Crystal and Molecular Structures of Monosodium l-Glutamate Monohydrate

Chiaki Sano*, Nobuya Nagashima**, Tetsuya Kawakita* and Yoichi Ittaka***
*Technology and Engineering Center, Aj̈̈nomoto Co., Inc., Suzukicho, Kawasaki 210, Japan
**Central Research Laboratories, Ajinomoto Co., Inc., Suzukicho, Kawasaki 210, Japan
*** Department of Medicine, Teikyo University, Hachioji, Tokyo 192-03, Japan

Monosodium l-glutamate crystallizes as a monohydrate from an aqueous solution at room temperature (Fig. 1). A crystal structure analysis of this crystal was reported by Rao et al. ${ }^{1}$ at a congress, though no paper has yet been published. For the purpose of studying the crystal habit in the presence of other amino acids or organic acid contaminants, we have determined the structure of this crystal.

Monosodium L-glutamate monohydrate crystallizes as rhombic prisms and has an overgowth tendency to form polycrystals. Suitable crystals for an X-ray diffraction study were selected by the polarization microscope and ω-scan profile. Hydrogen atoms were found in a difference electron-density map, and were located at the calculated positions and were refined

Fig. 1 Chemical structure.

Table 1 Crystal and experimental data
Compound name: Monosodium l-glutamate monohydrate
Formula: $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{4} \cdot \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}$
Formula weight: 187.13
Crystal system: Orthorhombic $\quad Z=8$
Space group: $P 2_{1} 2_{1} 2_{1} \quad$
$a=15.237(8) \AA$,
$b=17.937(9) \AA$,
$c=5.562(4) \AA$,
$V=1520 \AA^{3}$,
$D_{\mathrm{x}}=1.635 \mathrm{~g} \mathrm{~cm}^{-3}, D_{\mathrm{m}}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}$
$R=0.037$
No. of reflections used $=1805$
Measurement: Philips PW1100
Program system: Private
Structure determination: MULTAN
Refinement: Block-diagonal
with isotopic temperature factors.
Glutamic acid molecules are zwitterion form, as shown in Fig. 2 (also showing molecular conformations).

The conformations of the two molecules in an asymmetric unit are different, as shown in Table 3. Remarkable differences between them appear in the torsion angles of chi 1 and chi 3.

Both Na ions are coordinated in octahedra with four (3 alpha and 1 gamma) carboxyl oxygen atoms, and two water molecules. These coordination polyhedra are

Molecule B

Fig. 2 Molecular conformations with bond lengths and angles.

Table 2 Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic thermal parameters ($\times 10^{2}$) (with e.s.d.'s in parentheses) $\quad B_{\mathrm{eq}}=(4 / 3) \Sigma_{i} \boldsymbol{\Sigma}_{j} \boldsymbol{\beta}_{i j} a_{i} a_{j}$

