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Abstract

Various studies have empirically shown that the majority of Java and Android apps misuse

cryptographic libraries, causing devastating breaches of data security. It is crucial to detect such

misuses early in the development process. To detect cryptography misuses, one must first define

secure uses, a process mastered primarily by cryptography experts, and not by developers.

In this paper, we present CrySL, a definition language for bridging the cognitive gap between

cryptography experts and developers. CrySL enables cryptography experts to specify the secure

usage of the cryptographic libraries that they provide. We have implemented a compiler that

translates such CrySL specification into a context-sensitive and flow-sensitive demand-driven

static analysis. The analysis then helps developers by automatically checking a given Java or

Android app for compliance with the CrySL-encoded rules.

We have designed an extensive CrySL rule set for the Java Cryptography Architecture (JCA),

and empirically evaluated it by analyzing 10,000 current Android apps. Our results show that

misuse of cryptographic APIs is still widespread, with 95% of apps containing at least one misuse.

Our easily extensible CrySL rule set covers more violations than previous special-purpose tools

with hard-coded rules, with our tooling offering a more precise analysis.
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1 Introduction

Digital devices are increasingly storing sensitive data, which is often protected using cryp-

tography. However, developers must not only use secure cryptographic algorithms, but

also securely integrate such algorithms into their code. Unfortunately, prior studies suggest

that this is rarely the case. Lazar et al. [22] examined 269 published cryptography-related

vulnerabilities. They found that 223 are caused by developers misusing a security library

while only 46 result from faulty library implementations. Egele et al. [13] statically analyzed

11,748 Android apps using cryptography-related application interfaces (Crypto APIs) and

found 88% of them violated at least one basic cryptography rule. Chatzikonstantinou et

al. [12] reached a similar conclusion by analyzing apps manually and dynamically. In 2017,

VeraCode listed insecure uses of cryptography as the second-most prevalent application-

security issue right after information leakage [11]. Such pervasive insecure use of Crypto APIs

leads to devastating vulnerabilities such as data breaches in a large number of applications.

Rasthofer et al. [31] showed that virtually all smartphone apps that rely on cloud services

use hard-coded keys. A simple decompilation gives adversaries access to those keys and to

all data that these apps store in the cloud.

Nadi et al. [27] were the first to investigate why developers often struggle to use

Crypto APIs. The authors conducted four studies, two of which survey Java developers

familiar with the Java Crypto APIs. The majority of participants (65%) found their

respective Crypto APIs hard to use. When asked why, participants mentioned the API level

of abstraction, insufficient documentation without examples, and an API design that makes

it difficult to understand how to properly use the API. A potential long-term solution is

to redesign the APIs such that they provide an easy-to-use interface for developers that is

secure by default. However, it remains crucial to detect and fix the existing insecure API uses.

When asked about what would simplify their API usage, participants wished they had tools

that help them automatically detect misuses and suggest possible fixes [27]. Unfortunately,

approaches based solely on specification inference and anomaly detection [33] are not viable

for Crypto APIs, because – as elaborated above – most uses of Crypto APIs are insecure.

Previous work has tried to detect misuses of Crypto APIs through static analysis. While

this is a step in the right direction, existing approaches are insufficient for several reasons.

First, these approaches implement mostly lightweight syntactic checks, which yield fast

analysis times at the cost of exposing a high number of false negatives. Therefore, such

analyses fail to warn about many insecure (especially non-trivial) uses of cryptography. For

instance, applications using password-based encryption commonly do not clear passwords

from heap memory and instead rely on garbage collection to free the respective memory

space. Moreover, existing tools cannot easily be extended to cover those rules; instead they

have cryptography-specific usage rules hard coded. The Java Cryptography Architecture

(JCA), the primary cryptography API for Java applications [27], offers a plugin design that

enables different providers to offer different crypto implementations through the same API,

often imposing slightly different usage requirements on their clients. Hard-coded rules can

hardly possibly reflect this diversity.
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In this paper, we present CrySL, a definition language that enables cryptography experts

to specify the secure usage of their Crypto APIs in a lightweight special-purpose syntax. We

also present a CrySL compiler that parses and type-checks CrySL rules and translates them

into an efficient, yet precise flow-sensitive and context-sensitive static data-flow analysis. The

analysis automatically checks a given Java or Android app for compliance with the encoded

CrySL rules. CrySL was specifically designed for (and with the help of) cryptography

experts. Our approach goes beyond methods that are useful for general validation of API

usage (e.g., typestate analysis [3, 7, 28, 8] and data-flow checks [2, 5]) by enabling the

expression of domain-specific constraints related to cryptographic algorithms and their

parameters.

To evaluate CrySL, we built the most comprehensive rule set available for the JCA

classes and interfaces to date, and encoded it in CrySL. We then used the generated static

analysis CogniCryptsast to scan 10,000 Android apps. We have also modelled the existing

hard-coded rules by Egele et al. [13] in CrySL and compared the findings of the generated

static analysis (CogniCryptcl) to those of CogniCryptsast. Our more comprehensive rule

set reports 3× more violations, most of which are true warnings. With such comprehensive

rules, CogniCryptsast finds at least one misuse in 95% of the apps. CogniCryptsast is

also highly efficient: for more than 75% of the apps, the analysis finishes in under 3 minutes

per app, where most of the time is spent in Android-specific call graph construction.

In summary, this paper presents the following contributions:

We introduce CrySL, a definition language to specify correct usages of Crypto APIs.

We encode a comprehensive specification of correct usages of the JCA in CrySL.

We present a CrySL compiler that translates CrySL rules into a static analysis to find

violations in a given Java or Android app.

We empirically evaluate CogniCryptsast on 10,000 Android apps.

We have integrated CogniCryptsast into crypto assistant CogniCrypt [20] and

have open-sourced our implementation and artifacts on GitHub. CogniCryptsast is

available at https://github.com/CROSSINGTUD/CryptoAnalysis. The latest version of

the CrySL rules for the JCA can be accessed at https://github.com/CROSSINGTUD/

Crypto-API-Rules.

2 Related Work

Before we discuss the details of our approach, we contrast it with the following related lines

of work: approaches for specifying API (mis)uses, approaches for inferring API specifications,

and previous approaches for detecting misuses of security APIs. Our review of these

approaches shows that existing specification languages are not optimally suited for defining

misuses of Crypto APIs. Additionally, automated inference of correct uses of Crypto APIs is

hard to achieve, and existing tools for detecting misuses of Crypto APIs are limited mainly

because they have hard-coded rule sets, and support for the most part lightweight syntactic

analyses.

2.1 Languages for Specifying and Checking API Properties

There is a significant body of research on textual specification languages that ensure API

properties by means of static data-flow analysis. Tracematches [3] were designed to check

typestate properties defined by regular expressions over runtime objects. Bodden et al. [8, 10]

ECOOP 2018

https://github.com/CROSSINGTUD/CryptoAnalysis
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules


10:4 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

as well as Naeem and Lhoták [28] present algorithms to (partially) evaluate state matches

prior to the program execution, using static analysis.

Martin et al. [24] present Program Query Language (PQL) that enables a developer to

specify patterns of event sequences that constitute potentially defective behaviour. A dynamic

analysis (i.e., tracematches optimized by a static pre-analysis) matches the patterns against

a given program run. A pattern may include a fix that is applied to each match by dynamic

instrumentation. PQL has been applied to detecting security-related vulnerabilities such as

memory leaks [24], SQL injection and cross-site scripting [23]. Compared to tracematches,

PQL captures a greater variety of pattern specifications, at the disadvantage of using only

flow-insensitive static optimizations. PQL serves as the main inspiration for the CrySL

syntax. Other languages that pursue similar goals include PTQL [16], PDL [26], and TS4J [9].

We investigated tracematches and PQL in detail, yet found them insufficiently equipped

for the task at hand. First, both systems follow a black-list approach by defining and finding

incorrect program behaviour. We initially followed this approach for crypto-usage mistakes

but quickly discovered that it would lead to long, repetitive, and convoluted misuse-definitions.

