFT-D or model

potentials.60 Fig. 2 shows that the dispersion energies calculated

by means of the C3 and C5 coefficients (obtained from an on-O

adsorption calculation with a slab–argon distance of 3.6 Å)

Table 1 The intra-slab correlation energy (Ecorr
intra-slab) and its contri-

bution (Ebind
intra-slab) to binding (Ebind

total), depending on the cutoff radius
Rmax
p-intra-slab for the intra-slab pairs. The amount of the symmetry-

irreducible (wrt C1
4v-symmetry group) intra-slab pairs (Npairs

intra-slab) is
given, which can be compared to the amount of pairs of other types
involved in the calculation, which is 285. The timings include the
LMP2 part of the calculations on the full system and the slab alone
(with the ghost adsorbate atoms)

Rmax
p-intra-slab/Å Npairs

intra-slab

Ecorr
intra-slab/

hartree
Ebind
intra-slab/

kcal mol�1
Ebind
total/

kcal mol�1
Elapsed
time/hours

0 0 0 0 �1.1030 2.2
2 34 �1.5885 0.2361 �0.8733 4.0
4 110 �1.6876 0.2717 �0.8373 4.8
6 290 �1.6976 0.2779 �0.8316 6.7
8 456 �1.6988 0.2786 �0.8307 7.9
12 904 �1.6992 0.2788 �0.8306 9.0

Fig. 4 The inter-component of the interaction energy without (green/

triangles) and with the C6-extrapolated contribution depending on the

slab thickness. The latter correspond to the pairs beyond Rmax
p-inter but

only within the ‘‘true’’ slab (red/circles) or also within the semi-infinite

solid (blue/squares), modelled by a replicated slab (cf. Fig. 3). The value

of 14 Å has been used for Rmax
p-inter. The reference calculation was done

with the 7-layer slab, Rmax
p-inter = 23 Å and the full C6-extrapolation. The

C6 coefficients have been automatically fitted to the pair energies in the

range from Rmax
DF (8 Å) to Rmax

p-inter.
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virtually coincide with long-range MP2 dispersion energies

calculated explicitely for various sites and distances.

IV. Parallel periodic local MP2

Recently, a parallel implementation of the periodic local MP2

method was presented,40 which considerably extends the

application range of the method towards larger unit cell sizes

and basis sets. This is of particular importance for 3D-crystals,

where the dense 3D packing leads to an earlier onset of compu-

tational bottlenecks than for 2D-surfaces. Parallelization can

indeed be used to eliminate (or at least reduce) computational

bottlenecks, but also memory bottlenecks (by recomputing

intermediates, which would be computationally too costly in a

sequential implementation). The parallel implementation, as

discussed in detail in ref. 40, uses exclusively directives of the

Message Passing Interface (MPI), while the modifications of

the sequential code are kept to a minimum. For the diverse

datasets of computational intermediates, which are too large

to be kept in memory, efficient disk paging algorithms were

devised in order to minimize I/O overhead. On architectures

featuring shared filesystems, shared files are used either for all

cores involved in the calculation, or for subgroups thereof.

Since the periodic LMP2 code is very heterogeneous with

distinct features and peculiarities in different parts, different

strategies are adopted for distributing CPU load and memory

requirements. The use of distributed memory algebra routines

is necessary in those steps, where the size of the matrices

involved scales quadratically with the number of atoms per

unit cell. In all other parts where the local approximation of

the virtual space implies compact local matrices independent

of the number of atoms per unit cell, a coarse grain paralle-

lization strategy has mostly been followed, i.e., parallelization

according to the index of the atoms in the reference unit cell.

Such an approach requires only minor modifications of the

sequential code and is conserving its loop structure, but

nevertheless is efficient for large unit cell sizes. On the other

hand, load imbalance and poor speedups occur for systems

with few atoms per unit cell, or with a very different number of

basis functions on different atoms.

The parallelization, but also several other technical

advancements, substantially improve the efficiency of the

periodic local MP2 program, such that presently crystalline

systems with a rather large number of basis functions per unit

cell can be treated. This opens the door to applications at the

cutting-edge of current research. As an illustration of these

new capabilities of the code we present here briefly first results

from three ongoing studies dedicated to (i) the formation

energy of nanoscrolls, (ii) the relative stabilities of different

aluminosilicate polymorphs, and (iii) the inclusion energy of

methane molecules inside a clathrate cage, which will be

reported in detail elsewhere. These three cases are computa-

tionally and methodologically quite challenging, for which

DFT with standard functionals fails to provide conclusive

and authoritative answers.

