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Abstract

In Chapter 1 a basic outline of the two main methods used in this thesis is given.

A genetic algorithm optimization method based on the concept of natural selection is

given. The important factors to consider in creating an effective genetic algorithm search

are described. I then give a brief overview of Density Functional Theory (DFT) which

is the technique most commonly used to do ab-inito calculations on solid-state systems.

The basis for its formulation along with how it is applied to a practical system with some

approximations is discussed.

In Chapter 2 a description of a genetic search algorithm for optimizing the crystal

structure of an infinite crystal is given. This method is applied to a system of colloidal

spheres, where the packing density is the figure of merit for structure selection. Our

examination of self-assembled multi-component crystals of nanoparticles predicts several

new structures with stoichiometries of AB (fused spheres), ABC2, ABC3, ABC4 and

AB2C2. These new structures have hierarchical layered or linear arrangements that

could be useful for functional self-assembled systems. For example, the fused-sphere

binary crystal assembles with zig-zag rows of parallel nanowires. The genetic search

suceeds while a comparable stochastic algorithm fails to find any structures better than

the well-known unary or binary phase-separated systems. Here we describe the algorithm

and the results it produces: several new classes of binary and ternary crystals of spherical

nanoparticles, including a family of layered perovskite-like systems and an unusual three-

dimensional array of parallel zig-zag nanowires.
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In Chapter 3, We discuss the possibility of constructing new forms of silicon by

building in multiple bonds consistent with molecules that have been produced exper-

imentally. We find a dilated diamond crystal lattice containing a silicon-silicon triple

bond that is metastable. This structure has very soft vibrational modes that are com-

mon in similar structures with buckled bonds (similar to quarts). The crystal may be

stabilized by synthesizing in a rare gas environment, where a mixture of krypton and

neon or helium may work best. Constructing a crystal lattice out of the trisilaallene

central region leads to an unstable crystal structure. The main reason for this instability

is due to the flexibility in the location of the sp-hybridized atom. Relaxing this structure

leads to a new sp2-sp3 hybrid structure. There are a family of structures with ribbons of

graphitic silicon held together by sp3 silicon atoms. The ribbon width can be increased

to lead towards more graphitic silicon-like results. Graphitic silicon is predicted to be

stabilized under negative pressure. Due to the similarity to graphitic silicon, we expect

this family of structures may be stabilized in an environment of negative pressure as

well..
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Chapter 1

Background and Methods

1.1 Optimization Methods

1.1.1 Optimization Methods

The simplest type of optimization problem is a problem which consists of only

one variable. These one-dimensional problems have the advantage that it is easy to

define a region where a minima must exist. Smooth continuous functions are straight

forward to find a local minima through the use of the function derivatives. Finding

a minima in a problem with more degrees of freedom is much harder. Examining the

case with two degrees of freedom is equivalent to trying to find the lowest point in a

range of mountains. Higher dimensional problems become very complicated and much

more difficult very quickly. Wolpert and Macready [63, 64], state: “all algorithms that

search for an extremum of a cost function perform exactly the same, when averaged

over all possible cost functions”. The idea is that any improvement in performance over

a particular type of problem is compensated for by a decrease in performance over a

different class of problems. This emphasizes the importance of choosing the algorithm

that suits the problem at hands. Optimization problems are typically classified into either

constrained optimization problem or unconstrained optimization problem. Constrained

optimization problems have some limitations on the range of the input variables to the

function that are allowed, while unconstrained problems do not. This is on of the things
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one must consider when choosing an optimization method. A brief description of a few

common optimization methods will be given along with some of the advantages and

disadvantages of each.

Clustering methods perform a local search from selective points in the search

space. Points are chosen in an attempt to avoid finding the same local minima repeatedly.

Clustering methods need an objective function that is computationally inexpensive to

evaluate since many points must be sampled to identify the clusters that fall in the same

local minima. Clustering methods are most useful for problems with a small number of

degrees of freedom.

The downhill simplex method is a multi-dimensional optimization method which

uses a geometrical figure (simplex). A simplex is a figure consisting of N+1 points in a N

dimensional space and all of their interconnecting line segments (in 2-d a triangle would

be a simplex). The downhill simplex method takes a series of steps that move a point

of the simplex where the function is highest toward the opposite face toward a lower

point [43]. The simplex method is typically not very efficient requiring a large number

of function evaluations. It has the advantage that is easy to implement if you just need

to get something working quickly.

Multi-Resolution Method is a method that is used when the surface searched is

very noisy having many sharp local minima. The idea is to create a new function similar

to the original that will have a smoother surface with all the major minima in similar

locations[32]. The problem with this method is that there are typically many function

evaluations necessary to generate the smoothed function surface and it is possible that
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the minimum is removed in the smoothing process. This method is commonly used when

analyzing and comparing computer images.

Another commonly used method is a conjugate gradient method. A conjugate

gradient method is a local optimization method designed to quickly find a nearby local

minimum. The conjugate gradient method uses the function values in addition to the

partial derivatives of the function to choose a direction to travel towards the local min-

imum. This method can be very efficient when the function being optimized is nearly

quadratic and will take only a few steps to find the minimum. This method is quick to

converge when near a local minimum since it can be approximated by a parabolic mini-

mum. Far away from a minimum the conjugent gradient method can be very inefficient

due to the non-quadratic nature of the function[43]. A Monte Carlo search method is a

class of algorithms for simulating a physical system by using statistical sampling through

the use of random numbers. Monte Carlo methods are different from the previous meth-

ods mentioned since Monte Carlo methods are not deterministic, being dependent on

random numbers to generate adequate statistical sampling. All previous methods men-

tioned are deterministic and will find the same result given the same starting conditions.

Simulated annealing is a type of a Monte Carlo method based on the physical process

annealing. In an annealing process a material is heated to a high temperature and is

slowly cooled to a frozen state at zero temperature. This slow process allows escaping

from shallow local minima due to the remaining kinetic energy. Simulated annealing

performs well in combinatorial problems with many discrete shallow local minima. In

this thesis we choose a genetic algorithm optimization methods for our particular prob-

lem [43]. Due to the many local minima present and the complexity of the search space
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in this unconstrained optimization problem a genetic algorithm is a good choice to ex-

amine. We will discuss the genetic algorithm and its advantages and disadvantages in

the following section.

1.1.2 Genetic Algorithm Optimization

Genetic algorithms first appeared in the late 1950’s, used by evolutionary biolo-

gists who were seeking to model specific aspects of evolution. In 1962 several researchers

independently developed evolution based algorithms for function optimization and ma-

chine learning [18]. These techniques involved one parent which was mutated to produce

one offspring, and the better of the two was kept. Later versions introduced the idea of

a population with mating (crossover) and mutation [59, 27]. This technique was mainly

used in computer science and biology for optimization of complex systems with a large

configuration space and in genetic programming. Genetic programming is defined as

self-evolving program designed to optimize the performance of the program in a par-

ticular task. Genetic algorithms have been applied in many different problems such as

scheduling problems, game theory and electronic circuit design [27]. In 1995, Deaven

and Ho [7] implemented the idea of a genetic algorithm search to optimize the molecu-

lar geometry of atomic clusters. The algorithm found the optimal structure for various

atomic clusters including the 60 carbon atom case finding the buckyball as the optimal

solution. The genetic algorithm performed better than simulated annealing, which was

the most commonly used method. In addition to carbon clusters, this algorithm has

also been successful in finding improved structures for medium sized (n < 13) silicon

structures using LDA to evaluate the energy[16]. This method also solved the optimal
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locations for charged particles restricted to the surface of a sphere as well. We show how

the genetic algorithm can be applied to an infinite crystal system and find several new

and interesting structures.

Fig. 1.1. Buckminster Fullerine (a.k.a. Buckyball) solved as the lowest energy structure
for a C60 cluster using a the hybrid genetic algorithm of Deaven and Ho.

Genetic searches are so called since they borrow from biology the idea of creating

new “child” structures by combining characteristics (i.e. genes) from “parent” structures.

In our case, the structures are parameterized by various displacement vectors (defined

below) and vectors from each parent are combined to construct a child. A genetic search

takes long strides in configuration space. Therefore the algorithm will work best if the

surface defined by the figure of merit (such as a binding energy or packing density)

has long valleys oriented along coordinate directions. Geometrically, the merging of

structural information from two parent structures into a child, (within an M dimensional

configuration space), corresponds to finding the single point of intersection between
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Fig. 1.2. Energy versus number of mating operations for a C60 cluster. The solid line is
the lowest energy structure (population size=4) and the dotted line is the highest energy
structure. Intermediate structures are shown at (a), (b) and (c). [7]

one m and one M − m dimensional hyperplane, each passing through one parent. If

coordinate directions define valleys, then the child has a better probability of sitting

near the intersection of two valleys; a subsequent local optimization can then fine-tune

the structure before the next generation.

The genetic algorithm begins with an initial population of creatures. The initial

population is typically a randomly generated group of solutions to the problem being

examined. Parent creatures are chosen from this population either randomly or with

some fitness based selection process. The parents mate to form children maintaining

some of the characteristics from each of the parents. Some random mutations are intro-

duced during this mating (crossover) process. The children are then inserted into the

population, typically replacing the least-fit creatures in the population. This procedure

is repeated until a stopping criterion is met. The stopping criterion could be a preset
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number of generations or some condition on the fitness parameter. Figure 1.3 shows a

flow chart depicting the method of the genetic algorithm [59].

Fitness Based− "Tournament Selection"

Select Parents from Population
Random Selection of Parents

Initial Random Population

Insert Children Into Population
Replacing Low Fitness Members

Mate Parents to form Children

(Crossover)
Preserve Characteristics from Each Parent

Allowing for Random Mutatioins

Locally Relax (Hybrid GA)

Done
Examine Best Solutions

Next Generation

Typical Genetic Algorithm
Flowchart

Fig. 1.3. Flowchart for a typical Genetic Algorithm.

The genetic algorithm is an effective method when there is a large configuration

space with many local optima. Success of the GA requires certain topographical features

in the fitness surface, so that characteristics that are good in the parents are also good

in the children, in a new context. In order to avoid being trapped in a local minimum,

mutation is an important part of the mating process. While mutations rarely improve the

overall fitness of a child, it allows children to escape a local minimum by travelling a small

distance in some random direction in configuration space. A large complex configuration
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Fig. 1.4. Configuration space representation of the mating process (crossover). Recom-
bination of two different parent structures represented in a way to preferentially move
along valleys in the multidimensional configuration space.

space is not the only requirement for a problem that may be approached with a genetic

algorithm. The main obstacle to implementing an effective genetic algorithm search is a

useful representation of a solution to your problem. A solution to the problem should be

represented in a way that the “genes” carried forward in the mating (crossover) procedure

represent as many of the important features of the solution as possible. In addition there

should be a well definable “fitness” measure for each configuration in the search space.

