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Over the last number of years several simulation methods have been introduced to study rare events

such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three

such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett–Chandler-

type theory where the nucleation barrier is determined using umbrella sampling simulations. The re-

sulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys.

Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and

Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydis-

perse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in

units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted

nucleation rates, however, the experimental results display a markedly different behavior for low su-

persaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics,

forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears in-

dependent of the simulation method, and in all cases, the nuclei contains on average significantly

more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles. © 2010

American Institute of Physics. [doi:10.1063/1.3506838]

I. INTRODUCTION

Nucleation processes are ubiquitous in both natural and

artificially-synthesized systems. However, the occurrence of

a nucleation event is often rare and difficult to examine both

experimentally and theoretically.

Colloidal systems are almost ideal model systems for

studying nucleation phenomena. Nucleation and the proceed-

ing crystallization in such systems often take place on ex-

perimentally accessible time scales, and due to the size of

the particles, they are accessible to a wide variety of scatter-

ing and imaging techniques, such as (confocal) microscopy,1

holography,2 and light and x-ray scattering. Additionally,

progress in particle synthesis,3 solvent manipulation, and the

application of external fields4 allows for significant control

over the interparticle interactions, allowing for the study of a

large variety of nucleation processes.

One such colloidal system is the experimental realiza-

tion of “hard” spheres comprised of sterically stabilized poly-

methylmethacrylate (PMMA) particles suspended in a liquid

mixture of decaline and carbon disulfide.5 Experimentally,

the phase behavior of such a system has been examined by

Pusey and van Megen6 and maps well onto the phase behav-

ior predicted for hard spheres. Specifically, when the effective

volume fraction of their system is scaled to reproduce the

freezing volume fraction of hard spheres (η = 0.495) the re-

sulting melting volume fraction is η = 0.545 ± 0.003 (Ref. 6)

which is in good agreement with that predicted for hard

a)Author to whom correspondence should be addressed. Electronic mail:
L.C.Filion@uu.nl.

spheres.7 The nucleation rates have been measured using

light scattering by Harland and van Megen,5 Sinn et al.,8

Schätzel and Ackerson9 and predicted theoretically by Auer

and Frenkel.10

On the theoretical side, hard-sphere systems are one of

the simplest systems which can be applied to the study of col-

loidal and nanoparticle systems, and generally, toward the nu-

cleation process itself. As such, it is an ideal system to exam-

ine various computational methods for studying nucleation,

and comparing the results with experimental data. Such meth-

ods include, but are not limited to, molecular dynamics (MD)

simulations, umbrella sampling (US), forward flux sampling

(FFS), and transition path sampling (TPS). It is worth noting

here that Auer and Frenkel10 used umbrella sampling simula-

tions to study crystal nucleation of hard spheres and found a

significant difference between their predicted rates and the ex-

perimental rates of Refs. 5, 8, and 9. However, it was unclear

where this difference originated. In this paper, we compare the

nucleation rates for the hard-sphere system from MD, US, and

FFS simulations with the experimental results of Refs. 5, 8,

and 9. We demonstrate that the three simulation techniques

are consistent in their prediction of the nucleation rates, de-

spite the fact that they treat the dynamics differently. Thus,

we conclude that the difference between the experimental and

theoretical nucleation rates identified by Auer and Frenkel is

not due to the simulation method.

A nucleation event occurs when a statistical fluctuation

in a supersaturated liquid results in the formation of a crys-

tal nucleus large enough to grow out and continue crystalliz-

ing the surrounding fluid. In general, small crystal nuclei are
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continuously being formed and melt back in a liquid. How-

ever, while most of these small nuclei will quickly melt, in

a supersaturated liquid a fraction of these nuclei will grow

out. Classical nucleation theory (CNT) is the simplest theory

available for describing this process. In CNT it is assumed

that the free energy for making a small nucleus is given by a

surface free-energy cost which is proportional to the surface

area of the nucleus and a bulk free-energy gain proportional

to its volume. More specifically, according to CNT the Gibbs

free-energy difference between a homogeneous bulk fluid and

a system containing a spherical nucleus of radius R is given

by

�G(R) = 4πγ R2 − 4
3
π |�μ| ρs R3, (1)

where |�μ| is the difference in chemical potential between

the fluid and solid phases, ρs is the density of the solid, and γ

is the interfacial free energy of the fluid–solid interface. This

free-energy difference is usually referred to as the nucleation

barrier. From this expression, the radius of the critical clus-

ter is found to be R∗ = 2γ / |�μ| ρs and the barrier height is

�G∗ = 16πγ 3/3ρ2
s |�μ|2.

Umbrella sampling11, 12 is a method to examine the nu-

cleation process from which the nucleation barrier is easily

obtained. The predicted barrier can then be used in combina-

tion with kinetic Monte Carlo (KMC) or MD simulations to

determine the nucleation rate.10 In US an order parameter for

the system is chosen and configuration averages for sequential

values of the order parameter are taken. In order to facilitate

such averaging, the system is biased toward particular regions

in configuration space. The success of the method is expected

to depend largely on the choice of order parameter and bias-

ing potential. Note that the free-energy barrier is only defined

in equilibrium, and thus is only applicable to systems which

are in (quasi-) equilibrium.