Consequently, CrySL defines desired behaviour, which in the case of Crypto APIs leads to

more compact specifications. Second, the above languages are general-purpose languages

for bug finding, which causes them to miss features essential to define secure usages of

Crypto APIs in particular. The strong focus of CrySL on cryptography allows us to cover a

greater portion of cryptography-related problems in CrySL compared to other languages,

while at the same time keeping CrySL relatively simple. Third, the CrySL compiler

generates state-of-the-art static analyses that were shown to have better performance and

precision than other approaches [36], lowering the threat of false warnings.

2.2 Inference/Mining of API-usage specifications

As an alternative to specifying API-usage properties manually, one can attempt to infer

them from existing program code. Robillard et al. [34] surveyed over 60 approaches to API

property inference. As this survey shows, however, all but two of the surveyed approaches

infer patterns from client code (i.e., from applications that use the API in question). When

it comes to Crypto APIs, however, past studies have shown that the majority of existing

usages of those APIs is, in fact, insecure [13, 12, 35]. Another idea that appears sensible at

first sight is to infer correct usage of Crypto APIs from posts on developer portals such as

StackOverflow. However, recent studies show that the “solutions” posted there often include

insecure code [1].

In result, one can only conclude that automated mining of API-usage specifications is

very challenging for Crypto APIs, if it is possible at all. In the future, we plan to investigate

a semi-automated approach in which we use automated inference to infer at least partial

specifications, but directly in CrySL, that security experts can then further correct and

complete by hand.

2.3 Detecting Misuses of Security APIs

Only few previous approaches specifically address the detection of misuses of security APIs.

CryptoLint [13] performs a lightweight syntactic analysis to detect violations of exactly six

hard-coded usage rules for the JCA in Android apps. Those six rules, while important to

obey for security, resemble only a tiny fraction of the rule set we provide in this work. It is

also hard to specify and validate new rules using CryptoLint, because they would have

to be hard-coded. Unlike CryptoLint, CrySL is designed to allow crypto experts to also
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1 SecretKeyGenerator kG = KeyGenerator . getInstance ("AES");
2 kG.init (128);
3 SecretKey cipherKey = kG. generateKey ();
4

5 String plaintextMSG = getMessage ();
6 Cipher ciph = Cipher . getInstance ("AES/GCM");
7 ciph.init( Cipher . ENCRYPT_MODE , cipherKey );
8 byte [] cipherText = ciph. doFinal ( plaintextMSG . getBytes ("UTF -8"));

Figure 1 An example illustrating the use of javax.crypto.KeyGenerator to implement data

encryption in Java.

express comprehensive and complex rules with ease. In Section 8, we extensively compare

our tool CogniCryptsast to CryptoLint.

Another tool that finds misuses of Crypto APIs is Crypto Misuse Analyzer (CMA) [35].

Similar to CryptoLint, CMA’s rules are hard-coded, and its static analysis is rather basic.

Many of CMA’s hard-coded rules are also contained in the CrySL rule set that we provide.

Unlike CogniCryptsast, CMA has been evaluated on a small dataset of only 45 apps.

Chatzikonstantinou et al. [12] manually identified misuses of Crypto APIs in 49 apps

and then verified their findings using a dynamic checker. All three studies concluded that at

least 88% of the studied apps misuse at least one Crypto API.

None of the previous approaches facilitates rule creation by means of a higher-level

specification language. Instead, the rules are hard-coded into each tool, making it hard

for non-experts in static analysis to extend or alter the rule set, and impossible to share

rules among tools. Moreover, such hard-coded rules are quite restricted, causing the tools to

have a very low recall (i.e., missing many actual API misuses). CrySL, on the other hand,

due to its Java-like syntax, enables cryptography experts to easily define new rules. The

CrySL compiler then automatically transforms those rules into appropriate, highly-precise

static-analysis checks. By defining crypto-usage rules in CrySL instead of hard-coding them,

one also makes those rules reusable in different contexts.

3 An Example of a Secure Usage of Crypto APIs

Throughout the paper, we will use the code example in Figure 1 to motivate the language

features in CrySL. The code in this figure constitutes an API usage that according to the

current state of cryptography research can be considered secure. Lines 1–3 generate a 128-bit

secret key to use with the encryption algorithm AES. Lines 5–7 use that key to initialize

a Java Cipher object that encrypts plaintextMSG. Since AES encrypts plaintext block by

block, it must be configured to use one of several modes of operation. The mode of operation

determines how to encrypt a block based on the encryption of the preceding block(s). Line 6

configures Cipher to use the Galois/Counter Mode (GCM) of operation [25].

Although the code example may look straightforward, a number of subtle alterations to the

code would render the encryption non-functional or even insecure. First, both KeyGenerator

and Cipher only support a limited choice of encryption algorithms. If the developer passes

an unsupported algorithm to either getInstance methods, the respective line will throw a

runtime exception. Similarly, the design of the APIs separates the classes for key generation

and encryption. Therefore, the developer needs to make sure they pass the same algorithm

(here "AES") to the getInstance methods of KeyGenerator and Cipher. If the developer

does not configure the algorithms as such, the generated key will not fit the encryption

algorithm, and the encryption will fail by throwing a runtime exception. None of the existing

ECOOP 2018
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METHOD :=

methname(PARAMETERS)

PARAMETERS :=

varname , PARAMETERS

varname

TYPES :=

QualifiedClassName , TYPES

TYPE

CONSTANTLIST :=

constant , CONSTANTLIST

constant

AGGREGATE :=

label | AGGREGATE

label ;

EVENT :=

AGGREGATE

label : METHOD

label : varname = METHOD A: B = C(D) – a single event with

label A consisting of method C, its

parameter D, and return object B

PREDICATE :=

predname(PARAMETERS)

predname(PARAMETERS) after EVENT

PREDICATES :=

PREDICATE ; PREDICATES

Figure 2 Basic CrySL syntax elements.

tools discussed in Section 2.3 are capable of detecting such functional misuses. Moreover,

some supported algorithms are no longer considered secure (e.g., DES or AES/ECB [15]). If

the developer selects such an algorithm, the program will still run to completion, but the

resulting encryption could easily be broken by attackers. To make things worse, the JCA, the

most popular API, offers the insecure ECB mode by default (i.e., when developers request

only "AES" without specifying a mode of operation explicitly).

To use Crypto APIs properly, developers generally have to take into consideration two

dimensions of correctness: (1) the functional correctness that allows the program to run and

terminate successfully and (2) the provided security guarantees. Prior empirical studies have

shown that developers, for instance by looking for code examples on web portals such as

StackOverflow [14], frequently succeed in obtaining functionally correct code. However, they

often fail to obtain a secure use of Crypto APIs, primarily because most code examples on

those web portals provide “solutions” that themselves are insecure [14].
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SPEC TYPE;

OBJECTS

OBJECTS :=

OBJECT ; OBJECTS A ; B – a list of objects A and B

OBJECT ; A – a list of the single object A

OBJECT :=

TYPE varname A B – object B of Java type A

EVENTS

EVENTS :=

EVENT ; EVENTS A ; B – a list of events A and B

EVENT ; A – a list of the single event A

FORBIDDEN

FMETHODS :=

FMETHOD ; FMETHODS A ; B – a list of forbidden A and B

FMETHOD ; A – a list of the single forbidden method A

FMETHOD :=

methname(TYPES) => label A(B) => C – a forbidden method named A

with parameter of Type B and replacement C

ORDER

USAGEPATTERN :=

USAGEPATTERN , USAGEPATTERN A , B – A followed by B

USAGEPATTERN | USAGEPATTERN A | B – A or B

USAGEPATTERN ? A? – A is optional

USAGEPATTERN * A* – 0 or more As

USAGEPATTERN + A+ – 1 or more As

( USAGEPATTERN ) (A) – grouping

AGGREGATE

CONSTRAINTS

CONSTRAINTS :=

CONSTRAINT ; CONSTRAINTS

CONSTRAINT => CONSTRAINT A => B – A implies B

CONSTRAINT

CONSTRAINT :=

varname in { CONSTANTLIST } A in {1, 2} – A should be 1 or 2

REQUIRES

REQ_PREDICATES :=

PREDICATES

ENSURES

ENS_PREDICATES :=

PREDICATES

NEGATES

NEG_PREDICATES :=

PREDICATES

Figure 3 CrySL rule syntax in Extended Backus-Naur Form (EBNF) [6].