For certain problems it may not be clear how to define a function that outputs the fitness

of a structure.

The mating procedure for the genetic algorithm implementation for atomic clus-

ter optimization involved cutting one cluster in two by some randomly placed plane.

Similarly the other parent cluster is cut by the same plane. The plane is then shifted to

maintain the correct number of atoms in the child after recombining portions from each

parent. In this case the “genes” are the cartesian coordinates of each atom in the cluster.
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The mating procedure preserves the local bond distances and bond angles within each

half of the cluster, allowing some of the good characteristics of the parent to be carried

forward to the child. The implementation of the genetic algorithm of Deaven and Ho

was a hybrid genetic algorithm. The children are optimized with a standard conjugate

gradient relaxation to more quickly find the local minimum. After the local relaxation

the children are inserted into the population. In the case of atomic cluster optimization

there is not a problem defining a fitness function. The energy of the structure is used as

the fitness function.

In nature, reproduction of two parents involves half of the chromosomes from each

parent to create the chromosomes for the child. We use this as a guide, but we have

added flexibility that may potentially aid the search algorithm for particular problem

types. We are not required to carry forward exactly half of the genes from each parent

to the child. The most commonly used crossover method is a one-point crossover. In

a one-point crossover, a gene sequence is cut at some random point in the sequence.

Every gene before the cut in one parent carries forward to the child and every gene after

the cut carries forward from the other parent. Sinlge-point crossover is one example

where a larger portion of genes from one parent may proceed to the child. Two-point

crossover is done in the same way, except the gene sequence is cut in two places, with

alternating portions carrying forward to the child from each parent. Uniform crossover

is also sometimes used. Uniform crossover, allows each gene to be randomly chosen

from one of the parents to be carried forward in the child. Depending on the fitness

landscape and the parametrization of the problem one of these methods may outperform

the others. A uniform crossover method will perform well when each gene has enough
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internal structure to sufficiently represent an important feature of the problem. In our

case of infinite crystal optimization we used a single-point crossover. The single-point

crossover method will carry forward more important features to the children since in our

parametrization contiguous genes are preferred to preserve additional bond angles.

Parent 1

Parent 2

Child 1

Child 2

Parent 1

Parent 2

Child 1

Child 2

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 1 1 1 1 1

1 1 0 0 0 0 0

crossover point

crossover point 1

crossover point 2

Sinlge−Point Crossover Two−Point Crossover

0 0 0 0 0  0 0

1 1 1 1 1  1 1

0 0 1 1 1  0 0

1 1 0 0 0  1 1

Fig. 1.5. Depiction of one-point and two-point crossover methods.

One well known problem that does occur with a genetic algorithm is a premature

convergence of the population. In biology this problem also occurs and is known as

genetic drift. We combat this cloning problem in the genetic algorithm by resticting the

children that are allowed to be inserted into the population. We use a similarity inner

product (defined in Chapter 2) along with requiring a minimum δE for each child from
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all others currently in the population. Using this procedure suppresses genetic cloning

and helps to prevent the population getting stuck in a local minimum.

One of the major advantages of a genetic algorithm is that it typically performs

well in landscapes that are discontinuous or noisy, due to the ability to efficiently explore

a large landscape. A genetic algorithm is an inherently parallel process. Each creature

in the population can reproduce and evolve separately from others in the population

without depending on the other members of the population. This is a very positive

aspect of the genetic algorithm for attacking large configuration spaces through the use

of parallel computers. The speed of the search increases approximately proportional to

the number of processors used in the search. Since members of the population can be

evaluated individually and inserted into the population as individual processors complete

each evaluation.

For certain problems finding the absolute best solution to a problem may not

be necessary. Finding a solution to the problem that is better than what is currently

known may be sufficient or there may be many solutions to a problem with a similar

fitness values where it is unrealistic to exhaustively search the many similar solutions.

Problems of this type are ideal for the genetic algorithm, it can very quickly search a

complicated fitness landscape to find reasonable solutions to the problem. In a typical

global optimization problem, you do not know when you have reached the best global

solution to a problem. Comparing your best solution to the solution currently used is

all that is necessary.
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1.2 Density Functional Theory

1.2.1 Density Functional formalism: Hohenberg-Kohn theorems

A central problem of quantum mechanics is to solve for the wavefunction of N

interacting particles. The wavefunction completely describes the system and allows us

to calculate any information desired about the system. The Schrödinger equation allows

us to solve for the wavefunction for a system given the interactions between particles.

The Schrödinger equation is given as:

ĤΨ(ri, .., rn, R1.., RN ) = EΨ(ri, .., rn, R1, ..RN ) (1.1)

Ĥ =
∑

i

−1

2
∇2

i
+
∑

i

− 1

2Mi
∇2

i
+

1

2

∑

i 6=j

1

|ri − rj |

+
1

2

∑

i 6=j

QiQj

|Ri −Rj |
−
∑

i 6=j

Qj

|ri −Rj |

,where r, and R indicate the position operators acting on the electrons and nuclei respec-

tively. Mi and Qi are the mass and charge of the nuclei. The electron charge, mass and

~ are equal to one in these units. In order to make this problem computationally more

tractable, we may use the Born Oppenheimer approximation. The Born Oppenheimer

approximation comes from the fact that the mass of the electrons is much smaller than

the mass of the nuclei. Using this, a reasonable approximation is to decouple the elec-

tronic and nuclear parts of the wavefunction since the typical velocities of the electrons

are much larger than those nuclei. We can further simplify the problem by treating

the nuclei as classical particles where their position operators can be treated as position
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variables. This leaves all the quantum effects contained in the electronic wavefunctions

in a simpler Hamiltonian. We need to solve the Schrödinger equation with the following

Hamiltonian:

Ĥel =
∑

i

−1

2
∇2

i
+

1

2

∑

i 6=j

1

|ri − rj |
+
∑

i

Vext(ri) = T̂ + V̂coulomb + V̂ext, (1.2)

where Vext is the external potential due to the nuclei. The wavefunctions ψ are required

to be antisymmetric under exchange of spatial an spin coordinates due to the Pauli

exclusion principle. The solution to this problem is very difficult, due to the large

number of degrees of freedom.

Hohenberg and Kohn approached this problem by noting that the ground-state

density of a bound system of interacting electrons in some external potential determines

the potential uniquely to within an additive constant[17]. The external potential and any

physical property of a system is a unique functional of the electron ground state density.

This theorem was proved by Hohenberg and Kohn in a relatively short and simple way.

If we assume two different external potentials v1 and v2 that differ by more than a

constant, and calculate the ground state energies of their corresponding Hamiltonians

(Ĥ1 and Ĥ2) we have:

E0|ψ1〉 = Ĥ1|ψ1〉 = (T̂ + V̂coulomb + v̂1)|ψ1〉 (1.3)

E′
0
|ψ2〉 = Ĥ2|ψ2〉 = (T̂ + V̂coulomb + v̂2)|ψ2〉

If we suppose ψ1=ψ2, subtracting these equations from each other leads us to:
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(v̂1 − v̂2)ψ1 = (E0 − E′
0
)ψ1 (1.4)

(v̂1 − v̂2 − (E0 − E′
0
))ψ1 = 0

v̂1 − v̂2 = (E0 −E′
0
) = constant

Therefore, if ψ1=ψ2 then v̂1=v̂2 to within a constant [23]. According to the

Hohenberg-Kohn theorem ρ determines the external potential vext. If we assume that

two ground state both have the same density ρ0 and ψ1 6= ψ2, with ground state energy

E0 and E′
0
. Consider the following:

E0 < 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉 + 〈ψ2|(Ĥ1 − Ĥ2)|ψ2〉 (1.5)

= E′
0
−
∫

ρ0(r)(V ′
ext

(r) − Vext(r)) (1.6)

Using ψ1 as the test function for Ĥ2 leads us to:

E′
0
< 〈ψ1|Ĥ2|ψ1〉 = 〈ψ1|Ĥ1|ψ1〉 + 〈ψ1|(Ĥ2 − Ĥ1)|ψ1〉 (1.7)

= E0 −
∫

ρ0(r)(Vext(r) − V ′
ext

(r)) (1.8)

Adding these two equations results in:

E0 + E′
0
< E0 + E′

0
(1.9)
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This is a contradiction and thus the ground state density determines the external

potential.

The energy can be written in terms of the external potential as:

E[ρ(r)] =

∫

ρ(r)vext(r)dr + FHK [ρ(r)] (1.10)

where FHK [ρ(r)] is an unknown functional (Hohenberg-Kohn functional) of the electron

density only. A functional acts like a function that has a function as its argument instead

of a variable and maps a function to a number like a function maps a numbr to a number.

Using equation 1.2 above we can see that the Hohenberg-Kohn functional can be written

as:

FHK [ρ(r)] = 〈ψ|T̂ + V̂coulomb|ψ〉 (1.11)

The Hohenberg-Kohn functional above is not dependent on the specifics of the system.

The Hamiltonian is completely defined by the external potential and the number of

electrons. The second theorem of Hohenberg and Kohn states that the ground state

energy can be obtained variationally and that the density the minimizes the total energy

is the exact ground state density. This follows from the variational principle and the first

Hohenberg-Kohn theorem. The Hohenberg-Kohn theorems prove existence of a unique

density for non-degenerate ground state systems, but do not provide a systematic method

for calculating the electronic density in practice [17].
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Kohn and Sham replaced the system of interacting particles with a system of

fictitious non-interacting particles with an effective Kohn-Sham single particle potential.

This method is designed provide the same ground state electron density of the original

interacting system and therefore gives exact results. From the Hohenberg-Kohnn the-

orem we know that the ground state density of an electronic system can be found by

minimizing the energy functional while holding the number of electrons constant as the

constraint as given below:

δ

[

FHK [ρ(r)] +

∫

Vext(r)ρ(r)dr − µ(

∫

ρ(r)dr −N)

]

= 0, (1.12)

where µ is the Lagrange multiplier associated with the constraint of a constant number

of electrons (N). A non-interacting system can be separated into a set of single particle

wavefunctions. We need to solve a Slater determinant of single particle wavefunctions

to determine the many body-wavefunction.[52]:

ψ(r1, ..., rN ) = ΘS =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) ... φN (r1)

φ1(r2) φ2(r2) ... φN (r2)

...
...

...

φ1(rN ) φ2(rN ) ... φN (rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where φi are the single particle non-interacting wavefunctions.