A. A nanoscroll: from 2D to 1D

As a demonstration for the performance of the new parallel

periodic LMP2 implementation we report benchmark calculations

performed for a one-dimensionally periodic boron nitride (BN)

nanoscroll. A nanoscroll is a spirally wrapped stripe with a 1D

tubular structure resembling that of amultiwalled carbon nanotube

(cf. Fig. 5), and in fact scrolling is considered as an intermediate

stage in the formation of such nanomaterials from colloidal

suspensions of layered compounds. Nanoscrolls are expected to

inherit some of the excellent properties from both the graphene—or

BN—sheet and the related nanotube. On the other hand, such

a hybrid structure should also possess some new and unique

properties. The interest for such structures directly follows

from the huge attention that graphene and derived nanostructures

have recently raised in the scientific community.69

Here, we compute the ‘‘rolling energy’’ of a BN nanoscroll

relative to the related nanostripe (i.e. the unrolled system). The

atomic positions were optimized at the B3LYP-D2 level. The

considered structure has a honeycomb arrangement of B and

N atoms, where the two borders of the cut stripe are saturated

with hydrogen atoms. The system comprises 122 atoms (60 B,

60 N, and 2 H atoms) per unit cell. For the aug(p,d)-cc-pVDZ

basis set70 used for the MP2 calculation this corresponds to

2274 basis functions per unit cell. Since the diffuse augmented

functions cannot be used in the Hartree–Fock procedure due

to linear dependencies they are only used at the MP2 stage via

the dual basis set approach.53 The number of WF pairs

included in the MP2 calculation amounts to more than

70 000. The detailed specifications of the calculation are given

in the ESI.w51

The rolling energy per BN unit, defined as

Eroll = (Escroll � Estripe)/60 (1)

comprises two main contributions, namely the repulsive

deformation energy needed to roll up the stripe, and the

attractive interaction energy of the two adjacent walls now

facing each other. The latter originates mainly from van der

Waals dispersion (no new chemical bonds are formed), which

is not properly described by standard DFT. Calculations

performed using a B3LYP functional describe the rolled

configuration as not preferable with respect to the unrolled

one, with Eroll = 22.26 kJ mol�1. The empirical dispersion

correction -D2 amounts to�6.21 kJ mol�1 only, thus its addition

to B3LYP is not sufficient to revert the stability. At the HF level

the rolling is not favoured either, with Eroll = 5.72 kJ mol�1.

However, the MP2 correlation correction is capable of reverting

Fig. 5 A portion (45 unit cells are pictured) of the one-dimensionally

periodic rolled nano-scroll used in the benchmark calculations of the

parallelized CRYSCOR program.
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the stability of the two configurations, predicting a rolling

energy at the HF + MP2 level of �4.60 kJ mol�1.

Fig. 6 displays the speedups of different parallel LMP2

calculations performed for the BN nanoscroll running on up

to 122 cores. The reference calculation was performed on 6

cores. As in previous benchmarks,40 reasonable speedups are

observed for a moderate number of cores (up to 20–30), while

the saturation around 60 cores is worse than in other cases.

For the first time we have tested here the code on more than

100 cores, which can be considered as the border line between

parallel and massively parallel computations. Even though

CRYSCOR was not designed for massively parallel computations

(vide supra), a significant gain is still observed when using up

to 122 cores. The overall wall clock time of this calculation is

approximately 6 hours, compared to about 10 hours required

for a 61 core calculation.

B. Relative energy of 3D covalent crystals: aluminosilicate

polymorphs

The relative stability of Al2SiO5 ortho-silicate polymorphs

(Kyanite, K, Andalusite, A, and Sillimanite, S, whose

crystallographic structures are schematically displayed in

Fig. 7) is still controversial. On the experimental side, the error

bars exceed the small energy differences involved (cf. Table 2),

while previous quantum chemical calculations based on DFT

exhibit an even larger variation of values depending on the

choice of the exchange–correlation functional and could not

provide a reliable answer to this problem either (cf. Table 2

and ref. 71). However, the relative stability of these systems is

of great interest in the context of simulations of geological

processes. Furthermore, the peculiar structural and chemical

features and the size of these systems render the question

about their relative stability at the MP2 level an interesting

application project and an excellent example for the capabilities

of the CRYSCOR program.

For an accurate assessment of the relative stability of these

three polymorphs all the contributions to Gibbs’s free energy

should be considered, that is, the electronic, the pressure–

volume, the entropic, and the zero-point terms. Yet it has been

demonstrated in ref. 71, that all but the electronic contribu-

tions are expected to affect the computed relative stability at

most by 2–3 kJ mol�1, an amount that is usually smaller than

the experimental uncertainty affecting the measurements.74

Therefore, solely the electronic contribution is calculated here

and used to assess the relative energy of these compounds.

