
Crystal monoids & crystal bases: rewriting systems and

biautomatic structures for plactic monoids of types An,

Bn, Cn, Dn, and G2

Alan J. Cain1,3,4,∗

Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

Robert Gray2,3,4

School of Mathematics, University of East Anglia,

Norwich NR4 7TJ, United Kingdom

António Malheiro3,4

Departamento de Matemática, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

and

Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

Abstract

∗Corresponding author
Email addresses: a.cain@fct.unl.pt (Alan J. Cain), Robert.D.Gray@uea.ac.uk

(Robert Gray), ajm@fct.unl.pt (António Malheiro)
URL: www.fc.up.pt/pessoas/ajcain/ (Alan J. Cain)

1The first author was supported by an Investigador FCT fellowship
(IF/01622/2013/CP1161/CT0001).

2The second author was partially supported by the EPSRC grant EP/N033353/1 ‘Special
inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem’.

3The first and third authors were partially supported by by the Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) through the project
UID/MAT/00297/2013 (Centro de Matemática e Aplicações) and the project PTDC/MHC-

FIL/2583/2014.
4Much of the research leading to this paper was undertaken during visits by the second

author to the Centro de Álgebra da Universidade de Lisboa and the Centro de Matemática
e Aplicações, Universidade Nova de Lisboa. We thank both centres and universities for their
hospitality. These visits were funded by the FCT project PEst-OE/MAT/UI0143/2014 (held
by CAUL) and the FCT exploratory project IF/01622/2013/CP1161/CT0001 (attached to
the first author’s fellowship).

The authors thank Cédric Lecouvey for supplying offprints, Duarte Chambel Ribeiro for
pointing out an error, and Vanda Martins for dealing with administrative matters arising from
the second author’s visits to Lisbon.

The authors also thank two anonymous reviewers for carefully reading the paper and making
many valuable suggestions.

Preprint submitted to Elsevier May 3, 2018

The vertices of any (combinatorial) Kashiwara crystal graph carry a natural
monoid structure given by identifying words labelling vertices that appear in
the same position of isomorphic components of the crystal. Working on a purely
combinatorial and monoid-theoretical level, we prove some foundational results
for these crystal monoids, including the observation that they have decidable
word problem when their weight monoid is a finite rank free abelian group.
The problem of constructing finite complete rewriting systems, and biautomatic
structures, for crystal monoids is then investigated. In the case of Kashiwara
crystals of types An, Bn, Cn, Dn, and G2 (corresponding to the q-analogues of
the Lie algebras of these types) these monoids are precisely the generalised plac-
tic monoids investigated in work of Lecouvey. We construct presentations via
finite complete rewriting systems for all of these types using a unified proof strat-
egy that depends on Kashiwara’s crystal bases and analogies of Young tableaux,
and on Lecouvey’s presentations for these monoids. As corollaries, we deduce
that plactic monoids of these types have finite derivation type and satisfy the
homological finiteness properties left and right FP∞. These rewriting systems
are then applied to show that plactic monoids of these types are biautomatic
and thus have word problem soluble in quadratic time.

Keywords: crystal basis, plactic monoid, tableaux, rewriting system,
automatic monoid
2010 MSC: 17B10, 05E10, 16S15, 16T30, 20M42, 20M05, 20M35, 68Q42,
68Q45, 68R15

1. Introduction

The Plactic monoid is a fundamental algebraic object which captures a nat-
ural monoid structure carried by the set of semistandard Young tableaux. It
arose originally in the work of Schensted [1] on algorithms for finding the max-
imal length of a nondecreasing subsequence of a given word over the ordered
alphabet An = {1 < 2 < . . . < n}. The output of Schensted’s algorithm is a
tableau and, by identifying pairs of words that lead to the same tableau, one
obtains the Plactic monoid Pl(An) of rank n. Following this, Knuth [2] found
a finite set of defining relations for the Plactic monoid. An in-depth systematic
study of the Plactic monoid was then carried out in the work of Schützenberger
[3] and Lascoux and Schützenberger [4]. Since then, the Plactic monoid and
its corresponding semigroup algebra, the Plactic algebra, have found applica-
tions in various aspects of representation theory and algebraic combinatorics.
Schützenberger [5] argues that the Plactic monoid ought to be considered as
one of the fundamental monoids in algebra. He gives several reasons to support
this claim, including the fact that the Plactic monoid was used to give the first
correct proofs of the Littlewood–Richardson rule for products of Schur functions
by Schützenberger himself [3] and independently by Thomas [6, 7]. (For further
details on the Littlewood–Richardson rule and the history of attempts to prove
it, see [8, Section 5.4], [9, Appendix], [10, § 4], and [11, Chapter 7, Appendix 1].)

2

Numerous other applications of the Plactic monoid have since been dis-
covered including a combinatorial description of Kostka–Foulkes polynomials
[4, 12], a noncommutative version of the Demazure character formula, and of
the Schubert polynomials [13, 14]. The Plactic monoid has motivated a wide
range of other interesting work including the discovery of variations on this
monoid like the shifted [15] and hypoplactic monoids [16], Littelmann’s gener-
alization to Plactic algebras for semisimple Lie algebras [17], the investigation
of the Chinese monoid [18], Hilbert series (growth functions) [19], the conju-
gacy problem [20], homogeneous monoids and algebras which include monoids
attached to set-theoretic solutions to Yang–Baxter equations [21, 22, 23, 24],
semigroup identities [25], and the theory of quadratic normalization [26]. Some
structural results for Plactic algebras were obtained in [27, 28]. An excellent
general introduction to the Plactic monoid is given in the article of Lascoux,
Leclerc and Thibon [8, Chapter 5].

One of the most exciting connections which has recently emerged are the
links between the Plactic monoid and Kashiwara’s crystal basis theory. This
subject has its origins in the theory of quantum groups [29]. The notion of
the quantised enveloping algebra, or quantum group, Uq(g) associated with
a symmetrisable Kac–Moody Lie algebra g was discovered independently by
Drinfeld [30] and Jimbo [31] in 1985 while studying solutions of the quantum
Yang–Baxter equations. Kashiwara [32, 33] introduced crystals in order to give
a combinatorial description of modules over Uq(g) when q tends to zero. Crystals
are extremely useful combinatorial tools for studying representations of these
algebras. For example, knowing the crystal of a representation allows one to
deduce tensor product and branching rules involving that representation. Since
its introduction this important theory has been developed and generalised in
multiple directions e.g. to quantum affine algebras, superalgebras and quantum
queer superalgebras; see [34, 35, 36, 37].

The connection with the Plactic monoid comes via the study of crystal bases
of Uq(gln)-modules. These type-An crystals have vertex set corresponding to
all words over the alphabet An = {1 < 2 < . . . < n}, directed edges labelled by
colours from the set I = {1, 2, . . . , n−1} which are determined by the Kashiwara
operators ẽi and f̃i, and weights coming from the free abelian group Z

n given by
word content (see Section 2.2 for full details of this construction). An isomor-
phism between two connected components of the crystal is a weight preserving
bijection which maps edges to edges preserving colours. If one defines a relation
by saying that two words are equivalent if there is an isomorphism between their
respective connected components mapping one vertex to the other then it turns
out that this relation on A∗

n is equal to the Plactic relation mentioned above.
In this way, the Plactic monoid Pl(An) may be defined in terms of crystals of
type An. There are a number of explicit constructions known for crystals of
representations of other quantum algebras. In addition to type An, explicit
descriptions of crystals are known for simple Lie algebras of types Bn, Cn, Dn,
and the exceptional type G2; see [29, 38, 39, 40, 41]. For crystals of each of these
types, aspects of theory have been developed. As part of their description of
crystals of types An, Bn, Cn, and Dn, Kashiwara and Nakashima [39] develop

3

the correct generalisation of semistandard tableaux for classical types via the
notion of admissible column. For all of these types, Lecouvey obtained finite
presentations via Knuth-type relations for the corresponding crystal monoids (as
defined in Section 2.4 below), he also gives Schensted–type insertion algorithms
and establishes a Robinson–Schensted type correspondence in all of these cases
[42, 43, 41]. Bumping and sliding algorithms for Cn-tableaux were also inde-
pendently obtained by Baker [44]. Analogous results for infinite rank quantum
groups were given by Lecouvey in [45].

In addition to shedding new light on the connection between the Plactic
monoid and the representation theory of Lie algebras, this viewpoint also gives
rise to a natural family of monoids arising from crystals, generalising the classical
Plactic monoid. Following Kashiwara [46] a crystal is an edge-coloured directed
graph satisfying a certain simple set of axioms. As we shall see in Section
2.4 below, every abstract combinatorial crystal gives rise to a monoid, in the
same way that the classical Plactic monoid arises from An above. Examples of
Crystal monoids (with weights from a free abelian group) include the classical
Plactic monoid Pl(An), each of the Plactic-type monoids studied by Lecouvey in
[42, 43, 41], and also other important well-studied monoids such as the bicyclic
monoid.

In more detail, as mentioned above, in the general abstract definition of com-
binatorial crystal (see Section 2.2 below for a full definition) the vertices corre-
spond to words over a finite alphabet X, and weight-preserving isomorphisms
between connected components define a congruence ∼ on the free monoid X∗.
The corresponding crystal monoid is then the monoid X∗/∼ obtained by factor-
ing the free monoid by this congruence. This connects the theory of Kashiwara
crystals directly to combinatorial semigroup theory (the study of semigroups
defined by generators and relations), combinatorics on words, and formal lan-
guage theory. For instance, Lecouvey’s results [42, 43, 41] show in particular
that for all classical types, these crystal monoids X∗/∼ are all finitely pre-
sented. Powerful tools exist for studying monoids defined by presentations in
this way, including the theories of (Noetherian and confluent) string rewriting
systems [47] and automata theory, specifically the theory of automatic groups
and monoids [48, 49].

The defining property for automatic groups and monoids is the existence of
a rational set of normal forms (with respect to some finite generating set A)
such that we have, for each generator in A, a finite automaton that recognizes
pairs of normal forms that differ by multiplication by that generator. It is a con-
sequence of the definition that automatic monoids (and in particular automatic
groups) have word problem that is soluble in quadratic time [49, Corollary 3.7].
Automatic groups have attracted a lot of attention over the last 25 years, in
part because of the large number of natural and important classes of groups
that have this property. The class of automatic groups includes: various small
cancellation groups [50], Artin groups of finite and large type [51], braid groups,
and hyperbolic groups in the sense of Gromov [52]. In parallel, the theory of
automatic monoids has been extended and developed over recent years. Classes
of monoids that have been shown to be automatic include divisibility monoids

4

[53], singular Artin monoids of finite type [54], and monoids arising from con-
fluence monadic rewriting systems [55, 56]. Several complexity and decidability
results for automatic monoids are obtained in [57]. Other aspects of the theory
of automatic monoids that have been investigated include connections with the
theory of Dehn functions [58] and complete rewriting systems [59].

In the cases that they are applicable, these tools of string rewriting systems
and automatic structures give rise to algorithms for working with the monoids,
which can in particular be used to study decidability and complexity questions.
These are very natural aspects of theory to develop given the fundamental role
that algorithms play in the theory of Plactic monoids, tableaux and Kashiwara
crystals outlined above. Of course any results about the complexity of algo-
rithms for working with these monoids (algorithms that operate on words) may
be translated to results about algorithms for working with the corresponding
tableaux and crystal graphs (see Section 7 for examples of this). It was pre-
cisely these kinds of ideas that motivated the current authors’ paper [60] on
the classical Plactic monoid. It was pointed out by E. Zelmanov [during his
plenary lecture at the international conference Groups and Semigroups: Inter-
actions and Computations (Lisbon, 25–29 July 2011)] that since Schensted’s
algorithm can be used to show that the Plactic monoid has word problem that
is soluble in quadratic time, it is natural to ask whether Plactic monoids are
automatic. This is a natural question since (as mentioned above) all automatic
monoids have word problem decidable in quadratic time. In [60] we gave an
affirmative answer to this question. We did this by first constructing a finite
complete rewriting system for the Plactic monoid, with respect to the set of
column generators. Beginning with this finite complete rewriting system, we
then showed that for Plactic monoids, finite transducers may be constructed to
perform left (respectively right) multiplication by a generator. We then applied
this result to show that Plactic monoids of arbitrary finite rank are biautomatic
(the strongest form of automaticity for monoids). Other consequences of these
results include the fact that Plactic algebras of finite rank admit finite Gröbner–
Shirshov bases, Plactic monoids of finite rank satisfy the homological finiteness
property FP∞, and the homological finiteness property FDT, and that Plactic
algebras are automaton algebras in the sense of Ufnarovski; see [61] or more
recently [21].

From the point of view of crystals, these results say that string rewriting
systems and transducers can be used to compute efficiently with crystals of
type An. Our interest in this paper is to investigate the extent to which these
tools can be applied to other Kashiwara crystals and crystal monoids. The
results in this article will show that such tools can be successfully developed
for all of the classical types An, Bn, Cn, Dn, and for the exceptional type G2.
As in the case of the classical Plactic monoid the existence of finite complete
rewriting systems implies that these monoids have finite derivation type and
satisfy the homological finiteness properties left and right FP∞, and that the
corresponding semigroup algebras are automaton algebras and all admit finite
Gröbner–Shirshov bases. Also, the existence of biautomatic structures implies
these monoids all have word problem soluble in quadratic time.

5

We now give a brief overview of the main ideas, constructions and results
that shall be obtained in this paper. We begin by using some results from the
theory of crystal bases to construct finite complete rewriting systems presenting
the Plactic monoids of types An, Bn, Cn, Dn, and G2. (We refer the reader
forward to Subsection 5.1 for definitions and terminology on rewriting systems.)
We use column generators and our rewriting system has rules that replace an
adjacent pair of columns by the unique tableau that represents their product.
The set of Young tableaux serves as a cross-section of the plactic monoid of
type An: two words in A∗

n represent the same element of Pl(An) if and only if
they give the same tableau when Schensted’s insertion algorithm (see [1] and [8,
Ch. 5]) is applied to them. The other types of plactic monoids have analogous
(but substantially different) types of tableaux. Any of these tableaux, when
read column-by-column from right to left, yields a word that represents the
corresponding element of the monoid. Thus the columns of a given type are
generators for the plactic monoid of that type. Most products of columns are
not tableaux. Following [43], we call an arbitrary product of columns a tabloid.
The key to constructing our rewriting systems and automatic structures is to use
column generators and rewrite tabloids to tableaux. More formally, we consider
a pair of columns that form a tabloid that is not a tableau. This is the left-hand
side of a rewriting rule. The right-hand side of the corresponding rewriting rule
is the unique tableau that represents the same element of the monoid as this
tabloid. Pictorially, rewriting will look like the following:

→ T ,

where T is the tableau representing the same element as the two shaded columns.
Thus we gradually rewrite a tabloid towards a product of columns where every
adjacent pair of columns forms a tableau; as we shall see, the whole product
then forms a tableau. We prove that this rewriting is terminating by anayzing
what shapes of tableaux can result from a product of two columns. For the
classical types An, Bn, Cn and Dn this is done by applying the generalized
Littlewood–Richardson rule for decomposing tensor products of crystals into
connected components (see [29, Theorem 8.6.6.]). The case of G2 is dealt with
separately using an analysis of products of columns, working with highest-weight
words.

Equipped with our finite complete rewriting systems, we then proceed to
prove that the Plactic monoids of types An, Bn, Cn, Dn, and G2 are biauto-
matic. (We refer the reader forward to Subsection 7 for definitions and termi-
nology on automatic semigroups.) In each case the language of representatives
of the biautomatic structure will be the language of irreducible words of the
rewriting complete system (Σ, T) described above. To obtain a biautomatic
structure, we first investigate what happens when we take a tableau and left
multiply by a single generator. We show how the corresponding word over Σ can

6

be rewritten by T to an irreducible word by a single left-to-right pass through
the word, and that this only changes the length of the word by at most 1, in
all the classical cases An, Bn, Cn and Dn, and by at most 2 in the case of
G2. Analogous results are proved for right multiplication by a single generator,
although the proofs are more involved than the corresponding results for left
multiplication. These results are then used to build biautomatic structures for
the plactic monoids of each type. The strategy is to show that the same kind
of rewriting occurs when a normal form word, not necessarily of highest weight,
is left- or right-multiplied by a generator, and thus that such rewriting can be
carried out by a two-tape automaton.

Note that we recover in this paper a new proof of our previous results that
classical Plactic monoids (of type An) can be presented by finite complete rewrit-
ing systems and are biautomatic [60]. While writing this paper, we came across
the work of Hage [62], who independently constructed a finite complete rewriting
system for Pl(Cn). Hage’s approach differs from ours in making use of Lecou-
vey’s insertion algorithms, whereas we use Lecouvey’s presentations. (Hage does
not consider biautomaticity or its consequences.) We should also note that an
alternative approach to obtaining complete rewriting systems for the Plactic
monoids considered in this paper is to apply the results of Littelmann [17, The-
orem B, § 8] which he obtained using his path model. In contrast, as far as the
authors are aware, the results we obtain here are the first to appear in the liter-
ature on biautomatic structures and complexity of the word problem for plactic
monoids of types An, Bn, Cn, Dn, and G2. It is important to note that there
exist finitely presented monoids which are defined by finite complete rewriting
systems but which are not automatic. Indeed, there even exist multihomoge-
neous finitely presented monoids with this property; see [63]. Thus our results
on biautomaticity are in no sense immediate consequences of the existence of
complete rewriting systems defining these monoids. Indeed, in order to obtain
our results on automatic structures, and the corollaries on the complexity of the
word problem, we shall need to prove results which give detailed information
about how products of columns are rewritten to normal form using the finite
complete rewriting systems.

2. Crystals and plactic monoids

In this section we will formulate the main concepts that are used throughout
the paper. We will present Kashiwara’s characterization of plactic monoids in
terms of crystal graphs. We first outline a pure combinatorial abstract theory
of crystal monoids, that avoids delving into the deep theory underlying crystal
graphs, thus providing a general framework for all the different types of plactic
monoids (An Bn, Cn, Dn and G2). This general theory gives us an abstract ver-
sion of known results from [39, 41, 46] for the different types of plactic monoids.
For the underlying theory of crystal bases we refer the reader to [29].

7

2.1. Notation

We denote the empty word (over any alphabet) by ε. For an alphabet X,
we denote by X∗ the set of all words over X including the empty word ε. When
X is a generating set for a monoid M , every element of X∗ can be interpreted
either as a word or as an element of M . For words u, v ∈ X∗, we write u = v
to indicate that u and v are equal as words and u =X v to denote that u and v
represent the same element of the monoid M . The length of u ∈ X∗ is denoted
|u|, and, for any x ∈ X, the number of occurences of the symbol x in u is
denoted |u|x.

2.2. Definition of crystal graph

For the purposes of this paper, a directed graph with labels from I is a set
V of vertices equipped with a set E of triples drawn from V × I × V . A triple
(v, i, v′) ∈ E is interpreted as an edge from the vertex v to a vertex v′ with label
i. A path starting at u ∈ V and ending at w ∈ V is a (possibly empty) sequence
of edges (u, i0, v1), (v1, i1, v2), . . . , (vn, in, w); note that all paths are directed.
Notice that vertices and edges may appear multiple times on a path.

Definition 2.1. A crystal basis is a directed labelled graph with vertex set X
and label set I satisfying the conditions:

• For all x ∈ X and i ∈ I, there is at most one edge starting at x labelled
by i and at most one edge ending at x labelled by i.

• For all i ∈ I, there is no infinite path made up of edges labelled by i.

Notice that the second condition implies that a crystal basis cannot contain
an i-labelled directed circuit.

(Strictly speaking, such a graph is a graphical description of the representation-
theoretic notion of a crystal basis; see [29, § 4.2] for details. More precisely, every
(integrable highest weight) representation of a symmetrizable Kac–Moody alge-
bra has a crystal associated to it. However, not every crystal arises from such a
representation. Indeed, there has been research on finding a simple set of local
axioms that characterize those crystals that arise from such representations; see
[64, 65, 66]. In fact, the two conditions above coincide with axioms (P1) and
(P2) in the characterization of the crystal graphs of integrable highest-weight
modules for simply-laced quantum Kac–Moody algebras in [64].)

For each i ∈ I, define partial maps ẽi and f̃i called the Kashiwara operators
on the set X as follows: for each edge (a, i, b), which we will represent graphically
as

a bi

,

define f̃i(a) = b and ẽi(b) = a.
Using the definition of ẽi and f̃i, we can build an extended directed labelled

graph:

8

Definition 2.2. A crystal graph arising from a given crystal basis with vertex
set X and label set I, is a directed labelled graph, denoted ΓX , with vertex
set X∗, the free monoid on X. The edges are defined by partially extending
the operators ẽi and f̃i to X∗, as follows: for all u, v ∈ X∗ and i ∈ I, define
inductively

ẽi(uv) =

{
u ẽi(v) if ϕi(u) < ǫi(v)

ẽi(u) v if ϕi(u) ≥ ǫi(v)
; (2.1)

f̃i(uv) =

{
f̃i(u) v if ϕi(u) > ǫi(v)

u f̃i(v) if ϕi(u) ≤ ǫi(v)
, (2.2)

where ǫi and ϕi are auxiliary maps on X∗ defined as follows: for w ∈ X∗, let

ǫi(w) = max
{
k ∈ N ∪ {0} : ẽi · · · ẽi︸ ︷︷ ︸

k times

(w) is defined
}

;

ϕi(w) = max
{
k ∈ N ∪ {0} : f̃i · · · f̃i︸ ︷︷ ︸

k times

(w) is defined
}
.