Forward flux sampling13–15 is a method of studying rare

events, such as nucleation, in both equilibrium and non-

equilibrium systems. Using FFS, the transition rate constants

(e.g., the nucleation rate) for rare events can be determined

when brute force simulations are difficult or even not pos-

sible. In FFS, a reaction coordinate Q (similar to the order

parameter in US) is introduced which follows the rare event.

The transition rate between phase A and B is then expressed

as a product of the flux (�Aλ0
) of trajectories crossing the

A state boundary, typically denoted λ0, and the probability

(P(λB |λ0)) that a trajectory which has crossed this boundary

will reach state B before returning to state A. Thus the transi-

tion rate constant is written as

kAB = �Aλ0
P(λB |λ0). (2)

Forward flux sampling facilitates the calculation of probabil-

ity P(λB |λ0) by breaking it up into a set of probabilities be-

tween sequential values of the reaction coordinate. Little in-

formation regarding the details of the nucleation process is

required in advance, and the choice of reaction coordinate is

expected to be less important than the order parameter in US.

Additionally, unlike US, FFS utilizes dynamical simulations

TABLE I. Packing fraction (η = πσ 3 N/6V ), reduced pressure (βpσ 3),

reduced chemical potential difference between the fluid and solid phases

(β |�μ|) and reduced number density of the solid phase ρs of the state points

studied in this paper. The chemical potential difference was determined us-

ing thermodynamic integration Ref. 17, and the equations of state for the fluid

and solid are from Refs. 18 and 19, respectively.

η βpσ 3 β |�μ| ρsσ
3

0.5214 15.0 0.34 1.107

0.5284 16.0 0.44 1.122

0.5316 16.4 0.48 1.128

0.5348 16.9 0.53 1.135

0.5352 17.0 0.54 1.136

0.5381 17.5 0.58 1.142

0.5414 18.0 0.63 1.148

0.5478 19.1 0.74 1.161

0.5572 20.8 0.90 1.178

and hence this technique does not assume that the system is

in (quasi-)equilibrium.

Molecular dynamics and Brownian dynamics (BD) sim-

ulations are ideal for studying the time evolution of systems,

and, when possible, they are the natural techniques to study

dynamical processes such as nucleation. Unfortunately, avail-

able computational time often limits the types of systems,

which can be effectively studied by these dynamical tech-

niques. Brownian dynamics simulations, which would be the

natural choice to use for colloidal systems, are very slow

due to the small time steps required to handle the steep po-

tential used to approximate the hard-sphere potential. Event

driven MD simulations are much more efficient to simulate

hard spheres and enable us to study spontaneous nucleation

of hard-sphere systems over a range of volume fractions. The

main difference between the two simulation methods regards

how they treat the short-time motion of the particles. Fortu-

nately, the nucleation rate is only dependent on the long-time

dynamics which are not sensitive to the details of the short-

time dynamics of the system.16

In this paper we study in detail the application of US

and FFS techniques to crystal nucleation of hard spheres,

and predict the associated nucleation rates. Combining these

nucleation rates with results from MD simulations, we make

predictions for the nucleation rates over a wide range of pack-

ing fractions η = 0.5214 − 0.5572, with corresponding pres-

sures and supersaturations shown in Table I. We compare

these theoretical nucleation rates with the rates measured ex-

perimentally by Refs. 5, 8, and 9.

This paper is organized as follows: in Sec. II we dis-

cuss the model, in Sec. III we describe and examine the

order parameter used to distinguish between solid-like and

fluidlike particles throughout this paper, in Sec. IV we cal-

culate essentially the “exact” nucleation rates using MD sim-

ulations, in Secs. V and VI we calculate the nucleation rates

of hard spheres using US and FFS respectively, and discuss

difficulties in the application of these techniques, in Sec. VII

we summarize the theoretical results and compare the pre-

dicted nucleation rates with the measured experimental rates

of Harland and van Megen,5 Sinn et al.,8 and Schätzel and

Ackerson9 and Sec. VIII contains our conclusions.
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II. MODEL

In this paper, we examine the nucleation rate between

spheres with diameter σ which interact via a hard-sphere pair

potential given by

βU H S(ri j ) =
{

0 ri j ≥ σ

∞ ri j < σ,
(3)

where ri j is the center-to-center distance between particles

i and j and β = 1/kB T with kB Boltzmann’s constant and

T the temperature. This is in contrast to several studies on

“hard” spheres where the hard-sphere potential is approxi-

mated by a slightly soft potential (e.g., Refs. 20 and 21) so

that Brownian dynamics simulations or traditional molecular

dynamics simulations (i.e., molecular dynamics which is not

event driven), which require a continuous potential, can be

used. We would like to emphasize this distinction here as the

hardness of the interaction has previously been shown to play

a significant role in nucleation rates.22, 23

III. ORDER PARAMETER

In this paper, an order parameter is used to differentiate

between liquid-like and solid-like particles and a cluster algo-

rithm is used to identify the solid clusters. We have chosen to

use the local bond-order parameter introduced by ten Wolde

et al. 24, 25 in the study of crystal nucleation in a Lennard-Jones

system. This order parameter has been used in many crystal

nucleation studies, including a previous study of hard-sphere

nucleation by Auer and Frenkel.10

In the calculation of the local bond order parameter a list

of “neighbors” is determined for each particle. The neighbors

of particle i include all particles within a radial distance rc of

particle i , and the total number of neighbors is denoted Nb(i).