	\boldsymbol{x}	y	z	$B_{e q} / \AA^{2}$
Molecule A				
C1 5	5560 (2)	2186(2)	5161 (6)	144(4)
C2 6	6305 (2)	1633(2)	4646 (6)	140 (4)
C3 5	5979(2)	959(2)	3252(7)	166 (4)
C4 6	6712 (2)	412 (2)	2580(7)	184(4)
C5 6	6411 (2)	-162(2)	757 (6)	150 (4)
N1 6	6740(2)	1418(1)	6980(5)	163 (4)
015	5486(1)	2440(1)	7245 (4)	189(3)
025	5092(1)	2359(1)	$3398(4)$	181 (3)
03.6	6521 (1)	-844(1)	1255 (5)	181 (3)
046	6086(2)	68(1)	-1196(5)	219 (3)
Molecule B				
C11 79	7921 (2)	2794(2)	1487 (6)	155 (4)
C12 8	8600(2)	3274(2)	157(6)	147 (4)
C13 8	8948 (2)	3926(2)	1633 (7)	168(4)
C14 8	8225(2)	4513(2)	$2252(7)$	179(4)
C15 8	8589(2)	5087(2)	4045(6)	158 (4)
N11	8211 (2)	3542(2)	-2172(5)	180(4)
0117	7226(1)	2640(1)	409(5)	208(3)
0128	$8128(1)$	2589(1)	3585(4)	192(3)
013	8521 (2)	5770(1)	3532 (5)	191 (3)
014	8905 (2)	4852(1)	6020(5)	210 (3)
Water and Ions				
O(W1)	9369(2)	1111 (1)	661(5)	270(4)
O(W2)	$5658(2)$	3966(1)	4024 (5)	272 (4)
Na1	5769(1)	3204 (1)	499(3)	179(2)
$\mathrm{Na} 2$	$9317(1)$	1748(1)	4328 (3)	188(2)
Coordinates of hydrogen atoms			and Beq	
H(C2)	680(3)	192(2)	357 (9)	4.6 (1.2)
H(C3) 1	566(3)	114 (2)	161(9)	4.9 (1.2)
$\mathrm{H}(\mathrm{C} 3) 2$	549 (3)	66 (2)	434(9)	4.6 (1.1)
H(C4) 1	694(3)	12(3)	418(10)	$5.4(1.3)$
$\mathrm{H}(\mathrm{C} 4) 2$	727 (3)	72 (2)	181 (9)	4.5 (1.1)
H(N1) 1	638(3)	96(3)	$782(10)$	6.0 (1.4)
H(N1)2	675(3)	189(3)	$818(10)$	6.8 (1.5)
H(N1)3	741 (3)	124 (3)	$666(10)$	5.4 (1.3)
H(C12)	914 (3)	290(2)	-29(9)	4.4 (1.1)
H(C13) 1	947 (3)	421 (2)	65 (9)	4.4 (1.1)
$\mathrm{H}(\mathrm{C1} 3) 2$	922(3)	372 (2)	331 (9)	$4.2(1.1)$
H(C14)1	$768(3)$	424(2)	304(9)	4.1 (1.1)
$\mathrm{H}(\mathrm{Cl} 4) 2$	805(3)	480(3)	64(10)	5.6 (1.3)
H(N11)1	823(3)	310 (3)	-349(10)	6.5 (1.4)
H(N11)2	-859(3)	401 (3)	-284(10)	5.6 (1.2)
H(N11)3	- 754 (3)	372 (3)	-190(10)	5.7 (1.3)
H(OW1) 1	926(3)	68(3)	153(10)	5.9 (1.3)
H(OW1) 2	900(3)	107(2)	-43(9)	5.2 (1.2)
H(OW2) 1	565(3)	$437(3)$	346 (9)	$5.5(1.2)$
H(OW2) 2	$2597(3)$	399 (2)	544(9)	5.3 (1.2)

Table 3 Torsion angles (${ }^{\circ}$) with e.s.d.'s
Molecule A Molecule B

psi 1	$\mathrm{O} 1-\mathrm{C}-\mathrm{C} \alpha-\mathrm{N}$	$8.2(3)$	$6.9(3)$
psi 2	$\mathrm{O} 2-\mathrm{C}-\mathrm{C} \alpha-\mathrm{N}$	$-173.8(1)$	$-173.4(1)$
chi 1	$\mathrm{~N}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma$	$-60.0(3)$	$58.7(3)$
chi 2	$\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma-\mathrm{C} \delta$	$-167.7(2)$	$170.9(2)$
chi 31	$\mathrm{C} \beta-\mathrm{C} \gamma-\mathrm{C} \delta-\mathrm{O}$	$-126.5(2)$	$127.2(2)$
chi 32	$\mathrm{C} \beta-\mathrm{C} \gamma-\mathrm{C} \delta-\mathrm{OH}$	$55.5(3)$	$-54.6(3)$

Table $4 \mathrm{Na}-\mathrm{O}$ distances (\AA) (with e.d.s.'s), in MSG crystal

Na 1	01	$x, y,-1+z$	2.311(3)
	02	x, y, z	2.442(3)
	011	x, y, z	2.440(3)
	013	1+1/2-x, 1-y, -1/2+z	2.400(3)
	O(W1)	-1/2,1/2-y, -z	2.545 (3)
	O(W2)	x, y, z	2.396(3)
Na2	01	1/2+x, 1/2-y, 1-z	2.461 (3)
	02	1/2+x, 1/2-y, 1-z	2.358(3)
	03	1+1/2-x, $\mathrm{y}, 1 / 2+\mathrm{z}$	2.326(3)
	012	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.394(3)
	O(W1)	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.339(3)
	O(W2)	1/2+x,1/2-y,1-z	2.579(3)

linked together by sharing the edges and are elongated along the c axis.

Reference

1. S. T. Rao and M. Mallikarjunan, 10th Int 7 Congress of Crystallography Collected Abstracts, 7-15 August, p. S48, 03.5-5 (1975), Amsterdam.
(Received January 10, 1989)
(Accepted January 17, 1989)