The single particle Kohn-Sham operator is defined as:

ĤKS = −1

2
∇2 + V̂S (1.13)
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Next we need to choose the ĤKS such that the total electron density from all of the

single particle Kohn-Sham orbitals (φi) give the exact ground state density of our system

of interest. We need:

ρs(r) =

N
∑

i

|φi(r)|
2 = ρ0(r), (1.14)

where ρ0 is the exact charge density of the real system of interacting particles that we

are interested in. Kohn and Sham recommended separating the FHK [ρ(r)] functional

as:

FHK [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (1.15)

where Ts[ρ] is sum of single particle kinetic energies from the Kohn-Sham orbitals and

J [ρ] is the Hartree term evaluating (Coulomb) energy. The kinetic energy of a non-

interaction electron gas given as:

Ts[ρ(r)] = −1

2

N
∑

i

〈φi|∇
2|φi〉 (1.16)

The Hartree term is J [ρ] defined as:

J [ρ(r)] =
1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′| (1.17)
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and using equation 1.10 the exchange-correlation energy term is defined as:

Exc = E[ρ(r)] − (Ts[ρ(r)] + J [ρ(r)]) (1.18)

The Kohn-Sham potential Vks is defined as:

Vks(r) =

∫

ρ(r′)

|r − r′|dr
′ + Vxc(r) + Vext(r) (1.19)

, where the the exchange correlation potential is:

Vxc(r) =
δExc[ρ]

δρ(r)
(1.20)

The logic in separating the energy functional in this way is to break it into pieces that

are well known and easier to calculate which will provide a reasonable first approxi-

mation to the energy functional. All of the unknown parts are then grouped together

into the exchange correlation part. The exchange-correlation term contains all of the

important physics about the interactions in the system. It contains information to add a

correction to the non-interacting kinetic energy term above (Ts) in addition to all other

electron-electron correlations that are unknown. The big problem in making density

functional theory useful is determining the exchange-correlation functional. We need to

make approximations to the (Exc) exchange correlation term. Although in theory this

method can produce exact results, we do not know the form of Exc, and can not exactly

calculate properties of the system due to this problem. Depending on the specific system

the exchange correlation term will typically be small relative to the other terms. We
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need to approximate this functional. Some methods for approximating this function are

discussed below. Electron spin can also be incorporated into DFT by separating the

density into the sum of spin up and spin down densities.

1.2.2 Density Functional formalism: Local Density Approximation and Gen-

eralized Gradient Approximation

The Kohn-Sham approach provides a clever method for separating the energy

into several parts, all of which are straightforward to calculate with the exception of

the exchange-correlation functional (Exc). Kohn and Sham began by assuming a slowly

varying charge density and approximated the exchange-correlation functional as:

Exc[ρ(r)] =

∫

ρ(r)ǫxc(ρ(r))dr (1.21)

,where ǫxc is the exchange-correlation energy per electron of a uniform electron gas with

a density ρ(r) [26]. This expression can be generalized as a Taylor series expansion of

Exc with equation 1.21 as the leading term in the expansion. Therefore, in the case

with slowly varying charge densities the form in equation 1.21 is exact. Kohn and

Sham expanded the charged density in terms of the non-interacting Kohn-Sham orbital

wavefunctions and applied the variational principle to calculate as set of single-particle

non-interacting Schrödinger equations. These equations are known as the Kohn-Sham

equations and are given as:

(

−1

2
∇2 +

∫

ρ(r′)

|r − r′|dr
′ + Vxc(r)

)

φi(r) = ǫiφi(r) (1.22)
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,where Vxc is given as:

Vxc(r) =
d(ρ(r)ǫxc(ρ(r)))

dρ
. (1.23)

ρ(r)

ρ(r)

Initial Guess for Density

Solve Kohn−Sham Equations

via Vks

Kohn−Sham Orbitals
Calculate Density from Resulting

Check size of Change in Density

if small −> Done

otherwise −> Repeat

Done
Calculate Physical

Properties from 

Self−Consistent Loop

small

change

Repeat

Fig. 1.6. Illustration of Self-Consistent Iteration Method for solving the Kohn-Sham
equations for ρ(r).

The Kohn-Sham equations (1.22) need to be solved using a self-consistent method.

An initial guess is made for the density (ρ(r)). The resulting Kohn-Sham equations

are solved for the Kohn-Sham orbitals (φi(r)). These Kohn-Sham orbitals are then

used to calculate the density (1.14). This new density is inserted into the Kohn-Sham

equations and this process is repeated until the density change below some threshold.

The single particle wavefunctions φi(r) do not correspond to electronic states of our

interacting system. They represent the eigenstates for our fictitious non-interacting
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system as a method for us to determine the electron density ρ(r) which allows us to

calculate all needed physical properties of our ground state by the Hohenberg-Kohn

theorem. Surprizingly, the energy level solutions of the Kohn-Sham equations in the local

density approximation give reasonable results to systems that are very inhomogeneous.

This local density function only depends on the electron density at a single point and

contains no information about neighboring points. This local density approximation has

been widely used for variety of systems. LDA is often used to calculate electronic band

structures, even though these systems are far from homogeneous. The local density

approximation (LDA) has several well-known problems. LDA fails to properly describe

van der Waals forces since they depend on the charge density at another point (i.e. non-

local effect). Incorporating non-local effects can be very challenging and computationally

intractable due to the dependence of the charge density at one point to the charge

density at all (or many other) points. Although LDA underestimates band gaps in

semiconductors, it is not technically a failure of the method, since we are applying a

ground state theory to excited states.

The most obvious extension to improve LDA is to include more terms in the

expansion for the density. Allowing the energy to depend on the gradient of the charge

density at a point as well. This type of approximation is know as a generalized gradient

approximation (GGA) and is a “semi-local” method. GGA is known as a semi-local

method since it still depends only on the charge density at a single point and its gradient

at that point, the rate of change of the charge density at that point accounts for some

longer distance effect. This method leads to an exchange correlation functional given as:



22

EGGA
xc

[ρ(r)] =

∫

ǫxc[ρ(r)]ρ(r)dr +

∫

Fxc[ρ(r), |∇ρ(r)|]dr, (1.24)

where ǫxc and Fxc need to be approximated. One popular method for parametriz-

ing these functionals was proposed by Perdew and Wang (PW91) [42]. Perdew, Burke

and Wang simplify this approximation by using a spherical averaging method for the

density (PBE) [41]. Both of these methods are non-empirical and perform well for a

wide variety of systems without any prior knowledge about the specifics of the system.

Not all types of GGA methods are perform better than LDA consistently. Generally the

PBE GGA method contains LDA and retains all of its good features, while providing

an improved description of the relative stability of different phases. GGA softens bonds

correcting for the over binding present in LDA [37, 9].
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Chapter 2

Genetic Algorithm Optimization of Periodic Structures

2.1 Motivation

As increasing attention focuses on structuring materials on the nanometer scale,

self-assembly techniques become more prominent. Whereas extended assemblies of mono-

disperse hard-core spheres form only close-packed lattices, more complex systems con-

taining mixed or fused spheres, layered materials, ellipsoids, rods, or other structures

promise a richer panoply of structural types, particularly when building blocks of differ-

ent sizes are combined [8, 21, 22, 35, 57, 65, 67, 68, 69]. An efficient search algorithm

for more complex periodic structures could therefore provide an important tool in the

design of complex self-assembled materials. Theoretical guidance towards self-assembly

requires a means to efficiently search the very large configuration spaces of extended

systems for thermodynamically preferred structures.

The genetic algorithm was first applied to optimize cluster geometries in 1995 by

Deaven and Ho [7]. The algorithm was demonstrated to be more efficient than simulated

annealing to find the lowest energy structure for a cluster of 60 carbon atoms. A plane

randomly cut the cluster into two pieces. Using the same plane for two parents does not

guarantee that the total number of atoms will be conserved when recombining parts.

To get around this problem Deaven and Ho cut one parent into two. The other parent

has the plane is shifted to increase or decrease the number of atoms in order to keep
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the total number of atoms constant throughout the optimization. The central part to

making the search successful was in the crossover procedure used. The genes used for

this system were the cartesian coordinates of each atom. As mentioned in chapter 1,

some of the important characteristics of the parents must be carried forward for the

genetic algorithm to be useful. In this case, the local bond distances and bond lengths

in each portion are conserved allowing for bonding motifs to be carried forward to the

child structures. In an infinite crystal, the simple scheme of dividing the structure in

half will not work. We provide a representation in which we can effectively divide the

infinite crystal in half to maintain positive characteristics of the original structure.
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Fig. 2.1. Depletion Force Illustration: A binary mixture of hard spheres is depicted with
a “forbidden region” outside the larger spheres, that is inaccessible to the center of the
smaller spheres. As larger spheres approach then the forbidden region for the smaller
spheres is reduced. This increases entropy of the system by adding to the accessible
states for the smaller spheres causing a net attraction between the larger spheres, known
as the depletion force.

2.2 Colloidal Crystals: Maximize Free Volume

Colloidal crystals have a wide interest due vast possible range of application to

creating regular structures on a small scale. Many new types of colloidal particles and

colloidal crystals are being produced. Colloidal crystals can be made from hard spheres,

charged particles, or magnetic particles. In addition particle types are constantly ex-

panding from hard spherical particles to composite sphere particles, “Ice cream cone”

particles, patchy particles and elliptical particles[56, 33, 70]. We begin by considering

a system of colloidal hard spheres. Colloidal hard sphere mixtures suspended in a fluid
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can spontaneously crystallize to form a variety of crystal structures. Entropy is the driv-

ing force for this disorder to order transition. Increased entropy prefers disorder, which

seems against the formation of these colloidal crystals. Examining the case of two species

of spheres as in figure 2.1 it is easy to see how entropy can drive the crystallization of

the colloidal particles. Consider a region outside the larger particles (depicted with the

dashed outline) that is inaccessible to the centers of the smaller particles. As two larger

spheres approach each other these regions overlap, increasing the overall volume available

to the smaller spheres. This increased volume available to the small spheres increases

the entropy of the system since there are more configurations available to the smaller

spheres. The number of smaller spheres entering the forbidden region becomes smaller

increasing the overall entropy and this “depletion force” attracts the larger spheres to-

gether to maximize the available volume to the smaller particles. A system with a single

type of sphere in a fluid packs with the same argument considering the fluid as smaller

particles. Maximizing the free volume in this system is equivalent to maximizing the

packing fraction of the system. We will use the packing fraction as our fitness measure

in examining these colloidal systems as a way to optimize this entropy dominated regime.

2.3 Binary Mixtures and Experimental Progress

A significant amount of effort has been put into experimentally producing new self

assembled crystal structures on a nanometer scale. The simplest method for estimating

the regime of stability for a structure is to compare its packing fraction to the packing

fraction of all other phase separated possibilities. Given in figure 2.2 a plot of the packing

fraction of three different stoichiometries of binary sphere mixtures as a function of their
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size ratio. The region of stability predicted by packing fraction considerations is shown

in grey. Using a more complicated cell-theory method [6], slightly different regions of

stability are predicted.

Fig. 2.2. Graph of the size ratio (
RS
RL

) versus the packing fraction (φcp) for several

stoichiometries of binary hard sphere mixtures[19]. The predicted stability range using

packing fraction comparison (grey) and cell theory [6] (black) shown below.
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Experimentally, there are additional parameters in addition to the size ratio of

the spheres to consider. The volume fraction of each species of sphere mixed into the

solution can have a significant effect on the resulting structures. Despite the additional

challenges, experimentally all of the stoichiometries shown in figure 2.2 have been made.