A bond orientational order parameter ql,m(i) for each particle

is then defined as

ql,m(i) =
1

Nb(i)

Nb(i)
∑

j=1

Yl,m(θi, j , φi, j ), (4)

where Yl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and

θi, j and φi, j are the polar and azimuthal angles of the center-

of-mass distance vector ri j = r j − ri with ri the position vec-

tor of particle i . Solid-like particles are identified as particles

for which the number of connections per particle ξ (i) is at

least ξc and where

ξ (i) =
Nb(i)
∑

j=1

H (dl(i, j) − dc), (5)

H is the Heaviside step function, dc is the dot-product cutoff,

and

dl(i, j) =
∑l

m=−l ql,m(i)q∗
l,m( j)

(
∑l

m=−l |ql,m(i)|2
)1/2(∑l

m=−l |ql,m( j)|2
)1/2

. (6)

A cluster contains all solid-like particles which have a solid-

like neighbor in the same cluster. Thus, each particle can be a

member of only a single cluster.
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FIG. 1. Top: A typical configuration of an equilibrated random-hexagonal-

close-packed (RHCP) crystal in coexistence with an equilibrated fluid. The

crystalline particles are labeled according to three different crystallinity cri-

teria: the red particles have ξ = 5 or 6 crystalline bonds, the green parti-

cles have ξ = 7 or 8 crystalline bonds and the blue particles have ξ ≥ 9

crystalline bonds. The fluidlike particles (ξ < 5) are denoted by dots. Bot-

tom: The density profile of particles with a minimum number of neigh-

bors ξ as labeled. Note that the dips in the density profile correspond to

HCP stacked layers. This implies that near the interface, the order param-

eter is slightly more sensitive to FCC ordered particles than to HCP ordered

particles.

The parameters contained in this algorithm include the

neighbor cutoff rc, the dot-product cutoff dc, the critical value

for the number of solid-like neighbors ξc, and the symme-

try index for the bond orientational order parameter l. The

solid nucleus of a hard-sphere crystal is expected to have

random hexagonal order, thus the symmetry index is chosen

to be 6 in all cases in this study. Note that this order pa-

rameter does not distinguish between FCC and HCP ordered

particles.

To investigate the effect of the choice of ξc, we ex-

amined the number of correlated bonds per particle at the

liquid–solid interface. To this end, we constructed a configu-

ration in the coexistence region in an elongated box by

attaching a box containing an equilibrated random-

hexagonal-close-packed (RHCP) crystal to a box containing

an equilibrated fluid. Note that the RHCP crystal was placed

in the box such that the hexagonal layers were parallel to the

interface. The new box was then equilibrated in an NPT MC

simulation. We then examined the density profile of solid-

like particles as determined by our order parameter using

rc = 1.4σ , dc = 0.7, and ξc = 5, 7, and 9. Figure 1 presents

the density profiles along with a typical configuration of

the RHCP crystal in coexistence with the fluid phase. As

shown in Fig. 1, for all values of ξc that we examined the
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order parameter appears to consistently identify the particles

belonging to the bulk fluid and solid regions. The solid-like

particles as defined by the order parameter are labeled

according to the number of solid-like neighbors while the

fluidlike particles are denoted by dots. The main difference

between these order parameters relates to distinguishing

between fluidlike and solid-like particles at the fluid–solid

interface. Unsurprisingly, the location of the interface seems

to shift in the direction of the bulk solid as ξc is increased. We

note that the dips in the density profile correspond to HCP

stacked layers, which are more pronounced for higher values

of ξc.

IV. MOLECULAR DYNAMICS

A. Nucleation rates

In MD simulations the equations of motion are inte-

grated to follow the time evolution of the system. Since the

hard-sphere potential is discontinuous the interactions only

take place when particles collide. Thus, the particles move in

straight lines (ballistic) until they encounter another particle

with which they perform an elastic collision.26 These colli-

sion events are identified and handled in order of occurrence

using an event driven simulation.

In theory, using an MD simulation to determine nucle-

ation rates is quite simple. Starting with an equilibrated fluid

configuration, an MD simulation is used to evolve the system

until the largest cluster in the system exceeds the critical nu-

cleus size. The MD time associated with such an event is then

measured and averaged over many initial configurations. The

nucleation rate is given by

k =
1

〈t〉V
, (7)

where V is the volume of the system and 〈t〉 is the aver-

age time to form a critical nucleus. Measuring this time is

relatively easy for low supersaturations where the nucleation

times are relatively long compared to the nucleation event it-

self, which corresponds with a steep increase in the crystalline

fraction of the system. However, for high supersaturations

pinpointing the time of a nucleation event is more difficult.

Often many nuclei form immediately and the critical nucleus

sizes must be estimated from CNT or US simulations. Addi-

tionally, the precise details of the initial configuration can play

a role at high supersaturations since the equilibration time of

the fluid is of the same order of magnitude as the nucleation

time. Hence, for each individual MD simulation we used a

new initial configuration, which was created by quenching the

system very quickly.