ECOOP 2018
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4 CrySL Syntax

As we discuss in Section 2.2, mining API properties for Crypto APIs is extremely challenging,

if possible at all, due to the overwhelming number of misuses one finds in actual applications.

Hence, instead of relying on the security of existing usages and examples, we here follow an

approach in which cryptography experts define correct API usages manually in a special-

purpose language, CrySL. In this section, we give an overview of the CrySL syntax elements.

A formal treatment of the CrySL semantics is presented in Section 5. Figure 2 presents the

basic syntactic elements of CrySL, and Figure 3 presents the full syntax for CrySL rules.

Figure 4 shows an abbreviated CrySL rule for javax.crypto.KeyGenerator.

4.1 Design Decisions Behind CrySL

We designed CrySL specifically with crypto experts in mind, and in fact with the help of

crypto experts. This work was carried out in the context of a large collaborative research

center than involves more than a dozen research groups involved in cryptography research.

As a result of the domain research conducted within this center, we made the following design

decisions when designing CrySL.

White listing. During our domain analysis, we observed that, for the given Crypto APIs,

there are many ways they can be misused, but only a few that correspond to correct and

secure usages. To obtain concise usage specifications, we decided to design CrySL to use

white listing in most places (i.e., defining secure uses explicitly, while implicitly assuming

all deviations from this norm to be insecure).

Typestate and data flow. When reviewing potential misuses, we observed that many of

them are related to data flows and typestate properties [38]. Such misuses occur because

developers call the wrong methods on the API objects at hand, call them in an incorrect

order or miss to call the methods entirely. Data-flow properties are important when

reasoning about how certain data is being used (e.g., passwords, keys or seed material).

String and integer constraints. In the crypto domain, string and integer parameters are

ubiquitously used to select or parametrize specific cryptography algorithms. Strings

are widely used, because they are easily recognizable, configurable, and exchangeable.

However, specifying an incorrect string parameter may result in the selection of an insecure

algorithm or algorithm combination. Many APIs also use strings for user credentials.

Those credentials, passwords in particular, should not be hard-coded into the program’s

bytecode. A precise specification of correct crypto uses must therefore comprise constraints

over string and integer parameters.

Tool-independent semantics. We equipped CrySL with a tool-independent semantics (to

be presented in Section 5). In the future, those semantics will enable us and others to

build other or more effective tools for working with CrySL. For instance, in addition to

the static analysis the CrySL compiler derives from the semantics within this paper, we

are currently working on a dynamic checker to identify and mitigate CrySL violations at

runtime.

Our desire to allow crypto experts to easily express secure crypto uses also precludes us

from using existing generic definition languages such as Datalog. Such languages, or minor

extensions thereof, might have sufficient expressive power. However, following discussions

with crypto developers, we had to acknowledge that they are often unfamiliar with those

languages’ concepts. CrySL thus deliberately only includes concepts familiar to those

developers, hence supporting an easy understanding. We next explain the elements that a

typical CrySL rule comprises.
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4.2 Mandatory Sections in a CrySL Rule

To provide simple and reusable constructs, a CrySL rule is defined on the level of individual

classes. Therefore, the rule starts off by stating the class that it is defined for.

In Figure 4, the OBJECTS section defines three objects1 to be used in later sections of

the rule (e.g., the object algorithm of type String). These objects are typically used as

parameters or return values in the EVENTS section.

The EVENTS section defines all methods that may contribute to the successful use of a

KeyGenerator object, including two method event patterns (Lines 17–18). The first pattern

matches calls to getInstance(String algorithm), but the second pattern actually matches

calls to two overloaded getInstance methods:

getInstance(String algorithm, Provider provider)

getInstance(String algorithm, String provider)

The first parameter of all three methods is a String object whose value states the algorithm

that the key should be generated for. This parameter is represented by the previously defined

algorithm object. Two of the getInstance methods are overloaded with two parameters.

Since we do not need to specify the second parameter in either method, we substitute it with

an underscore that serves as a placeholder in one combined pattern definition (Line 18). This

concept of method event patterns is similar to pointcuts in aspect-oriented programming

languages such as AspectJ [19]. For CrySL, we resort to a more lightweight and restricted

syntax as we found full-fledged pointcuts to be unnecessarily complex. Subsequently, the

rule defines patterns for the various init methods that set the proper parameter values

(e.g., keysize) and a generateKey method that completes the key generation and returns the

generated key.

Line 30 defines a usage pattern for KeyGenerator using the keyword ORDER. The usage

pattern is a regular expression of method event patterns that are defined in EVENTS. Although

each method pattern defines a label to simplify referencing related events (e.g., g1, i2, and

GenKey), it is tedious and error-prone to require listing all those labels again in the ORDER

section. Therefore, CrySL allows defining aggregates. An aggregate represents a disjunction

of multiple patterns by means of their labels. Line 19 defines an aggregate GetInstance that

groups the two getInstance patterns. Using aggregates, the usage pattern for KeyGenerator

reads: there must be exactly one call to one of the getInstance methods, optionally followed

by a call to one of the init methods, and finally a call to generateKey.

Following the keyword CONSTRAINTS, Lines 33–35 define the constraints for objects

defined under OBJECTS and used as parameters or return values in the EVENTS section. In the

abbreviated CrySL rule in Figure 4, the first constraint limits the value of algorithm to

"AES" or "Blowfish". For each algorithm, there is one constraint that restricts the possible

values of keysize.

The ENSURES section is the final mandatory construct in a CrySL rule. It allows

CrySL to support rely/guarantee reasoning. The section specifies predicates to govern

interactions between different classes. For example, a Cipher object uses a key obtained

from a KeyGenerator. The ENSURES section specifies what a class guarantees, presuming

that the object is used properly. For example, the KeyGenerator CrySL rule in Figure 4

ends with the definition of a predicate generatedKey with the generated key object and its

corresponding algorithm as parameters. This predicate may be required (i.e., relied on) by

the rule for Cipher or other classes that make use of such a key through the optional element

of the REQUIRES block as illustrated in Figure 5.

1 As the example shows, in CrySL, OBJECTS also comprise primitive values.

ECOOP 2018
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9 SPEC javax. crypto . KeyGenerator
10

11 OBJECTS

12 java.lang. String algorithm ;
13 int keySize ;
14 javax. crypto . SecretKey key;
15

16 EVENTS

17 g1: getInstance ( algorithm );
18 g2: getInstance (algorithm , _);
19 GetInstance := g1 | g2;
20

21 i1: init( keySize );
22 i2: init(keySize , _);
23 i3: init(_);
24 i4: init(_, _);
25 Init := i1 | i2 | i3 | i4;
26

27 GenKey : key = generateKey ();
28

29 ORDER

30 GetInstance , Init?, GenKey
31

32 CONSTRAINTS

33 algorithm in {"AES", " Blowfish "};
34 algorithm in {"AES"} => keySize in {128 , 192, 256};
35 algorithm in {" Blowfish "} => keySize in {128 , 192, 256, 320, 384,

448};
36

37 ENSURES

38 generatedKey [key , algorithm ];

Figure 4 CrySL rule for using javax.crypto.KeyGenerator.