This extension of the operators ẽi and f̃i to words on X∗ replicates the
properties of the action of the Kashiwara operators as in [39, Theorem 1.1.4].

For each i ∈ I, define a map ρi : X∗ → {−p+q : p, q ∈ N ∪ {0} }. (Note
that the symbols + and − here, and in the following discussion, are simply
letters in the alphabet {+,−}.) For a word w ∈ X∗, define ρi(w) to be the
word obtained by replacing each symbol x of w by −ǫi(x)+ϕi(x), then iteratively
deleting subwords +− until a word of the form −p+q remains. Note further
that each symbol + or − in the computed word ρi(w) is a symbol that ‘survives’
from the original replacement of symbols x by −ǫi(x)+ϕi(x). Furthermore, each
symbol + or − in ρi(w) is contributed by a uniquely determined symbol of w
(since two subwords +− cannot partially overlap with each other).

The following result shows the connection between ρi and the action of the
operators ẽi and f̃i.

For classical Lie algebras the properties on operators given in the following
result may be found in [39]. The generalisation below is proved in a similar way,
directly from the definitions above, so we omit the proof.

Proposition 2.3. Let w = w1 · · ·wk, where wh ∈ X, and i ∈ I. Then

1. (a) ẽi(w) is defined if and only if ρi(w) contains at least one symbol −.
(b) If ẽi(w) is defined, ẽi(w) = w1 · · ·wj−1ẽi(wj)wj+1 · · ·wk, where wj

is the symbol that contributed the rightmost symbol − in ρi(w).
(c) If ẽi(w) is defined, w = f̃i(ẽi(w)).

2. (a) f̃i(w) is defined if and only if ρi(w) contains at least one symbol +.
(b) If f̃i(w) is defined, f̃i(w) = w1 · · ·wj−1f̃i(wj)wj+1 · · ·wk, where wj

is the symbol that contributed the leftmost symbol + in ρi(w).
(c) If f̃i(w) is defined, w = ẽi(f̃i(w)).

3. ρi(w) = −ǫi(w)+ϕi(w).

9

Furthermore, the actions of the operators ẽi and f̃i are well-defined.

The previous proposition gives the following practical method, first described
in [39], for computing the actions of ẽi and f̃i on a word w ∈ X∗: Com-
pute ρi(w) by writing down the word obtained by replacing each symbol x by
−ǫi(x)+ϕi(x) and then deleting subwords +−. The resulting word will have the
form −ǫi(w)+ϕi(w). If ǫi(w) = 0, then ẽi(w) is undefined. If ǫi(w) > 0 then we
obtain ẽi(w) by taking the symbol x that contributed the rightmost − of ρi(w)
and changing it to ẽi(x). If ϕi(w) = 0, then f̃i(w) is undefined. If ϕi(w) > 0
the we obtain fi(w) by taking the symbol x that contributed the leftmost + of
ρi(w) and changing it to f̃i(x).

Notice in particular that if, during the deletion of subwords +−, the word
that we obtain begins with −, then this symbol − will remain in place through-
out all subsequent deletions, and so ǫi(w) > 0, and so ẽi(w) is defined. This
observation is important, and we will use it repeatedly throughout the paper.
(There is a dual observation for words ending in + implying that f̃i(w) is de-
fined, but we will not need this.)

In the crystal graph, we have an edge from w to w′ labelled by i if and only
if w′ = f̃i(w) (or, equivalently, w = ẽi(w

′)). Note that ǫi(u) is the length of the
longest path consisting of edges labelled by i that ends at u. Dually, ϕi(u) is
the length of the longest path consisting of edges labelled by i that starts at u.

2.3. Weights

In our abstract combinatorial setting we have the following definition:

Definition 2.4. A weight function is a homomorphism wt : X∗ → P , where P
is some monoid (called the weight monoid) such that there is a partial order ≤
on P (not necessarily compatible with multiplication in P) with the following
property: for all u ∈ X∗ and i ∈ I,

• if ẽi(u) is defined, then wt(u) < wt
(
ẽi(u)

)
; and

• if f̃i(u) is defined, then wt
(
f̃i(u)

)
< u.

Let u, v ∈ X∗. The word u has higher weight than the word v (or, equiv-
alently, the word v has lower weight than the word u) if wt(v) < wt(u). Thus
the operators ẽi, when defined, always yield a word of higher weight, and the
operators f̃i, when defined, always yield a word of lower weight.

The abstract definitions of weight monoid and weight functions given here
are more general than in the literature. In the context of Lie algebras represen-
tations the weight is a linear map from the vertices of the crystal components
(which is identified with the set of words from X∗) to the weight lattice generated
by the fundamental weights Λ1, . . . ,Λn. This weight lattice can be identified
(up to isomorphism) with Z

n. For the root system of type An, the partial order
on Z

n is the so-called dominance order on the set of partitions (see [67, § I.1]).
In the remainder of the paper, we will not need to explicitly compare orders:

we simply use the fact that ẽi, when defined, raise weight, and f̃i, when defined,
lowers weight.

10

In the crystal graph ΓX , a vertex that has maximal weight within a particular
component is called a highest-weight vertex. (In the specific crystal graphs we
consider later, it will turn out that each component contains a unique highest-
weight vertex.)

Lemma 2.5 ([41, Lemma 5.3.1]). For any words w1, w2 ∈ X∗, the word w1w2

is a vertex of highest weight of a connected component of the crystal graph ΓX

if and only if:

1. w1 is a vertex of highest weight (that is, ǫi(w1) = 0);

2. for all i = 1, . . . , n we have ǫi(w2) ≤ ϕi(w1) .

2.4. Relations from crystal graphs

For any word w ∈ X∗, let B(w) be the connected component of the crystal
graph containing the vertex w. A crystal isomorphism is a bijection ϕ between
two connected components B(w) and B(w′) that maps directed edges labelled
by i to directed edges labelled by i (in the sense that if (x, i, y) is an edge in
B(w), then (ϕ(x), i, ϕ(y)) is an edge in B(w′)), sends non-edges to non-edges,
and preserves weights (in the sense that wt(u) = wt(ϕ(u)) for any u ∈ B(w)).
If there is a crystal isomorphism between B(w) and B(w′), we say that B(w)
and B(w′) are isomorphic.

We say u ∈ B(w) and v ∈ B(w′) lie in the same position of isomorphic
components B(w) and B(w′) if there is an isomorphism between B(w) and
B(w′) that maps u to v; this is denoted by u ∼ v. This general abstract
setting is sufficient to obtain a congruence. For classical crystals this result is
well-known (see [41] for a survey).

Proposition 2.6. The relation ∼ is a congruence on the free monoid X∗.

Definition 2.7. Let X be an alphabet forming the vertex set of a crystal basis,
wt : X∗ → P a weight function, and ∼ the congruence on X∗ that relates two
words if they lie in the same position of isomorphic components of the crystal
graph ΓX . Then we call X∗/∼ the crystal monoid determined by the crystal
ΓX with weight function wt and weight monoid P .

Note that if multiplication in P is algorithmically computable, then the
weights of words in X∗ are computable. If the crystal basis is finite (and so
the crystal monoid is finitely generated), then it is possible to compute the
connected component of any word in X∗. If both these conditions hold, then
we can decide whether two components are isomorphic, and thus check whether
two words are ∼-related. In short, we have the following:

Proposition 2.8. If a crystal monoid arises from a finite crystal basis, and has
a weight monoid in which multiplication is computable, then it has soluble word
problem.

In particular, when the weight monoid P is (isomorphic to) a free abelian
group of finite rank (which it will be in all the specific examples we consider

11

below) then Proposition 2.8 applies, and the crystal monoid will have soluble
word problem. Notice, however, that this result says nothing about the com-
plexity of the word problem. We will see that Pl(An) and the plactic monoids
of other types, which we will define shortly, are all biautomatic and thus have
word problem soluble in quadratic time [49, Corollary 3.7].

2.5. Crystal graphs of types An, Bn, Cn, Dn and G2

The plactic monoid (of type An) parameterizes representations of the q-
analogue of the universal enveloping algebra of the semisimple Lie algebras of
type An. There are analogous plactic monoids of types Bn, Cn, Dn, and G2,
parameterizing representations of the q-analogues of the universal enveloping
algebras of the semisimple Lie algebras of the corresponding types.

In our combinatorial abstract framework, a crystal graph is constructed from
a crystal basis following the rules given by the action of classical Kashiwara op-
erators. In turn, for all the classical types, this action is given by the simple
tensor rule, and thus the crystal graph within this combinatorial abstract set-
ting corresponds to the classical crystal graph arising as tensor powers of the
corresponding basis.

If we fix the crystal basis of type An to be the irreducible root system of
type An of the representation of the q-analogue of the classical Lie Algebra
of that type, and weight function as in [41, § 3.3], we will obtain the plactic
monoid of type An. All other plactic monoid types arise as crystal monoids in
the same way, but starting from different crystal bases and definitions of the
weight function.

For all the classical types, the weight functions arise from the root systems
of the corresponding Lie algebras as detailed in [41, § 3.3].

2.5.1. Type An

For type An we consider the ordered alphabet

An = {1 < 2 < . . . < n}.

The crystal basis for type An is:

1 2 . . . n−1 n1 2 n−2 n−1
(2.3)

This graph has vertex set An and labels from the set {1, . . . , n−1}. The resulting
graph is the crystal graph of type An, denoted ΓAn

, and the monoid that arises
is the plactic monoid of type An, denoted Pl(An).

2.5.2. Type Bn

For type Bn we consider the ordered alphabet

Bn =
{

1 < 2 < . . . < n < 0 < n < . . . < 2 < 1
}
.

Note that 0 is greater than n. The crystal basis for type Bn is:

1 2 . . . n 0 n . . . 2 11 2 n−1 n n n−1 2 1

12

The resulting graph is the crystal graph of type Bn, denoted ΓBn
, and the monoid

that arises is the plactic monoid of type Bn, denoted Pl(Bn).

2.5.3. Type Cn

For type Cn we consider the ordered alphabet

Cn =
{

1 < 2 < . . . < n < n < n− 1 < . . . < 1
}
.

The crystal basis for type Cn is:

1 2 . . . n n . . . 2 11 2 n−1 n n−1 2 1

The resulting graph is the crystal graph of type Cn, denoted ΓCn
, and the monoid

that arises is the plactic monoid of type Cn, denoted Pl(Cn).

2.5.4. Type Dn

For type Dn we consider the ordered alphabet

Dn =
{

1 < 2 < . . . < n− 1 <
n
n

< n− 1 < . . . < 2 < 1
}

;

note that n and n are incomparable and that n − 1 < n < n− 1 and n − 1 <
n < n− 1. The crystal basis for type Dn is:

1 2 . . . n− 1

n

n

n− 1 . . . 2 11 2 n−2

n−1

n

n

n−1

n−2 2 1

The resulting graph is the crystal graph of type Dn, denoted ΓDn
, and the

monoid that arises is the plactic monoid of type Dn, denoted Pl(Dn).

2.5.5. Type G2

For type G2 we consider the ordered alphabet

G2 =
{

1 < 2 < 3 < 0 < 3 < 2 < 1
}
.

The crystal basis for type G2 is:

1 2 3 0 3 2 11 2 1 1 2 1 (2.4)

The resulting graph is the crystal graph of type G2, denoted ΓG2
, and the monoid

that arises is the plactic monoid of type G2, denoted Pl(G2).

13

2.6. Properties of crystal graphs of types An, Bn, Cn, Dn and G2

Let X be one of the types An, Bn, Cn, Dn or G2, and let X be the corre-
sponding alphabet An, Bn, Cn, Dn or G2. As described above, we have a crystal
graph ΓX and a plactic monoid Pl(X) of each of the given types. For clarity
and brevity in explanations, define, for all x, y ∈ X with x ≤ y,

X [x, y] = { z ∈ X : x ≤ z ≤ y }.

Recall that the Kashiwara operators ẽi and f̃i respectively raise and lower
weights whenever they are defined.

An important and non-obvious fact for us will be that each connected com-
ponent of a crystal graph ΓX contains a unique highest-weight vertex [41,
§ 3.1]. (It is not true for crystal monoids in general that the connected com-
ponents of the crystal have unique highest-weight vertices.) For any word
w ∈ X ∗, denote by w0 the unique highest-weight vertex in B(w). Thus there
exist i1, . . . , ir ∈ {1, . . . , n} such that w0 = ẽi1 . . . ẽir (w), or, equivalently
w = f̃ir . . . f̃i1(w0).

Notice that for ΓX , we have u ∼ v if and only if u0 ∼ v0 and there exist
i1, . . . , ir ∈ {1, . . . , n} such that

u = f̃ir · · · f̃i1(u0) and v = f̃ir · · · f̃i1(v0).

3. Tableaux and tabloids

In this section we give the necessary background on tableaux theory for
plactic monoids of types An, Bn, Cn, Dn, and G2, that will be frequently used
in the sequel; see [39] and [41] for further details.

3.1. Young tableaux and columns

A Young diagram Y (of shape λ) associated to a partition λ = (λ1, . . . , λk)
is a finite array of left-justified boxes whose i-th row has length λi. A Young
tableau T of shape λ is a filling of a Young diagram by symbols from the fixed
alphabet such that (i) the entries of any column strictly increase from top to
bottom, and (ii) the entries along each row weakly increase from left to right.

A column (of type An) is a tableau of column shape λ = (1, . . . , 1):

x1

x2

xk

A column of type Bn, Cn and Dn is, respectively, a Young diagram of column

14

shape of the form

β+

β0

β−

,

γ+

γ−

, and

δ+

δ

δ−

,

where

• β+ is filled with symbols from Bn[1, n], and is strictly increasing from top
to bottom;

• β0 is filled with symbols 0;

• β− is filled with symbols from Bn[n, 1], and is strictly increasing from top
to bottom;

• γ+ is filled with symbols from Cn[1, n], and is strictly increasing from top
to bottom;

• γ− is filled with symbols from Cn[n, 1], and is strictly increasing from top
to bottom;

• δ+ is filled with symbols from Dn[1, n− 1], and is strictly increasing from
top to bottom;

• δ is filled with symbols n and n, with different symbols in vertically adja-
cent cells.

• δ− is filled with symbols from Dn[n− 1, 1], and is strictly increasing from
top to bottom.

A column of type G2 is a Young tableau with entries from G2, of column shape,
of one of the following three forms:

a ,
a

b
with a < b, or

0

0
.

The height h(β) of a column β (of any type) is the number of boxes in the
column. The reading w(β) of a column is the word obtained by reading the
sequence of symbols in the boxes from top to bottom. We identify a column
with its reading. A word is a column word if it is the reading of a (necessarily
unique) column.

15

3.1.1. Admissible columns

Let β be a column (of any type) and let z ≤ n. We denote by Nβ(z) the
number of symbols x in β such that x ≤ z or z ≤ x.

A column β is admissible if each of the following conditions is satisfied:

1. Nβ(z) ≤ z, for any z ≤ n;

2. if β is of type Bn and 0 is in β, then h(β) ≤ n;

3. if β =
a

b
is of type G2 and height 2, then

{
dist(a, b) ≤ 2 for a ∈ {1, 0},

dist(a, b) ≤ 3 otherwise,

where dist(a, b) is the number of arrows between a and b in the crystal
basis (2.4) for G2.

Note that all columns of type An are admissible.
The following is a complete list of all twenty-one admissible columns of type

G2: {
1 , 2 , 3 , 0 , 3 , 2 , 1 ,

1

2
,

1

3
,

2

3
,

2

0
,

2

3
,

0

3
,

3

3
,

3

0
,

3

2
,

0

2
,

3

2
,

3

1
,

2

1
,

0

0

}
.

(3.1)

An admissible column word is a word that is the reading of a (necessarily
unique) admissible column.

3.1.2. The functions ℓ and r

We say that a column β contains a pair (z, z) if both symbols z and z appear
in β, or if β is of type Bn and 0 appears in β. In the following paragraphs we
define partial functions ℓ and r on the set of columns of some type. The resulting
columns ℓ(β) and r(β), when defined, do not contain pairs (z, z). For simplicity
and uniformity, for columns of type An we define r(β) = ℓ(β) = β.

Let β be a column of type Bn or Cn and let Iβ = {zs < . . . < zr+1 < zr =
0, . . . , z1 = 0} be the set of symbols z for which β contains the pair (z, z). We
say that a column β of type Bn or Cn can be split if there exists a set Jβ of
symbols ts < · · · < t1 such that

• t1 is maximal such that t1 < z1 and the symbols t1 and t1 do not appear
in β;

• for i = 2, . . . , s, the symbol ti is maximal such that ti < min{ti−1, zi},
ti 6∈ β, and ti 6∈ β.

If β can be split, r(β) is obtained from β by replacing zi with ti for each i,
and ℓ(β) is obtained from β by replacing zi with ti for each i, always reordering
to obtain a column if necessary (c.f. [43, Example 3.1.7]).

16

The operators r and ℓ defined for columns of type Bn can be extended to
columns of type Dn as follows: for any Dn column β, let β0 be the column
obtained by replacing all subwords nn by 00 in β. Note that β0 is always a Bn

column. Let r(β) and ℓ(β) be r(β0) and ℓ(β0) (as defined for type Bn columns).
Observe that if β is a type Dn column that does not contain a subword nn, it
is also a Bn column and β0 = β and so the definitions of r(β) and ℓ(β) coincide
regardless of whether β is viewed as a column of type Bn or Dn.

A column β of type Bn, Cn or Dn is admissible if and only if both r(β) and
ℓ(β) are defined [41, Proposition 4.3.3] (see also [68] for type Cn). This fact will
be important in the definition of tableaux in the following subsection.

3.2. Tabloids and tableaux

Let X be one of the types An, Bn, Cn, Dn or G2. A tabloid of type X is a
sequence of admissible columns βr, . . . , β1 of type X, which we write in a planar
form by writing each column vertically beside each other in the order βr, . . . , β1

from left to right.

For brevity, we also use the inline form βr β1 to denote the tableau with

columns βr, . . . , β1. The reading w(T) of a tabloid T = βr β1 is the word
w(β1) · · ·w(βr). Note that the columns of the tabloid are read from rightmost
to leftmost, and each column is read from top to bottom.

Note that different tabloids may have the same reading.
For any word u ∈ X ∗ there is at least one tabloid whose reading is u: if

u = u1 · · ·uk, where ui ∈ X , then the tabloid uk u1 has reading u. (Notice

that each column ui (of height 1) is admissible.)
We now define a relation � on the sets of admissible columns of each type.

For types An, Bn, Cn, and Dn, the definition proceeds as follows: for two
admissible columns β1 and β2, define

• β2 ≤ β1 if h(β2) ≥ h(β1) and the rows of the tabloid β2 β1 are weakly
increasing from left to right;

• β2 � β1 if r(β2) ≤ ℓ(β1).

Note that for any admissible column β, we have ℓ(β) ≤ β ≤ r(β); hence β2 � β1

implies β2 ≤ β1.
For type G2, the definition is more complicated: for columns β1 and β2,

17

define

a � b ⇐⇒ (a ≤ b) ∧
(
(a, b) 6= (0, 0)

)

a

b

� c ⇐⇒ (a ≤ c) ∧
(
(a, c) 6= (0, 0)

)

a

b
�

c

d
⇐⇒ (a ≤ c) ∧

(
(a, c) 6= (0, 0)

)

∧ (b ≤ d) ∧
(
(b, d) 6= (0, 0)

)

∧
(
a ∈ {2, 3, 0} =⇒ dist(a, d) ≥ 3

)

∧
(
a = 3 =⇒ dist(a, d) ≥ 2

)

Note that the relation � is transitive and antisymmetric, but is not reflexive
in general.

Let β1, β2 be columns of type Dn such that h(β2) ≥ h(β1). We say that the

tabloid β2 β1 contains an a-configuration, with a /∈ {n, n}, if:

• a = xp, n = xr are symbols of β2 and a = ys, n = yq symbols of β1; or

• a = xp, n = xr are symbols of β2 and a = ys, n = yq symbols of β1

where the integers p, q, r, s are such that p ≤ q < r ≤ s. Denote by µ(a) the
integer defined by µ(a) = s− p.

A tableau of type An, Bn, Cn or G2 is a tabloid βr β1 such that βi+1 � βi

for all i = 1, . . . , r − 1. A tableau of type Dn is a tabloid βr β1 such that

βi+1 � βi and the tabloid r(βi+1)ℓ(βi) does not contain an a-configuration with
µ(a) = n− a, for all i = 1, . . . , r − 1.

Lemma 3.1. Let T = βm β1 be a tabloid of type An, Bn, Cn, Dn, and G2.
Let i ∈ {1, . . . , n}. Let uj = w(βj) for j ∈ 1, . . . ,m, so that w(T) = u1 · · ·um.

Suppose v = f̃i(w(T)) (respectively, v = ẽi(w(T))) is defined. Factor v as
v = v1 · · · vm, where |vj | = |uj |. Then:

1. There exists some k ∈ {1, . . . ,m} such that vj = uj for j 6= k and vk =

f̃i(uk) (respectively, vk = ẽi(uk)).

2. Each word vj is an admissible column word, and so v is the reading of the

tabloid γm γ1 .

3. For all j ∈ {1, . . . ,m− 1}, we have βj+1 � βj if and only if γj+1 � γj. In

particular, T is a tableau if and only if γm γ1 is a tableau.

Proof. See [39] for types An, Bn, Cn, and Dn; see [41] for type G2.