For the results in this paper, we performed MD simula-

tions with up to 100 000 particles in a cubic box with peri-

odic boundary conditions in an N V E ensemble. Time was

measured in MD units σ
√

m/kB T . The order parameter was

measured every 10 time units and when the largest cluster ex-

ceeded the critical size by 100% we estimated the time τnucl at

which the critical nucleus was formed using stored previous

TABLE II. The average nucleation time, obtained from MD simulations,

to form a critical cluster that grew out and filled the box. The last column

contains the rate (k) in units of (6DL )/σ 5.

Volume fraction Average nucleation time Rate

(η) (t
√

kB T/(mσ 2)) [kσ 5/(6DL )]

0.5316 1 × 106 5 × 10−9

0.5348 1.7 × 104 3.6 × 10−7

0.5381 1.4 × 103 5.3 × 10−6

0.5414 2.0 × 102 4.3 × 10−5

0.5478 42 3.0 × 10−4

0.5572 10 2.4 × 10−3

configurations. We performed up to 20 runs for every density

and averaged the nucleation times.

The results are shown in Table II. The nucleation times

shown here are for a system of 2.0 × 104 particles and in

MD time units. Note that for η = 0.5381 we also checked

the effect of system size on the nucleation rate by perform-

ing MD simulations with 100 000 particles and did not find

a significant difference. To compare with other data we con-

verted the MD time units to units of σ 2/(6DL ) where DL is

the long-time diffusion coefficient measured in the same MD

simulations. We were not able to measure the long-time diffu-

sion coefficients for high densities because our measurements

were influenced by crystallization. We used the fit obtained

by Zaccarelli et al.27 who used polydisperse particles to pre-

vent crystallization. For η < 0.54, we find good agreement

between our data for DL and this fit.

V. UMBRELLA SAMPLING

A. Gibbs free-energy barriers

Umbrella sampling is a technique developed by Tor-

rie and Valleau to study systems where Boltzmann-weighted

sampling is inefficient.11 This method has been applied fre-

quently to study rare events, such as nucleation, 12 and specif-

ically has been applied in the past to study the nucleation of

hard spheres.10 In general, umbrella sampling is used to ex-

amine parts of configurational space, which are inaccessible

by traditional schemes, e.g., Metropolis Monte Carlo simula-

tions. Typically, a biasing potential is added to the true inter-

action potential causing the system to oversample a region of

configuration space. The biasing potential, however, is added

in a manner such that it is easy to “un”-bias the measurables.

In the case of nucleation, while it is simple to sam-

ple the fluid, crystalline clusters of larger sizes will be rare,

and as such, impossible to sample on reasonable time scales.

The typical biasing potential for studying nucleation is given

by24, 28

Ubias(n(rN )) =
λ

2
(n(rN ) − nC )2, (8)

where λ is a coupling parameter, n(rN ) is the size of the

largest cluster associated with configuration r
N , and nC is the

targeted cluster size. By choosing λ carefully, the simulation

will fluctuate around the part of configurational space with
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FIG. 2. Gibbs free-energy barriers β�G(n) as a function of cluster size n as

obtained from umbrella sampling simulations using varying critical number

of solid-like neighbors ξc as labeled at a reduced pressure of βpσ 3 = 17. For

ξc = 5, 7, and 9, the neighbor cutoff is rc = 1.4 and for ξc = 6, 8, and 10,

rc = 1.3. In all cases the dot product cutoff is dc = 0.7.

n(rN ) in the vicinity of nC . The expectation value of an ob-

servable A is then given by

〈A〉 =
〈A/W (n(rN ))〉bias

〈1/W (n(rN ))〉bias

, (9)

where

W (x) = e−βUbias(x). (10)

Using this scheme to measure the probability distribution

P(n) for clusters of size n, the Gibbs free-energy barrier can

be determined by29

β�G(n) = constant − ln(P(n)). (11)

Many more details on this method are given elsewhere.17, 29

For a pressure of βpσ 3 = 17, corresponding to a super-

saturation of β |�μ| = 0.54, we examine the effect of one of

the order parameter variables, namely ξc, on the prediction

of the nucleation barriers. The barriers predicted by US us-

ing ξc = 5, 6, 7, 8, 9, and 10 are shown in Fig. 2. Note that

the height of the barriers does not depend on ξc. In general,

for larger values of ξc more particles are identified as fluid as

compared with smaller values of ξc. This is consistent with the

differences between these order parameters as demonstrated

in Fig. 1. Thus, the radius measured in our simulation will de-

pend on the definition of the order parameter. However, from

classical nucleation theory [Eq. (1)], there exists a unique def-

inition of the liquid–solid interface and thus a unique radius

associated with CNT which we define as RCNT. To a first ap-

proximation, for each definition of the order parameter, this

radius (RCNT) differs from that measured by our simulation
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ξ
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FIG. 3. Classical nucleation theory fits (thick lines) to the Gibbs free-energy

barriers obtained from umbrella sampling simulations using varying ξc as

labeled at a reduced pressure of βpσ 3 = 17. Note that the CNT radius (RCNT)

is related to the radius (R(ξc)) measured by umbrella sampling via R(ξc)

= RCNT + α(ξc), where α(ξc) is a constant that corrects for the different ways

the various order parameters identify the particles at the fluid–solid interface.

The fit parameters are given in Table III. We have shifted the barriers for

ξc = 6 − 9 by 5, 10, 15, and 20 kB T , respectively, for clarity.