To obtain the required expressiveness, we have further enriched CrySL with some

simple built-in auxiliary functions. For example, in Figure 5, the function alg extracts

the encryption algorithm from transformation (Line 55). This function is necessary,

because generatedKey expects only the encryption algorithm as its second parameter,

but transformation optionally specifies also the mode of operation and padding scheme

(e.g., Line 6 in Figure 1). For instance, alg would extract "AES" from "AES/GCM" or from

"AES/CBC/PKCS5Padding". Table Table 1 lists all of these functions. Note the last two

functions callTo and noCallTo may seem redundant to the ORDER and FORBIDDEN (see

Section 4.3) sections because they appear to fulfil the same purpose of requiring or forbidding

certain method calls. However, these two functions go beyond that because they allow for

the specification of conditional forbidden and required methods.

4.3 Optional Sections in a CrySL Rule

A CrySL rule may contain optional sections that we showcase through the CrySL rule

for PBEKeySpec. In Figure 6, the FORBIDDEN section specifies methods that must not be

called, because calling them is always insecure. PBEKeySpec derives cryptographic keys from

a user-given password. For security reasons, it is recommended to use a cryptographic salt

for this operation. However, the constructor PBEKeySpec(char[] password) does not allow

for a salt to be passed, and the implementation in the default provider does not generate

one. Therefore, this constructor should not be called, and any call to it should be flagged.

Consequently, the CrySL rule for PBEKeySpec lists it in the FORBIDDEN section (Line 72). In
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39 SPEC javax. crypto . Cipher
40

41 OBJECTS

42 int encmode ;
43 java. security .Key key;
44 java.lang. String transformation ;
45 ...
46

47 EVENTS

48 g1: getInstance ( transformation );
49 ...
50 i1: init(encmode , key);
51

52 ...
53

54 REQUIRES

55 generatedKey [key , alg( transformation )];
56

57 ENSURES

58 encrypted [cipherText , plainText ];

Figure 5 CrySL rule for using javax.crypto.Cipher.

Table 1 Helper Functions in CrySL.

Function Purpose

alg(transformation) Extract algorithm/mode/padding

from transformation parameter
of Cipher.getInstance call.

mode(transformation)

padding(transformation)

length(object) Retrieve length of object

nevertypeof(object, type) Forbid object to be of type

callTo(method) Require call to method

noCallTo(method) Forbid call to method

the case of PBEKeySpec, there is an alternative secure constructor (Line 68). CrySL allows

one to specify an alternative method event pattern using the arrow notation shown in Line 72.

With FORBIDDEN events, CrySL’s language design deviates a bit from its usual white-listing

approach. We made this choice deliberately to keep specifications concise. Without explicit

FORBIDDEN events, one would have to simulate their effect by explicitly listing all events

defined on a given type except the one that ought to be forbidden. This would significantly

increase the size of CrySL specifications.

In general, predicates are generated for a particular usage whenever it does not use any

FORBIDDEN events, its regular EVENTS follow the usage pattern defined in the ORDER section,

and if the usage fulfils all constraints in the CONSTRAINTS section of its corresponding rule.

PBEKeySpec, however, deviates from that standard. The class contains a constructor that

receives a user-given password, but the method clearPassword deletes that password later,

making it no longer accessible to other objects that might use the key-spec. Consequently, a

PBEKeySpec object fulfils its role after calling the constructor but only until clearPassword

is called.

To model this usage precisely, CrySL allows one to specify a method-event pattern using

the keyword after (Line 80). If the respective method is called, a predicate is generated.

Furthermore, CrySL supports invalidating an existing predicate in the NEGATES section
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59 SPEC javax. crypto .spec. PBEKeySpec
60

61 OBJECTS

62 char [] pw;
63 byte [] salt;
64 int it;
65 int keylength ;
66

67 EVENTS

68 create : PBEKeySpec (pw , salt , it , keylength );
69 clear: clearPassword ();
70

71 FORBIDDEN

72 PBEKeySpec (char []) => create ;
73 PBEKeySpec (char [], byte [], int) => create ;
74

75 ORDER

76 create , clear
77 ...
78

79 ENSURES

80 keyspec [this , keylength ] after create ;
81

82 NEGATES

83 keyspec [this , _];

Figure 6 CrySL rule for javax.crypto.spec.PBEKeySpec.

(Line 83). The last call to be made on a PBEKeySpec object is the call to clearPassword

(Line 76). Additionally, the rule lists the predicate keySpec[this,_] within the NEGATES

block. Semantically, the negation of the predicates means the following. A final event in the

ORDER pattern, in this case a call to clearPassword, invalidates the previously generated

keyspec predicate(s) for this. Section 5.2.2 presents the formal semantics of predicates.

5 CrySL Formal Semantics

5.1 Basic Definitions

A CrySL rule consists of several sections. The OBJECTS section comprises a set of typed

variable declarations V. In the syntax in Figure 3, each declaration v ∈ V is represented by

the syntax element TYPE varname. M is the set of all resolved method signatures, where

each signature includes the method name and argument types. The EVENTS section contains

elements of the form (m, v), where m ∈ M and v ∈ V
∗. We denote the set of all methods

referenced in EVENTS by M . The FORBIDDEN section lists a set of methods from M denoted

by their signatures; forbidden events cannot bind any variables. The ORDER section specifies

the usage pattern in terms of a regular expression of labels or aggregates that are in M ,

i.e., over the defined EVENTS. We express this regular expression formally by the equivalent

non-deterministic finite automaton (Q, M, δ, q0, F ) over the alphabet M , where Q is a set of

states, q0 is its initial state, F is the set of accepting states, and δ : Q × M → P(Q) is the

state transition function.

The CONSTRAINTS section is a subset of C := (V → O ∪ V) → B (i.e., each constraint is a

boolean function), where the argument is itself a function that maps variable names in V to

objects in O or values with primitive types in V.
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A CrySL rule is a tuple (T, F , A, C), where T is the reference type specified by the SPEC

keyword, F ⊆ M is the set of forbidden events, A = (Q, M, δ, q0, F ) ∈ A is the automaton

induced by the regular expression of the ORDER section, and C ⊆ C is the set of CONSTRAINTS

that the rule lists. We refer to the set of all CrySL rules as SPEC.

Our formal definition of a CrySL rule does not contain the sections REQUIRES, ENSURES,

and NEGATES. Those sections reason about the interaction of predicates, whose formal

treatment we discuss in Section 5.2.2.

5.2 Runtime Semantics

Each CrySL rule encodes usage constraints to be validated for all runtime objects of the

reference type T stated in its SPEC section. We define the semantics of a CrySL rule in

terms of an evaluation over a runtime program trace that records all relevant runtime objects

and values, as well as all events specified within the rule.

◮ Definition 1 (Event). Let O be the set of all runtime objects and V the set of all primitive-

typed runtime values. An event is a tuple (m, e) ∈ E of a method signature m ∈ M and

an environment e (i.e., a mapping V → O ∪ V of the parameter variable names to concrete

runtime objects and values). If the environment e holds a concrete object for the this value,

then it is called the event’s base object.

◮ Definition 2 (Runtime Trace). A runtime trace τ ∈ E
∗ is a finite sequence of events

τ0 . . . τn.

◮ Definition 3 (Object Trace). For any τ ∈ E
∗, a subsequence τi1

...τin
is called an object

trace if i1 < ... < in and all base objects of τij
are identical.

Lines 1–2 in Figure 1 result in an object trace that has two events:

(m0, {algorithm 7→ "AES", this 7→ okg})

(m1, {algorithm 7→ "AES", keySize 7→ 128, this 7→ okg})

where m0 and m1 are the signatures of the getInstance and init methods of the

KeyGenerator class. For static factory methods such as getInstance, we assume that

this is bound to the returned object. We use okg to denote that the object o is bound to

the variable kG at runtime.

The decision whether a runtime trace τ satisfies a set of CrySL rules involves two

steps. In the first step, individual object traces are evaluated independently of one another.