In a first step the geometries of the three polymorphsK,A,

andS were optimized at the DFT level using the PBE0 hybrid

functional. This functional yields the best agreement between

DFT and experimental structures at 298 K, with the unit cell

volume of all the compounds overestimated by only 0.3% with

respect to the experimental data.71 The local MP2 calculations

then were performed at these optimized structures. A homo-

geneous 4-atom domain Di (the central O plus two Al and one

Si atoms) was used for each WF in all polymorphs. For all

calculations the 86-311G** basis set on silicon, the 8-411G*

on oxygen, and the 86-111G* on aluminium were employed,

which comprise 624 contracted Gaussians per cell.

The resulting HF, and HF + MP2 relative energies are

compiled in Table 2, along with the corresponding DFT values

for different functionals. Experimental values taken from

ref. 72 and 73 are also given, for convenience. The local

MP2 results establish a clear correlation between the density

and the stability of the different phases: the stability orderK4

S 4 A coincides with the order of the packing densities. The

agreement of the LMP2 relative energies with experiment is

quite good, apart from a certain overestimation of the A–K

stability. The DFT results, on the other hand, wildly scatter for

the different functionals (in line with previous results),71 and are

nowhere near neither the LMP2, nor the experimental value. Of

those tried, the PBESOL functional provides the best estimate.

Addition of Grimme’s dispersion correction -D22 to the PBE0

functional, followed by geometry optimization of all the

Fig. 6 Parallel performance of some of the calculations presented in

Section IV.

Fig. 7 Crystalline structure of three Al2SiO5 polymorphs. Hexa-,

penta-, and tetra-coordinated aluminium atoms are represented in

gray, green and yellow, respectively (the corresponding coordination

polyhedra are reported too); silicon and oxygen tetrahedra are in beige

and red, respectively. The picture is published by courtesy of Int. J.

Quantum Chem., from ref. 71.

Table 2 Relative energy (in kJ mol�1 per Al2O3 unit) of A and S

with respect to K. The geometries used in the MP2 calculations were
optimized at the PBE0 level

A–K S–K

HF �19.17 �22.06
SVWN (LDA) 22.26 36.88
PW91 (GGA) �5.21 4.88
PBESOL (GGA) 10.32 26.36
B3LYP (hybrid) �16.50 �13.90
PBE0 (hybrid) �0.34 10.93
PBE0-D2 (hybrid + disp) 35.76 33.66
HF + MP2 17.66 4.94
Exp.a 1.40 (�3.40) 4.22 (�3.43)
Exp.b 3.86 7.72

a Ref. 72. b Ref. 73.
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structures, changes the order predicted by this Hamiltonian:

K correctly becomes the most stable phase with A and S

being almost isoenergetic. The PBE0-D2 values however are

far off the experimental ones, indicating an overestimation of

the dispersive contribution in the denser phase, K, and hence

a need for a different calibration of the empirical parameters of

the -D2 correction for dense crystalline materials. Further-

more, all the PBE0-D2 structures feature a 1–2% smaller

volume relative to the experimentally observed ones, which

is another indication of the overestimation of the dispersive

contribution by PBE0-D2.

Fig. 8 shows the relative stability of A, and S, vs. K,

calculated with different pair approximation Rmax
p . This

dependence indicates whether the short-range or long range

(dispersion) or both are responsible for the relative stability

between the compounds. Apparently, at the uncorrelated HF

level (Rmax
p o0) both A, and S are more stable than K, while

the K phase is becoming most stable when correlation is

included. Interestingly, very short-range correlation involving

WF pairs having at least one center in common, i.e., Rmax
p = 0,

is almost sufficient to change the relative energy between

A and K, which is not the case for S vs. K. Increasing

Rmax
p beyond 3–4 Å, i.e. adding a substantial portion of disper-

sion, yet is sufficient to make K the overall most stable phase.