In light of the preceding lemma, we can think of applying the operators ẽi
and f̃i to a tabloid T : using the notation of the lemma, f̃i(T) (respectively,

ẽi(T)), when defined, is the tabloid γm γ1 . Note that f̃i and ẽi preserve
shapes of tabloids and preserve the � relation between adjacent columns, and

18

in particular preserve tableaux. Thus the words in a given connected component
are readings of tabloids with the same shape. Furthermore, iterated application
of this lemma shows that in a given connected component of one of the crystal
graphs, either every word is the reading of a tableau or no word is the reading
of a tableau. In a connected component where every word is the reading of a
tableau, all the corresponding tableaux have the same shape. (However, it is not
true in general that two same-shape tabloids belong to the same component.)

We can now say that a tabloid T has highest weight if ẽi(T) is undefined
for all i. Note that this is equivalent to the word w(T) being of highest weight.
Furthermore, we have the following characterization of highest weight tableaux:

Lemma 3.2. Let X be one of the types An, Bn, Cn, Dn, and G2. An X tableau
has highest weight if and only if it has i-th row filled with i, for i = 1, . . . , n,
except that in the Dn case the n-th row can instead be filled with n.

Proof. See [39] for types An, Bn, Cn, and Dn; see [41] for type G2.

Note also that Lemma 3.2 can be recovered easily using the definition of the
operators ẽi and the relation �.

Theorem 3.3 ([41]). Let X be one of the types An, Bn, Cn, Dn, and G2,
and let X be the corresponding alphabet An, Bn, Cn, Dn or G2. Then for any
u ∈ X ∗, there is a unique tableau P (u) such that u ∼X w(P (u)). Thus the set
of tableaux form a cross-section of the monoid Pl(X) = X ∗/∼X .

3.3. Presentations for plactic monoids

The classical plactic monoid Pl(An) = A∗
n/∼An

is presented by the so-called
Knuth relations [2]. Similarly, all other types of plactic monoids are presented
by certain defining relations as described in [41, § 5.1]. In particular, for the
cases Bn, Cn and Dn the Knuth relations are also part of the given defining
relations.

In order to facilitate the reading of this article, we shall give more details
on some of the defining relations that appear in cases Bn, Cn and Dn. These
relations are labelled in [41, § 5.1] as CRX , for X ∈ {B,C,D}. We shall refer
to the set of these relation as RX

5 , where X is one of the types Bn, Cn and Dn.
For our purposes we use the convention that 0 = 0 and that z = z.

A relation from RBn

5 is defined as follows: let w = w(C) be a non-admissible
column word for which each strict factor (that is, a factor of w not equal to w)
is admissible; let z be the smallest (with respect to <) unbarred symbol of w
such that the pair (z, z) occurs in w and NC(z) > z, otherwise set z = 0. Let
w̃ be the column word obtained by erasing the pair (z, z) in w if z ≤ n and
erasing 0 otherwise. The relation RBn

5 consists of all such pairs (w, w̃). (See
[43, Definition 3.2.2].)

Both sets RCn

5 and RDn

5 are equal to RBn

5 except that we naturally exclude
defining relations that involve 0. (See [41, Definitions 5.1.2 and 5.1.3].)

We now state the following auxiliary results that we will use in the sequel:

19

Lemma 3.4 ([Commuting columns lemma (CCL)]). Let X be one of the types
An, Bn, Cn, Dn and let X be the corresponding alphabet An, Bn, Cn or Dn. Let
α, β ∈ X [1, n]∗ be words that are readings of columns (that is, strictly increasing
words) such that every symbol of α appears in β. Then αβ =Pl(X) βα.

Proof. This follows directly from the Knuth relations; one can also use Schen-
sted’s insertion algorithm for Pl(An) (see [8, Chapter 5]) and note that the
required defining relations also appear in the presentations for the other types
of plactic monoid.

Lemma 3.5. Let X be one of the alphabets Bn, Cn and Dn. Consider a word
w = 12 · · · qx1 x2 · · ·xk for some q ∈ X [1, n], x1, . . . , xk ∈ X [q, 1] and 1 ≤ xk <
xk−1 < . . . < x1 ≤ q. Then w =Pl(X) u, where u is the word obtained from
12 · · · q by deleting the symbols x1, x2, . . . , xk. In particular, u is either empty
or is an admissible column containing fewer than q symbols.

Proof. Let u(i) be the word obtained by deleting x1, . . . , xi from 12 · · · q. Then
u(i)xi+1 =Pl(X) u(i+1) is an RX

5 relation. Note that w = u(0). By induction,

therefore, u = u(k) is a column with u(0)x1 . . . xk =Pl(X) u
(k). Clearly |u| is less

than q. Since u contains only symbols from X [1, q], it follows that Nu(z) ≤ z
for all z and so u is an admissible column if it is non-empty.

We also give details of the presentation defining Pl(G2) as it will be fre-
quently mentioned in the following sections. Another reason is because we give
this presentation in a slightly different way from Lecouvey [41, Definition 5.1.4].
Note, that the sets of defining relations RG2

1 , RG2
2 , RG2

3 , and RG2
4 , defined be-

low, still correspond to the crystal isomorphisms identified by Lecouvey, and
hence these relations generate the same congruence as those of Lecouvey.

Giving a presentation for Pl(G2) requires the auxiliary partial map Θ on G2
2

defined as per the following table:

w 21 31 01 31 32 21 22 11 12 23 13 10 13 12

wΘ 12 13 23 20 23 30 33 00 03 32 02 32 31 21

The monoid Pl(G2) is presented by 〈G2 |R
G2
1 ∪ RG2

2 ∪ RG2
3 ∪ RG2

4 〉 (see [41,
Definition 5.1.4]), where

RG2
1 =

{
(10, 1), (13, 2), (12, 3), (22, 0), (21, 3), (31, 2), (01, 1)

}
,

RG2
2 =

{
(11, ε)

}
,

RG2
3 =

{
(abc, a(bc)Θ) : ab ∈ im Θ, bc ∈ dom Θ

}

∪
{

(abc, (ab)Θ−1c) : ab ∈ im Θ, b ≥ c, bc 6= 00, bc /∈ dom Θ
}
,

RG2
4 =

{
(123, 110)

}

∪
{

((abc, (ab)Θ−1c) : ab ∈ im Θ, bc ∈ im Θ, abc 6= 123
}
.

20

4. Basic two-column lemmata

As described in the strategic overview of our proofs in the Introduction, this
section examines products of two admissible columns that do not form a tableau.
In order to prove that the rewriting system we will construct is terminating, we
have to know about the shape of the tableau that result from this product.
Informally, we will show that the resulting tableau either:

1. Has fewer entries than the original two columns.

2. Has the same number of entries but only one column.

3. Has the same number of entries, two columns, and has a shorter rightmost
column.

The results are given formally in the following two subsections as Lemmata 4.1,
4.2 and 4.4.

To construct finite complete rewriting systems for the Plactic monoids only
the basic two-column lemmata, as stated in this section, are needed. In order to
establish out biautomaticity results a far more detailed understanding is needed
of how products of columns behave. These details will be given in the (non-
basic) two-column lemmata in Section 6.

We consider first the classical type An, and in a combined way the types
Bn, Cn, and Dn, reflecting the increasing order of complexity of the arguments.
Type G2 is considered last, because it uses a rather different approach from the
other types.

4.1. Proving the basic two-column lemmata

The following result was originally proved in [60, Lemma 5.7]. We present an
alternative proof which uses the Littlewood–Richardson rule for decomposing
tensor products of crystals into a disjoint union of connected components; see
[29, Theorem 7.4.6.].

Here we use the reference [29]. Full details of the proofs of these results are
not given in [29] but may be found in the original paper of Nakashima on this
topic [69].

In the following proofs n will be fixed, and by a partition we shall mean a
sequence λ = (λ1, λ2, . . . , λn) where λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0.

Lemma 4.1 (Two-column lemma for type An). If α, β ∈ A∗
n are columns such

that β 6� α then the tableau P (αβ) contains |αβ| symbols, and consists of either
one column or two columns, the rightmost of which contains fewer than |α|
symbols.

Proof. We follow the notation and terminology of [29, Chapter 7]. Let α, β ∈ A∗
n

be columns where |α| = k and |β| = l, and such that β 6� α. Let Y be the Young
diagram with a single column of height k and let Y ′ be the Young diagram of a
single column of height l. Let B(Y) be the connected component of the crystal
graph of all admissible columns with shape Y . Note that α belongs to B(Y).
Similarly we define B(Y ′) and note that β belongs to B(Y ′).

21

Now by [29, Theorem 7.4.6.] the tensor product of these two crystal compo-
nents decomposes as the disjoint union of connected connected components

B(Y) ⊗B(Y ′) ∼=
⊕

x1x2...xl∈B(Y ′)

B(Y [x1, x2, . . . , xl]).

By definition Y [j] denotes the diagram obtained by adding a box to the jth row
of Y , and Y [j1, . . . , jr] is defined inductively to be the diagram obtained from
Y [j1, . . . , jr−1] by adding a box at the jrth row. Here B(Y [j1, . . . , jr]) is defined
to be ∅ if at least one of the Y [j1, . . . , jq] with q ≤ r is not a Young diagram;
see [29, page 165].

In our case, Y is a column of height k and x1x2 . . . xl is a reading of a tableau
of shape Y ′, that is, x1 < x2 < . . . < xl is a strictly increasing sequence from
An. It follows that B(Y [x1, x2, . . . , xl]) 6= ∅ if and only if x1, x2, . . . , xl is a
sequence of the form 1, 2, . . . , a, k+1, k+2, . . . , k+(l−a) for some non negative
integer a such that a ≤ k and k + l − a ≤ n. Note that a can possibly be 0
meaning that the sequence starts at k+1. The Young diagram Y [1, 2, . . . , a, k+
1, k + 2, . . . , k + (l − a)] has shape ν(a) = (ν1, ν2, . . . , νn) where

νi =

2 for 1 ≤ i ≤ a

1 for a < i ≤ k + l − a

0 for i > k + l − a.

The product αβ must belong to one of the connect components of B(Y)⊗B(Y ′).
Therefore P (αβ) is a tableau of shape ν(a) for some value of a ≤ k.

If a = k then P (αβ) is a tableau with two columns, with the right column
being of height k and the left column being of height l. It is straightforward
to show that this is only possible if β � α (a general argument for this, which
also applies in this case, may be found in the proof of Lemma 4.2 below). Since
β 6� α by assumption, it follows that P (αβ) has shape ν(a) for some a < k. But
then the shape ν(a) has one column or two columns the rightmost of which has
a < k = |α| symbols. This completes the proof.

One benefit of reproving Lemma 4.1 using the above method is that it can be
generalised to the other classical types by applying the generalized Littlewood–
Richardson rule for decomposing tensor products of crystals into a disjoint union
of connected components; see [29, Theorem 8.6.6.].

Lemma 4.2 (Two-column lemma for types Bn, Cn and Dn). Let X be one of
the types Bn, Cn or Dn, and let X be the corresponding alphabet from Bn, Cn
or Dn. If α, β ∈ X ∗ are admissible columns such that β 6� α then the tableau
P (αβ) contains at most |αβ| symbols, and is either empty or consists of either
one column or two columns, the rightmost of which contains fewer than |α|
symbols.

Proof. We follow the notation and terminology of [29, Chapter 8]. The proof is
similar to that of Lemma 4.1 but we apply [29, Theorem 8.6.6] in place of [29,
Theorem 7.4.6].

22

Let α and β be admissible columns of one of the types Bn, Cn or Dn, where
|α| = k and |β| = l. Let Y be the Young diagram with a single column of height
k. It follows from [29, Theorem 8.6.6] that the shape of the tableau P (αβ) must
be given by a Young diagram of the form Y [x1, x2, . . . , xl] where x1, x2, . . . , xl

is a reading of an admissible column of height l.
Recall (see Subsection 3.1 above) that readings of the columns types Bn, Cn

and Dn have, respectively, the forms β+β0β− ∈ B∗
n, γ+γ− ∈ C∗

n and δ+δδ− ∈ D∗
n

where these words satisfy the admissibility conditions given in the Subsubsection
3.1.1. In particular δ is filled with symbols n and n, with different symbols in
vertically adjacent cells, and β0 is filled with the symbol 0. The other sections
are filled with strictly increasing sequences with respect to the orderings of the
vertices in the respective crystal bases. Given a Young diagram Y of shape
(λ1, λ2, . . . , λn), Y [j] is defined (see [29, page 205]) by

Y [j] = (λ1, . . . , λj + 1, . . . , λn) for j = 1, . . . , n

Y [j] = (λ1, . . . , λj − 1, . . . , λn) for j = 1, . . . , n (⋄)

Y [0] =

{
Y if λn > 0

(λ1, . . . , λn−1,−∞) if λn = 0.

In general Y [j] will itself not be a Young diagram. Set B(Y ′) = ∅ if Y ′ is not a
Young diagram. (Note that in [29, page 205] the authors work with generalised
Young diagrams, but for our purposes Young diagrams suffice since we are not
concerned with Plactic monoids associated with spin representations in this
paper.) Then Y [x1, x2, . . . , xl] is defined inductively by Y [x1, x2, . . . , xl−1][xl],
where if any of the intermediate stages Y [x1, x2, . . . , xq] is itself not a Young
diagram then we set B(Y [x1, x2, . . . , xl]) = ∅.

Now Y [x1, x2, . . . , xl] is obtained by starting with a column of height k which
is a Young diagram with shape (λ1, λ2, . . . , λn) where λi = 1 for i ≤ k and is
equal to 0 otherwise. Then for each of the symbols x1, x2, . . . , xl and so on from
our column reading we carry out one of the operations in (⋄). If at any stage
the symbol −∞ appears the process halts and we set B(Y [x1, x2, . . . , xl]) = ∅,
so we can assume that is not the case. This means that whenever the symbol 0
is read in this process, the Young diagram remains unchanged. Also, in the Dn

case when the δ portion of the word is read, this is an alternating sequence of
n and n which will ultimately either add 1 to λn or subtract 1 from λn.

Considering each of the three cases it is straightforward to see that in the
end, if B(Y [x1, x2, . . . , xl]) 6= ∅, then Y [x1, x2, . . . , xl] must be a Young diagram
with shape ν(a,b) = (ν1, ν2, . . . , νn) for some a, b ≥ 0, with 2a + b ≤ k + l and
a ≤ k, where

νi =

2 for 1 ≤ i ≤ a

1 for a < i ≤ a + b

0 for i > a + b.

Note that a = 0, and b = 0, are both possible here.
Suppose that a = k. In this case, the diagram Y [x1, x2, . . . , xl] has more

boxes than Y , and so, from the definitions of Y [j], Y [j], Y [0], necessarily one

23

of the xi belongs to {1, . . . , n}. Furthermore, since a = k ≥ 1, then xi = 1
for some i ∈ {1, . . . , l}. Since x1 . . . xl is an admissible column, if xi < xj then
i < j, for all i, j ∈ {1, . . . , l} (The converse also holds except in case Dn).
Thus x1 = 1. Now, suppose that for some s ∈ {1, . . . , l}, we have xs = t
for some t ∈ {1, . . . , n}. Let s be minimal under such conditions. From the
definitions of Y [j], Y [j], and since Y [x1, x2, . . . , xl] is a Young diagram of shape
ν(k,b), there exists some i ∈ {1, . . . , l}, for which xi = t. Because x1 . . . xl is
an admissible column either t appears to the left of t in x1 . . . xl, or t = n
and tt is a factor of x1 . . . xl (this situation can only occur in case Dn). Since
x1 = 1 and Y [x1, x2, . . . , xl] is a Young diagram, in the first case we would
have 12 . . . tut, for some word u, as a prefix of x1 . . . xl, and in the second case
1 . . . (n − 1)nn as a prefix of x1 . . . xl. In both cases, this contradicts the fact
that x1 . . . xl is an admissible column. So none of the xi’s is a barred symbol.
Now suppose that xr = 0 (only possible in case Bn) for some r ∈ {1, . . . , l} and
choose r to be minimal in those conditions. Because x1 . . . xl is an admissible
column and Y [x1, x2, . . . , xl] is a Young diagram then x1 . . . xl has the form
12 . . . (r − 1)0 . . . 0. Also, since Y [x1, x2, . . . , xl] is a Young diagram and by
the definition of Y [0] we necessarily have r − 1 = n. We get a contradiction
since 12 . . . n0 . . . 0 is not an admissible column of type Bn. It follows that
[x1, x2, . . . , xl] = [1, 2, . . . , l], and that Y [x1, x2, . . . , xl] has shape ν(k,l−k).

From the above, it is then immediate that Y [x1, x2, . . . , xl] has shape ν(k,l−k)

if and only if [x1, x2, . . . , xl] = [1, 2, . . . , l]. It follows that in the decomposition

B(Y) ⊗B(Y ′) ∼=
⊕

x1x2...xl∈B(Y ′)

B(Y [x1, x2, . . . , xl])

into connected components given by [29, Theorem 8.6.6] the component B(Y [1, 2, . . . , l])
occurs exactly once and thus no other connected component of B(Y)⊗B(Y ′) is
isomorphic to B(Y [1, 2, . . . , l]). Since αβ belongs to the connected component
B(Y [1, 2, . . . , l]) of B(Y) ⊗ B(Y ′) it follows that P (αβ) = α′β′ where β′ and
α′ are admissible columns with |α′| = k = |α| and |β′| = l = |β|. But then
α′β′ belongs to B(Y) ⊗ B(Y ′) and must also belong to the same connected
component B(Y [1, 2, . . . , l]). Then from α′β′ = P (αβ) it follows that αβ and
α′β′ have the same position in this connected component and hence α′β′ and
αβ are identical as words which in turn implies that β′ = β and α′ = α. This
implies that β � α.

Since by assumption β 6� α, it follows from the arguments above that a < k.
Then Y [x1, x2, . . . , xl] has shape ν(a,b), with a < k, which by inspection satisfies
the conclusions given in the statement of the lemma, completing the proof.

4.2. Two column lemma for type G2

The proof for G2 uses a rather different approach from the other types. As
in the previous subsection, our aim is to learn about the shape of the tableau
P (αβ), where α and β are admissible G2 columns and β 6� α; for the conclusion,
see Lemma 4.4. Recall that there are only finitely many admissible G2 columns
(which are listed in (3.1)). Thus, our approach is simply to characterize the

24

finitely many possibilities for α and β when αβ is highest weight in Lemma
4.3, and then to compute P (αβ) in each case and derive the conclusion about
products of arbitrary pairs of admissible columns in Lemma 4.4.

Lemma 4.3. Let α and β be admissible G2 column words such that β 6� α and
αβ is a highest-weight word. Either:

1. α = 1 and β ∈ {2, 0, 1, 23, 00}; or

2. α = 12 and β ∈ {1, 3, 2, 13, 30, 33, 21}.

Proof. Since αβ is of highest weight, by Lemma 2.5, α is a highest weight column
(and thus a highest-weight tableau). The highest weight admissible columns of
lengths 1 and 2 are 1 and 12, so either α = 1 or α = 12.

1. Suppose α = 1. Let β = xβ′, where x ∈ G2. If x = 1, then β � α, which
is a contradiction. Furthermore,

x = 3 =⇒ ρ2(αβ) = ρ2(13β′) = −ρ2(β′) = − · · · ;

x = 3 =⇒ ρ1(αβ) = ρ1(13β′) = +−−ρ1(β′) = − · · · ;

x = 2 =⇒ ρ2(αβ) = ρ2(12β′) = −ρ2(β′) = − · · · .

In each case, the supposition contradicts αβ being of highest weight. So
x must be 2, 0, or 1; if |β| = 1, these are the possibilities for β.
Suppose now that |β| = 2. This cannot occur when x = 1, for no ad-
missible column begins with 1. The admissible column words of length 2
beginning with 2 and 0 are 23, 20, 23, and 00, 03 and 02. Furthermore,

β = 20 =⇒ ρ1(αβ) = ρ1(120) = +−−+ = −+,

β = 23 =⇒ ρ1(αβ) = ρ1(123) = +−−− = −−,

β = 03 =⇒ ρ1(αβ) = ρ1(103) = +−+−− = −,

β = 02 =⇒ ρ2(αβ) = ρ2(102) = −,

each of which contradicts αβ being of highest weight. The remaining
possibilities are β = 23 and β = 00.

2. Suppose α = 12. Let β = xβ′, where x ∈ G2. Then

x = 2 =⇒ ρ1(αβ) = ρ1(122β′) = +−−ρ1(β′) = − · · · ,

x = 0 =⇒ ρ1(αβ) = ρ1(120β′) = +−−+ρ1(β′) = −+ · · · ,

x = 3 =⇒ ρ1(αβ) = ρ1(123β′) = +−−−ρ1(β′) = −− · · · ,

x = 1 =⇒ ρ1(αβ) = ρ1(121β′) = +−−ρ1(β′) = − · · · ,

each of which contradicts αβ being of highest weight. So x must be 1, 3,
or 2. If |β| = 1, these are the possibilities for β.
Suppose now that |β| = 2. The admissible column words of length 2
beginning with 1, 3, and 2 are 12, 13, 30, 33, 32, 21. Note first that
β 6= 12 since β 6� α. Furthermore

β = 32 =⇒ ρ2(αβ) = ρ2(1232) = +−− = −,

25

Table 1: Case analysis for the proof of Lemma 4.4.

Shape of Shape of

β α α β Defining relations applied P (αβ) P (αβ)

1 2 — 12
1 0 10 =

R
G2
1

1 1

1 1 11 =
R

G2
2

ε ε

1 23 123 =
R

G2
4

110 =
R

G2
1

11 11

1 00 100 =
R

G2
1

10 =
R

G2
1

1 1

12 1 121 =
R

G2
3

112 112

12 3 123 =
R

G2
4

110 =
R

G2
1

11 11

12 2 122 =
R

G2
1

10 =
R

G2
1

1 1

12 13 1213 =
R

G2
3

1123 =
R

G2
4

1110 =
R

G2
1

111 111

12 30 1230 =
R

G2
4

1100 =
R

G2
1

110 =
R

G2
1

11 11

12 33 1233 =
R

G2
4

1103 =
R

G2
1

113 =
R

G2
1

12 12

12 21 1221 =
R

G2
1

101 =
R

G2
1

11 =
R

G2
2

ε ε

which contradicts αβ being of highest weight. The remaining possibilities
for β are 13, 30, 33, and 21.