(R(ξc)) by a constant which we denote as α(ξc), which is also

dependent on ξc. Thus, we fit the barriers corresponding to

ξc = 5, 6, 7, 8, and 9 using CNT where we have

R(ξc) = RCNT + α(ξc). (12)

Note that we have assumed that the cluster size n can be re-

lated to the cluster radius R(ξc) by

n(ξc) =
4π R(ξc)3ρs

3
. (13)

Only the top part of the free-energy barriers are expected

to fit to classical nucleation theory, so we take the top of

the barrier corresponding to the region where the difference

between β�G(n) and β�G(n∗) is approximately 5. Fitting

all barriers simultaneously for the interfacial free energy γ ,

the classical nucleation theory radius RCNT, and the various

α(ξc), we obtain the fits displayed in Fig. 3. From the var-

ious values of α, the associated critical CNT radius (R∗
CNT)

can be determined. We find R∗
CNT = 2.49σ . Additionally, we

find an interfacial free energy of βγ σ 2 = 0.76 which roughly

agrees with the results of Auer and Frenkel who obtained

βγ σ 2 = 0.699, 0.738, and 0.748 for pressures βpσ 3 = 15,

16, and 17, respectively.10 However, recent calculations by

Davidchack et al.,30 of the interfacial free energy at the fluid-

solid coexistence find βγ σ 2 = 0.574, 0.557, and 0.546 for

the crystal planes (100), (110), and (111), respectively. For

a spherical nucleus, the interfacial free energy is expected to

TABLE III. Numerical values for the parameters associated with the fits in Figs. 3 and 4 for classical nucleation theory and the adjusted classical nucleation

theory presented in this paper.

β |�μ| βγ σ 2 R∗
CNT α(5) α(6) α(7) α(8) α(9) c(5) c(6) c(7) c(8) c(9)

CNT 0.54 0.76 2.49 −0.425 −0.231 −0.000 0.139 0.380

ACNT 0.54 0.63 2.06 −0.879 −0.698 −0.464 −0.335 −0.076 7.80 8.56 8.84 8.87 8.34
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FIG. 4. Fits of an adjusted classical nucleation theory (ACNT) presented in

Sec. V A to the Gibbs free-energy barriers predicted using umbrella sampling

simulations and using varying ξc as labeled at a reduced pressure of βpσ 3

= 17. Note that the CNT radius (RCNT) is related to the radius measured

by umbrella sampling by R(ξc) = RCNT + α(ξc), where α(ξc) is a constant.

The fit parameters are given in Table III. We have shifted the barriers for

ξc = 6 − 9 by 5, 10, 15, and 20 kB T , respectively, for clarity.

be an average over the crystal planes and was found to be

βγ σ 2 = 0.559.30 Thus, our result for the interfacial free en-

ergy and that of Ref. 10 appear to be an overestimate.

There have been a number of papers discussing possible

corrections to CNT (e.g., Refs. 31 and 32). Recent work on

the 2D Ising model, a system where both the interfacial free

energy and supersaturation are known analytically, demon-

strated that in order to match a nucleation barrier obtained

from US to CNT, two correction terms were required, specifi-

cally a term proportional to log(N ) as well as a constant shift

in �G which we define as c.31 The US barrier is only ex-

pected to match CNT near the top of the barrier where the

log(N ) term is almost a constant. Thus, we propose fitting

the barrier to an adjusted expression for CNT (ACNT), by

adding a constant c to Eq. (1). Fitting the US barriers with

this proposed form for the Gibbs free-energy barrier, where

we assume c is a function of ξc, we obtain the fits displayed in

Fig. 4. In this case we find an interfacial free energy βγ σ 2

= 0.63, and the values for α(ξc) and c(ξc) are given in

Table III. We note that this fit is much better than the fits in

Fig. 3. The difference in the various c(ξc) is around 1kB T and

corresponds well to the difference in heights of the barriers.

More strikingly, the interfacial free energy predicted from this

proposed free-energy barrier is in much better agreement with

recent calculations of Davidchack et al.,30 than the interfacial

free energy we calculate using classical nucleation theory di-

rectly. For a more thorough examination on the interfacial free

energies of the hard-sphere model, see Ref. 35. We would like

to point out here that due to the simple form of the nucleation

barrier, it is difficult to be certain of any fit with more than one

fitting parameter, as there are many combinations of parame-

ters which fit almost equally well. In order to quantify the ac-

curacy of these fits, we have calculated the root mean square

of the residual for the two fits which we denote as σRMSR. In

the case of the CNT fit we find σRMSR = 0.50 while for the

TABLE IV. Nucleation rates k in units of 6DL/σ 5 with DL the long time

diffusion coefficient as a function of reduced pressure (βpσ 3) as predicted by

umbrella sampling. G ′′(n∗) is the second order derivative of the Gibbs free

energy at the critical nucleus size n∗.