The AB13 (LS13) and the CsCl version of the AB structure have been made, even

though they are predicted as marginally stable at best [19].

Fig. 2.3. a) Shows the (001) face of the NaCl crystal, The positions of the large

spheres are labeled A, the small spheres occupy the b, while the c sites are vacant. b)

A fluorescense confocal scanning laser microscopy (CSLM) image of the ordered binary

crystal formed with the size ratio α = 0.39. The hexagonal pattern of the small b

fluorescent particles is visible [19].
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In the smallest size ratio the NaCl crystal is predicted to be preferred over phase

separation (
RB
RA

=(0.20-0.44) when using the packing fraction as the figure of merit. Hunt,

Jardine and Bartlett first created the NaCl structure out of PPMA (methyl methacry-

late) particles. Shown in figure 2.3 is a fluroescence confocal scanning laser microscopy

(CSLM) image showing the NaCl crystal structure where the smaller spheres are visible

in the image [19]. Hunt was unable to crystallize the alternative CsCl structure for AB

stoichiometry at a size ratio of
RA
RB

=0.72. In 2001, Schofield created a CsCl crystal su-

perlattice from PPMA particles at a size ratio of
RA
RB

=0.732. The resulting structure is

imaged with a scanning electron microscope and is shown in figure 2.4. This structure

is predicted to be unstable by space filling consideration. Schofield found that the CsCl

structure disappeared over time, indicating a metastable state at this most optimal size

ratio. [49]

Fig. 2.4. Scanning electron microscope images of particles packed in the CsCl structure.
A) Shows a large region of CsCl ordering with square packing of the large spheres, with
smaller spheres at their center. B) The central portion shows the square face of cubes
made of smaller spheres with the larger spheres in the middle of each.
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In addition to the AB stoichiometry, AB2 and AB13 stoichiometries have also

been crystallized in the size ratio (
RA
RB

= 0.58) out of latex particles [14]. The AB2 and

AB13 superlattices are isostructural with AlB2 and NaZn13 and also found naturally

in opals [47, 48]. The AB2 and AB13 have also been found made ot of PbSe and

Fe2O3 nanocrystals with a size ratio 0.55. The AB2 lattice is a hexagonal layer of

smaller spheres with the larger spheres forming a triangular lattices in the center of each

hexagon separating the layers. The AB2 lattice is depicted in figure 2.5 and diffraction

patterns are shown from three different angles [45].

Fig. 2.5. The AB2 crystal structure constructed from PbSe and Fe2O3 nanocrys-

tals. Scanning electron microscope images are shown and their corresponding diffraction

pattern from three different angles [45]
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The AB13 structure has a cubic lattice of larger spheres with a 13 vertex isoc-

ahedron filling the center of the cubic space. This structure is very close to the phase

separated packing fraction of 0.74 in the size ratio
RA
RB

=0.58. The AB13 has also been

crystallized from PbSe and Fe2O3 nanocrystals and the structure along with experi-

mental results are shown in figure 2.6.

Fig. 2.6. The AB13 crystal structure constructed from PbSe and Fe2O3 nanocrys-

tals. Scanning electron microscope images are shown and their corresponding diffraction

pattern from three different angles [45]
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Experimentally all binary nanoparticle superlattices that are predicted to be sta-

ble or metastable have been synthesized. One may increase the number of possible

structures by increasing the number of different particles in a mixture, functionalizing

the particles to have an interaction other than just hard sphere repulsion, by creating

new shapes or by creating clusters of composite nanoparticle molecules. Increasing how

many types of particles in a mixture becomes complicated very quickly due to the rapid

increase in the number of possible configurations. This has limited experimental trials

in this area. While, functionalizing particles and creating new shapes or composite par-

ticles has been an area with much progress. Certain nanoparticles such as PbSe or Au

nanoparticles can be charged positively or negatively by adding surfactant molecules or

by exposure to oleic acid. Various mixtures of PbSe, Au, Fe2O3, and Pd have been

experimentally used in production of a wide variety of nanoparticle superlattices, in

addition to the lattices formed by hard spheres. Figure 2.7 shows a vast array of su-

perlattices formed experimentally by Shevchenko et. al. [51]. Chemical isostructures

are listed where present. As shown in figure 2.7, by adding the additional freedom of

adjusting the charge a much wider variety of crystal structures has been formed.
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Fig. 2.7. TEM images of a wide array of nanocrystal superlattices formed from mixtures

of PbSe, Au,Ag, Fe2O3, and Pd. Scale bars represent 20 nm. a) 13.4 nm γ − Fe2O3

and 5.0 nm Au, b) 7.6 nm PbSe and 5.0 nm Au, c) 6.2 nm PbSe and 3.0 nm Pd, d) 6.7

nm PbSe and 3.0 nm Pd, e) 6.2 nm PbSe and 3.0 nm Pd, f) 5.8 nm PbSe and 3.0 nm

Pd, g) 7.2 nm PbSe and 4.2 nm Ag, h) 6.2 nm PbSe and 3.0 nm Pd, i) 7.2 nm PbSe and

5.0 nm Au, j) 5.8 nm PbSe and 3.0 nm Pd, k) 7.2 nm PbSe and 4.2 nm Ag, and l) 6.2

nm PbSe and 3.0 nm Pd [51]



34

Many other different types of nanoparticles have been created. Particles that

have various shapes or clusters of particles, such as ellipsoids, bumpy spheres, triangular

particles,spherical particles with internal structure, and spherical particle composites

[68, 67, 51, 56, 11]. Depicted in figure 2.8

Fig. 2.8. a) and b) Self-assembled from LaF3 triangular nanoplates (9.0 nm side) and

5.0 nm Au nanoparticles) c) Self-assembled from LaF3 nanoplates [51].

As you can see from 2.8, adding some non-isotropic structure to a particle can

add a variety of different superlattices, even in a two component mixture. Beyond

simple geometric shapes and spherical composite particles, interesting structures may be

possible from more complicated particles such as those shown in figure 2.9.
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Fig. 2.9. a) “Ice-cream cones” resulting from repeated polymerization and phase sep-

aration of different compositions, b) and c)Created with controlled drying in a water-

in-oil emulsion, d) Created trhough silica-deposition on liquid crystal phases, e) Formed

through osmotic stress deformation of hybrid siloxane shells after growing them on

monodisperse oil droplets [56]

Such a wide variety of possible structures is in need of a method to reduce the vast phase

space of possibilities to regimes in which interesting results are more likely to occur. In

the following section we describe a method for searching through the phase space to find

areas of interest for future experiments to explore.
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2.4 Method

As discussed earlier in this chapter genetic algorithms have already been applied

to finite systems such as clusters (C60 and Sin) and point charges on shells [7, 16, 34].

These bounded structures were parameterized with simple lists of atomic coordinates and

then bisected in real space and merged to form progeny. This real-space bisection works

well for clusters, since the importance of short-range interactions implies that contiguous

sub-sets of atoms (or point charges) from each parent will tend to define valleys in the

fitness landscape. These subsets can be merged sensibly to make progeny, with the new

interactions occurring mainly at the interface of the two portions from each parent.

An extended system such as a crystal cannot be effectively bisected in this way,

since the lattice vectors do not define local bond angle or bond length information. It is

unclear how to recombine portions of an infinite system in a sensible way to retain some

of the local character of the original structures. Instead, we must find an alternative

parameterization of the lattice periodicity, one which propagates local structural infor-

mation to the next generation. To this end, we represent the crystal as a multi-headed

“hydra” H of displacement vectors: H ≡ ( ~B1,
~D1,

~B2,
~D2,

~B3,
~D3,

~B4,
~B5, ...

~BN ). The

vectors {B} interconnect nearby particles within a single unit cell and the vectors {D}

connect particles in adjacent unit cells and thereby define the periodicity. N is the

number of particles in the unit cell. In d dimensional space, the hydra has a total of

Nd+ d2 elements; (we take d = 3). The projections to neighboring unit cells are spread

throughout the hydra and always interconnect distinct particles; this allows maximum
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flexibility in representation while maintaining predominately nearest-neighbor displace-

ments. Since the projections {D} to neighboring cells can represent nearest-neighbor

interactions (unlike standard lattice vectors), bisecting the hydra and recombining dis-

parate halves tends to preserve the local motifs of proximal inter-particle separations and

angles; these motifs are the primary determinants of valleys in the fitness surface [62].

We are able to retain some of the local structural characteristics, with the possiblity of

having large overall changes to the structure via propogation of the displacement vec-

tors ( ~D). An example showing how two structures that look very different could yeild a

structure with a nearly square lattice is given in figure (2.11). In the example (Figure

2.11) each parent contains some local bonding, when combined in the appropriate way

leads to a child with a nearly square lattice.

B1

B2

B3

D1

D2

Fig. 2.10. The “hydra” representation of a crystal uses a chain of linked displacement
vectors within and between unit cells to enable an efficient exploration of the energy
surface. Only two dimensions are shown for clarity. The term “hydra” refers to a body

B with D heads extending outwards. The gene sequence is e.g. ( ~B1,
~D1,

~B2,
~D2,

~B3).
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We create a random initial population of structures by concatenating a set of inter-

particle displacements with random directions and an average length centered about a

typical nearest-neighbor separation. This includes the projections {D} to adjacent unit

cells, so that they also define nearest-neighbor bonds. The angle between portions from

each parent is an arbitrary angle depending on the absolute orientation of each parent.

This angle is first optimized with a conjugent gradient local optimization keeping the

relative positions of the portion from each parent fixed. Following the relaxation of

the arbitrary joint angle, any highly unfavorable structures are immediately rejected,

provided they do not fall within a predefined minimum fitness threshold. Generally,

the threshold was set so that structures with a positive binding energy were rejected

before local relaxation. This criterion is fairly restrictive since it is very easy to generate

coordinates with overlapping particles. However, the structure generation is very fast

allowing us to overcome this restriction. The overall algorithm is most efficient when

the input structures to the local relaxation are sufficiently stable that structural motifs

are reasonably well preserved during the local relaxation. Two parents are chosen at

random from this population and mated into a child structure by selecting the first p

vectors from hydra H i and the remaining vectors from Hj and varying the crossover

point p randomly from one mating to another. For example: H child = H i ⋆ Hj =

( ~Bi
1
, ~Di

1
, ~Bi

2
, ~D

j
2,
~B

j
3,
~D

j
3,
~B

j
4) with a crossover after the third vector. Structural diversity

must be maintained from generation to generation to prevent the population from self-

trapping as a set of clones within single local minima (i.e. genetic drift). We evaluate:

Ĥi · Ĥj , (2.1)
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a dot product between two structures (where Ĥ = ~H/| ~H | is a hydra normalized to an

overall length of one).