Lemma 4.4 (Two-column lemma for type G2). Let α and β be admissible G2

columns with β 6� α. Then either:

• P (αβ) contains fewer that |αβ| symbols,

• P (αβ) contains exactly |αβ| symbols and has at most one column,

• P (αβ) contains exactly |αβ| symbols and has exactly two columns, the
rightmost of which contains fewer than |α| symbols.

Proof. Since the Kashiwara operators preserve shapes of tabloids and also pre-
serves whether the � relation holds between adjacent columns, we can assume
that αβ has highest weight. Using Lemma 4.3, we systematically enumerate the
possible words αβ and calculate their corresponding tableaux. The results are
shown in Table 1.

In each case, we get a tableau that contains fewer that |αβ| symbols (and
that is in some case empty), and in the cases when the number of symbols in
the tableau is equal to |αβ|, either the tableau contains only one column, or
else contains two columns and the number of symbols in the rightmost column
is less than |α|.

26

5. Constructing the rewriting system

We now turn to actually constructing the finite complete rewriting systems
presenting Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and Pl(G2). The constructions can
be carried out in parallel, because the only differences are the appeals to the
different lemmata from Section 4. We first of all recall the necessary definitions
about rewriting systems in Subsection 5.1; for further background, see [47] or
[70]. For background on semigroup presentations generally, see [71] or [72].

5.1. Preliminaries

Let ≤ be a total order on an alphabet A. Define a total order ≤lex on A∗ by
w ≤lex w′ if and only if either w is proper prefix of w′ or if w = paq, w′ = pbr
and a ≤ b for some p, q, r ∈ A∗, and a, b ∈ A. The order ≤lex is the lexicographic
order induced by ≤. Notice that ≤lex is not a well-order, but that it is left
compatible with concatenation. Define also a total order ≤lenlex on A∗ by

w ≤lenlex w′ ⇐⇒ (|w| < |w′|) ∨
(
(|w| = |w′|) ∧ (w ≤lex w′)

)
.

The order ≤lenlex is the length-plus-lexicographic order induced by ≤. The order
≤lenlex is a well-order and is left compatible with concatenation.

A string rewriting system, or simply a rewriting system, is a pair (A,R),
where A is a finite alphabet and R is a set of pairs (ℓ, r), usually written ℓ → r,
known as rewriting rules or simply rules, drawn from A∗ × A∗. The single
reduction relation →R is defined as follows: u →R v (where u, v ∈ A∗) if there
exists a rewriting rule (ℓ, r) ∈ R and words x, y ∈ A∗ such that u = xℓy and
v = xry. That is, u →R v if one can obtain v from u by substituting the word
r for a subword ℓ of u, where ℓ → r is a rewriting rule. The reduction relation
→∗

R is the reflexive and transitive closure of →R. The process of replacing a
subword ℓ by a word r, where ℓ → r is a rule, is called reduction by application
of the rule ℓ → r; the iteration of this process is also called reduction. A word
w ∈ A∗ is reducible if it contains a subword ℓ that forms the left-hand side of a
rewriting rule in R; it is otherwise called irreducible.

The rewriting system (A,R) is finite if both A and R are finite. The rewriting
system (A,R) is noetherian if there is no infinite sequence u1, u2, . . . ∈ A∗ such
that ui →R ui+1 for all i ∈ N. That is, (A,R) is noetherian if any process of
reduction must eventually terminate with an irreducible word. The rewriting
system (A,R) is confluent if, for any words u, u′, u′′ ∈ A∗ with u →∗

R u′ and
u →∗

R u′′, there exists a word v ∈ A∗ such that u′ →∗
R v and u′′ →∗

R v. A
rewriting system that is both confluent and noetherian is complete. If (A,R) is
a complete rewriting system, then for every word u there is a unique irreducible
word w such that u →∗

R w; this word is called the normal form of u. If (A,R) is
complete, then the language of normal form words forms a cross-section of the
monoid: that is, each element of the monoid presented by 〈A |R〉 has a unique
normal form representative.

27

5.2. Construction

Let X be one of the types An, Bn, Cn, Dn, and G2, and let X be the
corresponding alphabet from An, Bn, Cn, Dn, or G2. Let

Σ = { cσ : σ is an admissible X column }.

Note that Σ is finite since there are finitely many admissible X columns.
Let T consist of the following rewriting rules:

cσcτ → ε τ 6� σ and P (στ) is empty, (5.1)

cσcτ → cυ τ 6� σ and P (στ) is the 1-col. tableau υ , (5.2)

cσcτ → cυcφ τ 6� σ and P (στ) is the 2-col. tableau φ υ , (5.3)

cσcτ → cυcφcχ τ 6� σ and P (στ) is the 3-col. tableau χ φ υ . (5.4)

Note that since P (στ) is a tableau, the subscripts υ, φ, and χ are always ad-
missible columns.

Note that if σ, τ are admissible columns with τ 6� σ, then P (στ) has at most
three columns by Lemmata 4.1, 4.2, and 4.4 (that is, by the two-column lemmata
for type An, types Bn, Cn, Dn, and type G2). Thus every such pair of columns
gives rise to a rewriting rule in T . (Note that rules of the form cσcτ → cυcφcχ
only arise when X = G2, because P (στ) has at most two columns in the other
cases.) Finally, note that T is finite since there are finitely many possibilities
for σ and τ , and the right-hand side of each rule is uniquely determined by the
left-hand side.

The idea is that a word cβ(1) · · · cβ(m) corresponds to the tabloid β(m) β(1),
and that if this tabloid is not a tableau, then there are two adjacent columns
between which the relation � does not hold. These columns (as represented by
some subword cσcτ with τ 6� σ) are rewritten to a tableau (as represented by a
word in Σ∗). Thus, in terms of words in Σ∗, tabloids are rewritten to become
more ‘tableau-like’, and the irreducible words correspond to tableaux.

Lemma 5.1. The rewriting system (Σ, T) is noetherian.

Proof. Let E be any total order on Σ that extends the partial order induced
by lengths of columns, in the sense that |σ| ≤ |τ | =⇒ cσ E cτ for any two
admissible columns σ and τ .

Let the map L : Σ∗ → N ∪ {0} send each word to the sum of the lengths of
the subscripts of its symbols: that is,

L
(
cσ(1)cσ(2) · · · cσ(h)

)
=

h∑

i=1

|σ(i)|.

Define a total order ⊏ on Σ∗ by

u ⊏ v ⇐⇒
(
L(u) < L(v)

)

∨
((

L(u) = L(v)
)
∧
(
u Elenlex v

))
.

28

That is, ⊏ first orders by the total number of symbols in the tabloid to which
a word corresponds, then by the length of the word, and then lexicographically
based on the ordering E of Σ. Note that ⊏ is compatible with multiplication in
the free monoid Σ∗.

Let cαcβ be the left-hand side of a rewriting rule and let w be its right-hand
side. So β 6� α. Consider two cases:

• For X = An (respectively, X = Bn, Cn, or Dn), Lemma 4.1 (respectively,
4.2) shows that P (αβ) contains at most |αβ| symbols (so that L(w) ≤
L(cαcβ)), and consists of at most two columns (so that |w| ≤ |αβ|) and
the rightmost column contains fewer than |α| symbols (so that w ⊳lex αβ).
Thus w ⊏ αβ.

• For X = G2, Lemma 4.4 shows that P (αβ) contains most |αβ| symbols
(so L(w) ≤ L(cαcβ)), and that, if P (αβ) contains exactly |αβ| symbols
(so that L(w) = L(cαcβ)), then it either consists of one column (so that
|w| < |αβ| and so w ⊳lenlex αβ) or it consist of two columns and the
rightmost column contains fewer than |α| symbols (so that |w| = |αβ| and
w ⊳lex αβ, and hence w Elenlex αβ). Thus w ⊏ αβ.

Since ⊏ is compatible with multiplication in the free monoid Σ∗, rewriting a
word always decreases it with respect to ⊏. Since there are no infinite ⊏-
descending chains, any process of rewriting must terminate. Hence (Σ, T) is
noetherian.

Lemma 5.2. The rewriting system (Σ, T) is confluent.

Proof. Let u ∈ Σ∗ and let u′ and u′′ be words with u →∗ u′ and u →∗

u′′. By Lemma 5.1, there are irreducible words w′ = cβ(1) · · · cβ(k) and w′′ =
cγ(1) · · · cγ(m) ∈ Σ∗ such that u′ →∗ w′ and u′′ →∗ w′′. Since w′ is irreducible,
it does not contain the left-hand side of any rule in T . Thus, by the comments
after the definition of T , we have β(j+1) � β(j) for j = 1, . . . , k − 1. That is,

β(k) β(1) is a tableau. Similarly, γ(m) γ(1) is a tableau (with m columns).

But the readings of these tableau (that is, β(1) · · ·β(k) and γ(1) · · · γ(m)) are equal
in Pl(X), and tableaux form a cross-section of Pl(X) by Theorem 3.3. Hence
k = m and β(j) = γ(j) for j = 1, . . . , k, and so w′ = w′′. Thus v = w′ = w′′ is a
word such that u′ →∗ v and u′′ →∗ v. Therefore (Σ, T) is confluent.

Theorem 5.3. For any X ∈ {An, Bn, Cn, Dn, G2}, there is a finite complete
rewriting system (Σ, T) that presents Pl(X).

Proof. Construct the finite complete rewriting system (Σ, T) as above. It re-
mains to prove that 〈Σ |T 〉 presents Pl(X). To this end, let 〈X |RX〉 be the
presentation for Pl(X) as described in [41, § 5.1] and also in Subsection 3.3 for
type G2. We are going to prove that 〈Σ |T 〉 and 〈X |RX〉 present the same
monoid.

29

First notice that if σ = σ1 · · ·σk is an admissible column, where σi ∈ X , then
a sequence of applications of rules from T of type (5.2) lead from cσ1 · · · cσk

to
cσ1···σk

:

cσ1cσ2cσ3 · · · cσk−1
cσk

→T cσ1σ2cσ3 · · · cσk−1
cσk

...

→T cσ1σ2···σk−1
cσk

→T cσ1σ2···σk−1σk
.

Thus we can apply Tietze transformations to 〈Σ |T 〉 to replace each symbol
cσ1···σk

with cσ1 · · · cσk
and then remove the generators cσ1···σk

with k > 1. The
result of this is a new presentation 〈Σ′ |T ′〉 where the generating symbols in Σ′

are cx for x ∈ X , so we can replace each cx by x to obtain a new presentation
〈X |T ′′〉. It remains to show that every defining relation in T ′′ is a consequence
of those in RX and vice versa.

Note that T ′′ can be obtained from T by replacing each symbol cσ1···σk
by

σ1 · · ·σk. Thus every defining relation in T ′′ is of the form (u, v), where u is
the reading of a two-column tabloid and v is the reading of a tableau, and
u =Pl(X) v. Since 〈X |RX〉 presents Pl(X), the defining relation (u, v) is a
consequence of RX .

On the other hand, let (u, v) be a defining relation in RX . By inspection
of the definition of RX in [41, § 5.1] and Subsection 3.3, v is the reading of

a tableau, and P (u) = v. Suppose this tableau is β(m) β(1), where β(1),

. . . , β(m) are admissible columns of type X. Suppose u = u1 · · ·ut, and note
that every symbol ui is an admissible column of type X. Since P (u) = v,
the word cu1

· · · cut
rewrites to cβ(1) · · · cβ(m) under the rewriting system (Σ, T).

Fix a sequence of rewriting cu1 · · · cut
→∗

T cβ(1) · · · cβ(m) . Replacing each symbol
cσ1···σk

by σ1 · · ·σk throughout this sequence of rewriting yields a sequence from
u = u1 · · ·ut to β(1) · · ·β(m) = v where every step is an application of a relation
from T ′′. Hence (u, v) is a consequence of T ′′.

Since every defining relation in T ′′ is a consequence of those in RX and vice
versa, 〈X |T ′′〉 and 〈X |RX〉 present the same monoid, and thus 〈Σ |T 〉 presents
Pl(X).

The following corollary is immediate [73]:

Corollary 5.4. The Plactic monoids of types An, Bn, Cn, Dn, and G2 have
finite derivation type.

By a result originally proved by Anick in a different form [74], but also
proved by various other authors (see [75, 76]):

Corollary 5.5. The Plactic monoids of types An, Bn, Cn, Dn, and G2 are of
type right and left FP∞.

30

6. Biautomaticity lemmata

In this section, we lay the groundwork for constructing biautomatic struc-
tures for plactic monoids in Section 7.

The language of representatives of the biautomatic structure will be the
language of irreducible words of the rewriting system (Σ, T) constructed in
Section 5. To prove that this gives us a biautomatic structure, we must un-
derstand how products of the form cxcβ(1) · · · cβ(ℓ) and cβ(1) · · · cβ(ℓ)cx rewrite,
where cβ(1) · · · cβ(ℓ) is an irreducible word and cx ∈ Σ is such that |x| = 1. It

will suffice to consider the situations where xβ(1) · · ·β(ℓ) and β(1) · · ·β(ℓ)x are
highest weight words, because, as we shall see, the rewriting of cxcβ(1) · · · cβ(ℓ)

and cβ(1) · · · cβ(ℓ)cx proceeds ‘in the same way’ in the general case.

6.1. Two-column lemma for biautomaticity

Let X be one of the types An, Bn, Cn, or Dn, and let X be the corresponding
alphabet from An, Bn, Cn, or Dn.

Lemma 6.1. Let α, β ∈ X ∗
n be admissible X columns such that β 6� α and αβ

is a word of highest weight.

1. If X = An, Bn, or Cn, then α = 1 · · · p for some p ∈ X [1, n].

2. If X = Dn, then either α = 1 · · · p for some p ∈ D[1, n] or α = 1 · · · (n −
1)n.

Proof. By Lemma 2.5, α is a highest weight column (and thus a highest-weight
tableau), and thus has the required form by Lemma 3.2.

Lemma 6.2. Let α, β ∈ X ∗
n be admissible X columns such that β 6� α and αβ

is a word of highest weight. Suppose the first symbol of β is 1. Let β̂ be the
maximal prefix of β whose symbols form an interval of X [1, n−1] (viewed as an
ordered set). Then P (αβ) consists of two columns and the rightmost column of

P (αβ) is β̂.

Proof. By Lemma 6.1, α = 1 · · · p for some p. Thus both α and β contain 1.
Since α and β are admissible columns, both containing 1, neither contains 1. It
follows that P (αβ), as a tableau of the same weight as αβ, also contains two

symbols 1 and so has two columns. Suppose P (αβ) = δ γ . By Lemma 4.2, γ
contains fewer than |α| symbols. That is, γ contains at most n−1 symbols. Thus
by Lemma 3.2, since P (αβ) is highest-weight, γ = 1 · · · s for some s ∈ X [1, n−1].
Furthermore, again by Lemma 3.2, if X = An, Bn, or Cn, then δ = 1 · · · t for
some t ∈ X [1, n] with t ≥ s (since δ � γ), while if X = Dn, then either δ = 1 · · · t
for some t ∈ X [1, n] with t ≥ s or else δ = 1 · · · (n − 1)n. Thus δ also contains
each symbol in X [1, s] and so γδ contains two of each symbol in X [1, s]. Since
αβ has the same weight as γδ, it follows that both α and β contain each symbol
from X [1, s]. This shows that β̂ contains 1 · · · s as a prefix; it remains to prove

that β̂ contains no more symbols. If s = n−1, this is immediate by the definition
of β̂, so assume henceforth that s < n− 1.

31

Suppose, with the aim of obtaining a contradiction, that β̂ 6= 1 · · · s. Then,
since 1 · · · s is a prefix of β̂, it follows that β̂ contains the symbol s + 1. (Note
that s + 1 < n.)

Consider ρs(γδ). The symbol s in γ contributes + to ρs(γδ). If δ = 1 · · · t for
t ∈ X [1, n], then δ contributes + (if t = s) or +− (if t > s). If δ = 1 · · · (n−1)n,
then δ contributes ++. In any case, ρs(γδ) contains at least one + and so f̃s(γδ)
is defined. Since αβ and γδ lie in isomorphic crystal components, f̃s(αβ) is also
defined and so ρs(αβ) contains at least one +.

Notice that the word α (which, as noted previously, is of the form 1 · · · p)
contains strictly more than s symbols and so must contain s + 1. Thus in the
calculation of ρs(αβ) the symbols s and s+1 in α contribute a + and a −, which
are deleted. In the word β, the symbols s and s + 1 also contribute a + and a
−, which are deleted. The word β cannot contain s + 1, since it is admissible,
so no other symbols can contribute a +. Hence ρs(αβ) contains no symbols +.

This is a contradiction, and so β̂ = 1 · · · s. This completes the proof.

6.2. Transducers

This subsection briefly recalls the definition of a transducer and the relation
it recognizes; for further background, see [77, Chapter IV] or [78].

Informally, a transducer is a (possibly non-deteministic) finite automaton
that reads symbols from two tapes (possibly at varying ‘speeds’) and thus rec-
ognizes a binary relation between the sets of words over the two tape alphabets.
More formally, a transducer is a tuple (Q,X, Y, I, F, δ), where Q is a finite set of
states, X and Y are two finite alphabets, I is a set of distinguished initial states,
F is a set of distinguished final states, and δ is a finite subset of Q×X∗×Y ∗×Q
called the transition relation. When in a state q, it can transition to a state r
while reading words x ∈ X∗ and y ∈ Y ∗ from its top and bottom input tapes if
and only if (q, x, y, r) is in δ. (Note that either or both of x and y can be the
empty word.)

The transducer accepts the contents of its input if it can start in some state
in I, read the whole content of its input tapes and end in a state in F . More
formally, it accepts (u, v) ∈ X∗×Y ∗ if and only if there exist factorizations u =
x1 · · ·xk and v = y1 · · · yk, where xi ∈ X∗ and yi ∈ Y ∗ and a sequence of states
q0, . . . , qk such that q0 ∈ I, qk ∈ F , and (qi−1, xi, yi, qi) ∈ δ for i = 1, . . . , k.

The transducer is thought of as a finite directed graph with vertex set Q
and, for each (q, x, y, r) ∈ δ, an edge from q to r labelled by (x, y), for some
words x ∈ X∗ and y ∈ Y ∗. A pair (u, v) is accepted if there is a path from some
vertex in I to some vertex in F such that (u, v) is the product in X∗ × Y ∗ of
the labels on that path.

Note that the set of pairs in X∗ × Y ∗ accepted by the transducer forms
a binary relation between X∗ and Y ∗, called the relation recognized by the
transducer. A relation between X∗ and Y ∗ recognized by a transducer is said
to be rational (see [77, Subsection IV.1.2]).

As usual in the theory of automatic groups and semigroups, we will not
describe transducers and automata by giving the complete formal definition as

32

tuples of sets and relations; the problem with this is that the technical de-
tails become overpowering and obscure the fundamental ideas. Instead, we will
give a somewhat higher level description of how the transducers and automata
‘function’. For instance, we will sometimes speak of a transducer or automa-
ton reading a symbol, ‘storing’ it in its state, and later ‘checking’ that symbol.
This means that, on reading the symbol, the transition relation must take the
transducer or automaton to a state that somehow determines the stored symbol
(for instance, states might be tuples and some component of the tuple might be
the relevant symbol). ‘Checking’ the stored symbol means that the transducer
or automaton enters a failure state if the stored symbol (as determined by the
state) is not as required.

6.3. Left-multiplication by transducer

6.3.1. An, Bn, Cn, Dn

Let X be one of the types An, Bn, Cn, and Dn and let X be the correspond-
ing alphabet from An, Bn, Cn, or Dn. In these cases, the rewriting that occurs
on left-multiplication by a generator is very similar, and so we treat these cases
in parallel. The goal is to prove Lemma 6.4, which contains all the information
we need for the eventual proof of biautomaticity.

We emphasize that in the following analysis, Commuting columns lemma 3.4
is used only as an auxiliary result to prove facts about words, and is not in any
way treated as a rewriting rule.

Let x ∈ X and let β(1), . . . , β(m) be admissible X columns satisfying β(i+1) �

β(i) for i = 1, . . . ,m−1 (that is, β(m) β(1) is a tableau), such that xβ(1) · · ·β(m)

is a highest-weight word. Recall that xβ(1) · · ·β(h) is a highest-weight word for
all h ≤ m by Lemma 2.5. In particular, x is a highest-weight word and so
x = 1. The aim is to examine how the corresponding word over Σ (that is,
c1cβ(1) · · · cβ(m)) is rewritten by T to an irreducible word. We are going to prove
that this rewriting involves a single left-to-right pass through the word and that
it only changes the length of the word by at most 1.

The tabloid corresponding to c1cβ(1) · · · cβ(m) has the following form:

� � � � � ?

1

β(1)

(The symbol ? indicates that either � or 6� may hold between these columns.)
First, it is possible that � holds between 1 and β(1). In this case, c1cβ(1) · · · cβ(m)

is irreducible and so no rewriting occurs. So assume that � does not hold be-
tween 1 and β(1). Then a rewriting rule applies to c1cβ(1) . By Lemma 4.2,

P (1β(1)) has at most two columns. Further, again by Lemma 4.2, if it has
exactly two columns, its right-hand column would be strictly shorter than the

33

one-symbol column 1, which is impossible. Thus P (1β(1)) has at most one
column.