βpσ 3 ξc n∗ β�G(n∗) β�G ′′(n∗) fn∗/6DL kσ 5/6DL

15 8 212 42.1 ± 0.2 −9.6 × 10−4 2150 1.4 × 10−17

16 8 112 27.5 ± 0.6 −1.6 × 10−3 1950 3.5 × 10−11

17 6 102 19.6 ± 0.3 −1.2 × 10−3 3980 1.7 × 10−7

17 8 72 20.0 ± 0.4 −2.0 × 10−3 2620 9.9 × 10−8

17 10 30 19.4 ± 0.7 −9.4 × 10−3 1760 2.5 × 10−7

ACNT fit we find σRMSR = 0.11 indicating that the ACNT fit

is much better than the CNT fit. Additionally, we examined

the ACNT fits for various interfacial free energies γ . Fixing

the interfacial free energy in the ACNT fit to the value found

by CNT (βγ σ 2 = 0.76), we find σRMSR = 0.27 and when we

use interfacial free energy at coexistence30 (βγ σ 2 = 0.559)

we find σRMSR = 0.18.

Using either expressions for the Gibbs free-energy bar-

rier, namely CNT and ACNT, we were unable to fit the bar-

rier corresponding to βpσ 3 = 17 and ξc = 10 simultaneously

with the other predicted barriers for the same pressure. We

speculate that our difficulty in fitting the barrier at ξc = 10

stems from an “over-biasing” of the system. Specifically, by

using ξc = 10 the biasing potential could cause the system

to sample more frequently more ordered clusters, and hence

change slightly the region of phase space available to the US

simulations. In general, the least biased systems would be ex-

pected to explore the largest region of phase space resulting in

the best results. It should be noted that, in fact, this problem

is simply an equilibration and measuring problem, but it does

emphasize the difficulty caused by using an overly strong bi-

asing potential.

In conclusion, with the exception of ξc = 10, the value of

ξc used in the order parameter did not appear to have an effect

on the nucleation barriers once the difference in their mea-

surements of the solid–liquid interface was taken into con-

sideration. Finally, for use in our nucleation rate calculations

(Sec. V B) we also determined the Gibbs free energy �G(n)

for reduced pressures βpσ 3 = 15 and 16 using umbrella sam-

pling simulations. We present the barrier heights in Table IV.

B. Umbrella sampling nucleation rates

The nucleation barriers as obtained from US simulations

can be used to determine the nucleation rates. The crystal

nucleation rate k is related to the free-energy barrier (�G(n))

by10

k = Ae−β�G(n∗), (14)

where

A ≈ ρ fn∗

√

|β�G ′′(n∗)|
2π

, (15)

n∗ is the number of particles in the critical nucleus, ρ is the

number density of the supersaturated fluid, fn∗ is the rate par-

ticles are attached to the critical cluster, and �G ′′ is the

second derivative of the Gibbs free-energy barrier. Auer
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TABLE V. Probabilities P(λi+1|λi ) for the first 8 interfaces at a pressure of βpσ 3 = 15, where the KMC simulations step size (�KMC) and the number of MC

steps between measuring the order parameter �tord are varied. The following interfaces were used: λ2 = 20, λ3 = 26, λ4 = 32, λ5 = 38, λ6 = 44, λ7 = 54,

λ8 = 65, and λ9 = 78. In all cases, 100 configurations were started in the fluid and reached the first interface, and at each interface, Ci = 10 copies of each

successful configuration were used.

�KMC 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

�tord 2 2 2 2 2 2 1 1 1 10 10 10

P(λ2|λ1) 0.112 0.103 0.139 0.101 0.105 0.132 0.112 0.146 0.138 0.122 0.127 0.146

P(λ3|λ2) 0.096 0.117 0.090 0.104 0.093 0.112 0.115 0.097 0.079 0.103 0.081 0.080

P(λ4|λ3) 0.128 0.117 0.074 0.116 0.111 0.161 0.151 0.110 0.110 0.121 0.091 0.116

P(λ5|λ4) 0.180 0.159 0.082 0.156 0.115 0.241 0.209 0.189 0.173 0.121 0.073 0.150

P(λ6|λ5) 0.167 0.154 0.149 0.225 0.148 0.256 0.274 0.151 0.189 0.189 0.121 0.187

P(λ7|λ6) 0.071 0.074 0.060 0.128 0.093 0.118 0.121 0.052 0.092 0.169 0.077 0.064

P(λ8|λ7) 0.104 0.078 0.051 0.109 0.091 0.109 0.119 0.077 0.126 0.132 0.087 0.064

P(λ9|λ8) 0.100 0.100 0.105 0.083 0.075 0.089 0.101 0.081 0.129 0.101 0.109 0.068

P(λ9|λ1) 3 × 10−8 2 × 10−8 4 × 10−9 5 × 10−8 1 × 10−8 2 × 10−7 2 × 10−7 1 × 10−8 6 × 10−8 8 × 10−8 6 × 10−9 1 × 10−8

and Frenkel10 showed that the attachment rate fn∗ could be

related to the mean square deviation of the cluster size at the

top of the barrier by

fn∗ =
1

2

〈�n2(t)〉
t

. (16)

The mean square deviation (MSD) of the cluster size

�n2(t) = 〈(n(t) − n∗)2〉 can then be calculated by either

employing a kinetic Monte Carlo (KMC) simulation or a

MD simulation at the top of the barrier. For simplicity, in the

remainder of this paper the nucleation rate determined using

this method will be referred to as the umbrella sampling (US)

nucleation rate, although to calculate the nucleation rates both

US simulations and dynamical simulations (KMC or MD)

are necessary. Note that information on KMC simulations

can be found in, e.g., Refs. 33 and 34.