We then accept a child into the population only if:

• its maximum normalized dot product against the existing population does not

exceed a fixed amount (∼ 0.8) and,

• its absolute fitness difference from all extant structures exceeds a fixed amount (∼

0.5% of the typical energy scale for relaxed structures).

To broaden the search space, 10 to 20% of bonds suffer a small random fluctuation

(mutation) of 5 to 10% (Gaussian standard deviation) in the inter-particle separation

before the complimentary halves are recombined. Since the joint between the pieces from

each parent is arbitrary, we first optimize just the angular orientation of this joint (using

the potential function defined below), moving the two respective halves as rigid units.

Each child is then fully relaxed to the local energy minimum. Children are generated

in batches of 10 to 20 and are inserted into the breeding population if their figures of

merit are within those of the top 20 current active structures and the similarity threshold

defined above is satisfied. The generations proceed, retaining the top 20 structures at

each iteration, until a preset number of satisfactory progeny has been generated (typically

100–200 generations).
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Fig. 2.11. Hydra Mating Illustration: The gene sequence is ( ~B1,
~L1,

~B2,
~B3,

~L2), where

the first portion ( ~B1,
~L1,

~B2) is kept from parent 1 (upper left) and the latter portion

( ~B3,
~L2) is kept from parent 2 (upper right) to create a child that has a closer packed

nearly square lattice (bottom).
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We apply this algorithm first to crystals formed from hard spherical nanoparticles,

since they provide an easily evaluated approximate fitness function. Rather than directly

modelling the entropic contributions from interacting hard-core particles, we instead

target the packing density as the ultimate figure of merit (as discussed earlier) and use

the binding energy from a fictitious two-body hard-core potential (with a long-range

attraction) as a surrogate fitness function to generate densely packed structures. The

potential :

V = ǫ
[

(
σ

r
)m − (

σ

r
)n
]

(2.2)

,with m = 48 and n = 24 ensures a well-defined sphere radius. The particular m and

n chosen has little effect on the final results, so long as the potential has a generic

weak longer-ranged attraction and a core hard enough to allow a precise definition of the

packing fraction. Although we select on this fictitious binding energy, the final optimized

solutions are evaluated based on their packing fraction; we find good agreement with prior

results for known crystalline packings. We have reproduced the packing fraction and size

regimes in which they are preferred as shown in 2.2 in addition to finding close packed

spheres with a packing fraction of 0.74 for supercells up to ten spheres per unit cell.

As demonstrated in the seminal early work of Hachisu and Yoshimura [15], the packing

fraction of hard-sphere colloids is a good first approximation for the relative stability of

competing colloidal phases, particularly if surface charging effects are relatively weak or

highly screened. Of course, packing fraction as a figure of merit does not contain the more

subtle higher-order entropic effects that can distinguish structures of identical packing
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fraction, such as fcc and hcp.[6]. This figure of merit is also highly computationally

efficient, so it is very useful for an initial application of the method [6].

Fig. 2.12. Figure illustrating the overlapping particle problem: Two different combi-
nations of lattice and basis vectors give nearly identical particle coordinates. This can
occur when basis vector(s) are longer than lattice vectors and all pair interactions are
not calculated. The lattice vectors and basis vectors are listed in table 2.1 along with
the other overlapping particle combinations within the span calculated Basis and lat-
tice vectors found for close packed spheres (left), Two paths to an overlapping particle
(right).

Since every unit cell is identical, the most computationally efficient way to evaluate

the potential would seem to be as a sum of pair contributions outward from a central

unit cell, to some cutoff distance. It would be natural to try to construct the set of

atoms that lie within this cutoff by finding the atoms that are associated with every

unit cell in some large M × M × M box of unit cells that surround the central cell,
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L1 L2 L3 B
(-0.48,0.86,-0.32) (0.22,0.47,0.90) (0.30,0.45,-0.90) (-1.29,-0.50,0.58)

Particle 1 Particle 2 Position
L1 − L2 − L3 B+L3 ∼(-0.99,-0.06,-0.31)
L2 + L3 +B L1 − L3 ∼(-0.77,-0.41,0.57)

−L1 + L2 + L3 +B −L3 ∼(-0.30,-0.45,0.90)
−L1 + L3 +B −L2 − L3 ∼(-0.51,-0.92,0.01)

Table 2.1. Lattice vectors and basis vectors for an example pathologic structure which
results in overlapping particles within the 1x1x1 lattice vector span. Four particles have
overlapping particles in this example whose interaction is not calculated in a typical
energy calculation evaluated from a central unit cell outward.

and then retaining all such atoms that fall within the cutoff distance. If M is large

enough, one would expect this construction to find each and every atom that is in or

close to the central unit cell. However, if this method is actually used to evaluate the

potential, then the highly efficient genetic search can find nonphysical structures for

which this construction does not generate every relevant atom, yet these (pathological)

structures evaluate to an energy more favorable than that of any physical structure.

These pathological structures stretch one or more of the B basis vectors to a length

comparable to the cutoff distance itself. Atoms described by such long basis vectors can

“leak out” of the M ×M ×M box, so that the unit cells near the center of the box are

not identically populated. Specifically, these long basis vectors arrange themselves such

that two atoms are placed directly on top of each other, but the M×M×M construction

does not find both such atoms for the central unit cell itself; it finds them only for the

neighboring cells. This then generates a spurious nearest-neighbor coordination number

(greater than twelve) for atoms in the central cell, which corrupts the energy calculation

when the pair potential is evaluated outwards to the surrounding atoms. Specifically, the
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central cell is “missing” one particle, and that particle, which is present in one or more

neighboring cells provides the extra neighbors leading to the problematic coordination

numbers. An example of this situation is shown in figure 2.12 with the resulting lattice

vectors and combinations that give overlapping particles within the M ×M ×M box

is given in table 2.1. Extending the span M of the lattice vectors doesn’t help, since

the basis vectors simply stretch further. We eliminate this pathology by calculating the

energy of interaction between all atom pairs within the M ×M ×M box. This more

thorough sampling prevents the algorithm from avoiding the energetic penalty of placing

atoms on top of each other, so it suppresses the nonphysical structures. This pathology,

which is avoided by summing interactions over all pairs within an entire block of unit

cells, is actually a testament to the thoroughness of the genetic search.

2.5 Results

As a test, we first search for the known dense-packed unary and binary structures

A, AB and AB2 formed from spherical constituents[47, 48, 44, 1, 19]. In all cases,

including artificial supercells up to 10 formula units, the genetic search finds the correct

solution. (For our all of our calculations, including the binary and ternary calculations

to be described below, a similar potential was used, with a constant well depth and an

equilibrium pair separation equal to the sum of the radii of the two relevant spheres).

A competing random search, which uses the same initial structure generation and local

optimization as the genetic search, ranges from 3 to 100 times slower, with the slowest

performance in the larger cells. For five sphere super cells and larger the random search

failed to find the optimal structure. For supercell binary systems the random search
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Fig. 2.13. Preferred self-assembled ternary structures (two views of each).The AB2C2
structure shows a lattice of large spheres that are nearly close packed with the smaller
spheres filling in the gaps. The ABCx family of structures shows the same underlying
structure for A and B spheres with different arrangements of C spheres depending on
the stoichiometry.

failed in all runs. The genetic algorithm is superior, particularly for the more richly

structured systems, since it can retain and exploit preferred structural motifs.
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Fig. 2.14. Packing densities of ternary crystals of spherical nanoparticles. The region

within the thick lines has higher packing efficiency than phase separated competitors.

The continuity of the high packing regions suggests that we have likely found a global

maximum packing fraction. The large region with packing fraction above 0.74 for the

AB2C2 structure is due to the close proximity of the largest spheres to close packing.



47

Fig. 2.15. Comparison of the performance of the genetic algorithm (solid black) versus
a random search (dotted red). The random search fails to find the close packed sphere
optimal case.

We next search in previously unexplored systems such as ternary sphere com-

pounds and fused sphere pairs; (fusion of sphere pairs frustrates phase separation and

could force the formation of novel structures). Specifically, we study ABC, ABC2,

AB2C2, ABC3, ABC4, and fused AB systems, covering the range of relative RB/RA

and RC/RA size ratios from 0.2 to 0.9. Following e.g. Hachisu and Yoshimura [15],

the candidate structures’ packing fractions were compared to the maximal packing frac-

tion possible among the appropriate ratios of known unary and binary sphere crystals

(e.g. FCC ≈ 0.74, NaCl (AB) ≈ 0.793, CsCl (AB) ≈ 0.73, AlB2 (AB2) ≈ 0.78) in the

applicable size regimes for each structure.

In all cases except ABC we find new structures that are higher in packing density

than the competing phase-separated systems. Due to computational constraints, for
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the ternary systems we study a single formula unit per unit cell. The smooth contour

surrounding the high packing efficiency region in Figure 2.14 suggests that we have

likely found a global maximum packing fraction at this stoichiometry. Since structures

of higher packing efficiency could exist with more formula units per cell, the results here

provide a lower bound on the range of (RB/RA, RC/RA) phase space in which novel

crystals could be found.

The ABC2/3/4 stoichiometries form a closely related family of layered tetragonal

or orthorhombic structures. In the archetypal ABC2, the largest (A) spheres contact each

other in a two-dimensional square lattice; the medium (B) sphere then fill the depressions

within this layer while the smallest (C) spheres fill the gaps between the B spheres; (see

Fig. 2.13). For ABC2 the B–C layers have the structure of a Cu-O perovskite plane and

attain a highest packing fraction of 0.78 when Ra = 1.0, Rb = 0.72 and Rb = 0.28. For

comparison, the close-packed packing fraction is 0.74. These optimal sizes yield a simple

commensurability: Ra = Rb+Rc and the A-sub-lattice body diagonal of
√

3 leaves holes

of
√

3−1 ≈ 0.73 to be filled by B spheres. ABC3 and ABC4 differ from ABC2 in having

different arrangements of the C spheres (see Fig. 2.14). The familial similarities suggest

that the overall A-B framework is rather robust and that a real system may contain

a multi-phase mixture of C placements. Alternatively the C particles may occupy the

location of the perovskite apical oxygens in the ABC3 or ABC4 structures, in which case

size ratios close to the optimal ABC2 values, (RA, RB , RC ) = (1.0, 0.72, 0.28), may be

preferred [60]. Similar to the known binary colloidal structures, these ternary systems

tend to build around certain special commensurations between the constituents.
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In contrast, AB2C2 forms distorted triangular-packed layers of large spheres with

the medium and small spheres filling in the gaps. This structure attains an optimal

packing fraction of 0.77 at Rb/Ra = .24 and Rc/Ra = 0.16. The proximity of the A

sub-lattice to close packing explains the wide range over which this structure has a high

packing efficiency (see Fig. 2.14). Both families of ternary structures exhibit layering,

which may facilitate applications that require the isolation of distinct subunits, such

as self-assembled circuits or waveguides [46, 58]. The contour plots are very smooth.