In order to assess the dependence of the results on the

crystal geometry, additional MP2 calculations have been

performed at the B3LYP optimized geometries (B3LYP over-

estimates the volume by about 2.5%). At this alternative

geometry the MP2 relative energy of A and S remains

virtually the same as that at the PBE0 geometry. To summarize,

K is found to be the most stable structure, in agreement with

experiment. Yet, in contrast to the experiment, S is, at the MP2

level, significantly more stable thanA. This remaining discrepancy

might be due to the neglect of other but the electronic terms in the

expression of Gibbs’s free energy, or due to deficiencies of the

basis set. An intrinsic problem of atom centered basis sets,

affecting both DFT and MP2, is the geometry dependence of

the basis, as manifested in the basis set superposition error

(BSSE). Even though the BSSE of local correlation methods is

considerably smaller than that of canonical correlation methods,

it is still of the order of the DFT BSSE and thus can lead to an

artificial favouring for the more densely packed structures. BSSE

free relative energies are obtained by comparing instead of the

total energies the counterpoise corrected cohesive energies of the

competing polymorphs, as done e.g. in ref. 1. All these effects

need to be further explored.

C. van der Waals binding in solids: inclusion energy of CH4 in

methane–ice-clathrates

Molecular crystals constitute a very interesting class of materials

under many scientific and technological aspects. Over the years a

number of correlated finite cluster approaches (sometimes

combined with partial periodic treatment, e.g. periodic HF) for

such systems have been formulated and applied.34,75–79 Studies on

molecular crystals have already been carried out also in a purely

periodic format using earlier versions of the CRYSCOR parallel

code, including pressure-induced phase transitions80,81 and

cohesive energies of molecular crystals.82–84

A clathrate or cage compound is amolecular crystal representing

a lattice of molecules of a first type, which traps molecules of a

second type. A clathrate hydrate, in particular, is a special type of

gas hydrate, in which a lattice of water molecules encloses

molecules of a trapped gas. Clathrate hydrates containing

methane are of particular interest. Large amounts of such

methane–ice, which is considered as an important potential

energy resource of the future, have been discovered under the

ocean sea-bed. Deposits seem to be abundant in the continental

shelf, contributing also significantly to the stability of the slopes

of the shelf. For example, the Storegga slides, which are amongst

the largest known landslides causing huge tsunamis, are assumed

to be triggered by a decomposition of methane–ice. Further-

more, in astrochemistry, methane hydrates are conjectured to

the dominant methane-containing phase in the nebulae from

which Saturn, Uranus, Neptune, and their major moons

were formed.85 So, methane hydrates, and in particular their

stability, certainly are of great interest, presently. The

particular system studied here is classified under the name of

MH-III (cf. Fig. 9), and its existence has been discovered only

recently.86 It appears to be stable in a broader range of

pressure–temperature values, and to be richer in methane,

than other methane hydrate phases.

We have calculated the average inclusion energy per CH4

molecule, Eincl, of the methane gas in the ice matrix, as

Eincl = [EMH-III � 4EM � EH-III]/4 (2)

where EM is the energy of an isolated methane molecule and

EH-III is the energy of the empty hydrate structure. The

experimental geometry of the MH-III phase has been used

in all cases. Eincl also does not contain any geometrical

relaxation energies of the individual fragments. To take into

account BSSE effects, ghost functions from CH4 molecules

have been retained in the empty clathrate cage, and in a sphere

of 4 Å around the isolated methane molecule. Local excitation

Fig. 8 HF+MP2 relative stability (in kJ mol�1 per Al2O3 unit) ofS

(red) and S (black) with respect to K as a function of the correlation

distance between WFs. The HF relative stabilities are reported as well,

as full circles.
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domains have been restricted, for each WF, to the atoms

forming the molecule they belong to.

An unmodified standard molecular cc-pVTZ basis set was

employed, with the addition of augmented d- and f-orbitals87

in the MP2 calculation (the latter by means of the dual basis

set technique),53 leading to a respectable size of 1112 contracted

basis functions per unit cell. Table 3 compiles the counterpoise

corrected88 inclusion energies obtained with HF, HF + MP2,

and DFT.

Of the DFT functionals, evidently, only the dispersion

corrected B3LYP-D2 leads to a physically reasonable, attractive

inclusion energy, although significantly overestimated in

comparison toMP2. Again we see the need for a reparametrization

of the empirical parameters of the -D2 correction for crystalline

materials.

The parallel speedup for the LMP2 calculation on the

MH-III structure is reported in Fig. 6 with respect to a

reference calculation on 4 cores. The performance is in this

case not excellent, due to load imbalancing issues originating

from the very different number of basis functions on C and O

atoms, relative to H. On 44 cores, the total wall clock time

amounts to less than 3 hours.