If P (1β(1)) has zero columns (that is, is empty), then the rewriting rule that
applies is c1cβ(1) → ε. That is,

c1cβ(1)cβ(2) · · · cβ(m) → cβ(2) · · · cβ(m) .

Since β(i+1) � β(i) for i = 2, . . . ,m − 1, the word cβ(2) · · · cβ(m) is irreducible
and no further rewriting occurs.

So assume P (1β(1)) has exactly one column γ(1). Since γ(1)β(2) · · ·β(m)

is highest-weight, Lemma 2.5 and Lemma 3.2 show in particular that either
γ(1) = 1 · · · s for some s ∈ X [1, n], or X = Dn and γ(1) = 1 · · · (n − 1)n.
Furthermore, since γ(1) is one of these forms and γ(1) and 1β(1) have the same
weight, it follows that γ(1) contains at least two symbols. That is, γ(1) contains
2 or γ(1) = 12, with the latter possible only when X = Dn and n = 2.

We now need to know about the column β(2):

Lemma 6.3. The column β(2) begins with 1.

Proof. If β(2) � γ(1), then since γ(1) begins with 1, so does β(2). So assume
β(2) 6� γ(1). Consider separately the cases X = An, Bn, Cn, Dn:

• Suppose X = An. Since γ(1) and 1β(1) have the same weight and γ(1)

contains a symbol 2, it follows that the column β(1) begins with 2. Since
β(2) � β(1), the column β(2) must begin with either 1 or 2. With the aim of
obtaining a contradiction, suppose it begins with 2. Then ρ1(1β(1)β(2)) =
+−− · · · = − · · · , which contradicts xβ(1) · · ·β(m) being of highest weight.
Thus β(2) begins with 1.

• Suppose X = Bn or X = Cn. Since γ(1) and 1β(1) have the same weight
and γ(1) contains a symbol 2, it follows that β(1) begins with 2 and cannot
contain 2 or 1. Since β(2) � β(1), the column β(2) must begin with either
1 or 2. With the aim of obtaining a contradiction, suppose it begins with
2. Then ρ1(β(1)) is − (the 2 at the start contributes −; there cannot be a
further − since there is no symbol 1). Hence ρ1(1β(1)β(2)) = +−− · · · =
− · · · , which contradicts xβ(1) . . . β(m) being of highest weight. Therefore
β(2) must begin with 1.

• Suppose X = Dn. Consider three sub-cases separately:

– Suppose that n = 2 and γ(1) = 12. Since γ(1) and 1β(1) have the
same weight, it follows that the admissible column β(1) is 2. Then
ℓ(β(1)) = 2. Hence either β(2) = r(β(2)) = 2 or β(2) = r(β(2)) = 1.
With the aim of obtaining a contradiction, suppose the former. Then
ρ1(1β(1)β(2)) = +−− · · · = − · · · , which contradicts xβ(1) . . . β(m)

being of highest weight. Therefore β(2) = 1.

– Suppose that n = 2 and γ(1) = 12. The reasoning showing that
β(2) = 1 proceeds in precisely the same way as the previous sub-case,
replacing 2 with 2 and ρ1 with ρ2.

34

– Suppose that n > 2. Then γ(1) contains a symbol 2. Since γ(1) and
1β(1) have the same weight, it follows that β(1) begins with 2 and
does not contain 2 or 1. The reasoning reasoning showing that β(2)

begins with 1 now proceeds in precisely the same way as for X = Bn

or X = Cn.

As a consequence of Lemma 6.3 and the fact that the first row of the
columns β(i) must form a non-decreasing sequence since � holds between adja-
cent columns, it follows that all columns to the left of β(2) also begin with 1.
That is, the tabloid corresponding to c1cβ(1) · · · cβ(m) has the following form:

� � � � � 6�

1 1 1 1 1 1

β(1)

In the situation we are considering, P (1β(1)) is a single column γ(1), so after
rewriting c1cβ(1) · · · cβ(m) → cγ(1)cβ(2) · · · cβ(m) , the corresponding tabloid has
the form

� � � � ?

1 1 1 1 1 1

β(2)

γ(1)

If β(2) � γ(1), then cγ(1)cβ(2) · · · cβ(m) is irreducible and no further rewriting

occurs. So assume β(2) 6� γ(1). Note that γ(1)β(2) . . . β(m) is also a highest
weight word.

For j = 2, . . . ,m, define β̂(j) to be the longest contiguous prefix of β(j)

containing only symbols from X [1, n − 1]. Note that because β(j+1) � β(j),
each symbol of β(j+1) is less than or equal to the symbol of β(j) in the same
row. Thus the prefix β̂(j+1) must be at least as long as the prefix β̂(j), and so
β̂(j+1) � β̂(j). So the situation is as follows, where the horizontal lines in each
column indicate the end of β̂(j):

� � � � 6�

1 1 1 1 1 1

β(2)

γ(1)

35

Since β(2) begins with 1, by Lemma 6.2, P (γ(1)β(2)) has two columns, the

rightmost of which is β̂(2). Let γ(2) be the left column of P (γ(1)β(2)). So we
have

cγ(1)cβ(2) . . . cβ(m) → c
β̂(2)cγ(2)cβ(3) . . . cβ(m)

If β(3) � γ(2), the word c
β̂(2)cγ(2)cβ(3) . . . cβ(m) is irreducible. So suppose β(3) 6�

γ(2). We claim γ(2)β(3) is a highest weight word. This follows since β̂(2) is
a prefix of both γ(2) and β(3) (since it is a prefix of β̂(3)) and so commutes

with both by the Commuting columns lemma 3.4. Thus β̂(2)γ(2)β(3) =Pl(X)

γ(2)β(3)β̂(2) and so, by Lemma 2.5, γ(2)β(3) is highest weight. Thus, again by
Lemma 6.2, P (γ(2)β(3)) has two columns, the rightmost of which is β̂(3).

� � � �6�

1 1 1 1 1 1

β̂(2)

γ(1)

Continuing in this way, we inductively obtain a sequence of admissible
columns γ(2), . . . , γ(k) for some maximal k ≤ m such that the following hold
for j = 1, . . . , k − 1:

• β(j+1) 6� γ(j).

• γ(j)β(j+1) is highest weight. This follows since β̂(2), . . . , β̂(j) are all prefixes
of γ(j) and β(j+1), so commute with both by the Commuting columns
lemma 3.4, and thus

β̂(2) · · · β̂(j)γ(j)β(j+1) =Pl(X) γ
(j)β(j+1)β̂(2) · · · β̂(j)

and so, by Lemma 2.5, γ(2)β(3) is highest weight.

• P (γ(j)β(j+1)) = γ(j+1)β̂(j+1)

Therefore rewriting proceeds as follows:

cγ(1)cβ(2) · · · cβ(m)

→ c
β̂(2)cγ(2)cβ(3) · · · cβ(m)

→ c
β̂(2)cβ̂(3)cγ(3)cβ(4) · · · cβ(m)

...

→ c
β̂(2) · · · cβ̂(k)cγ(k)cβ(k+1) · · · cβ(m) ,

(6.1)

The maximality of k means either that k = m or β(k+1) � γ(k); in either case
the word c

β̂(2) · · · cβ̂(k)cγ(k)cβ(k+1) · · · cβ(m) is irreducible since β(j+1) � β(j) for

36

all j. The corresponding tabloid is now a tableau of the form:

� � � � �

1 1 1 1 1 1

β̂(k)

γ(k)

β(k+1)

Thus far, we have analyzed the rewriting that occurs at highest weight when
a tableau is left-multiplied by a generator. However, as we shall see, we can
now deduce information about the rewriting that occurs in general.

Recall that a word cα(1) · · · cα(k) ∈ Σ∗ represents the tabloid α(k) α(1). As
discussed following Lemma 3.1, we can think of applying the operators ẽi and
f̃i to a tabloid. Thus we can think of applying them to words in Σ: the result

of applying ẽi or f̃i to cα(1) · · · cα(k) ∈ Σ∗ is cβ(1) · · · cβ(k) , where β(k) β(1) is

the result of applying the operator to α(k) α(1). Recall that the operators ẽi

and f̃i preserve whether the � relation holds between adjacent columns. Thus
the operators ẽi and f̃i preserve whether the � relation holds between adjacent
subscripts of a word in Σ∗.

Now let β(1), . . . , β(m) be admissible X columns, such that β(i+1) � β(i)

for i = 1, . . . ,m − 1 (that is, β(m) β(1) is an X tableau), and let x ∈ X .
Let ẽi1 , . . . , ẽik be such that w = ẽi1 · · · ẽik(cxcβ(1) · · · cβ(m)) is highest weight.
The rewriting of the word w to normal form proceeds as described above, via a
single left-to-right pass through the word. In particular, until the normal form
is reached, there is exactly one pair of adjacent symbols where the relation �
does not hold between the adjacent subscripts. Now apply f̃ik · · · f̃i1 to every
word in the sequence of rewriting; this gives a sequence of words starting at
cxcβ(1) · · · cβ(m) . Furthemore, since the f̃i preserve whether the � relation holds
between adjacent subscripts, there is exactly one place in each word where
a rewriting rule can be applied. Since rewriting rules correspond to crystal
isomorphisms, which are also preserved by the f̃i, the rewriting rule that can
be applied results in the next word in the sequence of rewriting. Thus we have
a sequence of rewriting from cxcβ(1) · · · cβ(m) that also proceeds via a single left-
to-right pass.

The aim is now to show that a transducer can recognize the relation consist-
ing of pairs (u, v), where u, v ∈ Σ∗ are irreducible and cxu →∗ v, by essentially
computing this rewriting. First, note that the transducer can check that the
words on both tapes are irreducible: it simply stores the previously-read sym-
bol in its state and checks that the previously-read and next symbols do not
form the left-hand side of a rewriting rule. We will assume henceforth that the
transducer is doing this and focus on how it computes the rewriting.

The computation is performed as follows. It reads the word cβ(1) · · · cβ(m)

on its first tape. It stores one symbol in its state, starting with cx. (Note

37

that cx is not read from input; the transducer is recognizing pairs (u, v) such
that cxu →∗ v.) At each later step, storing some cα in its state, it reads the
next symbol cβ(j) , applies the rewriting rule cαcβ(j) → cγcδ, checks that the
next symbol on its second tape is cγ , and replaces the stored symbol cα with
cδ. In the case where cαcβ(j) is not the left-hand side of a rewritin rule, the
transducer simply checks that the next symbols on its second tape are cα and
cβ(j) , then reads the rest of both tapes, checking that symbols on both tapes
match. Note that this relies on rewriting proceeding as described above, via a
single left-to-right pass.

In summary, we have proven the following lemma:

Lemma 6.4. Let X be one of the types An, Bn, Cn, and Dn and let X be the
corresponding alphabet from An, Bn, Cn, or Dn. Let Σ and T be alphabet and
set of rewriting rules constucted for type X in Subsection 5.2. Let x ∈ X . Let
L ⊆ Σ∗ be the languages of irreducible words. Then the relation

cxL =
{

(u, v) ∈ L× L : cxu =Pl(X) v
}

is recognized by a transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 1.

6.3.2. G2

Let x ∈ G2 and let β(1), · · · , β(m) be admissible G2 columns satisfying

β(i+1) � β(i) for i = 1, · · · ,m − 1 (that is, β(m) β(1) is a tableau), such that

xβ(1) · · ·β(m) is a highest-weight word. Recall that xβ(1) · · ·β(h) is a highest-
weight word for all h ≤ m by Lemma 2.5. In particular, x is a highest-weight
word and so x = 1.

We are going to analyze how cxcβ(1) · · · cβ(m) rewrites to normal form. Like
for An, Bn, Cn, and Dn, the aim is to prove that this rewriting involves a single
left-to-right pass through the word. However, we require a fairly complicated
analysis of cases, shown in Table 2. In the table, every possible admissible
column is listed as a possibility for β(1). In those cases where we also have
to consider β(2) or β(3), there are fewer possibilities because of the restriction
β(3) � β(2) � β(1). Most of these cases are ruled out by the requirement that
xβ(1)β(2)β(3) is of highest weight. For example, the case where β(1) = 2 and
β(2) = 2 is impossible, because

ρ1(xβ(1)β(2) · · ·) =

x︷︸︸︷
+

β(1)

︷︸︸︷
−

β(2)

︷︸︸︷
− · · · = − · · · ;

All other cases listed as ‘not highest weight’ in Table 2 are ruled out in the same
way, by considering either ρ1 or ρ2.

There are fourteen remaining cases in Table 2, but we reassure the reader
that many of these quickly only result in one or two rewriting steps, and in the
others the rewriting behaves in a straightforward way. Let us consider each of
these cases in turn.

38

Table 2: Cases for left-multiplication in G2

x = 1 β(1) = 1 Case 1

β(1) = 2 β(2) = 1 Case 2
β(2) = 2 Not highest weight (ρ1)
β(2) = 12 Case 3
β(2) = 13 Case 4
β(2) = 23 Not highest weight (ρ1)
β(2) = 20 Not highest weight (ρ1)
β(2) = 23 Not highest weight (ρ1)

β(1) = 3 Not highest weight (ρ2)

β(1) = 0 β(2) = 1 Case 5

β(2) = 2 β(3) = 1 Case 6
β(3) = 2 Not highest weight (ρ1)
β(3) = 12 Case 7
β(3) = 13 Case 8
β(3) = 23 Not highest weight (ρ1)
β(3) = 20 Not highest weight (ρ1)

β(2) = 3 Not highest weight (ρ2)
β(2) = 12 Case 9
β(2) = 13 Not highest weight (ρ2)
β(2) = 23 Case 10
β(2) = 20 Not highest weight (ρ1)

β(1) = 3 Not highest weight (ρ1)
β(1) = 2 Not highest weight (ρ2)
β(1) = 1 Case 11
β(1) = 12 Case 12
β(1) = 13 Not highest weight (ρ2)
β(1) = 23 Case 13
β(1) = 00 Case 14
β(1) = 20 Not highest weight (ρ1)
β(1) = 23 Not highest weight (ρ1)
β(1) = 03 Not highest weight (ρ1)
β(1) = 33 Not highest weight (ρ2)
β(1) = 30 Not highest weight (ρ2)
β(1) = 32 Not highest weight (ρ2)
β(1) = 02 Not highest weight (ρ2)
β(1) = 32 Not highest weight (ρ1)
β(1) = 31 Not highest weight (ρ1)
β(1) = 21 Not highest weight (ρ2)

39

• Case 1. β(1) = 1. Then β(1) � x and so no rewriting occurs: the word
cxcβ(1) · · · cβ(m) is in normal form.

• Cases 2–4. β(1) = 2 and β(2) ∈ {1, 12, 13}. Now, since β(j+1) � β(j)

for all j, the columns β(2), . . . , β(m) consist of zero or more columns 1,
followed by zero or more columns 13, followed by zero or more columns
12. Notice that this subsumes the three possibilities for β(2). Note that

P (xβ(1)) = 12 , and P (121) = 12 1 , and P (1213) = 1 1 1 , as can
be seen from Table 1 (see page 26).

When there is at least one column 13, rewriting begins

c1c2c
p
1c

q
13c

r
12 → c12c

p
1c

q
13c

r
12

→∗ cp1c12c
q
13c

r
12

→

{
cp1c

r+1
12 if q = 0,

cp+3
1 cq−1

13 cr12 if q ≥ 1.

In either case, the final word is in normal form since 1 � 13 and 1 � 12.

• Case 5. β(1) = 0 and β(2) = 1. Then P (xβ(1)) = 1 . Since 1 � 1, the
rewriting to normal form is simply

c1c0c1cβ(3) · · · cβ(m) → c1c1cβ(3) · · · cβ(m) .

• Cases 6–8. β(1) = 0, β(2) = 2, and β(3) ∈ {1, 12, 13}. Since β(j+1) � β(j)

for all j, the columns β(3), . . . , β(m) consist of zero or more columns 1,
followed by zero or more columns 13, followed by zero or more columns

12. Since P (1β(1)) = 1 and P (1β(2)) = 12 , rewriting proceeds in one
of two ways, similarly to case 2. If there is a column 13 present, rewriting
proceeds

c1c0c2c1 · · · c1c13cβ(k) · · · cβ(m) → c1c2c1 · · · c1c13cβ(k) · · · cβ(m)

→ c12c1 · · · c1c13cβ(k) · · · cβ(m)

→∗ c1 · · · c1c12c13cβ(k) · · · cβ(m)

→ c1 · · · c1c1c1c1cβ(k) · · · cβ(m) .

This word is in normal form since, regardless of whether β(k) is 12 or 13,
we have 1 � β(k). When there is no column 13, the columns 1 are followed
immediately by columns 12, and so rewriting begins

c1c0c2c1 · · · c1c12cβ(k) · · · cβ(m) → c1c2c1 · · · c1c12cβ(k) · · · cβ(m)

→ c12c1 · · · c1c12cβ(k) · · · cβ(m)

→∗ c1 · · · c1c12c12cβ(k) · · · cβ(m) ,

whichs is in normal form.

40

• Case 9. β(1) = 0 and β(2) = 12. Then P (xβ(1)) = 1 . Since 12 � 1, the
rewriting to normal form is simply

c1c0c12cβ(3) · · · cβ(m) → c1c12cβ(3) · · · cβ(m) .

• Case 10. β(1) = 0 and β(2) = 23. Now, since β(j+1) � β(j) for all j,
the remaining columns β(3), . . . , β(m) consist of zero or more columns
23, zero or more columns 13, and zero or more columns 12. Note that

P (xβ(1)) = 1 , and P (1β(2)) = 1 1 , as can be seen from Table 1. So
rewriting proceeds as follows:

c1c0c23c23 · · · c23cβ(k) · · · cβ(m) → c1c23c23 · · · c23cβ(k) · · · cβ(m)

→ c1c1c23 · · · c23cβ(k) · · · cβ(m)

→∗ c1c1c1 · · · c1cβ(k) · · · cβ(m) .

Regardless of whether β(k) is 13 or 12, we have β(k) � 1, so this word is in
normal form. Note that there is exactly one symbol c1 in the final word
for each symbol c23 in the initial word.

• Case 11. β(1) = 1. Since P (11) = ε, as can be seen from Table 1, the
rewriting to normal form is simply

c1c1cβ(3) · · · cβ(m) → cβ(3) · · · cβ(m) .

• Case 12. β(1) = 12. Since 12 � 1, the word c1c12cβ(2) · · · cβ(m) is in normal
form.

• Case 13. β(1) = 23. Since β(j+1) � β(j) for all j, the remaining columns
β(2), . . . , β(m) consist of zero or more columns 23, zero or more columns

13, and zero or more columns 12. Note that P (xβ(1)) = 1 1 , as can be
seen from Table 1. So rewriting proceeds as follows:

c1c23c23 · · · c23cβ(k) · · · cβ(m) → c1c1c23 · · · c23cβ(k) · · · cβ(m)

→∗ c1c1c1 · · · c1cβ(k) · · · cβ(m) .

Regardless of whether β(k) is 13 or 12, we have β(k) � 1, so this word is
in normal form.

• Case 14. β(1) = 00. Since β(2) � β(1), it follows that β(2) is either 13

or 12 (note that 00 6� 00). Since P (xβ(1)) = 1 , as can be seen from
Table 1, the rewriting to normal form is simply

c1c00cβ(2) · · · cβ(m) → c1cβ(2) · · · cβ(m) .

Regardless of whether β(2) is 13 or 12, we have β(2) � 1, so this word is
in normal form.

41

This completes the case analysis. Note that in each case, the lengths of cxcβ(1) · · · cβ(m)

and its corresponding normal form differ by at most 2. (The maximum difference
2 occurs in cases 5–7 and 10.)

As in the discussion before Lemma 6.4, the way rewriting proceeds at highest
weight is mirrored in how it proceeds in general for type G2. Thus, with the
analysis above, we can prove the following analogue of Lemma 6.4:

Lemma 6.5. Let Σ and T be alphabet and set of rewriting rules constucted
for type G2 in Subsection 5.2. Let x ∈ G2. Let L ⊆ Σ∗ be the languages of
irreducible words. Then the relation

cxL =
{

(u, v) ∈ L× L : cxu =Pl(G2) v
}

is recognized by an transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 1.

6.4. Right-multiplication by transducer

We now turn our attention to right-multiplication. Unlike left-multiplication,
the cases An, Bn, Cn, and Dn are sufficiently different that we have to consider
them separately.

6.4.1. An

Let β(1), . . . , β(m) be admissible An columns and let x ∈ An be such that

β(i+1) � β(i) for i = 1, . . . ,m−1 (that is, β(m) β(1) is an An tableau), and such

that β(1) · · ·β(m)x is a highest-weight word. We are going to examine how the
corresponding word over Σ (that is, cβ(1) · · · cβ(m)cx) rewrites to an irreducible
word. The aim is to prove that this rewriting involves a single right-to-left pass
through the word.

First, note that since the prefix β(1) · · ·β(m) is a highest-weight word by
Lemma 2.5, each column β(i) is of the form 1 · · · pi for some pi ∈ A[1, n] and
pi+1 ≥ pi for i = 1, . . . ,m−1 by Lemma 3.2. That is, the tabloid corresponding
to the word β(1) · · ·β(m)x is of the form:

� � � � � � � �6�

1 1 1 1 1 1 1 1 1x

p9

p8 p7

p6

p5

p4 p3

The assumption that β(1) · · ·β(m)x is of highest weight puts a restriction on
x, as the following lemma shows:

Lemma 6.6. Either x = 1, or x = pk + 1 for some k ∈ {1, . . . ,m} such that
pk < n.