Although each point on this surface results from an independent genetic search, the

packing densities of the resulting optimal structures form a smooth manifold. We begin

with random initial coordinates and have an unbiased search methods. An unbiased

treatment would be unlikely to find many local minima that form a smooth contour as

we see in figure 2.14. Since it is unlikely that the search would always find the same

smooth continuous family of (non-global) local minima, the smoothness of the contours

provides strong heuristic evidence that the algorithm is finding the global optimum.

The ABC2 system shows a second structure with packing efficiency very close to

that of close-packed unary spheres. The smallest (C) spheres form pairs that fill in one

interstitial of the larger A-B lattice. This structure is in the same size range as the more

optimal packing ABC2 structure ( .78). Since the smallest spheres (C) remain together,

the possiblity of fusing colloidal spheres together could aid experimental production of

these structures since the spheres would no longer be able to separate. Similarly for the

robust structure of the A and B spheres in the ABX family of structures, we may aid

crystallization by fusing the larger and medium spheres together (A and B spheres) to

prevent phase separation and to help stabilize the crystallization of structures with A-B
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contacts. This idea of fusing different spheres together as a way to bias the crystallization

towards the desired structure can be extended as a way to access new structures.

Fig. 2.16. Two views of optimal pentagon “molecule” packing with a one pentagon per
unit cell stoichiometry. The pentagons pack in a structure with the pentagons partially
overlapping the layer below in a staggered manner.

The fusion of spheres into nanoparticle “molecules” frustrates phase separation by

forcing an arrangement of particles that is not efficiently packed to remain. The inability

of the spheres to phase separate will force the colloids to find other structures that may

normally not form and aid in avoiding closely competing structures. This mechanism may

provide a means to access novel structures. We examined several molecular geometries

consisting of “molecules” constructed from a single type (size) of sphere. A dimer,
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Fig. 2.17. Two views of optimal pentagon “molecule” packing with two pentagons per
unit cell. The two pentagon structure stacks the pentagons in columns that are offset to
allow the corner of one pentagon to fall into the indentation between layers.

triangular geometry, tetrahedral geometry and pentagonal geometry were all examined.

All of the molecule types with the exception of the pentagons are compatible with close

packed spheres. Pentagons are incompatible with close packed sphere because any plane

of spheres chosen does not contain a pentagonal subunit. The dimer and triangular

geometry are clearly contained within one of these planes. For the tetrahedron two

planes must be considered since the tetrahedron is a non-planar structure. We found close

packing for the dimer, triangle, and the tetrahedron. The dimer and triangular geometry

were examined up to four molecules per unit cell and resulted in close packed spheres.

The tetrahedral geometry can only form a close packed arrangement when grouped

in pairs. One tetrahedron is flipped upside down and placed adjacent to the other
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tetrahedron forming two layers of four spheres. This arrangement is compatible with

close packed spheres. We find close packed spheres from the genetic algorithm output

with two tetrahedra per unit cell. Although regular tetrahedra are unable to completely

tile 3-d space, we can fill the optimal sphere packing arrangement with tetrahedrally

arranged spheres. This is due to the indentation available in the center of each face of

the tetrahedra. Pentagonal molecules constructed from unary spheres were examined up

to a two molecule per unit cell configuration. The resulting structures found are shown

in figure 2.16 and figure 2.17. Using two pentagons per unit cell the best arrangement

found is to stack the pentagons directly on top of each other and stagger these columns

allowing one of the spheres in the pentagon to fill in the indentation available between

layers in the adjacent column. Examining figure 2.17 you can see that in the center

of the four outlined columns of pentagons there is a sphere that is unable to find an

indentation to pack more efficiently. This inefficiency is due to the incompatibility of the

five-fold pentagonal geometry with filling space. This space filling frustration makes the

pentagonal molecule system an interesting system to examine. One interesting property

of the two pentagon structure shown in figure 2.17 is that the pentagons are stacked

directly on top of each other. This is surprizing since this leave a large void in the colum

of pentagons. Due to this frustration, a system of pentagonal molecules may form a

much larger unit cell than we can examine due to computational constraints.

Fusion of spheres spheres of different sizes into molecules creates an additional de-

gree of freedom that allow new structures to become preferred. The fusion of spheres into

nanoparticle “molecules” frustrates phase separation and provides an interesting mech-

anism to induce novel structures. AB stoichiometry spheres show several well-known
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phases: around Rb/Ra ∼ 0.22, 0.41, and 0.73 the system prefers the ZnS, NaCl/NiAs,

and CsCl structures respectively. The range from 0.50 – 0.65 has poor packing efficiency

and therefore hold greatest promise for novel structural accomodations if phase separa-

tion is frustrated by fusion. In this range, we find a new self-assembled (AB)2 structure

wherein the larger spheres form a staggered but impenetrable layer, with the smaller

spheres tilting cross-wise into paired zig-zag wires that run in well-separated parallel

rows. This interesting structure is preferred over a wide range of Rb/Ra (0.5 – 0.65),

assuming a unit cell containing two dimer pairs. These self-assembled zig-zag rows could

either form nanowires themselves (if the small spheres are metallic) or provide a tem-

plate for the arrangement of additional nanorods onto the crystal’s surface. A competing

structure (but with a slightly smaller packing fraction) in which the smaller spheres are

separated is also observed. The nanowire structure could be further favored by adding

a small attractive contact interaction between the smaller spheres.
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Fig. 2.18. Preferred structure for a fused-sphere system. The smaller spheres align
to form self-assembled zig-zag nano-wires (Rb/Ra = .58) (two views). The packing
efficiency is .757 in this two dimer unit cell (AB)2.
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Once these target dense-packed structures are known, one could further encour-

age their formation by chemical functionalization of the particle surfaces to produce

explicit nearest-neighbor interactions that reinforce the preferred contacts. Particles

with functionalized surfaces can yeild a richer set of possible structures such as patchy

colloidal particles in a diamond lattice [70]. The algorithm is straightforward to paral-

lelize and therefore could be extended to handle more computationally intensive figures of

merit[2, 3] such as self-consistent density functional total energy calculations for atomic-

scale crystals or screened electrostatic effects in colloidal crystals with strong surface

charge. Some ionic colloidal crystals have been realized experimentally by Leunissen

et. al. [33]. In addition to the more complicated building blocks constructed of mul-

tiple spheres and elliptical shapes, spheres with very intricate internal structures have

been constructed [11]. Using polymers with different types of interactions, the colloidal

spheres could have very complex interactions. These interactions could be taylored to

prefer some of the structures presented here or some new crystals. As we have seen

with the fused-sphere dimer system examined, restricting the available configurations to

the particles can lead to very interesting structures. The ability to predict promising

parameter regimes for the self assembly of extended periodic systems should aid in the

search for new materials with interesting electrical, optical or chemical properties. We

have demonstrated a technique that can be extended to provide guidance for future ex-

periments reducing the vast search space to target regimes that are most likely to yeild

new materials.
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Chapter 3

New Forms of Silicon

3.1 Triple Bonded Silicon Crystal Lattice

3.1.1 Overview

The importance of silicon is very clear in today’s world. Silicon is the basis for

the information technology industry. Silicon is the basis for computer chips and most

of the semiconductor industry. Silicon is present in nearly all of the electronic devices

in homes throughout the world. Silicon also has a wide variety of applications beyond

technology. Silicon-based products are also used in various types of protective coatings

and sealants used in industrial applications. The health care field uses silicon based

materials to provide lubrication for syringes and tubing for dialysis. Silicone based

products are also used in many household cleaners in addition to providing a waterproof

coating for fabrics.The variety of applications and the importance of each of them shows

how important silicon based materials and technology are to our society. Understanding

silicon bonding, structures and new possibilites that may be plausible is therefore a very

important subject for the possible development of new products.

Double and triple bonds are common in carbon chemistry, but are unusual for

silicon and the heavier elements due to the weak π bonding between these atoms [54, 12,

50]. Stabilizing the Si-Si triple bond has been a subject of recent interest in trying to

expand the availability of novel silicon structures [25]. Recently a molecule containing
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a Si-Si triple bond was synthesized experimentally. This molecule was stabilized using

bulky protective chemical groups to prevent the very reactive silicon triple bond from

breaking[50, 61]. In synthesizing the molecule, a chain of silicon, with bromine filling

all open bonds is used (Shown in figure 3.1). The bromine atoms are removed in the

reaction, leaving the bulky groups on each end of the chain as a protective barrier for

the newly formed silicon triple bond.

Fig. 3.1. An illustration of the reaction process in creation of the silicon triple bond in
a molecule [50] and the resulting molecule.
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Fig. 3.2. Core region of molecule (bottom) constructed by Sekiguchi (α = 137.4◦,
β = (106.4◦ − 114.7◦)[50]. We use this core region as our basic unit to constructing
dilated diamond crystal lattice (top). Atoms that have four sp3 bonds are shaded darker
than the triple bonded atoms.

3.1.2 Structure

Our prime motivation is to investigate Si=Si multiple bonds in the solid state.

We would like to understand the properties of such solids in order to gain insight into the

bonding character of silicon multiple bonds as a gedanken material. Beyond studying

the silicon multiple bonds in a crystal, we propose another method for protecting these
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very reactive bonds. We suggest that by isolating the triple bonds from each other in

a crystal lattice with a large vacuum cavity separating them may serve as a sufficient

barrier to allow construction of a metastable crystal containing silicon triple bonds.

This metastable structure may be further stabilized by synthesis in a rare gas matrix

allowing the inert gas to fill the interstitial regions. The highly reactive triple bonds

would then be protected by being separated from each other and have a non-reactive

barrier between them as well. Synthesis with the very reactive silicon triple bond may be

challenging. Even if the synthesis of a crystal lattice can not be realized experimentally,

we can provide insight into the character of silicon multiple bonds in the solid state by

examining the properties of the crystal as a gedanken material.

We constructed a dilated diamond silicon triple bond crystal from the underlying

motif suggested by the core of the silicon disilyne molecule. We relaxed this crystal

structure and found that it is locally stable. Density function theory calculations using

GGA-PBE pseudopotentials were used to find the local minimum for this lattice[30, 31,

28, 29, 39, 40]. Choosing the core portion of this molecule along with its tetrahedral

bonding we constructed a dilated diamond lattice structure where the fundamental unit

consisted of the triple bond present in the silicon disilyne molecule (See: Figure 3.2).