V. MP2 density matrix and related properties

All the relevant one-electron properties related to spin-free

operators can be calculated from the spin-free position

one-electron density matrix (DM) R(r;r0).89,90 The electron

charge density (ECD) of the system is simply the diagonal part

of the DM, r(r) = R(r;r). The three-dimensional Fourier

Transform (FT) of r(r) yields the form factor F(p), which in

turn can be represented by the discrete (but infinite) set of

structure factors (SF) as F(p) � {Fhkl}, where h, k, l are Miller’s

indices labeling crystallographic directions. These structure

factors are the primary observables in direct space, which can

be measured with X-rays or synchrotron radiation diffraction

experiments. An ‘‘experimental’’ ECD can then be recon-

structed via the so-called multipolar models.91

The six-dimensional FT of R(r;r0) yields the momentum

DM P(p;p0); its diagonal part p(p) = P(p;p) is the electron

momentum density (EMD) of the system. The three-dimensional

FT of the latter is the reciprocal form factor B(r) (also known as

auto-correlation function or internally folded density).92,93 For each

[hkl] crystallographic direction, identified by the unit vector ehkl,

two interrelated functions of a single variable can be defined,

namely the directional auto-correlation function, Bhkl(r) =

B(rehkl), and the directional Compton profile (CP), Jhkl(p)

(the latter is simply the one-dimensional FT of Bhkl(r)). Within

the sudden-impulse approximation, Jhkl(p) is directly comparable

to the outcome of Compton scattering experiments,44 after

correcting these for limited resolution and multiple scattering

effects. The ‘‘experimental’’ EMD of the system, even though not

uniquely,94 can then be reconstructed from a sufficiently large set

of such directional CPs.95

The CRYSCOR program can presently calculate the orbital-

unrelaxed MP2 density matrix related to energy derivatives of

the MP2 energy with respect to external perturbations.41,96

This allows for a post-HF treatment for solid state properties

such as the ECD (along with a topological analysis according

to Bader42), SFs, EMDs, CPs, etc. In particular, the availability

of correlated momentum-space properties is of relevance,

since KS-DFT cannot provide a reliable description of such

quantities.45–48,97

As an example of this feature of CRYSCOR, we discuss here

two complementary aspects of the DM of a-quartz as reflected

in its EMD and its ECD, and the effect of electron correlation

on these. All the computational parameters used in these

calculations are identical to those of ref. 49.

Let us first consider its EMD. A simple scheme for analyzing

the total EMD of a system is that of considering its anisotropy

Dp(p) with respect to the spherical average (SA) function �pSA(p),

Dp(p) = p(p) � �pSA(p), with p = |p|. The left panel of Fig. 10

displays the Dp(p) quantity calculated at the Hartree–Fock level

for momentum vectors p confined to a plane containing the [100]

and [001] directions. Evidently, the EMD of a-quartz exhibits a

certain anisotropy; the region of maximum anisotropy lies at |p|

values between 1.0 and 1.3 a.u. near the [101] direction.

The right panel of Fig. 10 shows the MP2 contribution

p
MP2(p) to the total HF + MP2 EMD. pMP2(p) is negative at

low momenta (p o 1.8) and positive at higher momenta. The

effect of electron correlation is that of increasing the kinetic

energy of the system by ‘‘replacing’’ electrons with lower

momenta by electrons with higher momenta. This can be

understood on the basis of the virial theorem. Since electron

correlation always leads to a lower (more negative) total

energy compared to the mean field theory, the kinetic energy

of the correlated system must also be higher. Furthermore, it

can be seen that p
MP2(p) has a minimum around the [101]

direction where Dp
HF(p) exhibits a maximum, such that

electron correlation also decreases the anisotropy of the

EMD with respect to the HF reference.

One of the intriguing aspects of a-quartz is its degree of

ionicity. Complete ionicity corresponds to net charges of +4

and �2 on the silicon and oxygen atoms, respectively. The

simple Mulliken population analysis98 employing DFT/PBE

Fig. 9 Crystalline structure of the methane hydrate-III phase.

Table 3 Energies (in kJ mol�1) for the inclusion of methane mole-
cules in the MH-III structure, as defined in eqn (2). The values from
HF, MP2 and several DFT approaches are reported

HF MP2 B3LYP B3LYP-D2 PWGGA

Eincl 46.48 �7.56 39.60 �22.02 26.67
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Kohn–Sham orbitals yields charges of +1.66 and�0.83 (other

functionals yield similar values),99 indicating that the ionicity

is not as large. Hartree–Fock, on the other hand, yields

considerably larger values of +2.26 and �1.13. Judging from

the comparison of DFT and Hartree–Fock, electron correlation

appears to decrease the degree of ionicity in a-quartz. In order

to investigate this conjecture we consider the MP2 contribution

rMP2(r) to the ECD of the system.