42

Proof. Suppose that x 6= 1 and x 6= pk + 1 for all k. Then for each i, either
ρx−1(β(k)) = ε (when x−1 > pk) or ρx−1(β(k)) = +− = ε (when x−1 < pk), and
so ρx−1(β(1) · · ·β(m)x) = −, contradicting the assumption of highest weight.

We consider the cases x = pk + 1 and x = 1 separately.
First, suppose x = pk + 1, and assume that k is maximal with this property.

Then for j > k, we have x 6� β(j) and the symbol x appears in β(j) and so by the

Commuting columns lemma 3.4, P (x β(j)) = β(j) x , while P (x β(k)) = β(k)x.
That is, there are rewriting rules cβ(j)cx → cxcβ(j) and cβ(k)cx → cβ(k)x. Further,

β(k)x � β(k+1). Therefore rewriting to normal form proceeds as follows:

cβ(1) · · · cβ(m)cx

→ cβ(1) · · · cβ(m−1)cxcβ(m)

...

→ cβ(1) · · · cβ(k)cxcβ(k+1) · · · cβ(m)

→ cβ(1) · · · cβ(k)xcβ(k+1) · · · cβ(m) .

Thus in the case k = 6, in terms of the tabloid the column x commutes past
the columns β(j) with j > 6, resulting in a tabloid of the following form:

� � � � � � � �6�

1 1 1 1 1 1 1 1 1x

p9

p8 p7

p6

p5

p4 p3

The final rewriting step appends x to the bottom of the column β(6), giving a
tableau of the following form:

� � � � � � � �

1 1 1 1 1 1 1 1 1

x
p9

p8 p7

p6

p5

p4 p3

Now consider the other case, when x = 1. Define k to be maximal such
that β(k) = 1. Then for j > k, we have x 6� β(j) and the symbol x appears in

β(j) and so by the Commuting columns lemma 3.4, P (x β(j)) = β(j) x . That

is, there are rewriting rules cβ(j)cx → cxcβ(j) . Further, x � β(k). Therefore

43

rewriting to normal form proceeds as follows:

cβ(1) · · · cβ(m)cx

→ cβ(1) · · · cβ(m−1)cxcβ(m)

...

→ cβ(1) · · · cβ(k)cβ(k+1)cxcβ(k+2) · · · cβ(m)

→ cβ(1) · · · cβ(k)cxcβ(k+1) · · · cβ(m) .

Thus in the case k = 2, in terms of the tabloid the column x commutes past
the columns β(j) with j > 2, giving a tableau of the following form:

� � � � � � � � �

1 1 1 1 1 1 1 1 1x

p9

p8 p7

p6

p5

p4 p3

Note that in both cases the length of the normal form word differs from m
by at most 1.

As in the discussion before Lemma 6.4, the way rewriting proceeds at highest
weight is mirrored in how it proceeds in general. That is, rewriting can be carried
out by a single right-to-left pass through the word. The aim is now to show
that a transducer can recognize the relation consisting of pairs (u, v), where
u, v ∈ Σ∗ are irreducible and ucx →∗ v, by essentially computing this rewriting.
To see this, consider a transducer that reads its input tapes right-to-left: such a
transducer can carry out the rewriting in a way symmetrical to that described
in the discussion before Lemma 6.4. Since the class of rational relations is closed
under reversal [78, p. 65–66], it follows we have proven the following analogue
of Lemma 6.4 for right-multiplication in type An:

Lemma 6.7. Let Σ and T be the alphabet and set of rewriting rules constructed
for type An in Subsection 5.2. Let x ∈ An. Let L ⊆ Σ∗ be the languages of
irreducible words. Then the relation

Lcx =
{

(u, v) ∈ L× L : ucx =Pl(An) v
}

is recognized by an transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 1.

6.4.2. Cn

Let β(1), . . . , β(m) be admissible Cn columns and let x ∈ Cn be such that

β(i+1) � β(i) for i = 1, . . . ,m − 1 (that is, β(m) β(1) is a Cn tableau), and

such that β(1) . . . β(m)x is a highest-weight word. As we did for type An, we are
going to examine how the corresponding word over Σ (that is, cβ(1) · · · cβ(m)cx)

44

rewrites to an irreducible word. Again, the aim is to prove that this rewriting
involves a single right-to-left pass through the word.

Since β(1) . . . β(m) is a highest-weight word by Lemma 2.5, each column β(i)

is of the form 1 · · · pi for some pi ∈ C[1, n], and pi+1 ≥ pi for i = 1, . . . ,m − 1
by Lemma 3.2.

The reasoning will proceed in a similar way to the An case, except that there
is the additional possibility that x may be pk, as shown in the following lemma:

Lemma 6.8. Either x = 1, or x = pk + 1 for some k ∈ {1, . . . ,m} such that
pk < n, or x = pk for some k ∈ {1, . . . ,m}.

Proof. Suppose that x 6= 1 and x 6= pk + 1 and x 6= pk for all k. If x ∈ C[1, n],
then the same contradiction arises as in the proof of Lemma 6.6. If x ∈ C[n, 1],
then for each k, either ρx(β(k)) = ε (when x > pk) or ρx(β(k)) = +− = ε (when
x < pk), and so ρx(β(1) · · ·β(m)x) = −, contradicting the assumption of highest
weight.

If x = 1 or x = pk +1, then the rewriting proceeds in the same way as in the
An case. So suppose x = pk. If pk > 1, we will assume that k is minimal with
this property; if pk = 1, we will assume that k is maximal with this property.

Now, P (pk β(m)) = 1 · · · (pk − 1)(pk + 1) · · · pm, since β(m)pk =
R

Cn
5

1 · · · (pk−

1)(pk + 1) · · · pm. Pictorially (using k = 6 as an example), we have:

p6 − 1

p6 + 1

� � � � � � �6�

1 1 1 1 1 1 1 1 1

p9 p8 p7

p6

p5

p4 p3

Now, for m > j > k, we have

β(j)1 · · · (pk − 1)(pk + 1) · · · pj+1

= 1 · · · pj︸ ︷︷ ︸ 1 · · · (pk − 1)(pk + 1) · · · pj︸ ︷︷ ︸(pj + 1) · · · pj+1

[by the Commuting columns lemma 3.4]

=Pl(Cn)

︷ ︸︸ ︷
1 · · · (pk − 1)(pk + 1) · · · pj

︷ ︸︸ ︷
1 · · · pj(pj + 1) · · · pj+1

= 1 · · · (pk − 1)(pk + 1) · · · pjβ
(j+1).

Write β
(j)
∗ for β(j) with the symbol pk deleted. Then we have P (β(j+1)

∗ β(j)) =

β(j+1)β
(j)
∗ for all j = k + 1, . . . ,m − 1. (Note that when pk = 1, we know from

the maximality of k that β(j) 6= 1.) Thus we have rewriting rules cβ(j)c
β
(j+1)
∗

→
c
β
(j)
∗

cβ(j+1) .

When pk 6= 1, we have β
(k)
∗ = 1 · · · (pk − 1). Thus β

(k)
∗ � β(k−1) since by the

minimality of k we have pk−1 < pk. Thus in this case rewriting to normal form

45

proceeds as follows:

cβ(1) · · · cβ(m)cpk

→ cβ(1) · · · cβ(m−1)c
β
(m)
∗

→ cβ(1) · · · c
β
(m−1)
∗

cβ(m)

...

→ cβ(1) · · · cβ(k−1)c
β
(k)
∗

cβ(k+1) · · · cβ(m) .

In the case k = 6 with pk 6= 1, in terms of the tabloid the ‘gap’ in the
columns moves from left to right through the tabloid:

p6 − 1

p6 + 1

� � � � � � �6�

1 1 1 1 1 1 1 1 1

p9

p7

p6

p5

p4 p3 → p6 − 1

p6 + 1

� � � � � � �6�

1 1 1 1 1 1 1 1 1

p9

p8

p6

p5

p4 p3

The rewriting continues until the ‘gap’ reaches the column β(k), at which point
a tableau is obtained:

p6 − 1

� � � � � � � �

1 1 1 1 1 1 1 1 1

p9

p8 p7

p5

p4 p3

When pk = 1, we have β
(k+1)
∗ = 2 · · · pk+1 (and we know pk+1 > 1 by the

maximality of k) and so P (β(k+1)
∗ β(k)) = β(k+1) and so there is a rewriting rule

cβ(k)c
β
(k+1
∗

→ cβ(k+1) . Thus in this case rewriting to normal form proceeds as

follows:

cβ(1) · · · cβ(m)cpk

→ cβ(1) · · · cβ(m−1)c
β
(m)
∗

→ cβ(1) · · · c
β
(m−1)
∗

cβ(m)

...

→ cβ(1) · · · cβ(k−1)cβ(k)c
β
(k+1)
∗

· · · cβ(m)

→ cβ(1) · · · cβ(k−1)cβ(k+1) · · · cβ(m) .

In the case k = 2 with pk = 1, in terms of the tabloid the ‘gap’ in the
columns moves from left to right through the tabloid, just as in the other case,

46

but then there is a final rewriting step:

� � � � � � �6�

1 1 1 1 1 1 1 12

p9

p8 p7

p6

p5

p4

p3

→

� � � � � � �

1 1 1 1 1 1 1 1

p9

p8 p7

p6

p5

p4 p3

Note that in each case the length of the normal form word differs from m
by at most 1.

As in the discussion before Lemma 6.7, the way rewriting proceeds at highest
weight is mirrored in how it proceeds in general and so, using the same argument,
we have proven the following analogue of Lemma 6.7 for type Cn:

Lemma 6.9. Let Σ and T be the alphabet and set of rewriting rules constructed
for type Cn in Subsection 5.2. Let x ∈ Cn. Let L ⊆ Σ∗ be the languages of
irreducible words. Then the relation

Lcx =
{

(u, v) ∈ L× L : ucx =Pl(Cn) v
}

is recognized by an transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 1.

6.4.3. Bn

Let β(1), . . . , β(m) be admissible Bn columns and let x ∈ Bn be such that

β(i+1) � β(i) for i = 1, . . . ,m − 1 (that is, β(m) β(1) is a Bn tableau), and

such that β(1) . . . β(m)x is a highest-weight word. As we did for types An

and Cn, we are going to examine how the corresponding word over Σ (that
is, cβ(1) · · · cβ(m)cx) rewrites to an irreducible word. In fact, the analysis reduces
almost entirely to the Cn case: there is only one easy extra case. Again, the
aim is to prove that this rewriting involves a single right-to-left pass through
the word.

Since β(1) . . . β(m) is a highest-weight tableau, each column β(i) is of the form
1 · · · pi for some pi ∈ B[1, n], and pi+1 ≥ pi for i = 1, . . . ,m− 1 by Lemma 3.2.

Lemma 6.10. One of the following holds:

1. x = 1;

2. x = pk + 1 for some k ∈ {1, . . . ,m} such that pk < n;

3. x = 0 (only if pm = n);

4. x = pk for some k ∈ {1, . . . ,m}.

Proof. Suppose that x 6= 1, x 6= pk + 1, x 6= 0, and x 6= pk for all k. If
x ∈ Bn[1, n], then the same contradiction arises as in the proof of Lemma 6.6.
If x ∈ Bn[n, 1], then the same contradiction arises as in the proof of Lemma 6.8.

Finally, suppose x = 0. If pm 6= n, then ρn(β(k)) = ε for each k and so
ρn(β(1) · · ·β(m)0) = −+, contradicting the assumption of highest weight.

47

If x = 1 or x = pk +1, then the rewriting proceeds in the same way as in the
An case, and if x = pk, then the rewriting proceeds in the same way as the Cn

case. So suppose x = 0. Then pm = n and so β(m)0 = 1 · · ·n0 =
R

Bn
5

1 · · ·n =

β(m); thus P (0 β(m)) = β(m). So there is a rewriting rule cβ(m)c0 = cβ(m) and
so rewriting to normal form is as follows:

cβ(1) · · · cβ(m)c0 → cβ(1) · · · cβ(m) .

Note that in each case the length of the normal form word differs from m
by at most 1.

As in the discussion before Lemma 6.7, the way rewriting proceeds at highest
weight is mirrored in how it proceeds in general and so, using the same argument,
we have proven the following analogue of Lemma 6.7 for type Bn:

Lemma 6.11. Let Σ and T be the alphabet and set of rewriting rules constructed
for type Bn in Subsection 5.2. Let x ∈ Bn. Let L ⊆ Σ∗ be the languages of
irreducible words. Then the relation

Lcx =
{

(u, v) ∈ L× L : ucx =Pl(Bn) v
}

is recognized by an transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 1.

6.4.4. Dn

Let β(1), . . . , β(m) be admissible Dn columns and let x ∈ Dn be such that

β(i+1) � β(i) for i = 1, . . . ,m − 1 (that is, β(m) β(1) is a Dn tableau), and

such that β(1) . . . β(m)x is a highest-weight word. As for the other types, we are
going to examine how the corresponding word over Σ (that is, cβ(1) · · · cβ(m)cx)
rewrites to an irreducible word. As before, the aim is to prove that this rewriting
involves a single right-to-left pass through the word.

Since β(1) . . . β(m) is a highest-weight word by Lemma 2.5, each column
β(i) is of the form 1 · · · pi for some pi ∈ D[1, n] ∪ D[1, n], and pi+1 ≥ pi for
i = 1, . . . ,m− 1 by Lemma 3.2.

Lemma 6.12. One of the following holds:

1. x = 1;

2. x = pk + 1 for some k ∈ {1, . . . ,m} such that pk < n− 1;

3. x = n (only if β(k) = 1 · · · (n− 1) for some k or β(m) = 1 · · · (n− 1)n);

4. x = n (only if β(k) = 1 · · · (n− 1) for some k or β(m) = 1 · · ·n);

5. x = pk for some k ∈ {1, . . . ,m} such that pk ≤ n− 1.

Proof. Suppose that x 6= 1, x 6= pk + 1, x 6= n, x 6= n, and x 6= pk for all
k. If x ∈ Dn[1, n − 1] then the same contradiction arises as in the proof of
Lemma 6.6. If x ∈ Dn[n− 1, 1], then the same contradiction arises as in the
proof of Lemma 6.8.

Now, suppose x = n. If β(k) 6= 1 · · · (n−1) for all k and β(m) 6= 1 · · · (n−1)n,
then ρn(β(j)) = ε (when β(j) = 1 · · · pj for pj ≤ n − 2) and ρn−1(β(j)) =

48

+− = ε (when β(j) = 1 · · ·n) and so ρn−1(β(1) · · ·β(m)n) = −, contradicting
the assumption of highest weight.

Similar reasoning shows that x = n only if β(k) = 1 · · · (n− 1) for some k or
β(m) = 1 · · ·n, using ρn to get the contradictions.

If cases (1) or (2) of Lemma 6.12 hold, or case (3) holds with β(k) = 1 · · · (n−
1) for some k, then the rewriting proceeds in the same way as in the An case. If
case (5) holds, or case (4) holds with β(m) = 1 · · ·n, then the rewriting proceeds
in the same way as the Cn case.

We thus have two remaining cases: case (3) with x = n and β(m) = 1 · · · (n−
1)n, or case (4) with x = n and β(k) = 1 · · · (n− 1) for some k.

Suppose x = n and β(k) = 1 · · · (n − 1) for some k. In the case where
β(m) = 1 · · ·n, rewriting proceeds as in the Cn case. So, by the definition of
�, either β(m) = 1 · · · (n − 1) or β(m) = 1 · · · (n − 1)n. Consider these cases
separately:

1. β(m) = 1 · · · (n − 1). So P (β(m)n) is the single column β(m)n and so
there is a rewriting rule cβ(m)cn → cβ(m)n and so rewriting to normal form
proceeds as follows:

cβ(1) · · · cβ(m)cn → cβ(1) · · · cβ(m)n.

2. β(m) = 1 · · · (n− 1)n. Then rewriting proceeds in the same way as in the
An case, but with n in place of n.

Finally, suppose x = n and β(m) = 1 · · · (n − 1)n. It is easy to see that
rewriting is symmetric to the case Cn where x = n and β(m) = 1 · · ·n.

Note that in each case the length of the normal form word differs from m
by at most 1.

As in the discussion before Lemma 6.7, the way rewriting proceeds at highest
weight is mirrored in how it proceeds in general and so, using the same argument,
we have proven the following analogue of Lemma 6.7 for type Dn:

Lemma 6.13. Let Σ and T be the alphabet and set of rewriting rules constructed
for type Dn in Subsection 5.2. Let x ∈ Dn. Let L ⊆ Σ∗ be the languages of
irreducible words. Then the relation

Lcx =
{

(u, v) ∈ L× L : ucx =Pl(D2) v
}

is recognized by an transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 1.

6.4.5. G2

Let β(1), . . . , β(m) be admissible G2 columns and let x ∈ G2 be such that

β(i+1) � β(i) for i = 1, . . . ,m − 1 (that is, β(m) β(1) is a G2 tableau), and

such that β(1) . . . β(m)x is a highest-weight word. Since β(1) . . . β(m) is a highest-
weight word, each column β(i) is either 1 or 12 by Lemma 3.2. Notice that, by
the definition of � for type G2, some β(j) is 12 if and only if the leftmost column

49

β(m) is 12, and some β(j) is 1 if and only if the rightmost column β(1) is 1. As
for the other types, we are going to examine how the corresponding word over
Σ (that is, cβ(1) · · · cβ(m)cx) rewrites to an irreducible word. As before, the aim
is to prove that this rewriting involves a single right-to-left pass through the
word.

We first prove the following lemma, which tells us about the possible cases
for x and the restrictions this puts on the columns β(j). We will then con-
sider separately the rewriting that occurs according to whether some β(j) is the
column 12.

Lemma 6.14. The generator x can be

1. 1;
2. 2, only if there is at least one column 1 among the β(j);
3. 3, only if there is at least one column 12 among the β(j);
4. 0, only if there is at least one column 1 among the β(j);
5. 3, only if there are at least two columns 1 among the β(j);
6. 2, only if there is at least one column 12 among the β(j);
7. 1, only if there is at least one column 1 among the β(j).

Proof. Note first that ρ1(1) = +, ρ1(12) = +− = ε, ρ2(1) = ε, ρ2(12) = +, so
ρ1(β(1) · · ·β(m)) consists of a string of symbols + whose length is the number of
columns 1 among the β(j), and ρ2(β(1) · · ·β(m)) consists of a string of symbols
+ whose length is the number of columns 12 among the β(j). The result now
follows by considering how many symbols + are required to cancel symbols −
in ρi(x):

1. Nothing to prove.
2. Since ρ1(2) = −, there must be at least one column 1 among the β(j);
3. Since ρ2(3) = −, there must be at least one column 12 among the β(j);
4. Since ρ1(0) = −+, there must be at least one column 1 among the β(j);
5. Since ρ1(3) = −−, there must be at least two columns 1 among the β(j);
6. Since ρ2(2) = −, there must be at least one column 12 among the β(j);
7. Since ρ1(1) = −, there must be at least one column 1 among the β(j).

Consider first the case where there is no column 12 among the β(j). That
is, β(1) · · ·β(m)x = 1mx. In this case, x can be 1, 2, 0, 3 (only if m ≥ 2), or 1
by Lemma 6.14, and so:

x 1 1 1 1

=Pl(G2)

1 1 1 1 1 if x = 1;

1 1 1 1

2
if x = 2;

1 1 1 1 if x = 0, since P (10) = 1 ;

1 1 1

2
if x = 3, since P (13) = 2 ;

1 1 1 if x = 1 since P (11) is empty.

50

In the first case, cβ(1) · · · cβ(m)cx is in normal form; in the other four cases
(respectively) the rewriting to normal form proceeds as follows:

cβ(1) · · · cβ(m)cx = c1 · · · c1c1c1cx

→

c1 · · · c1c1c12 using c1c2 → c12 since P (12) = 12 ;

c1 · · · c1c1c1 using c1c0 → c1 since P (10) = 1 ;

c1 · · · c1c1c2 using c1c3 → c2 since P (13) = 2 ;

→ c1 · · · c1c12 using c1c2 → c12 since P (12) = 12 ;

c1 · · · c1c1 using c1c1 → ε since P (1) is empty.

In each case, rewriting cβ(1) · · · cβ(m)cx to normal form involves at most two
rewriting steps at the right-hand end of the word. Note that the length of the
normal form differs from m by at most 2.

Next consider the case where there is at least one column 12 among the β(j).
That is, β(1) · · ·β(m)x = 1h(12)kx, with k ≥ 1 and h ≥ 0. By Lemma 6.14, x
can be 1, 2 (only if h ≥ 1), 3, 0 (only if h ≥ 1), 3 (only if h ≥ 2), 2, or 1 (only
if h ≥ 1). Consider each case in turn:

1. x = 1. Then since 121 =
R

G2
3

112, we have P (1 1

2

) = 1 1

2

and so

c12c1 → c1c12. Thus, using this rule at each step, rewriting to normal
form is as follows:

c1 · · · c1c12 · · · c12c12c1 → c1 · · · c1c12 · · · c12c1c12

...

→ c1 · · · c1c1c12 · · · c12c12.

2. x = 2. Then since 122 =
R

G2
3

212, we have P (2 1

2

) = 1 2

2

, and so

c12c2 → c2c12 is a rewriting rule. As noted above, there is at least one
column 1 present. So the rewriting to normal form proceeds as follows:

c1 · · · c1c1c12 · · · c12c12c2 → c1 · · · c1c1c12 · · · c12c2c12 using c12c2 → c2c12

...