Yet, different runtime objects may still interact with each other. CrySL rules capture this

interaction by means of rely/guarantee reasoning, implemented through predicates that a

rule ensures on a runtime object. These interactions between different objects are checked

against the specification in a second step by considering the predicates they require and

ensure. We first discuss individual object traces in more detail.

5.2.1 Individual Object Traces

The sections FORBIDDEN, ORDER and CONSTRAINTS are evaluated on individual object traces.

Figure 7 defines the function sato that is true if and only if a given trace τo for a runtime

object o satisfies its CrySL rule. This definition of sato ignores interactions with other

object traces. We will discuss later how such interactions are resolved. In the following, we

assume the trace τo = τo
0 , ..., τo

n, where τo
i = (mo

i , eo
i ). To illustrate the computation, we will

also refer to our example from Figure 1 and the involved rules of KeyGenerator (Figure 4)

and Cipher (Figure 5). The function sato is composed of three sub-functions:
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sato : E∗ × SPEC → B

[τo, (T o, Fo, Ao, Co)] → sato
F (τo, Fo) ∧

sato
A(τo, Ao) ∧

sato
C(τo, Co)

Figure 7 The function sat
o verifies an individual object trace for the object o.

0start 1 2 3
GetInstance Init GenKey

GenKey

Figure 8 The state machine for the CrySL rule in Figure 4 (without an implicit error state).

5.2.1.1 Forbidden Events (sat
o

F
)

Given a trace τo and a set of forbidden events F , sato ensures that none of the trace events

is forbidden.

sato
F (τo, Fo) :=

∧

i=0...n

mo
i /∈ Fo

The CrySL rule for KeyGenerator does not list any forbidden methods. Hence, sato

trivially evaluates to true for object kG in Figure 1.

5.2.1.2 Order Errors (sat
o

A
)

The second function checks that the trace object is used in compliance with the specified

usage pattern (i.e., all methods in the rule are invoked in no other than the specified order).

Formally, the sequence of method signatures of the object trace mo := mo
0, . . . , mo

n (i.e., the

projection onto the method signatures) must be an element of the language L(Ao) that the

automaton Ao = (Q,M, δ, q0, F ) of the ORDER section induces. By definition of language

containment, after the last observed signature of the trace mo
n, the corresponding state of the

automaton must be an accepting state s ∈ F . This definition ignores any variable bindings.

They are evaluated in the second step.

sato
A(τo, Ao) := mo ∈ L(Ao)

Figure 8 displays the automaton created for KeyGenerator using the aggregate names as

labels. State 0 is the initial state, and state 3 is the only accepting state. Following the code

in Figure 1 for the object kG of type KeyGenerator, the automaton transitions from state 0

to 1 at the call to getInstance (Line 1). With the calls to init (Line 2) and generateKey

(Line 3), the automaton first moves to state 2 and finally to state 3. Therefore, function

sato
A

evaluates to true for this example.

5.2.1.3 Constraints (sat
o

C
)

The validity check of the constraints ensures that all constraints of C are satisfied. This check

requires the sequence of environments (eo
0, ..., eo

n) of the trace τo. All objects that are bound
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to the variables along the trace must satisfy the constraints of the rule.

sato
C(τo, Co) :=

∧

c∈Co,i=0...n

c(eo
i )

To compute sato
C

for the KeyGenerator object kG at the call to getInstance in Line 1,

only the first constraint has to be checked. This is because the corresponding environment eo
1

holds a value only for algorithm, and the other two constraints reference other variable names.

The evaluation function c returns true if algorithm assumes either “AES” or “Blowfish”

as its value, which is the case in Figure 1. The computation of sato
C

for Lines 2–3 works

similarly.

5.2.2 Interaction of Object Traces

To define interactions between individual object traces, the REQUIRES, ENSURES, and NEGATES

sections allow individual CrySL rules to reference one another. For a rule for one object to

hold at any given point in an execution trace, all predicates that its REQUIRES section lists

must have been both previously ensured (by other specifications) and not negated. Predicates

are ensured (i.e., generated) and negated (i.e., killed) by certain events. Formally, a predicate

is an element of P := {(name, args) | args ∈ V
∗} (i.e., a pair of a predicate name and a

sequence of variable names). Predicates are generated in specific states. Each CrySL rule

induces a function G : S → P(P) that maps each state of its automaton to the predicate(s)

that the state generates.

The predicates listed in the ENSURES and NEGATES sections may be followed by the term

after n, where n is a method event pattern label or aggregate. The states that follow the

event or aggregate n in the automaton generate the respective predicate. If the term after is

not used for a predicate, the final states of the automaton generate (or negate) that predicate

(i.e., we interpret it as after n, where n is an event that leads to a final state).

In addition to states selected as predicate-generating, the predicate is also ensured if the

object resides in any state that transitively follows the selected state, unless the states are

explicitly (de-)selected for the same predicate within the NEGATES section. At any state that

generates a predicate, the event driving the automaton into this state binds the variable

names to the values that the specification previously collected along its object trace.

Formally, an event no = (mo, eo) ∈ E of a rule r and for an object o ensures a predicate

p = (predName, args) ∈ P on the objects eo ∈ O if:

1. The method mo of the event leads to a state s of the automaton that generates the

predicate p (i.e., p ∈ G(s)).

2. The runtime trace of the event’s base object o satisfies the function sato.

3. All relevant REQUIRES predicates of the rule are satisfied at execution of event no.

For the KeyGeneraor object kG in Figure 1, a predicate is generated at Line 7 because

(1) its automaton transitions to its only predicate-generating state (state 3 of the automaton

in Figure 8), (2) sato evaluates to true as previously shown for each subfunction and (3) the

corresponding CrySL rule does not require any predicates.

6 Detecting Misuses of Crypto APIs

To detect all possible rule violations, our tool CogniCryptsast approximates the evaluation

function sato using a static data-flow analysis. In a security context, it is a requirement to

detect as many misuses as possible. One drawback is the potential for false warnings that
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84 boolean option1 = isPrime (66); // some non - trivial predicate returning
false

85 byte [] input = " Message ". getBytes ("UTF -8");
86

87 String alg = "SHA -256";
88 if ( option1 ) alg = "MD5";
89 MessageDigest md = MessageDigest . getInstance (alg);
90

91 if (input.size () > 0) md. update (input);
92 byte [] digest = md. digest ();

Figure 9 An example illustrating the usage of java.security.MessageDigest in Java.

originate from over-approximations any static analysis requires. In the following, we use the

example in Figure 9 to illustrate why and where approximations are required. We will show

later in our evaluation that, in practice, our analysis is highly precise and that the chosen

approximations rarely actually lead to false warnings.

The code example in Figure 9 implements a hashing operation. By default, the code

uses SHA-256. However, if the condition option1 evaluates to true, MD5 is chosen instead

(Line 88). The CrySL rule for MessageDigest, displayed in Figure 10, does not allow the

usage of MD5 though, because it is no longer secure [15].

The update operation is performed only on non-empty input (Line 91). Otherwise, the call

to update is skipped and only the call to digest is executed, without any input. Although

not strictly insecure, this usage does not comply with the CrySL rule for MessageDigest,

because it leads to no content being hashed.

To approximate sato
F , the analysis must search for possible forbidden events by first

constructing a call graph for the whole program under analysis. It then iterates through the

graph to find calls to forbidden methods. Depending on the precision of the call graph, the

analysis may find calls to forbidden methods that cannot be reached at runtime.

The analysis represents each runtime object o by its allocation site. In our example,

allocation sites are new expressions and calls to getInstance that return an object of a type

for which a CrySL rule exists. For each such allocation site, the analysis approximates sato
A

by first creating a finite-state machine. CogniCryptsast then evaluates the state machine

using a typestate analysis that abstracts runtime traces by program paths. The typestate

analysis is path-insensitive, thus, at branch points, it assumes that both sides of the branch

may execute. In our contrived example, this feature leads to a false positive: although

the condition in Line 91 always evaluates to true, and the call to update is never actually

skipped, the analysis considers that this may happen, and thus reports a rule violation.