The mean square deviation, or variance, in the cluster

size appearing in Eq. (16) has both a short-time and long-

time behavior. At short times, fluctuations are due to particles

performing Brownian motion around their average positions

while the long-time behavior is caused by rearrangements of

particles required for the barrier crossings. The slope of the

variance is large at short times where only the fast rattling is

sampled. However, the longer the time the further the system

has diffused away from the critical cluster size at the top of the

nucleation barrier. Auer36 states that runs need to be selected

that remain at the top of the barrier. However, when this is

done the attachment rate is lower than when the average over

all runs is taken since it excludes the runs that move off the

barrier fast and have the largest attachment rate. This prob-

lem is analogous to determining the diffusion constant of a

particle performing a random walk. By only including walks

which remain in the vicinity of the origin, the measurement

is biased and excludes trajectories which quickly move away

from the origin. This results in an underestimation of the dif-

fusion constant, and similarly, in this case, an underestimation

of the attachment rate. Hence, in this paper we do not attempt

to prevent the trajectories from falling off the barrier and we

include all trajectories. In Fig. 5 we demonstrate how, start-

ing from a critical cluster, the size of the nucleus fluctuates as

a function of time and, in fact, can completely disappear or

double in size within 0.3τL where τL is the time that it takes a

particle to diffuse on average a distance equal to its diameter,

i.e., τL = σ 2/(6DL ).

The kinetic prefactor was determined using KMC sim-

ulations with 3000 particles in an N V T ensemble in a

cubic box with periodic boundary conditions. The initial con-

figurations were taken from US simulations in one of the win-

dows at the top of the barrier. We examined the results from

both Gaussian and uniformly distributed Monte Carlo steps

and found agreement within the statistical errors. For all the

simulations, the MC step size was between 0.01 and 0.1σ .

The variance of the cluster size for a typical system is shown

in Fig. 6. We observed a large variance in the attachment rates

calculated for different nuclei. Specifically, some nuclei have

attachment rates more than an order of magnitude higher than

other nuclei of similar size. The nuclei with low attachment

rates appeared to have a smoother surface than the nuclei with

a high attachment rate. In calculating the attachment rates we

used ten independent configurations on the top of the barrier

and followed ten trajectories from each.

Our results for the kinetic prefactors and nucleation

rates for pressures βpσ 3 = 15, 16, and 17 are reported in

Table IV.

 0

 50

 100

 150

 200

 0  5000  10000  15000  20000  25000  30000  35000

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
lu

s
te

r 
s
iz

e
 (

n
)

Time t in MC cycles

Time t/τL

FIG. 5. The cluster size (n(t)) as a function of time in MC cycles for a ran-

dom selection of clusters that start at the top of the nucleation barrier.
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cycle and averaged over 100 cycles to reduce the short-time fluctuations. The

slope of this graph is twice the attachment rate [Eq. (16)].

VI. FORWARD FLUX SAMPLING

A. Method

The forward flux sampling method was introduced by

Allen et al.13 in 2005 to study rare events and has since been

applied to a wide variety of systems. Two review articles

(Refs. 37 and 38) on the subject have appeared recently and

provide a thorough overview of the method. In the present

paper, we discuss FFS as it pertains to the liquid to solid

nucleation process in hard spheres. In general, FFS follows

the progress of a reaction coordinate during a rare event. For

hard-sphere nucleation, a reasonable reaction coordinate (Q)

is the number of particles in the largest crystalline cluster in

the system (n). For the remainder of this paper, for all FFS

calculations, we take the reaction coordinate to be the order

parameter discussed in Sec. III with ξc = 8, rc = 1.3σ , and

dc = 0.7. In general, the reaction coordinate is used to divide

phase space by a sequence of interfaces (λ0, λ1, . . . λN ) asso-

ciated with increasing values n(rN ) such that the nucleation

process between any two interfaces can be examined. In our

case the liquid is composed of all states with n < λ0 and the

solid contains all states with n > λN . While the complete nu-

cleation event is rare, the interfaces are chosen such that the

part of the nucleation process between consecutive interfaces

is not rare, and can thus be thoroughly studied.

In the FFS methodology, the nucleation rate from the

fluid phase A to the solid phase B is given by

kAB = �Aλ0
P(λN |λ0) (17)

= �Aλ0

N−1
∏

i=0

P(λi+1|λi ), (18)

where �Aλ0
is the steady-state flux of trajectories leaving the

A state and crossing the interface λ0 in a volume V , and

P(λi+1|λi ) is the probability that a configuration starting at

interface λi will reach interface λi+1 before it returns to the

fluid (A).

If we apply this method directly to a hard-sphere system

a number of difficulties arise. As shown in Fig. 5, on short

0 500 1000 1500
0
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20
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50

n

Time t in MC cycles

FIG. 7. The cluster size as a function of time t in MC cycles for 4 random

trajectories at pressure βpσ 3 = 17 starting with a cluster size of n = 43 using

kinetic MC simulations with step size �KMC = 0.1σ and measuring the order

parameter every �tord = 5 MC steps.

times the size of a cluster measured by the order parameter

fluctuates wildly. The variance in the cluster size displays two

different types of behavior, short-time fluctuations related to

surface fluctuations of the cluster, and a longer time cluster

growth (Fig. 6). Thus, if we try to measure the flux �Aλ0
di-

rectly, we encounter difficulties due to these short-time sur-

face fluctuations. In theory, FFS should be able to handle these

types of fluctuations, however, they increase the amount of

statistics necessary to properly measure the flux and the first

probability window. In the second part of FFS calculations,

probabilities of the form P(λi+1|λi ) need to be determined.