→ c1 · · · c1c1c2c12 · · · c12c12 using c12c2 → c2c12

→ c1 · · · c1c12c12 · · · c12c12. using c1c2 → c12

3. x = 3. Then since 123 =
R

G2
4

110 =
R

G2
1

11 and 1211 =
R

G2
3

1121 =
R

G2
3

1112, we have P (3 1

2

) = 1 1) So c12c3 → c1c1 is a rewriting rule.

51

Furthermore, P (1 1 1

2

) = 1 1 1

2

. Thus add the extra rewriting

rule c12c1c1 → c1c1c12. Now rewriting to normal form is

c1 · · · c1c12 · · · c12c12c12c3 → c1 · · · c1c12 · · · c12c12c1c1 using c12c3 → c1c1

→ c1 · · · c1c12 · · · c12c1c1c12 using c1c1c12 → c12c1c1

...

→ c1 · · · c1c1c1c12 · · · c12c12. using c1c1c12 → c12c1c1

4. x = 0. Then since 120 =
R

G2
4

210 =
R

G2
1

21 and 1221 =
R

G2
3

2121 =
R

G2
3

2112 and 121 =
R

G2
3

112, we have P (0 1

2

) = 1 2 and so c12c0 →

c2c1 is a rewriting rule. Furthermore, P (1 2 1

2

) = 1 1 2

2

and

P (1 2 1) = 1 1

2

. Thus, we add the extra rewriting rules c12c2c1 →

c2c1c12 and c1c2c1 → c1c12,
As noted above, there is at least one column 1 present. Rewriting to
normal form is therefore as follows:

c1 · · · c1c12 · · · c12c12c12c0 → c1 · · · c1c12 · · · c12c12c2c1 using c12c0 → c2c1

→ c1 · · · c1c12 · · · c12c2c1c12 using c12c2c1 → c2c1c12

...

→ c1 · · · c1c2c1c12 · · · c12c12 using c12c2c1 → c2c1c12

→ c1 · · · c1c12c12 · · · c12c12. using c1c2c1 → c1c12

5. x = 3. Then since 123 =
R

G2
4

213 =
R

G2
1

22, so c12c3 → c2c2 is a rewrit-

ing rule. Furthermore, 1222 =
R

G2
3

2122 =
R

G2
3

2212 and 1122 =
R

G2
3

1212, we have P (3 1

2

) = 2 2) and P (2 2 1

2

) = 1 2 2

2

and

P (2 2 1 1) = 1 1

2 2

. Thus, we add the extra rewriting rules c12c2c2 →

c2c2c12 and c2c2c1c1 → c12c12.
As noted above, there are at least two columns 1 present. Rewriting to

52

normal form is therefore as follows:

c1 · · · c1c1c1c12 · · · c12c12c12c3 → c1 · · · c1c1c1c12 · · · c12c12c2c2 using c12c3 → c2c2

→ c1 · · · c1c1c1c12 · · · c12c2c2c12 using c12c2c2 → c2c2c12

...

→ c1 · · · c1c1c1c2c2c12 · · · c12c12 using c12c2c2 → c2c2c12

→ c1 · · · c1c12c12c12 · · · c12c12 using c2c2c1c1 → c12c12.

6. x = 2. Then since 122 =
R

G2
1

10 =
R

G2
1

1 and 121 =
R

G2
3

112, we have

P (2 1

2

) = 1 and P (1 1

2

) = 1 1

2

and so c12c2 → c1 and c12c1 →

c1c12 are rewriting rules.
Thus rewriting to normal form proceeds as follows:

c1 · · · c1c12 · · · c12c12c12c2 → c1 · · · c1c12 · · · c12c12c1 using c12c2 → c1

→ c1 · · · c1c12 · · · c12c1c12 using c12c1 → c1c12

...

→ c1 · · · c1c1c12 · · · c12c12. using c12c1 → c1c12

7. x = 1. Then since 121 =
R

G2
1

= 13 =
R

G2
1

2 and 122 =
R

G2
3

212, we have

P (1 1

2

) = 2 and P (2 1

2

) = 1 2

2

, so c12c1 → c2 and c12c2 →

c2c12.
As noted above, there is at least one column 1 present. Rewriting to
normal form therefore proceeds as follows:

c1 · · · c1c1c12 · · · c12c12c12c1 → c1 · · · c1c1c12 · · · c12c12c2 using c12c1 → c2

→ c1 · · · c1c1c12 · · · c12c2c12 using c12c2 → c2c12

...

→ c1 · · · c1c1c2c12 · · · c12c12 using c12c2 → c2c12

→ c1 · · · c1c12c12 · · · c12c12. using c1c2 → c12

Let Σ and T be the alphabet and set of rewriting rules constucted for type
G2 in Subsection 5.2

Let T ′ consist of the rules in T and by rules corresponding to:

• tabloids with shape rewriting to tableaux with shape (correspond-
ing to extra rules in cases 3, 4, and 5 above);

• tabloids with shape rewriting to tableaux with shape (corresponding
to an extra rule in case 4 above);

53

• tabloids with shape rewriting to tableaux with shape (correspond-
ing to an extra rule in case 5 above).

Note that the language of irreducible words is the same for the sets of rules T
and T ′, since a left-hand side of some rule in T must appear as a subword of
the left-hand side of each rule in T ′.

Let u ∈ Σ∗ and cx ∈ G2. By the analysis above, rewriting ucx to normal
form using T ′ proceeds via a single right-to-left pass, since rewriting at highest
weight using T ′ mirrors how rewriting proceeds in general. Note that in each
case the length of the normal form word differs from m by at most 2.

As in the discussion before Lemma 6.7, the relation consisting of pairs (u, v)
such that ucx rewrites to v can be recognized by a transducer. The only modi-
fication to the argument is that the transducer that reads its input tapes right-
to-left must stores the previous three symbols read from its first tape, so as to
apply the rule in T ′ \ T , and will always give these new rules precedence. With
that change, the same argument proves the following analogue of Lemma 6.7
for type G2:

Lemma 6.15. Let Σ and T ′ be as above. Let x ∈ G2. Let L ⊆ Σ∗ be the
language of irreducible words with respect to T ′ (which is equal to the language
of irreducible words with respect to T). Then the relation

Lcx =
{

(u, v) ∈ L× L : ucx =Pl(G2) v
}

is recognized by an transducer. Furthermore, if (u, v) is a pair in this relation,
then the lengths of u and v differ by at most 2.

7. Building the biautomatic structure

Equipped with the lemmata from Subsections 6.3 and 6.4, we are now ready
to prove biautomaticity for the plactic monoids. First, we recall the essential
definitions in Subsection 7.1. We also state a result that allows us to discuss
rational relations rather than synchronous rational relations, which helps avoids
some technical reasoning (Proposition 7.3). In Subsection 7.2, we then proceed
to build the biautomatic structures and to examine some consequences and
applications of biautomaticity.

7.1. Preliminaries

This subsection contains the definitions and basic results from the theory of
automatic and biautomatic monoids needed hereafter. For further information
on automatic semigroups, see [49]. We assume familiarity with basic notions of
automata and regular languages (see, for example, [79]).

Definition 7.1. Let A be an alphabet and let $ be a new symbol not in A.
Define the mapping δR : A∗ ×A∗ → ((A ∪ {$}) × (A ∪ {$}))∗ by

(u1 · · ·um, v1 · · · vn) 7→

(u1, v1) · · · (um, vn) if m = n,

(u1, v1) · · · (un, vn)(un+1, $) · · · (um, $) if m > n,

(u1, v1) · · · (um, vm)($, vm+1) · · · ($, vn) if m < n,

54

and the mapping δL : A∗ ×A∗ → ((A ∪ {$}) × (A ∪ {$}))∗ by

(u1 · · ·um, v1 · · · vn) 7→

(u1, v1) · · · (um, vn) if m = n,

(u1, $) · · · (um−n, $)(um−n+1, v1) · · · (um, vn) if m > n,

($, v1) · · · ($, vn−m)(u1, vn−m+1) · · · (um, vn) if m < n,

where ui, vi ∈ A.

Definition 7.2. Let M be a monoid. Let A be a finite alphabet representing
a set of generators for M and let L ⊆ A∗ be a regular language such that every
element of M has at least one representative in L. For each a ∈ A∪ {ε}, define
the relations

La = {(u, v) : u, v ∈ L, ua =M v}

aL = {(u, v) : u, v ∈ L, au =M v}.

The pair (A,L) is an automatic structure for M if LaδR is a regular language
over (A ∪ {$}) × (A ∪ {$}) for all a ∈ A ∪ {ε}. A monoid M is automatic if it
admits an automatic structure with respect to some generating set.

The pair (A,L) is a biautomatic structure for M if LaδR, aLδR, LaδL, and

aLδL are regular languages over (A ∪ {$}) × (A ∪ {$}) for all a ∈ A ∪ {ε}. A
monoid M is biautomatic if it admits a biautomatic structure with respect to
some generating set. [Note that biautomaticity implies automaticity.]

Unlike the situation for groups, biautomaticity for monoids and semigroups,
like automaticity, is dependent on the choice of generating set [49, Example 4.5].
However, for monoids, biautomaticity and automaticity are independent of the
choice of semigroup generating sets [80, Theorem 1.1].

Hoffmann & Thomas have made a careful study of biautomaticity for semi-
groups [81]. They distinguish four notions of biautomaticity for semigroups,
which are all equivalent for groups and more generally for cancellative semi-
groups [81, Theorem 1] but distinct for semigroups [81, Remark 1 & § 4]. In
the sense used in this paper, ‘biautomaticity’ implies all four of these notions
of biautomaticity.

In proving that RδR or RδL is regular, where R is a relation on A∗, a useful
strategy is to prove that R is a rational relation (that is, is recognized by a
transducer) and then apply the following result, which is a combination of [82,
Corollary 2.5] and [81, Proposition 4]:

Proposition 7.3. If R ⊆ A∗ × A∗ is rational relation and there is a constant
k such that

∣∣|u| − |v|
∣∣ ≤ k for all (u, v) ∈ R, then RδR and RδL are regular.

7.2. Construction

In Subsections 6.3 and 6.4, we studied the rewriting that occurs when a
normal form word is left- or right-multiplied by a generator. We now turn to
building biautomatic structures for the plactic monoids of each type. Most of
the work has been done; all that remains is to put together the pieces.

55

Theorem 7.4. The plactic monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and
Pl(G2) are biautomatic.

Proof. Let X be one of the types An, Bn, Cn, Dn, and G2 and let X be the
corresponding alphabet from An, Bn, Cn, Dn, or G2. Let (Σ, T) be the rewriting
system constructed in Section 5 for Pl(X). Let L ⊆ Σ∗ be the language of
irreducible words.

Let x ∈ X . By Lemmata 6.4 and 6.5, the relation

cxL =
{

(u, v) ∈ L× L : cxu =Pl(X) v
}

is a rational relation. By Lemmata 6.7, 6.9, 6.11, 6.13, and 6.15, the relation

Lcx =
{

(u, v) ∈ L× L : ucx =Pl(X) v
}

is a rational relation.
Now let cσ ∈ Σ. So σ is an admissible X column and σ = σ1 · · ·σk for some

σi ∈ X , with k ≤ n when X ∈ {An, Bn, Cn, Dn} and k ≤ 2 when X = G2. So

cσL = cσ1
L ◦ · · · ◦ cσk

L,

Lcσ = Lcσ1
◦ · · · ◦ Lcσk

.
(7.1)

Since the composition of a rational relation is a rational relation, Lcσ and cσL
are rational relations for any cσ ∈ Σ.

By Lemmata 6.4 and 6.5, if (u, v) ∈ cxL then
∣∣|u| − |v|

∣∣ ≤ 1. Hence if

(u, v) ∈ cσL them
∣∣|u| − |v|

∣∣ ≤ n. Therefore cσLδR and cσLδL are both regular.

By Lemmata 6.7, 6.9, 6.11, 6.13, and 6.15, if (u, v) ∈ Lcx then
∣∣|u|− |v|

∣∣ ≤ 1.

Hence if (u, v) ∈ Lcσ them
∣∣|u| − |v|

∣∣ ≤ n. Therefore LcσδR and LcσδL are both
regular.

Therefore (Σ, L) is a biautomatic structure for Pl(X).

Theorem 7.4 has several important consequences for the plactic monoids
Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and Pl(G2). First, an automatic monoid has
decidable right-divisibility problem. (This result is well-known but does not
seem to be explicitly stated in the literature; it follows from the decidability
of the first-order theory of the left Cayley graph of an automatic monoid [57,
§ 5].) Combining this result and its dual with Theorem 7.4 proves the following
result:

Corollary 7.5. The plactic monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and
Pl(G2) have soluble left- and right-divisibilty problems.

An immediate consequence of Corollary 7.5 is the following:

Corollary 7.6. The plactic monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and
Pl(G2) have soluble Green’s relation L and R.

There are also several very important crystal-theoretic consequences of the
biautomaticity of the plactic monoids:

56

Corollary 7.7. For the crystal graphs of types An, Bn, Cn, Dn, or G2, there is
a quadratic-time algorithm that takes as input two vertices and decides whether
they lie in the same position in isomorphic components.

Proof. Two vertices lie in the same position in isomorphic connected compo-
nents if and only if they represent the same element of the plactic monoid of
the given type. This monoid is biautomatic by Theorem 7.4, and biautomatic
(and automatic) monoids have word problem soluble in quadradic time [49,
Corollary 3.7].

Note in passing that Corollary 7.7 cannot be deduced directly from tableaux
insertion algorithms except in the An case. Schensted’s insertion algorithm (see
[8, Chapter 5]) can solve the word problem in Pl(An) in quadratic time because
inserting a single symbol into a tableau takes linear time. However, in types Bn,
Cn, and Dn inserting a single symbol into a tableau may take more that linear
time (see [42, § 4] and [43, § 3.3]), because in certain cases a recursion arises
that requires inserting an entire column symbol by symbol into the remainder
of the tableau.

Corollary 7.8. For the crystal graphs of types An, Bn, Cn, Dn, or G2, there
is a quadratic-time algorithm that takes as input two vertices and decides that
whether they lie in isomorphic components.

Proof. Let B(u1) and B(u2) be two components of the crystal graph, where u1

and u2 are any vertices of these components. Apply operators ẽi to transform
u1 and u2 to highest-weight words v1 and v2 respectively. It is easy to see that
each application of ẽi takes linear time in the length of the word. Each symbol
of the word can be altered a bounded number of times by the various ẽi, so
computing v1 and v2 takes at most quadratic time in the lengths of u1 and
v1. Then B(u1) and B(u2) are isomorphic if and only if v1 and v2 lie in the
same position in B(u1) and B(u2), which can be decided in quadratic time by
Corollary 7.7.

References

[1] C. Schensted, Longest increasing and decreasing subsequences, Canad. J.
Math. 13 (1961) 179–191. doi:10.4153/CJM-1961-015-3.

[2] D. E. Knuth, Permutations, matrices, and generalized Young tableaux,
Pacific J. Math. 34 (3) (1970) 709–727.
URL http://projecteuclid.org/euclid.pjm/1102971948

[3] M.-P. Schützenberger, La correspondance de Robinson, in: Combinatoire
et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ.
Louis-Pasteur Strasbourg, Strasbourg, 1976), Springer, Berlin, 1977, pp.
59–113. Lecture Notes in Math., Vol. 579.

57

http://dx.doi.org/10.4153/CJM-1961-015-3
http://projecteuclid.org/euclid.pjm/1102971948
http://projecteuclid.org/euclid.pjm/1102971948

[4] A. Lascoux, M.-P. Schützenberger, Le monöıde plaxique, in: Noncom-
mutative structures in algebra and geometric combinatorics, no. 109 in
Quaderni de ”La Ricerca Scientifica”, CNR, Rome, 1981, pp. 129–156.
URL http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/

1981-1PlaxiqueNaples.pdf

[5] M.-P. Schützenberger, Pour le monöıde plaxique, Mathématiques et sci-
ences humaines 140.
URL http://msh.revues.org/2764

[6] G. P. Thomas, Baxter algebras and schur functions, Ph.d. thesis, University
College of Swansea (1974).

[7] G. P. Thomas, On Schensted’s construction and the multiplication of Schur
functions, Adv. in Math. 30 (1) (1978) 8–32. doi:10.1016/0001-8708(78)
90129-9.
URL http://dx.doi.org/10.1016/0001-8708(78)90129-9

[8] M. Lothaire, Algebraic Combinatorics on Words, no. 90 in Encyclopedia of
Mathematics and its Applications, Cambridge University Press, 2002.

[9] J. Green, Polynomial Representations of GLn, 2nd Edition, no. 830 in Lec-
ture Notes in Mathematics, Springer, 2006. doi:10.1007/3-540-46944-3.

[10] M. A. van Leeuwen, The Littlewood-Richardson Rule, and Related Com-
binatorics, in: J. R. Stembridge, J.-Y. Thibon, M. A. van Leeuwen (Eds.),
Interaction of Combinatorics and Representation Theory, Mathematical
Society of Japan, Tokyo, 2001, pp. 95–145. doi:10.2969/msjmemoirs/

01101C030.

[11] R. P. Stanley, Enumerative Combinatorics, Vol. 2 of Cambridge Studies in
Advanced Mathematics, Cambridge University Press, 2005.

[12] A. Lascoux, M.-P. Schützenberger, Sur une conjecture de H. O. Foulkes,
C. R. Acad. Sci. Paris Sér. A-B 286 (7) (1978) A323–A324.

[13] A. Lascoux, M.-P. Schützenberger, Schubert polynomials and the
Littlewood-Richardson rule, Lett. Math. Phys. 10 (2-3) (1985) 111–124.
doi:10.1007/BF00398147.
URL http://dx.doi.org/10.1007/BF00398147

[14] A. Lascoux, M.-P. Schützenberger, Noncommutative schubert polynomials,
Funct. Anal. Appl. (23) (1990) 223–225.

[15] L. Serrano, The shifted plactic monoid, Mathematische Zeitschrift 266 (2)
(2009) 363–392. doi:10.1007/s00209-009-0573-0.

[16] D. Krob, J.-Y. Thibon, Noncommutative symmetric functions. IV. Quan-
tum linear groups and Hecke algebras at q = 0, J. Algebraic Combin. 6 (4)
(1997) 339–376. doi:10.1023/A:1008673127310.
URL http://dx.doi.org/10.1023/A:1008673127310

58

http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf
http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf
http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf
http://msh.revues.org/2764
http://msh.revues.org/2764
http://dx.doi.org/10.1016/0001-8708(78)90129-9
http://dx.doi.org/10.1016/0001-8708(78)90129-9
http://dx.doi.org/10.1016/0001-8708(78)90129-9
http://dx.doi.org/10.1016/0001-8708(78)90129-9
http://dx.doi.org/10.1016/0001-8708(78)90129-9
http://dx.doi.org/10.1007/3-540-46944-3
http://dx.doi.org/10.2969/msjmemoirs/01101C030
http://dx.doi.org/10.2969/msjmemoirs/01101C030
http://dx.doi.org/10.1007/BF00398147
http://dx.doi.org/10.1007/BF00398147
http://dx.doi.org/10.1007/BF00398147
http://dx.doi.org/10.1007/BF00398147
http://dx.doi.org/10.1007/s00209-009-0573-0
http://dx.doi.org/10.1023/A:1008673127310
http://dx.doi.org/10.1023/A:1008673127310
http://dx.doi.org/10.1023/A:1008673127310
http://dx.doi.org/10.1023/A:1008673127310

[17] P. Littelmann, A Plactic Algebra for Semisimple Lie Algebras, Advances
in Mathematics 124 (2) (1996) 312–331. doi:10.1006/aima.1996.0085.

[18] J. Cassaigne, M. Espie, D. Krob, J.-C. Novelli, F. Hivert, The Chinese
Monoid, Int. J. Algebra Comput. 11 (3) (2001) 301–334. doi:10.1142/

S0218196701000425.

[19] G. Duchamp, D. Krob, Plactic-growth-like monoids, in: Words, languages
and combinatorics, II (Kyoto, 1992), World Sci. Publ., River Edge, NJ,
1994, pp. 124–142.

[20] A. J. Cain, A. Malheiro, Deciding conjugacy in sylvester monoids and other
homogeneous monoids, Internat. J. Algebra Comput. 25 (5). arXiv:1404.
2618, doi:10.1142/S0218196715500241.

[21] J. Okniński, On the semiprimitivity of finitely generated algebras,
Proc. Amer. Math. Soc. 142 (12) (2014) 4095–4098. doi:10.1090/

S0002-9939-2014-12187-3.
URL http://dx.doi.org/10.1090/S0002-9939-2014-12187-3

[22] E. Jespers, J. Okniński, M. Van Campenhout, Finitely generated algebras
defined by homogeneous quadratic monomial relations and their underlying
monoids, J. Algebra 440 (2015) 72–99. doi:10.1016/j.jalgebra.2015.

05.017.
URL http://dx.doi.org/10.1016/j.jalgebra.2015.05.017

[23] F. Cedó, J. Okniński, Gröbner bases for quadratic algebras of skew
type, Proc. Edinb. Math. Soc. (2) 55 (2) (2012) 387–401. doi:10.1017/

S0013091511000447.

[24] P. Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-
calculus, and Garside germs, Adv. Math. 282 (2015) 93–127. doi:10.

1016/j.aim.2015.05.008.
URL http://dx.doi.org/10.1016/j.aim.2015.05.008

[25] L. Kubat, J. Okniński, Identities of the plactic monoid, Semigroup Forum
90 (1) (2015) 100–112. doi:10.1007/s00233-014-9609-9.
URL http://dx.doi.org/10.1007/s00233-014-9609-9

[26] P. Dehornoy, Quadratic normalisation in monoids, arXiv:1504.02717.