To approximate sato
C
, we have extended the typestate analysis to also collect potential

runtime values of variables along all program paths where an allocated object is used. The

constraint solver first filters out all irrelevant constraints. A constraint is irrelevant if it

refers to one or more variables that the typestate analysis has not encountered. In Figure 10,

the rule only includes one internal constraint – on variable algorithm. If we add a new

internal constraint to the rule about the variable offset, the constraint solver will filter it

out as irrelevant when analyzing the code in Figure 9 because the only method this variable

is associated with (digest labelled d3) is never called. The analysis distinguishes between

never encountering a variable in the source code and not being able to extract the values of

a variable. With the same rule and code snippet, if the analysis fails to extract the value for

algorithm, the constraint evaluates to false. Collecting potential values of a variable over all

possible program paths of an allocation site may lead to further imprecision. In our example,
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93 SPEC java. security . MessageDigest
94

95 OBJECTS

96 java.lang. String algorithm ;
97 byte [] input;
98 int offset ;
99 int length ;

100 byte [] hash;
101 ...
102

103 EVENTS

104 g1: getInstance ( algorithm );
105 g2: getInstance (algorithm , _);
106 Gets := g1 | g2;
107 ...
108 Updates := ...;
109

110 d1: output = digest ();
111 d2: output = digest (input);
112 d3: digest (hash , offset , length );
113 Digests := d1 | d2 | d3;
114

115 r: reset ();
116

117 ORDER

118 Gets , (d2 | ( Updates +, Digests )), (r, (d2 | ( Updates +, Digests )))*
119

120 CONSTRAINTS

121 algorithm in {"SHA -256", "SHA -384", "SHA -512"};
122

123 ENSURES

124 digested [hash , ...];
125 digested [hash , input ];

Figure 10 CrySL rule for java.security.MessageDigest.

the analysis cannot statically rule out that algorithm may be MD5. The rule forbids the

usage of MD5. Therefore, the analysis reports a misuse.

Handling predicates in our analysis follows the formal description very closely. If sato

evaluates to true for a given allocation site, the analysis checks whether all required predicates

for the allocation site have been ensured earlier in the program. In the trivial case, when no

predicate is required, the analysis immediately ensures the predicate defined in the ENSURES

section. The analysis constantly maintains a list of all ensured predicates, including the

statements in the program that a given predicate can be ensured for. If the allocation site

under analysis requires predicates from other allocation sites, the analysis consults the list of

ensured predicates and checks whether the required predicate, with matching names and

arguments, exists at the given statement. If the analysis finds all required predicates, it

ensures the predicate(s) specified in the ENSURES section of the rule.

7 Implementation

We have implemented the CrySL compiler using Xtext [17], an open-source framework for

developing domain-specific languages as well as the CrySL- parameterizable static analysis

CogniCryptsast. We have further integrated CogniCryptsast with CogniCrypt [20], in

which it replaces the original code-analysis component.
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7.1 CrySL

Given the CrySL grammar, Xtext provides a parser, type checker, and syntax highlighter for

the language. When supplied with a type-safe CrySL rule, Xtext outputs the corresponding

AST, which is then used to generate the required static analysis.

We developed CrySL rules for all relevant JCA classes in an iterative process. That is,

we first worked through the JCA documentation to produce a set of rules and then refined

these rules through selective discussions with cryptographers and searching security blogs and

forums. In total, we have devised 23 rules covering classes ranging from key handling to digital

signing. All rules define a usage pattern. Some classes (e.g. IvParameterSpec) contain one

call to a constructor only, while others (e.g. Cipher) involve almost ten elements with several

layers of nesting. Fifteen rules come with parameter constraints, eight of which contain

limitations on cryptographic algorithms. The eight rules without parameter constraints

are mostly related to classes whose purpose is to set up parameters for specific encryptions

(e.g. GCMParameterSpec). All rules define at least one ENSURES predicate, while only eleven

require predicates from other rules. Across all rules, we have only declared two methods

forbidden. We do not find this low number surprising as such methods are always insecure

and should not at all be part of a security API. If at all, two forbidden methods is too high a

number. All rules are available at https://github.com/CROSSINGTUD/Crypto-API-Rules.

7.2 CogniCryptsast

CogniCryptsast consists of several extensions to the program analysis framework Soot [39,

21]. Soot transforms a given Java program into an intermediate representation that facilitates

executing intra- and inter-procedural static analyses. The framework provides standard static

analyses such as call-graph construction. Additionally, Soot can analyze a given Android

app intra-procedurally. Further extensions by FlowDroid [5] enable the construction of

Android-specific call graphs that are necessary to perform inter-procedural analysis.

Validating the ORDER section in a CrySL rule requires solving the typestate check sato
A
.

To this end, we use IDEal, a framework for efficient inter-procedural data-flow analysis [36],

to instantiate a typestate analysis. The analysis defines the finite-state machine Ao to check

against and the allocation sites to start the analysis from. From those allocation sites, IDEal

performs a flow-, field-, and context-sensitive typestate analysis.

The constraints and the predicates require knowledge about objects and values associated

with rule variables at given execution points in the program. The typestate analysis in

CogniCryptsast extracts the primitive values and objects on-the-fly, where the latter are

abstracted by allocation sites. When the typestate analysis encounters a call site that is

referred to in an event definition, and the respective rule requires the object or value of an

argument to the call, CogniCryptsast triggers an on-the-fly backward analysis to extract the

objects or values that may participate in the call. This on-the-fly analysis yields comparatively

high performance and scalability, because many of the arguments of interest are values of type

String and Integer. Thus, using an on-demand computation avoids constant propagation

of all strings and integers through the program. For the on-the-fly backward analysis, we

extended the on-demand pointer analysis Boomerang [37] to propagate both allocation sites

and primitive values. Once the typestate analysis is completed, and all required queries to

Boomerang are computed, CogniCryptsast solves the internal constraints and predicates

using our own custom-made solvers.

CogniCryptsast may be operated as a standalone command line tool. This way, it

takes a program as input and produces an error report detailing misuses and their locations.

https://github.com/CROSSINGTUD/Crypto-API-Rules
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However, we have further integrated CogniCryptsast into CogniCrypt [20]. CogniCrypt

is a Eclipse plugin, which supports developers in using Crypto APIs by means of scenario-

based code generation as well code analysis for Crypto APIs. In this context, CogniCrypt

translates misuses found by CogniCryptsast into standard Eclipse error markers.

8 Evaluation

We evaluate our implementation CogniCryptsast using the following research questions:

RQ1: What are the precision and recall of CogniCryptsast?

RQ1: What types of misuses does CogniCryptsast find?

RQ1: How fast does CogniCryptsast run?

RQ1: How does CogniCryptsast compare to the state of the art?

To answer these questions, we applied the generated static analysis CogniCryptsast

to 10,000 Android apps from the AndroZoo dataset [4] using our full CrySL rule set

for the JCA. We ran our experiments on a Debian virtual machine with sixteen cores

and 64 GB RAM. We chose apps that are available in the official Google Play Store

and received an update in 2017. This ensures that we report on the most up-to-date

usages of Crypto APIs. We make available all artefacts at this Github repository: https:

//github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts.

8.1 Precision and Recall (RQ1)

Setup

To compute precision and recall, the first two authors manually checked 50 randomly selected

apps from our dataset for typestate errors and violations of internal constraints. To collect

this random sample, we implemented a Java program that generates random numbers

using SecureRandom and retrieved the apps from the corresponding lines in the spreadsheet

containing the results of analysing the 10,000 apps. We did not check for unsatisfied predicates

or forbidden events, because these are hard to detect manually – while it may seem simple

to check for calls to forbidden events, it is non-trivial to determine whether or not such

calls reside in dead code. We compare the results of our manual analysis to those reported

by CogniCryptsast. The goal of this evaluation is to compute precision and recall of the

analysis implementation in CogniCryptsast, not the quality of our CrySL rules. We discuss

the latter in Section 8.4. Consequently, we define a false positive to be a warning that should

not be reported according to the specified rule, irrespective of that rule’s semantic correctness.