Fig. 11(a) displays the density difference Dr(r) between the

Hartree–Fock ECD of the real system and the corresponding

superposition of non-interacting atomic densities, for r restricted

to a plane containing the two Si–O bonds of one of the three

equivalent oxygens. Evidently, the effect of the crystal packing

(relative to the isolated and neutral atoms) is that of displacing

electron density from silicon to oxygen atoms. Fig. 11(b) shows

the related MP2 contribution rMP2(r) to the total HF + MP2

ECD. Clearly, electron correlation shifts electron density from

oxygen to silicon, hence it decreases the degree of ionicity relative

to Hartree–Fock, as already anticipated. However, the effect is

rather small, the related Mulliken charges are only �0.02 and

+0.01 for silicon and oxygen, respectively.

VI. Excitonic band gaps of simple 3D crystals

A very recent extension of CRYSCOR is an implementation of

the periodic local configuration interaction singles (CIS)

method for calculating excitonic band gaps.50 The CIS exciton

wavefunction with the symmetry kexc is defined as

jCexcðkexcÞi ¼ Ĉ1ðkexcÞj0i; with

Ĉ1ðkexcÞ ¼
X

iIaA

ciIaAðkexcÞÊ
aA

iI

¼
X

�iki �aka

c
�iki
�aka

ðkexcÞÊ
�aka
�iki

;

ð3Þ

in the direct and reciprocal (canonical) space, respectively.

Here ciIaA(kexc) denotes the CIS coefficients in the direct space

(the orbital and cell indices for WFs and PAOs are i, I and a, A,

respectively), while c
�iki
�aka

ðkexcÞ are their canonical counterparts

(ı̄, ā denote the occupied and virtual Bloch orbitals with

translational symmetries ki and ka). The spin-conserving one

particle excitation operators ÊaA
iI (direct space) or Ê

�aka
�iki

(recipro-

cal space) act on the Hartree–Fock reference |0i. Presently, only

G-point (kexc = 0) excitons can be calculated, which correspond

to vertical excitations (ka = ki) in the canonical basis or

periodic excitations ciIaA = ci0aA~I in the direct space. Non-

vertical excitations (kexc a 0) can presently be calculated by the

supercell method.

The CIS eigenvalue problem ĤNĈ1|0i= oCISĈ1|0i is solved

in the canonical basis by employing the Davidson diagonalization

method.100 The electron repulsion integrals in ĤNĈ1|0i are

decomposed in the direct space employing density fitting

(DF).50 The DF integrals and coefficients are evaluated in the

local basis of WFs and PAOs and at each iteration contracted

with the direct-space images of the trial CIS coefficients. The

actual 4-index electron repulsion integrals are thus never

assembled, which reduces the nominal scaling of the method

with system size to O(N4). The resulting two-electron part of

ĤNĈ1|0i is then Fourier-transformed to the reciprocal space in

each iteration of the Davidson diagonalization procedure.

Our first implementation, reported in ref. 50, was limited to

polymers. The reason was that the lattice sums required for the

construction of the Coulomb two-electron part of ĤNĈ1|0i

converge only in the 1D case. Yet in the present version of the

program this restriction has been overcome by implementing a

multipole expansion for non-overlapping DF integrals in

combination with an Ewald-like procedure to carry out the

infinite lattice sums in the DF procedure. This new approach

will be discussed in detail in a forthcoming article.52

In the following we will present some first test calculations

of CIS excitonic band gaps of the MgO and LiF crystals and

explore how the band gaps depend on the diffuseness of the

basis set. The use of atom-centered basis sets in periodic

systems is generally a long-standing issue,61 which does not

yet have an ultimate solution. Standard Gaussian basis sets

(optimized for molecular calculations) are hardly applicable

even at the HF level because of quasi-linear dependencies,

leading to numerical instability. It is usually argued, however,

that in well-packed periodic systems devoid of voids, diffuse

atomic orbitals are needless and even counterproductive.

Fig. 10 Left panel (a): anisotropy map of the EMD of a-quartz as

computed at the HF level in a vertical plane; the step between isolines

is 0.01 a.u. and the maximum and minimum values reported are 0.1

and �0.1 a.u.; right panel (b): the MP2 contribution to the total HF+

MP2 EMD in the same plane; the step between isolines is 0.002 a.u.;

positive and negative regions are represented by continuous and

dashed lines, respectively.