This molecule was placed in an face-centered-cubic (FCC) lattice. The overall lattice

can be viewed as a diamond lattice with five atoms in each tetrahedra bonding unit (half

of the molecule). A diamond lattice provides us with the tetrahedral bonding that is

compatible with the silicon disilyne core bonding geometry. In addition the most crucial

feature of the diamond lattice is the open lattice structure allowing for a large separation

between the silicon triple bonds. This large separation allows for a spatial isolation of
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Disylene Molecule Dilated Diamond
Silicon Lattice

Triple Bond Length 2.06 Å 2.16 Å, 2.18 Å
Triple Bond Angle 137.4◦ 131.6◦-133.8◦

Tetrahedral Bond Length 2.35Å-2.38Å
Tetrahedral Angles 106.4◦-114.7◦ 99.2◦-125.3◦

Binding Energy -3.96 eV/atom
Diamond Silicon -5.325 eV/atom 2.35 Å

Table 3.1. Comparison of Structural Properties of the Silicon Triple Bond (Disylene)
Molecule and the Dilated Diamond Silicon Lattice relaxed via DFT.

the triple bond from its surroundings without the use of the protective groups used in

the molecule.

Comparing the geometry of the relaxed silicon dilated diamond structure with

the geometry of the experimentally constructed molecule we find consistent results in

bonding geometry (see table: 3.1.2). We see that the triple bonds are bent at an angle

of 137◦ in the molecule. The angle of the triple bond is 180◦ in the analogous carbon

structure. The triple bond is bent due to the weak π bonding between silicon atoms [66].

In all of our DFT calculations final structures are relaxed with an 8x8x8 grid of k-points

with a high energy cutoff (1.3* EnMax), where EnMax is the maximum energy present

in the pseudopotential. For the case of Silicon EnMax=245.3 with a cutoff energy of

318.9 eV. The high cutoff energy guarantees that absolute energies are converged to a

few meV. Final ionic positions are relaxed via a conjugent gradient method to at least a

tolerance of 0.05 eV/angstrom (0.001 eV/angstrom in most cases).

The dilated diamond silicon structure has a binding energy of -3.96 eV/atom

which is 1.36 eV/atom above diamond silicon under zero external pressure. To give a
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scale for comparing this energy difference we can compare to typical energy scales for

carbon. This is a large difference in energy as compared to the ( .4eV/atom- .7eV/atom)

increase in energy to form the C60 (buckyball structure) and similar structures [5] when

comparing to graphite. This energy scale may not be directly applicable to silicon,

but gives a guide for typical energy differences for commonly synthesized structures.

This difference in energy could make this silicon crystal very challenging to construct

experimentally. Nevertheless, analyzing the details of the characteristics of the triple

bond provides useful insight into how silicon multiple bonds are formed from a theoretical

standpoint.
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3.1.3 Electronic Structure

Now we compare and contrast the silicon structure to the analogous carbon struc-

ture. The reason for comparing to the analogous carbon structure is because carbon has

very strong triple bonds and are very well known. We can use the information we know

about carbon to gain some insight into how multiple bonded silicon behaves differently.

We calculated the band structure for our dilated silicon lattice and the analogous carbon

lattice. As mentioned above, the triple bond in carbon forms a 180◦ angle, while the

silicon structure has a bond angle 137◦. The straight triple bond in carbon allows for

a large overlap in the electronic orbitals providing the strong and well behaved carbon

triple bonds. Looking at the band structure for carbon in figure 3.3 we see a cluster

of eight bands (highlighted in red and blue). These highest eight occupied bands are

formed primarily from the electrons responsible for the triple bonds. These bands are

very flat and form a group of bands that is separated by more than five electron volts

from the nearest level. The clustering of these bands indicates that the electrons in triple

bonds stay localized to their bonds indicating a strong triple bond.
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Fig. 3.3. Band structure plots for the silicon dilated diamond crystal lattice and the

analogous carbon lattice.
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Comparing the band structure for the dilated diamond silicon structure to the

carbon band structure, we see the highest eight occupied bands spread out. The energy

gap above and below (relative to the carbon band structure) shrinks significantly. This

indicates much weaker π bonding in the triple bonds for silicon. The expanded energy

range of these bands along with the smaller gap allows the electrons to be less localized

in the triple bond region. In both the carbon and silicon crystal cases we have a band

gap. For the carbon case the band gap is much larger. The dilated diamond silicon

crystal lattice has a band gap of .1 eV while the analogous carbon structure has a band

gap of 5 eV. Since the band gap is normally underestimated using GGA, the actual

band gap in these structures would be expected to be larger. Synthesized versions of

both of these crystals are likely to have a large enough band gap to be insulators.

Next we examine the band decomposition of the charge density for the eight

highest occupied bands. The charge density plots for these bands gives us another way

to examine the character of the triple bonds in each crystal.
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Fig. 3.4. Isosurface plot for the charge density of the dilated diamond silicon structure

and analogous carbon structure bands 17-20.
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The electron density for the highest eight occupied bands are shown in figures

3.4 and 3.5. In examining both charge density plots for the analogous carbon structure

(figures 3.4 and 3.5) we see typical π bonding states for all bands. It is especially easy to

see the π bonding character in the case of bands 15 and 16 in figure 3.4 for carbon, since

that charge density is not split across the unit cell boundary. Comparing to the silicon

version of the structure we see the typical π bonding orbitals when looking at band 18

and 20 in figure 3.4. In the other bands the orbitals do not appear to be similar to the π

bonding in the carbon structure. Even in the case where the orbitals are recognizable as

typical π bonds we can see that the charge is not distributed as uniformly in the silicon

case as it appears in the carbon case. It is clear that the π bonding is much weaker in

the silicon case than the carbon case as expected, contributing to the bent very reactive

triple bond in our silicon crystal.
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Fig. 3.5. Isosurface plot for the charge density of the dilated diamond silicon structure

and analogous carbon structure bands 13-16.
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Spin-polarized calculations were also performed to further examine the character

of the triple bonds in the dilated diamond silicon structure. We would like to examine

the possibility of any partial dangling bond character present in the structure, due to

the weak π bonding. A state with dangling bond character has unpaired electrons which

might lead to a spin-polarized ground state. In both the silicon and carbon case the spin-

polarized calculation showed only very minor structural differences when comparing to

the non-spin-polarized case. Examining the band structure of the analogous carbon

system(figure 3.7) we see the wide gaps between clusters of bands very similar to the

non-spin-polarized calculation. For the silicon case (figure 3.6) we see that the small

band gap present in the non-spin polarized calculation disappears, and the clustering

of the bands becomes slightly less apparent. The spin states of the electrons are found

to be exactly degenerate in energy. This indicates that any weak partial dangling bond

character that may be present does not generate spin polarization in the system.
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Fig. 3.6. Spin-polarized band structure silicon.
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Fig. 3.7. Carbon spin-polarized band structure
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Fig. 3.8. Isolated carbon and silicon dimers: The figure above shows the much stronger

preference for carbon to form multiple bonds than silicon. The lowest four energy levels

are shown (lowest to highest: 1,2,3,4). Level 3 shows the most significant difference

where there is a much stronger overlap in the case of the carbon dimer.

In both the band structure and the band decomposition of the charge density, we

find evidence of the weak π binding in the silicon crystal structure. The overlapping of

bands in the silicon band structure along with few π bonding characteristic orbitals in

the charge density plots suggest a weak triple bond. However, π bonds do exist, and form

bands in a distinct energy range. Comparing to the analogous carbon structure we see
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nice characteristic π bonding orbitals that indicate it is not the structure itself causing

the weak binding. Silicon’s weak bonding even causes the bond to be bent. This bent

very reactive bond needs protection (spatial or physical) to avoid bonding to neighboring

atoms.

3.1.4 Phonons

We examined the phonon spectrum to test the stability of the crystal lattice.

Phonons can be used as a tool to examine stability because they give some information

about the curvature of the energy surface when atoms in the crystal are displaced. If we

consider the position of an atom in a crystal at time t R′(t) and R as the position in an

undistorted crystal, we can define the atomic displacement u(R, t) using the following

relation:

R′(t) = R+ u(R, t). (3.1)

Using the total potential energy as a function of the atomic displacements (V (u)), we

can write the equations of motion as:

Mü(R, t) =
δV (u)

δu(R, t)
(3.2)
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where M is the atomic mass. The potential energy can be expanded as a Taylor series

in terms of the atomic displacements about the minimum energy positions.

V (u) = V0 +
1

2

∑

R,R′

u(R, t) · C(R,R′) · u(R′, t) +O(u3) (3.3)

where

C(R,R′) =
δ2V

δu(r)δu(R′)
(3.4)

The term linear in u is not present due to opposing vanishing forces on the atoms. The

constance C(R,R’) are atomic force constants connected to each other by the symmetry

of the crystal. Since there is translational invariance these constance only depend on

R−R′. Using the harmonic approximation (i.e. ignoring O(u3) and higher) our equations

of motion are:

Mü(R, t) = −
∑

R′

C(R−R
′
) · u(R′

, t) (3.5)

Since we have translational invariance, our solution must be a Bloch wave solution:

u(R, t) =
1√
M
ωeiq·R−iωt (3.6)

Introducing the following discrete Fourier transform:

D(q) =
1

M

∑

R

e−iq·RC(R) (3.7)
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and by substuting in the Bloch relation we obtain the following relationship:

D(q) · ω = ω2ω (3.8)

The matrix defined by equation 3.8 is known as the dynamical matrix. There

are 3N solutions to this eigenvalue problem for each q in the Brillouin zone. These

solutions ωj(q) are the phonon dispersion relations. We used the frozen phonon method

to calculate the phonon frequencies. Each atom is displaced in two locations along

each degree of freedom. The energy of the system with each displacement is calculated.

A dynamical matrix (Hessian matrix) is constructed from these energies, where the

eigenvalues of the matrix are the phonon frequencies and the eigenvectors represent the

atomic displacements of the mode[38].

The phonon frequencies were examined along with the corresponding eigenvectors

at γ point (q=0). We found several low energy phonons. The lowest energy phonon (2.21

meV), is an azimuthal rotation of the triple bond atoms around the axis between their

neighboring sp3 bonded atoms. This is a low energy mode, which is common among

similar buckled bond structures such as quartz [4, 10, 55, 53, 36]. The other low energy

modes mainly involve the triple bond atoms in a vibrational motion that is radially

relative to the axis connecting the sp3 atoms. The phonon modes can be interpreted

as an indication that the triple bonds can be easily bent. This bending of the the very

reactive triple bonds makes it difficult to protect the triple bonded atoms from bonding

to additional neighbors.
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Performing an ab-initio molecular dynamics simulation for the dilated diamond

silicon structure confirms that the motion of the triple bonded silicon atoms is primarily

responsible for the short lifetime of this structure. We performed a molecular dynamics

simulation with a constant temperature of 600K. A high temperature was chosen in

order to gain some realistic insight into how stable the silicon structure might be. We

are restricted to simulation times of 2 ps maximum due to computational constraints.