Similarly, a false negative would arise if CogniCryptsast missed to report a misuse that,

according to the CrySL rule, does exist in the analyzed program.

Results

In the 50 apps we inspected, CogniCryptsast detects 228 usages of JCA classes. Table 2

lists the misuses that CogniCryptsast finds (156 misuses in total). In particular, Cog-

niCryptsast issues 27 typestate-related warnings, with only 2 false positives. Both arise

because the analysis is path-insensitive (Section 6). We further found 4 false negatives that

are caused by initializing a MessageDigest or a MAC object without completing the operation.

CogniCryptsast fails to find these typestate errors because the supporting off-the-shelf alias

analysis Boomerang times out, causing CogniCryptsast to abort the typestate analysis
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Table 2 Correctness of CogniCryptsast warnings.

Total Warnings False Positives False Negatives

Typestate 27 2 4

Constraints 129 19 0

Total 156 21 4

without reporting a warning for the object at hand. A larger timeout or future improvements

to the alias analysis Boomerang would avoid this problem.

The automated analysis finds 129 constraint violations. We were able to confirm 110

of them. In the other 19 cases, highly obfuscated code causes the analysis to fail to

extract possible runtime values statically. For such values, the constraint solver reports

the corresponding constraint as violated. A better handling of such highly obfuscated code

can be enabled by techniques complementary to ours. For instance, one could augment

CogniCryptsast with the hybrid static/dynamic analysis Harvester [32]. We have also

checked the apps for missed constraint violations (false negatives), but were unable to find

any.

RQ1: In our manual assessment, the typestate analysis achieves high precision (92.6%)

and recall (86.2%). The constraint resolution has a precision of 85.3% and a recall of 100%.

8.2 Types of Misuses (RQ2)

Setup

We report findings obtained by analyzing all our 10,000 Android apps from AndroZoo [4].

We then use the results of our manual analysis (Section 8.1) as a baseline to evaluate our

findings on a large scale.

CogniCryptsast detects the usage of at least one JCA class in 8,422 apps. Further

investigation unveiled that many of these usages originate from the same common libraries

included in the applications. To avoid counting the same crypto usages twice, and to

prevent over-counting, we exclude usages within packages com.android, com.facebook.ads,

com.google or com.unity3d from the analysis.

Results

Excluding the findings in common libraries, CogniCryptsast detects the usage of at least

one JCA class in 4,349 apps (43% of the analyzed apps). Most of these apps (95%) contain at

least one misuse. Across all apps, CogniCryptsast started its analysis for a total of 40,295

allocation sites (i.e., abstract objects). Of these, a total of 20,426 individual object traces

violate at least one part of the specified rule patterns. CogniCryptsast reports typestate

errors (ORDER section in the rule) for 4,708 objects, and reports a total of 4,443 objects to

have unsatisfied predicates (i.e., the object expected a predicate from another object as listed

in the REQUIRES block of a rule). The analysis also discovered 97 reachable call sites that call

forbidden events. The majority of object traces that violate at least one part of a CrySL

rule (54.7%) contradict a constraint listed in the CONSTRAINTS section of a rule.

Approximately 86% of these constraint-violations are related to MessageDigest. In

our manual analysis (see RQ1), 89 of the 110 found constraint violations originated from
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usages of MD5 and SHA-1. We expect a similar fraction to also hold for the 11,178 constraint

contradictions reported over all 10,000 apps. Many developers still use MD5 and SHA-1,

although both are no longer recommended by security experts [15]. CogniCryptsast

identifies 1,228 (10.9%) constraint violations related to Cipher usages. In our manual

analysis, all misuses of the Cipher class are due to using the insecure algorithm DES or the

ECB mode of operation. This result is in line with the findings of prior studies [13, 35, 12].

More than 75% of the typestate errors that CogniCryptsast issues are caused by

misuses of MessageDigest. Our manual analysis attributes this high number to incorrect

usages of the method reset(). In addition to misusing MessageDigest, misuses of Cipher

contribute 766 typestate errors. Finally, CogniCryptsast detects 157 typestate errors

related to PBEKeySpec. The ORDER section of the CrySL rule for PBEKeySpec requires

calling clearPassword() at the end of the lifetime of a PBEKeySpec object. We manually

inspected 3 of the misuses and observed that the call to clearPassword() is missing in all

of them.

Predicates are unsatisfied when CogniCryptsast expects the interaction of multiple

object traces but is not able to prove their correct interaction. With 4,443 unsatisfied

predicates reported, the number may seem relatively large, yet one must keep in mind that

unsatisfied predicates accumulate transitively. For example, if CogniCryptsast cannot

ensure a predicate for a usage of IVParameterSpec, it will not generate a predicate for the

key object that KeyGenerator generates using the IVParameterSpec object. Transitively,

CogniCryptsast reports an unsatisfied predicate also for any Cipher object that relies on

the generated key object.

CogniCryptsast also found 97 calls to forbidden methods. Since only two JCA classes

require the definition of forbidden methods in our CrySL rule set (PBEKeySpec and Cipher),

we do not find this low number surprising. A manual analysis of a handful of reports suggests

that most of the reported forbidden methods originate from calling the insecure PBEKeySpec

constructors, as we explained in Section 4.

From the 4,349 apps that use at least one JCA Crypto API, 2,896 apps (66.6%) contain

at least one typestate error, 1,367 apps (31.4%) lack required predicates, 62 apps (1.4%) call

at least one forbidden method, and 3,955 apps (90.9%) violate at least one internal constraint.

Ignoring the class MessageDigest, and hereby excluding MD5 and SHA-1 constraints, 874

apps still violate at least one constraint in other classes.

RQ2: Approximately 95% of apps misuse at least one Crypto API. Violating the constraints

of MessageDigest is the most common type of misuse.

8.3 Performance (RQ3)

Setup

CogniCryptsast comprises four main phases. It constructs (1) a call graph using Flow-

Droid [5] and then runs the actual analysis (Section 6), which (2) calls the typestate analysis

and (3) constraint analysis as required, attempting to (4) resolve all declared predicates.

During the analysis of our dataset, we measured the execution time that CogniCryptsast

spent in each phase. We ran CogniCryptsast once per application and capped the time of

each run to 30 minutes.

In Section 8.2, we report that CogniCryptsast found usages of the JCA in 4,349 of

all 10,000 apps in our dataset. If we include in the reporting those usages that arise from

misuses within the common libraries previously excluded (see Section 8.2), this number rises
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Figure 11 Analysis time (in log scale) of the individual phases of CogniCryptsast when running

on the apps that use the JCA.

to 8,422. We include the analysis of the libraries in this part of the evaluation because it helps

evaluate the general performance of the analysis in the worst case when whole applications

are analyzed.

Results

Figure 11 summarizes the distribution of analysis times for the four phases and the total

analysis time across these 8,422 apps. For each phase, the box plot highlights the median,

the 25% and 75% quartiles, and the minimal and maximal values of the distribution.

Across the apps in our dataset, there is a large variation in the reported execution time

(10 seconds to 28.6 minutes). We attribute this variation to the following reasons. The

analyzed apps have varying sizes – the number of reachable methods in the call graph varies

between 116 and 16,219 (median: 3,125 methods). The majority of the total analysis time

(83%) is spent on call-graph construction. For the remaining three phases of the analysis,

the distribution is as follows. Across all apps, the resolution of all declared predicates takes

approximately a median of 50 milliseconds, and the typestate analysis phase takes a median

of 500 milliseconds. The median for the constraint phase is 350 milliseconds. Therefore, the

major bottleneck for the analysis is call-graph construction, a problem orthogonal to the one

we address in this work. Our analysis itself is efficient and the overall analysis time is clearly

dominated by the runtime of the call-graph construction.