Fig. 11 Left panel (a): difference Dr(r) between the total ECD r(r) of

a-quartz and the superpositions of non-interacting atomic densities

rat(r), as computed at the HF level. The separation between isolines is

0.005 |e| bohr�3; right panel (b): the MP2 contribution to the total

HF + MP2 ECD of a-quartz. The separation between isolines is

0.0002 |e| bohr�3. Positive and negative regions are represented by

continuous and dashed lines, respectively.
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An accurate description of electron correlation in the ground

state of periodic systems requires somewhat more diffuse basis

functions compared to HF, but still substantially less diffuse

than those of molecular basis sets.101 The situation, though, is

different for excitation energies, and the basis set problem is

much more delicate even for molecules. Since standard Gaussian

basis sets are usually optimized for the description of electronic

ground states they naturally are less optimal for the excited

states. Due to this lack of balance, the excitation energies as the

difference of ground and excited state energies are generally

overestimated. In molecular calculations, augmenting the basis

set by additional diffuse functions usually leads to an appreciable

lowering of the excitation energy (of the same valence state). In

the following we investigate the effect of increasing diffuseness of

the basis set on the fundamental and excitonic band gaps of

dense 3D crystals.

First, we consider the excitonic (optical) G-point band gap

of the MgO crystal. The basis sets we used for the calculations

are 8-511G* for Mg and 8-51G* for oxygen, which have been

employed in a number of periodic HF or DFT calculations.102,103

It is noteworthy that the most diffuse Mg sp-primitive Gaussians

of that basis are, with an exponent of 0.28 a.u., far less diffuse

than those of any molecular Mg basis set. For instance, in

Pople’s 3-21G basis set the most diffuse primitive has an

exponent of 0.0464011 a.u. Such a diffuse basis set is definitely

not applicable in periodic calculations, but even much less diffuse

ones, which can be processed in the periodic SCF procedure

apparently do not improve the ground state energy. Yet this is no

longer fulfilled for the excited states. Fig. 12(a) shows

the dependence of the CIS band gap, the HF total energy, and

the DFT (B3LYP and LDA) G-point difference between the

highest occupied and lowest unoccupied crystalline orbitals

(HOCO–LUCO) on the value of the exponent of the most

diffuse orbital. For the largest value of the exponent (0.28 a.u.)

the CIS band gap is much closer to the experimental value

than the HF HOCO–LUCO difference, but still grossly

overestimates it (by about 5 eV). However, the diffuseness

of the sp-primitives has a strong effect on both the CIS energy

and the HF HOCO–LUCO difference: decreasing the exponent

of the sp-primitives from 0.28 a.u. to 0.14 a.u. decreases both

quantities by nearly 2 eV. The curve of the CIS energy, for

which the HF HOCO–LUCO difference is its zeroth-order

contribution, is nearly parallel to the curve of the latter.

Evidently, the lowering of the band gap indeed is due to an

improved description of the excited state, rather than a

degradation in the ground state energy: the latter remains

virtually unaffected by the variation of the basis set. Still, very

diffuse functions (like in molecular basis sets) are still not of

much use in crystals even for excited states: CIS energy and

HF HOCO–LUCO difference both saturate for exponents

smaller than 0.15 a.u.

Interestingly, the DFT HOCO–LUCO difference, which is

often interpreted and used as the optical band gap (for non-

hybrid functionals the time-dependent DFT band gap in solids

indeed coincides with the HOCO–LUCO difference104,105), is

also severely affected by the diffuseness of the basis set. For

instance, the B3LYP HOCO–LUCO difference obtained for

the largest exponent is indeed quite close to the experimental

value. However, with improvement of the basis set it decreases

parallel to HF, and for exponents smaller than 0.15 a.u. it

finally deviates noticeably from the experiment.

In the case of the LiF crystal (shown in Fig. 12(b)) the

decrease of the exponent of the most diffuse lithium sp-shell

(from 0.22 to 0.14 a.u.) does not alter the value of the band gap

much. At the same time, the initial CIS error in this case is

much smaller than in the MgO case (around 2.5 eV).

To summarize, these preliminary calculations indicate that

basis set effects can play an important role in excited states in

3D solids even at the uncorrelated CIS level. With well

balanced basis sets the CIS error can be reduced to 2–3 eV,

or even less, which is about twice as large as the usual CIS error

in molecular calculations (1–2 eV). The accuracy can be further

improved by including dynamic correlation (or screening)

effects, which are larger in 3D solids than in 2D slabs or

molecules.106

VII. Summary and conclusions

In this paper we report on recent advances in the CRYSCOR

program. The present version features an efficient and parallel

implementation of periodic local MP2, which allows calculations

of correlated cohesive energies for 3D-periodic systems with large

unit cells in decent basis sets. As exemplary applications the

‘‘rolling energy’’ of a boron nitride nanoscroll, the relative

stability of aluminosilicate polymorphs, and the inclusion energy

of a methane–ice-clathrate are discussed. It turns out that in

many cases density functional theory with standard functionals

provides unsatisfactory results, even if the lack of van der Waals

dispersion is corrected for e.g. by the popular empirical -D

correction proposed by Grimme. A description of periodic

systems at the MP2 level (and beyond) is thus highly desirable.