The increased temperature provides an artificial way to test the activation barrier height

for a longer effective time at a lower temperature. If the crystal is stable for 2 ps at

600 K, it is more likely to be stable for a more realistic time at a lower temperature.

The simulation shows the crystal falls apart after 0.5 ps. Two of the silicon atoms in

neighboring triple bonds eventually bond to each other. The motion of the triple bonded

atoms allows the crystal structure to fall apart as we might guess from looking at the

lowest energy phonon mode. All of the low energy phonon modes involve primarily

motion among the very reactive triple bonded atoms.
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Fig. 3.9. Space-filling model representation for the resulting relaxed silicon lattice

structure with rare gas atoms inserted in the opening to serve as a physical barrier in

addition to the spatial barrier already present in the structure. 1) Six argon atoms in

the interstitial region form and octahedron to fill the space. 2) Eight argon atoms filling

the interstitial region.

We hope to hinder the motion of these triple bonded atoms by filling the vacuum

cavity between triple bonds with rare gas atoms to lengthen the lifetime of the crystal.

This is a method commonly used in chemistry to help stabilize reactive compounds

[13, 24]. The target case is to find the gas that will fill the interstitial region with

a small increase in the overall energy, when comparing to sum of the energy of the

rare gas and the silicon lattice calculated separately. This small increase in energy is

desirable as an indication that the silicon atoms in the triple bonds are feeling some
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repulsion from the inert gases. The inert gases are chosen as a way to provide a non-

interacting physical barrier between silicon triple bonds. We begin by inserting four argon

atoms (3.3 Åbond length in solid argon at zero pressure). The argon was arranged in a

tetrahedral configuration to match the tetrahedral symmetry of the interstitial region.

This configuration was relaxed and we found a small decrease in the total system energy.

We increased to six argon atoms in an octahdral configuration with no increase

in the crystal’s energy. Examining the new phonon frequencies, we find only small

changes in the frequencies. A molecular dynamics simulation confirms that the six argon

atoms are not a sufficient barrier to prevent the crystal structure from falling apart.

By increasing the size of the atom (and number of atoms) inserted into the interstitial

region we hope to increase the physical barrier between the triple bonded silicon atoms

while finding only a small increase in the overall system energy. The six argon atom

case clearly does a better job filling the interstitial region. The octehdron has the same

rotational symmetry as a tetrahedron, but the rings formed by the triple bonds have a

large hole in their center. This hold suggests that adding more atoms may be preferable.

Adding eight argon atoms in an initial cubic configuration to the interstitial region

in the triple bond cage, we also find a small decrease in energy of the system, when

compared to their individual parts. The argon atoms do fill the space more efficiently and

have a symmetry consistent with the tetrahedral symmetry of the interstitial opening.

The eight argon atoms form a cluster with a tetrahedral core with the additional four

atoms close packed in the center of each face of the tetrahedron. The phonon modes

calculated for this configuration again had several low energy modes. Performing a

molecular dynamics simulation of the configuration with eight argon atoms shows the
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does not have an increased lifetime falling apart after .2 ps. The same mechanism is

responsible for the structure falling apart with the triple bond atoms in neighboring

chains bonding to each other. Inserting krypton a slightly larger rare gas atom gives

the same relaxed structure in both cases (6 atoms and 8 atoms). A molecular dynamics

simulation of this case show the same result as argon with the structure falling apart

after 0.3 ps. The next rare gas atom (xenon) is too large and can not fit inside the

opening for the six or eight atom case causing the silicon bonds to break. Applying

a pressure to increase the number of rare gas atoms in the cavity will likely cause the

silicon bonds to break in a similar manner to inserting extra xenon atoms. Overall the

insertion of a single rare gas inside the cavity of the dilated diamond silicon structure

does not improve the stability of the structure.

We demonstrated the first crystal structure which integrates a silicon triple bond.

The motion of the triple bond atoms in the structure due to the soft phonon modes are

responsible for the instability of the structure. Creating a physical barrier in addition to

the spatial barrier built into the lattice by inserting a rare gas in the interstitial opening

is not yet sufficient to stabilize the structure. A physical barrier would have to be present

in the corners of the opening to prevent the atoms in neighboring chains from bonding

together. When inserting a single rare gas into the opening tightly packed isocahedra

form, filling the center of each ring between neighboring interstitial regions. Possibly a

mixture of rare gases may be able to fill the void in the corner of the interstitial region.

Since eight krypton atoms efficiently fill the larger holes in the region, a few smaller

atoms (helium or neon) may be able to fill the void in the corners. We provided a detailed

analysis of this novel form of silicon involving a triple bond in a crystal form. We find
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results consistent with the molecular case. The crystal structure is metastable and will

need to be very cleverly synthesized in order to overcome the reactivity of the triple

bonds. Synthesis in a rare gas mixture of krypton and neon or helium may provide the

environment necessary for synthesis. In addition, knowledge about the bonding character

of silicon triple bonds provides insight into possible compounds that silicon may form.

For example, the bands formed by triple bonds to silicon in alloys are likely to be very

broad and overlap, when compared to a similar carbon structure. Therefore, independet

of success in overcoming synthesis obstacles the dilated diamond silicon structure has a

significant value as a gedanken material.

3.2 Hybrid sp
2 - sp

3 Silicon Structure

Using the same methodology as in the creation of the dilated diamond silicon

structure. We created a crystal lattice containing a silicon double bond out of the

bonding geometry from the core of a recently synthesized molecule. In this molecule

(figure 3.10), the reactive silicon double bond is again protected by bulky protective

groups. In the trisilaallene molecule the central silicon atom with two double bonds has

four noted locations in the molecule. These locations are noted in the figure as A-D.

The experimental population of each location is given as 53%,22%,19%, and 7% at -

50◦,respectively [20]. As the temperature decreases the population of the states of the

central atom become more uniform.



80

Fig. 3.10. Trisilaallene molecule with an sp-hybridized silicon atom in the center. The

sp-hybridized atom has four locations experimentally labelled A-D and are populated at

53%,22%,19%, and 7% at -50◦ C, respectively [20].
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Fig. 3.11. Initial crystal lattice constructed with the core from the trisilaallene molecule

(top and side view)

We used the core region of this molecule consisting of the sp-hybridized atom and

its two neighbors. This unit was stitched into a crystal lattice depicted in figure 3.11.

As in the triple bond case, the initial crystal structure was constructed to create a large

gap between neighboring double bonded atoms. We then relaxed this structure using

DFT and the PAW-PBE pseudopotentials used in the triple bond case. The crystal

structure was found to be unstable. The floppy positioning of the central atom allows
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the crystal to collapse. However, the resulting structure proved to be interesting as a

possible transitional material between diamond and graphitic silicon and may be further

stabilized under negative pressure.

Fig. 3.12. Relaxed structure containing sp3 and sp2 silicon bonds. The structure is

made of staggered ribbons of graphitic silicon with sp3 atoms linking the layers. Shown

are the versions of the structure with ribbons of width 1 and 2 hexagons.
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One-hexagon Gallery Two-hexagon Gallery

Basis Vector 1 (-3.96,0.02,-3.73) (0.00,0.04,-3.74)
Basis Vector 2 (-1.98,1.18,-3.73) (-1.99,1.24,-3.74)
Basis Vector 3 (-1.98,3.39,-3.73) (-1.99,3.48,-3.74)
Basis Vector 4 (-3.96,4.55,-3.73) (0.00,4.57,-3.74)
Basis Vector 5 (0.00,6.80,-3.74)
Basis Vector 6 (-1.99,8.01,-3.74)
Lattice Vector 1 (-3.97,0.00,0.000) (-3.98,0.00,0.00)
Lattice Vector 2 (0.00,5.91,-1.86) (1.99,9.38,-1.87)
Lattice Vector 3 (0.00,0.00,-3.73) (0.00,0.00,-3.74)

Table 3.2. Lattice vectors and basis vectors for the relaxed sp2 − sp3 hybrid “gallery”
structures shown in figure 3.12 (All units are in angstroms).

The resulting locally stable form of silcon, integrates sp2 and sp3 atoms into a

family of structures. This family of silicon structures is composed of ribbons of graphitic

silicon with a wall of sp3 silicon atoms connecting the ribbons in a staggered pattern

(figure 3.12). The binding energy of the single hexagon structure was calculated as 5.01

eV/atom(compared to the initial structure 4.72 eV/atom), 0.315 eV above diamond sil-

icon and 1.05 eV below the dilated diamond silicon structure. The binding energy of

the two and three hexagon cases go down only slightly with binding energies of 4.95

eV/atom and 4.91 eV/atom respectively. Graphitic silicon is predicted to be locally

stable. Graphitic silicon is expected to be further stabilized to an experimentally prac-

tical level at high negative pressure (-69 kbar) [66]. This family of structures provides a

locally stable transitional structure between standard diamond silicon and graphitic sil-

icon. The family of structures can be extended by increasing the width of the graphitic
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ribbon between the sp3 silicon atoms. Increasing the number of hexagons in the rib-

bon should give results more similar to graphitic silicon as the ribbons turn into larger

graphitic silicon sheets.

Fig. 3.13. Energy versus volume curves for diamond silicon at the single hexagon ribbon

structure depicted in figure 3.12

Due to the weak interaction between graphitic silicon layers, we would expect the

direction perpendicular to the hexagons (z-direction) to be the softest direction. Exam-

ining the energy-volume curves, we can see that the single hexagon structure is softer
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than diamond silicon due to the wider shaped curve, because of the weak interaction

between layers.
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Fig. 3.14. Distortion under negative pressure along the z-axis (perpendicular to the

graphitic ribbons) (top). Distortion under uniform pressure along the x-y plane (in the

plane of the graphitic ribbons) (bottom).
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We can see from figure 3.14 that the distortion of the crystal lattice is large along

the z-axis under unixial pressure. Along the x and y direction there is only a small

distortion until we reach higher pressures (1.5 GPa). These results indicate that the

lattice is much easier to stretch along the z-axis, due to the weak inter-layer bonding of

the ribbons. While along the x and y directions the sp2 silicon atoms provide a relatively

stiff framework.

Another possible new form of silicon has been found. The lattice is much easier

to stretch along one direction. This indicates that the structure may be preferred to

diamond silicon under a high uniaxial stress. Previous research predicts that graphitic

silicon may be plausable under negative pressure [66]. The structure presented here

is a natural transition structure that may allow graphitic silicon to be formed. Adding

additional hexagons to each ribbon leads the structure to a more graphitic like structure,

and there is a natural path under which the structures could transition from one to

another. If you break one set of sp3 bonds by cutting the bonds the resulting structure

consists of a distorted ribbon structure with 2n+1 hexagons. Under negative pressure

you would expect the distorted region of the ribbon (previously sp3 region) to straighten

out. In addition to being a plausable metastable structure that could act as a transitional

structure to graphitic silicon. This family of silicon structures that combines sp2 and

sp3 silicon bonds may open the door to new silicon cage-like or ring structures (for

example:where the ribbon portion of the structure is wrapped into a ring). Therefore,

the analysis of this hybrid structure could be very important in analyzing the feasability

of new hybrid sp2-sp3 silicon structures.
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