RQ3: On average, CogniCryptsast analyzes an app in 101 seconds, with call-graph

construction taking most of the time (83%).

8.4 Comparison to Existing Tools (RQ4)

Setup

We compare CogniCryptsast to CryptoLint [13], as we explained in Section 2.3 the most

closely related tool. Unfortunately, despite contacting the authors we were unable to obtain

access to CryptoLint’s implementation. We thus resorted to reimplementing the original

rules that are hard-coded in CryptoLint as CrySL rules. The fact that all CryptoLint

rules can be modelled in CrySL shows its superior expressiveness.

In this section, Rulesetfull denotes CogniCrypt’s comprehensive CrySL rules that we

have created for all the JCA classes, while Rulesetcl denotes the set of CrySL rules that we

developed to model the original CryptoLint rules. Additionally, CogniCryptsast denotes

our analysis when it runs using Rulesetfull, and CogniCryptcl denotes the analysis when

it runs using Rulesetcl.
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Rulesetfull consists of 23 rules, one for each class of the JCA. Rulesetcl comprises only

six individual rules, and they only use the sections ENSURES, REQUIRES and CONSTRAINTS. In

other words, the original hard-coded CryptoLint rules do not comprise typestate properties

nor forbidden methods. For three out of six rules, we managed to exactly capture the

semantics of the hard-coded CryptoLint rule in a respective CrySL rule. The remaining

three rules (3, 4, and 6 of the original CryptoLint rules) cannot be perfectly expressed as

a CrySL rule, and our CrySL-based rules over-approximate them instead.

CryptoLint rule 4, for instance, requires salts in PBEKeySpec to be non-constant. In

CrySL, such a relationship is expressed through predicates. Predicates in CrySL, however,

follow a white-listing approach and therefore only model correct behaviour. Therefore, in

CrySL we model the CryptoLint rule for PBEKeySpec in a stricter manner, requiring the

salt to be not just non-constant but truly random, i.e., returned from a proper random

generator. We followed a similar approach with the other two CryptoLint rules that

we modelled in CrySL. In result, Rulesetcl is stricter than the original implementation

of CryptoLint. In the comparison of CogniCryptsast and CogniCryptcl in terms of

their findings, the stricter rules produce more warnings than the original implementation of

CryptoLint. In our comparison against CogniCryptsast, this setup favours CryptoLint

because we assume that these additional findings to be true positives. Both rule sets are

available at https://github.com/CROSSINGTUD/Crypto-API-Rules.

Results

CogniCryptcl detects usages of JCA classes in 1,866 Android apps. For these apps, Cog-

niCryptcl reports 5,507 misuses, only a third of the 20,426 misuses that CogniCryptsast

identifies using Rulesetfull, our more comprehensive rule set.

Using CogniCryptcl, all reported warnings are related to 6 classes, compared to 23

classes that are specified in Rulesetfull. As we have pointed out, CryptoLint does not

specify any typestate properties or forbidden methods. Hence, CogniCryptcl does not find

the 4,805 warnings that CogniCryptsast identifies in these categories using Rulesetfull.

Furthermore, while CogniCryptsast reports 11,178 constraint violations with the standard

rules, CogniCryptcl reports only 1,177 constraint violations. Of the 11,178 constraint

violations, 9,958 are due to the rule specification for the class MessageDigest. CryptoLint

does not model this class. If we remove these violations, 1,609 violations are still reported by

CogniCryptsast, a total of 432 more than by CogniCryptcl.

We compare our findings to the study by Egele et al. [13] that identifies the use of ECB

mode as a common misuse of cryptography. In that study, 7,656 apps use ECB (65.2% of apps

that use Crypto APIs). On the other hand, in our study, CogniCryptcl identified 663 uses

of ECB mode in 35.5% of apps that use Crypto APIs. Although a high number of apps still

exhibit this basic misuse, there is a considerable decrease (from 65.2% to 35.5%) compared to

the previous study by Egele et al. [13]. Given that all apps in our study must have received

an update in 2017, we believe that the decrease of misuses reflects taking software security

more seriously in today’s app development.

Based on the high precision (92.6%) and recall (96.2%) values discussed in RQ1, we argue

that CogniCryptsast provides an analysis with a much higher recall than CryptoLint.

Although the larger and more comprehensive rule set, Rulesetfull, detects more complex

misuses, the precise analysis keeps the false-positive rate at a low percentage.

RQ4: The more comprehensive Rulesetfull detects 3× as many misuses as CryptoLint

in almost 4× more JCA classes.
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8.5 Threats to Validity

Our ruleset Rulesetfull is mainly based on the documentation of the JCA [18]. Although

we have significant domain expertise, our CrySL-rule specifications for the JCA are only

as correct as the JCA documentation. Our static-analysis toolchain depends on multiple

external components and despite an extensive set of test cases, of course, we cannot fully

rule out bugs in the implementation.

Java allows a developer to programmatically select a non-default cryptographic service

provider. CogniCryptsast currently does not detect such customizations but instead assumes

that the default provider is used. This behaviour may lead to imprecise results because our

rules forbid certain default values that are insecure for the default provider, but may be

secure if a different one is chosen.

9 Conclusion

In this paper, we present CrySL, a description language for correct usages of cryptographic

APIs. Each CrySL rule is specific to one class, and it may include usage pattern definitions

and constraints on parameters. Predicates model the interactions between classes. For

example, a rule may generate a predicate on an object if it is used successfully, and another

rule may require that predicate from an object it uses. We also present a compiler for

CrySL that transforms a provided ruleset into an efficient and precise data-flow analysis

CogniCryptsast checking for compliance according to the rules. For ease of use, we have

integrated CogniCryptsast and with Eclipse crypto assistant CogniCrypt. Applying

CogniCryptsast, the analysis for our extensive ruleset Rulesetfull, to 10,000 Android apps,

we found 20,426 misuses spread over 95% of the 4,349 apps using the JCA. CogniCryptsast

is also highly efficient: for more than 75% of the apps the analysis finishes in under 3 minutes,

where most of the time is spent in Android-specific call graph construction.

In future work, we plan to address the following challenges. We have developed all the

rules used in CogniCryptsast ourselves. While we have acquired some deeper familiarity

with cryptographic concepts in general and the JCA in particular, we are not cryptographers.

Therefore, we are open to and want cryptography experts to correct potential mistakes

in our existing rules. We would further encourage domain experts to model their own

cryptographic libraries in CrySL to improve the support in CogniCryptsast and, by

extension, CogniCrypt. CrySL currently only supports a binary understanding of security

– a usage is either secure or not. We would like to enhance CrySL to have a more fine-

grained notion of security to allow for more nuanced warnings in CogniCryptsast. This

is challenging because the CrySL language still ought to be concise. Additionally, CrySL

currently requires one rule per class per JCA provider, because there is no way to express the

commonality and variability between different providers implementing the same algorithms,

leading to specification overhead. To address this issue, we plan to modularize the language

using import and override mechanisms. Moreover, we plan to extend CrySL to support

more complex properties such as using the same cryptographic key for multiple purposes.

We will also perform consistency checks for the CrySL rules. For now, only Xtext-based

type checks are performed.

Lastly, we also intend on applying CrySL in other contexts. One of the authors of this

paper has already started to have students implement a dynamic checker to identify and

mitigate violations at runtime. While the JCA is indeed the most commonly used Crypto

library, other Crypto libraries such as BouncyCastle [29] are being used as well and we will

to extend CogniCryptsast to support them. Additionally, we will investigate to which
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extent CrySL is applicable to Crypto APIs in other programming languages. At the time

of writing, we are exploring CrySL’s compatibility with OpenSSL [30]. We finally aim to

examine whether CrySL is expressive enough to meaningfully specify usage constraints for

non-crypto APIs.
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