A particularly interesting application area for the periodic

local MP2 method is molecular adsorption on surfaces. Here,

a reasonable description of van der Waals dispersion, often

constituting the major fraction of the adsorption energy, is

particularly important. Moreover, due to geometrical frustration

of the adsorbate layers non-commensurate to the surface, large

supercells need to be used, and therefore a favorable scaling of

the computational cost with unit cell size is mandatory. In the

present work we consider the 2 � 2 argon monolayer adsorbed

Fig. 12 The HF ground state energies (in the right y-axis) and G-

point HOCO–LUCO (HF, DFT) and CIS band gap energies (in the

left y-axis) for the MgO (a) and LiF (b) crystals as functions of the

exponent of the most diffuse sp-shell in the Mg or Li basis set,

respectively. The widths of the plots have been chosen to maintain

the same scale of the x-axis.
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on the MgO (100) surface. Quasi-linear scaling of the computa-

tional cost with unit cell size is demonstrated for a set of calculations

on progressively larger MgO (100) supercells.

A scheme for adjusting the inter-slab-adsorbate component

of the LMP2 correlation energy to higher-order methods

(on the basis of finite cluster calculations) is possible,

which compensates to large extent the inherent under- or

over-estimation of MP2 adsorption energies. Finally, a

technique is proposed to directly calculate Wannier function-

and atom-specific van der Waals coefficients, and to evaluate

with these the van der Waals attraction between the mono-

layer and the semi-infinite solid. Utilizing this extrapolation

technique very quick convergence of the adsorption energy

with slab thickness is observed; already a two-layer slab

provides sufficient accuracy, and already with a three-layer

slab convergence to the semi-infinite solid is reached.

A further extension of the CRYSCOR program is a module for

calculating the MP2 density matrix. From the latter the

correlated electron momentum density matrix, and from this

the directional Compton profiles can be obtained. As an

example, the effect of electron correlation on the anisotropy

of the EMD of a-quartz is investigated. As anticipated on the

basis of the virial theorem, electron correlation increases the

kinetic energy of the system. Electron density is shifted from

lower to higher momenta. Furthermore, it is observed that a

local minimum of the incremental MP2 momentum density

meets a maximum of the Hartree–Fock density. Thus, a further

effect of electron correlation in a-quartz is to reduce the

anisotropy of the uncorrelated electron momentum density.

Very recently, a periodic local configuration interaction

singles (CIS) module for calculating excitonic band gaps has

been added to CRYSCOR. As for the MP2 occupied and virtual

orbital spaces are spanned by Wannier functions, and PAOs,

respectively. The integrals, and their contractions, are evaluated in

direct space, while the Davidson diagonalization is carried out in

reciprocal space. Here, we present first tentative calculations for

some simple 3D-crystals. To our knowledge, these are the first

pure CIS calculations carried out for 3D-periodic systems. Later

work will be directed towards (i) a hybrid approach combining

long-range CIS with short-range TD-DFT by splitting of the

Coulomb operator, and (ii) including electron correlation effects

at the level of second-order perturbation theory. On the other

hand, the problem of basis set imbalance in the description of

electronic ground and excited states asks for a rigid solution,

particularly in the context of periodic systems. Since diffuse

functions are of prime importance here, augmenting the standard

Gaussian basis set by low energy plane waves might be a

promising way forward.
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30 K. Rościszewski, B. Paulus, P. Fulde and H. Stoll, Phys. Rev. B:

Condens. Matter, 1999, 60, 7905.
31 K. Rosciszewski, K. Doll, B. Paulus, P. Fulde and H. Stoll, Phys.

Rev. B: Condens. Matter, 1998, 57, 14667.
32 B. Paulus, K. Rosciszewski, N. Gaston, P. Schwerdtfeger and

H. Stoll, Phys. Rev. B: Condens. Matter Mater. Phys., 2004,
70, 165106.

33 B. Paulus, Phys. Rep., 2006, 428, 1.
34 C. Müller and D. Usvyat, Accurate calculations of the cohesive

energy in molecular crystals: the role of embedding in the conver-
gence of the incremental expansion, J. Chem. Phys., 2011, submitted.

35 C. Müller, D. Usvyat and H. Stoll, Phys. Rev. B: Condens. Matter
Mater. Phys., 2011, 83, 245136.
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