[27] F. Cedó, J. Okniński, Plactic algebras, J. Algebra 274 (1) (2004) 97–117.
doi:10.1016/j.jalgebra.2003.12.004.

[28] L. Kubat, J. Okniński, Plactic algebra of rank 3, Semigroup Forum 84 (2)
(2012) 241–266. doi:10.1007/s00233-011-9337-3.

[29] J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases,
no. 42 in Graduate Studies in Mathematics, American Mathematical Soci-
ety, 2002.

59

http://dx.doi.org/10.1006/aima.1996.0085
http://dx.doi.org/10.1142/S0218196701000425
http://dx.doi.org/10.1142/S0218196701000425
http://arxiv.org/abs/1404.2618
http://arxiv.org/abs/1404.2618
http://dx.doi.org/10.1142/S0218196715500241
http://dx.doi.org/10.1090/S0002-9939-2014-12187-3
http://dx.doi.org/10.1090/S0002-9939-2014-12187-3
http://dx.doi.org/10.1090/S0002-9939-2014-12187-3
http://dx.doi.org/10.1090/S0002-9939-2014-12187-3
http://dx.doi.org/10.1016/j.jalgebra.2015.05.017
http://dx.doi.org/10.1016/j.jalgebra.2015.05.017
http://dx.doi.org/10.1016/j.jalgebra.2015.05.017
http://dx.doi.org/10.1016/j.jalgebra.2015.05.017
http://dx.doi.org/10.1016/j.jalgebra.2015.05.017
http://dx.doi.org/10.1016/j.jalgebra.2015.05.017
http://dx.doi.org/10.1017/S0013091511000447
http://dx.doi.org/10.1017/S0013091511000447
http://dx.doi.org/10.1016/j.aim.2015.05.008
http://dx.doi.org/10.1016/j.aim.2015.05.008
http://dx.doi.org/10.1016/j.aim.2015.05.008
http://dx.doi.org/10.1016/j.aim.2015.05.008
http://dx.doi.org/10.1016/j.aim.2015.05.008
http://dx.doi.org/10.1007/s00233-014-9609-9
http://dx.doi.org/10.1007/s00233-014-9609-9
http://dx.doi.org/10.1007/s00233-014-9609-9
http://dx.doi.org/10.1016/j.jalgebra.2003.12.004
http://dx.doi.org/10.1007/s00233-011-9337-3

[30] V. G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation,
Dokl. Akad. Nauk SSSR 283 (5) (1985) 1060–1064.

[31] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation,
Lett. Math. Phys. 10 (1) (1985) 63–69. doi:10.1007/BF00704588.
URL http://dx.doi.org/10.1007/BF00704588

[32] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras,
Comm. Math. Phys. 133 (2) (1990) 249–260.
URL http://projecteuclid.org/euclid.cmp/1104201397

[33] M. Kashiwara, On crystal bases of the Q-analogue of universal envelop-
ing algebras, Duke Math. J. 63 (2) (1991) 465–516. doi:10.1215/

S0012-7094-91-06321-0.
URL http://dx.doi.org/10.1215/S0012-7094-91-06321-0

[34] S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics
of Young walls, Proc. London Math. Soc. (3) 86 (1) (2003) 29–69. doi:

10.1112/S0024611502013734.
URL http://dx.doi.org/10.1112/S0024611502013734

[35] G. Benkart, S.-J. Kang, M. Kashiwara, Crystal bases for the quantum
superalgebra Uq(gl(m,n)), J. Amer. Math. Soc. 13 (2) (2000) 295–331.
doi:10.1090/S0894-0347-00-00321-0.
URL http://dx.doi.org/10.1090/S0894-0347-00-00321-0

[36] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, M. Kim, Crystal
bases for the quantum queer superalgebra and semistandard decomposition
tableaux, Trans. Amer. Math. Soc. 366 (1) (2014) 457–489. doi:10.1090/
S0002-9947-2013-05866-7.
URL http://dx.doi.org/10.1090/S0002-9947-2013-05866-7

[37] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, M. Kim, Crystal
bases for the quantum queer superalgebra, J. Eur. Math. Soc. (JEMS)
17 (7) (2015) 1593–1627. doi:10.4171/JEMS/540.
URL http://dx.doi.org/10.4171/JEMS/540

[38] S.-J. Kang, K. C. Misra, Crystal bases and tensor product decompositions
of Uq(G2)-modules, J. Algebra 163 (3) (1994) 675–691. doi:10.1006/

jabr.1994.1037.
URL http://dx.doi.org/10.1006/jabr.1994.1037

[39] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the
q-analogue of classical Lie algebras, J. Algebra 165 (2) (1994) 295–345.
doi:10.1006/jabr.1994.1114.
URL http://dx.doi.org/10.1006/jabr.1994.1114

[40] P. Littelmann, Crystal graphs and Young tableaux, J. Algebra 175 (1)
(1995) 65–87. doi:10.1006/jabr.1995.1175.
URL http://dx.doi.org/10.1006/jabr.1995.1175

60

http://dx.doi.org/10.1007/BF00704588
http://dx.doi.org/10.1007/BF00704588
http://dx.doi.org/10.1007/BF00704588
http://projecteuclid.org/euclid.cmp/1104201397
http://projecteuclid.org/euclid.cmp/1104201397
http://dx.doi.org/10.1215/S0012-7094-91-06321-0
http://dx.doi.org/10.1215/S0012-7094-91-06321-0
http://dx.doi.org/10.1215/S0012-7094-91-06321-0
http://dx.doi.org/10.1215/S0012-7094-91-06321-0
http://dx.doi.org/10.1215/S0012-7094-91-06321-0
http://dx.doi.org/10.1112/S0024611502013734
http://dx.doi.org/10.1112/S0024611502013734
http://dx.doi.org/10.1112/S0024611502013734
http://dx.doi.org/10.1112/S0024611502013734
http://dx.doi.org/10.1112/S0024611502013734
http://dx.doi.org/10.1090/S0894-0347-00-00321-0
http://dx.doi.org/10.1090/S0894-0347-00-00321-0
http://dx.doi.org/10.1090/S0894-0347-00-00321-0
http://dx.doi.org/10.1090/S0894-0347-00-00321-0
http://dx.doi.org/10.1090/S0002-9947-2013-05866-7
http://dx.doi.org/10.1090/S0002-9947-2013-05866-7
http://dx.doi.org/10.1090/S0002-9947-2013-05866-7
http://dx.doi.org/10.1090/S0002-9947-2013-05866-7
http://dx.doi.org/10.1090/S0002-9947-2013-05866-7
http://dx.doi.org/10.1090/S0002-9947-2013-05866-7
http://dx.doi.org/10.4171/JEMS/540
http://dx.doi.org/10.4171/JEMS/540
http://dx.doi.org/10.4171/JEMS/540
http://dx.doi.org/10.4171/JEMS/540
http://dx.doi.org/10.1006/jabr.1994.1037
http://dx.doi.org/10.1006/jabr.1994.1037
http://dx.doi.org/10.1006/jabr.1994.1037
http://dx.doi.org/10.1006/jabr.1994.1037
http://dx.doi.org/10.1006/jabr.1994.1037
http://dx.doi.org/10.1006/jabr.1994.1114
http://dx.doi.org/10.1006/jabr.1994.1114
http://dx.doi.org/10.1006/jabr.1994.1114
http://dx.doi.org/10.1006/jabr.1994.1114
http://dx.doi.org/10.1006/jabr.1995.1175
http://dx.doi.org/10.1006/jabr.1995.1175
http://dx.doi.org/10.1006/jabr.1995.1175

[41] C. Lecouvey, Combinatorics of crystal graphs for the root systems of types
An, Bn, Cn, Dn and G2, in: K. Atsuo, M. Okado (Eds.), Combinato-
rial aspect of integrable systems, no. 17 in Mathematical Society of Japan
Memoirs, Mathematical Society of Japan, Tokyo, 2007.

[42] C. Lecouvey, Schensted-Type Correspondence, Plactic Monoid, and Jeu de
Taquin for Type Cn, J. Algebra 247 (2) (2002) 295–331. doi:10.1006/

jabr.2001.8905.

[43] C. Lecouvey, Schensted-type correspondences and plactic monoids for types
Bn and Dn, Journal of Algebraic Combinatorics 18 (2) (2003) 99–133.
doi:10.1023/A:1025154930381.

[44] T. H. Baker, An insertion scheme for Cn crystals, in: Physical combina-
torics (Kyoto, 1999), Vol. 191 of Progr. Math., Birkhäuser Boston, Boston,
MA, 2000, pp. 1–48.

[45] C. Lecouvey, Crystal bases and combinatorics of infinite rank quantum
groups, Trans. Amer. Math. Soc. 361 (1) (2009) 297–329. doi:10.1090/

S0002-9947-08-04480-2.
URL http://dx.doi.org/10.1090/S0002-9947-08-04480-2

[46] M. Kashiwara, On crystal bases, in: Representations of groups (Banff, AB,
1994), Vol. 16 of CMS Conf. Proc., Amer. Math. Soc., Providence, RI,
1995, pp. 155–197.

[47] R. V. Book, F. Otto, String Rewriting Systems, Texts and Monographs in
Computer Science, Springer, 1993.

[48] D. B. Epstein, J. W. Cannon, D. F. Holt, S. V. Levy, M. S. Paterson,
W. P. Thurston, Word Processing in Groups, Jones & Bartlett, Boston,
MA, 1992.

[49] C. M. Campbell, E. F. Robertson, N. Ruškuc, R. M. Thomas, Automatic
semigroups, Theoret. Comput. Sci. 250 (1-2) (2001) 365–391. doi:10.

1016/S0304-3975(99)00151-6.

[50] S. M. Gersten, H. B. Short, Small cancellation theory and automatic
groups, Invent. Math. 102 (2) (1990) 305–334. doi:10.1007/BF01233430.
URL http://dx.doi.org/10.1007/BF01233430

[51] D. F. Holt, S. Rees, Artin groups of large type are shortlex automatic
with regular geodesics, Proc. Lond. Math. Soc. (3) 104 (3) (2012) 486–512.
doi:10.1112/plms/pdr035.
URL http://dx.doi.org/10.1112/plms/pdr035

[52] M. Gromov, Hyperbolic Groups, in: S. Gersten (Ed.), Essays in Group
Theory, no. 8 in Math. Sci. Res. Inst. Publ., Springer-Verlag, 1987, pp.
75–263.

61

http://dx.doi.org/10.1006/jabr.2001.8905
http://dx.doi.org/10.1006/jabr.2001.8905
http://dx.doi.org/10.1023/A:1025154930381
http://dx.doi.org/10.1090/S0002-9947-08-04480-2
http://dx.doi.org/10.1090/S0002-9947-08-04480-2
http://dx.doi.org/10.1090/S0002-9947-08-04480-2
http://dx.doi.org/10.1090/S0002-9947-08-04480-2
http://dx.doi.org/10.1090/S0002-9947-08-04480-2
http://dx.doi.org/10.1016/S0304-3975(99)00151-6
http://dx.doi.org/10.1016/S0304-3975(99)00151-6
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1112/plms/pdr035
http://dx.doi.org/10.1112/plms/pdr035
http://dx.doi.org/10.1112/plms/pdr035
http://dx.doi.org/10.1112/plms/pdr035

[53] M. Picantin, Finite transducers for divisibility monoids, Theoret. Comput.
Sci. 362 (1-3) (2006) 207–221. doi:10.1016/j.tcs.2006.06.019.
URL http://dx.doi.org/10.1016/j.tcs.2006.06.019

[54] R. Corran, M. Hoffmann, D. Kuske, R. M. Thomas, Singular Artin Monoids
of Finite Coxeter Type Are Automatic, in: Language and Automata The-
ory and Applications, no. 6638 in Lecture Notes in Comput. Sci., Springer,
2011, pp. 250–261. doi:10.1007/978-3-642-21254-3_19.

[55] F. Otto, N. Ruškuc, Confluent monadic string-rewriting systems and auto-
matic structures, J. Autom. Lang. Comb. 6 (3) (2001) 375–388.

[56] A. J. Cain, Monoids presented by rewriting systems and automatic struc-
tures for their submonoids, Internat. J. Algebra Comput. 19 (6) (2009)
771–790. doi:10.1142/s0218196709005317.

[57] M. Lohrey, Decidability and complexity in automatic monoids, Int.
J. Found. Comput. Sci. 16 (04) (2005) 707–722. doi:10.1142/

S0129054105003248.

[58] F. Otto, On Dehn functions of finitely presented bi-automatic monoids, J.
Autom. Lang. Comb. 5 (4) (2000) 405–419.

[59] F. Otto, A. Sattler-Klein, K. Madlener, Automatic monoids versus monoids
with finite convergent presentations, in: T. Nipkow (Ed.), Rewriting Tech-
niques and Applications, no. 1379 in Lecture Notes in Comput. Sci.,
Springer, 1998, pp. 32–46. doi:10.1007/BFb0052359.

[60] A. J. Cain, R. D. Gray, A. Malheiro, Finite Gröbner–Shirshov bases for
Plactic algebras and biautomatic structures for Plactic monoids, J. Algebra
423 (2015) 37–53. arXiv:1205.4885, doi:10.1016/j.jalgebra.2014.09.
037.

[61] V. Ufnarovskĭı, Combinatorial and asymptotic methods in algebra, in:
A. Kostrikin, I. Shafarevich (Eds.), Algebra VI, Vol. 57 of Encyclopedia
of Mathematical Sciences, Springer, 1995, pp. 1–196.

[62] N. Hage, Finite convergent presentation of plactic monoid for type C,
Int. J. Algebra Comput. 25 (08) (2015) 1239–1263. doi:10.1142/

S0218196715500393.

[63] A. J. Cain, R. D. Gray, A. Malheiro, On finite complete rewriting systems,
finite derivation type, and automaticity for homogeneous monoids, Inform.
and Comput. 255 (1) (2017) 68–93. arXiv:1407.7428, doi:10.1016/j.
ic.2017.05.003.

[64] J. R. Stembridge, A local characterization of simply-laced crystals,
Trans. Amer. Math. Soc. 355 (12) (2003) 4807–4823. doi:10.1090/

S0002-9947-03-03042-3.

62

http://dx.doi.org/10.1016/j.tcs.2006.06.019
http://dx.doi.org/10.1016/j.tcs.2006.06.019
http://dx.doi.org/10.1016/j.tcs.2006.06.019
http://dx.doi.org/10.1007/978-3-642-21254-3_19
http://dx.doi.org/10.1142/s0218196709005317
http://dx.doi.org/10.1142/S0129054105003248
http://dx.doi.org/10.1142/S0129054105003248
http://dx.doi.org/10.1007/BFb0052359
http://arxiv.org/abs/1205.4885
http://dx.doi.org/10.1016/j.jalgebra.2014.09.037
http://dx.doi.org/10.1016/j.jalgebra.2014.09.037
http://dx.doi.org/10.1142/S0218196715500393
http://dx.doi.org/10.1142/S0218196715500393
http://arxiv.org/abs/1407.7428
http://dx.doi.org/10.1016/j.ic.2017.05.003
http://dx.doi.org/10.1016/j.ic.2017.05.003
http://dx.doi.org/10.1090/S0002-9947-03-03042-3
http://dx.doi.org/10.1090/S0002-9947-03-03042-3

[65] P. Sternberg, On the local structure of doubly laced crystals, J. Combin.
Theory Ser. A 114 (5) (2007) 809–824.
URL https://doi.org/10.1016/j.jcta.2006.09.003

[66] V. Danilov, A. Karzanov, G. Koshevoy, B2-crystals: Axioms, structure,
models, Journal of Combinatorial Theory, Series A 116 (2) (2009) 265 –
289. doi:https://doi.org/10.1016/j.jcta.2008.06.002.
URL http://www.sciencedirect.com/science/article/pii/

S0097316508000903

[67] I. G. Macdonald, Symmetric functions and Hall polynomials, The Claren-
don Press, Oxford University Press, New York, 1979, oxford Mathematical
Monographs.

[68] J. T. Sheats, A symplectic jeu de taquin bijection between the tableaux
of King and of De Concini, Trans. Amer. Math. Soc. 351 (9) (1999) 3569–
3607.
URL https://doi.org/10.1090/S0002-9947-99-02166-2

[69] T. Nakashima, Crystal base and a generalization of the littlewood-
richardson rule for the classical lie algebras, Comm. Math. Phys. 154 (2)
(1993) 215–243.
URL https://projecteuclid.org:443/euclid.cmp/1104252969

[70] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University
Press, 1999.

[71] N. Ruškuc, Semigroup Presentations, Ph.D. thesis, University of St An-
drews (1995).
URL http://hdl.handle.net/10023/2821

[72] P. M. Higgins, Techniques of Semigroup Theory, Oxford University Press,
1991.

[73] C. C. Squier, F. Otto, Y. Kobayashi, A finiteness condition for rewriting
systems, Theoret. Comput. Sci. 131 (2) (1994) 271–294. doi:10.1016/

0304-3975(94)90175-9.

[74] D. J. Anick, On the homology of associative algebras, Trans. Amer. Math.
Soc. 296 (2) (1986) 641–641. doi:10.2307/2000383.

[75] K. S. Brown, The geometry of rewriting systems: a proof of the Anick-
Groves-Squier theorem, in: Algorithms and classification in combina-
torial group theory (Berkeley, CA, 1989), Vol. 23 of Math. Sci. Res.
Inst. Publ., Springer, New York, 1992, pp. 137–163. doi:10.1007/

978-1-4613-9730-4_6.
URL http://dx.doi.org/10.1007/978-1-4613-9730-4_6

63

https://doi.org/10.1016/j.jcta.2006.09.003
https://doi.org/10.1016/j.jcta.2006.09.003
http://www.sciencedirect.com/science/article/pii/S0097316508000903
http://www.sciencedirect.com/science/article/pii/S0097316508000903
http://dx.doi.org/https://doi.org/10.1016/j.jcta.2008.06.002
http://www.sciencedirect.com/science/article/pii/S0097316508000903
http://www.sciencedirect.com/science/article/pii/S0097316508000903
https://doi.org/10.1090/S0002-9947-99-02166-2
https://doi.org/10.1090/S0002-9947-99-02166-2
https://doi.org/10.1090/S0002-9947-99-02166-2
https://projecteuclid.org:443/euclid.cmp/1104252969
https://projecteuclid.org:443/euclid.cmp/1104252969
https://projecteuclid.org:443/euclid.cmp/1104252969
http://hdl.handle.net/10023/2821
http://hdl.handle.net/10023/2821
http://dx.doi.org/10.1016/0304-3975(94)90175-9
http://dx.doi.org/10.1016/0304-3975(94)90175-9
http://dx.doi.org/10.2307/2000383
http://dx.doi.org/10.1007/978-1-4613-9730-4_6
http://dx.doi.org/10.1007/978-1-4613-9730-4_6
http://dx.doi.org/10.1007/978-1-4613-9730-4_6
http://dx.doi.org/10.1007/978-1-4613-9730-4_6
http://dx.doi.org/10.1007/978-1-4613-9730-4_6

[76] D. E. Cohen, String rewriting and homology of monoids, Mathematical
Structures in Computer Science 7 (3) (1997) 207–240. doi:10.1017/

S0960129596002149.

[77] J. Sakarovitch, Elements of Automata Theory, Cambridge University Press,
2009.

[78] J. Berstel, Transductions and Context-Free Languages, no. 38 in Leitfäden
der Angewandten Mathematik und Mechanik, B. G. Teubner, Stuttgart,
1979.

[79] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, 1st Edition, Addison–Wesley, Reading, MA,
1979.

[80] A. Duncan, E. Robertson, N. Ruškuc, Automatic monoids and change of
generators, Mathematical Proceedings of the Cambridge Philosophical So-
ciety 127 (3) (1999) 403–409. doi:10.1017/S0305004199003722.

[81] M. Hoffmann, R. M. Thomas, Biautomatic semigroups, in: M. Liskiewicz,
R. Reischuk (Eds.), Fundamentals of Computation Theory, no. 3623 in
Lecture Notes in Comput. Sci., Springer, 2005, pp. 56–67. doi:10.1007/

11537311_6.

[82] C. Frougny, J. Sakarovitch, Synchronized rational relations of finite and
infinite words, Theoret. Comput. Sci. 108 (1) (1993) 45–82. doi:10.1016/
0304-3975(93)90230-Q.

64

http://dx.doi.org/10.1017/S0960129596002149
http://dx.doi.org/10.1017/S0960129596002149
http://dx.doi.org/10.1017/S0305004199003722
http://dx.doi.org/10.1007/11537311_6
http://dx.doi.org/10.1007/11537311_6
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1016/0304-3975(93)90230-Q

	Introduction
	Crystals and plactic monoids
	Notation
	Definition of crystal graph
	Weights
	Relations from crystal graphs
	Crystal graphs of types Bn, Cn, Dn and G2
	Type An
	Type Bn
	Type Cn
	Type Dn
	Type G2

	Properties of crystal graphs of types An, Bn, Cn, Dn and G2

	Tableaux and tabloids
	Young tableaux and columns
	Admissible columns
	The functions l and r

	Tabloids and tableaux
	Presentations for plactic monoids

	Basic two-column lemmata
	Proving the basic two-column lemmata
	Two column lemma for type G2

	Constructing the rewriting system
	Preliminaries
	Construction

	Biautomaticity lemmata
	Two-column lemma for biautomaticity
	Transducers
	Left-multiplication by transducer
	An, Bn, Cn, Dn
	G2

	Right-multiplication by transducer
	An
	Cn
	Bn
	Dn
	G2

	Building the biautomatic structure
	Preliminaries
	Construction