In calculating these probabilities it is important to be able to

determine if a cluster has returned to the fluid (A). For pre-

critical clusters we find large fluctuations of the order param-

eter, as shown in Fig. 7, which can lead to a cluster being

misidentified as the fluid (A). Specifically, in this figure the

darkest trajectory (black) shows a cluster containing 43 par-

ticles that shrinks to 5 particles before it returns to 40, and

finally reaches a cluster size of 60 particles. Hence, if we had

set λ0 = 5, this trajectory would have been identified as melt-

ing back to the fluid phase (A). However, since the growth of

a cluster from size 5 to 60 is a rare event in our system, we

presume that this was simply a short-time fluctuation of the

cluster and not a “real” melting of the instantaneously mea-

sured cluster. For precritical clusters, these fluctuations result

in cluster sizes that are smaller than the cluster “really” is.

We suggest that these fluctuations are largely related to the

difficulty that this order parameter has in distinguishing be-

tween solid-like and fluidlike particles at the fluid–solid in-

terface. For larger clusters, where the surface to volume ra-

tio is small, this problem is minimal. However, for elongated

or rough precritical clusters, where the surface to volume ra-

tio is large, these surface fluctuations and rearrangements are

important, and can cause problems in measuring the order

parameter.

Thus, to try and address these problems, in this paper, we

apply forward flux sampling in a novel way. We regroup the
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TABLE VI. Nucleation rates predicted using forward flux sampling in units

of the long-time diffusion coefficient (Dl ). The probabilities P(λB |λ1), num-

ber of steps between the order parameter measurements �tord, and kinetic

MC step size �KMC are as in Tables VII, VIII, and IX. At each interface, Ci

copies of each successful configuration were used as displayed in Tables VII,

VIII, and IX.

βpσ 3 λ1 �̃Aλ1
/6DL P(λB |λ1) kσ 5/6DL

17 27 2.66 × 10−5 7.6 × 10−3 2.0 × 10−7

17 27 2.68 × 10−5 1.4 × 10−2 3.7 × 10−7

16 20 8.57 × 10−6 3.1 × 10−7 2.6 × 10−12

16 20 8.57 × 10−6 2.1 × 10−7 1.8 × 10−12

15 15 8.72 × 10−6 1.9 × 10−15 1.6 × 10−20

elements of the rate calculation such that

kAB = �̃Aλ1

N−1
∏

i=1

P(λi+1|λi ), (19)

where

�̃Aλ1
= �Aλ0

P(λ1|λ0). (20)

We note that if λ1 is chosen such that it is a relatively rare

event for trajectories starting in A to reach λ1, then

�̃Aλ1
≈

1

〈tAλ1
〉V

(21)

where 〈tAλ1
〉 is the average time it takes a trajectory in A to

reach λ1.The approximation made here, in contrast to normal

FFS simulations, is that the time the system spends with an or-

der parameter greater than λ1 is negligible. Since even reach-

ing this interface is a rare event, this approximation should

have a minimal effect on the resulting rate. Additionally, in

this way we are relatively free to place the first interface (λ0)

anywhere under λ1.45 We choose to use λ0 = 1 to minimize

the effect of fluctuations, as seen in Fig. 7, on the probability

of reaching the following interface. Here we assume that any

crystalline order in a system with λ0 = 1 does not likely arise

from a fluctuation of a much larger cluster, but rather is very

close to the fluid, and is expected to fully melt and not grow

out to the next interface. In this manner we are able to start

several parallel trajectories from the fluid in order to measure

〈tAλ1
〉, stopping whenever the trajectory first hits interface λ1.

In our implementation of FFS, we employ kinetic Monte

Carlo (KMC) simulations at fixed pressure to follow the tra-

jectories from the liquid to the solid. The KMC simulations

are characterized by two parameters, the maximum step size

TABLE VII. Probabilities P(λi+1|λi ) for the interfaces used in calculating

the nucleation rate for pressure βpσ 3 = 17 with step size �KMC = 0.1σ and

measuring the order parameter every �tord = 5 MC cycles.

Trial 1 Trial 2

i λi Ci−1 P(λi |λi−1) Ci−1 P(λi |λi−1)

2 43 10 0.137 10 0.157

3 60 10 0.272 10 0.312

4 90 10 0.350 10 0.414

5 150 2 0.594 2 0.691

6 250 2 0.988 2 0.988

TABLE VIII. Same as Table VII but for βpσ 3 = 16.

Trial 1 Trial 2

i λi Ci−1 P(λi |λi−1) Ci−1 P(λi |λi−1)

2 28 10 0.105 10 0.110

3 38 10 0.075 10 0.077

4 50 10 0.070 10 0.089

5 70 10 0.114 10 0.089

6 90 10 0.095 10 0.101

7 110 10 0.339 10 0.278

8 250 10 0.152 10 0.112

9 350 1 1.000 1 1.000

(�KMC) per attempt to move each particle, and the frequency

with which the order parameter (reaction coordinate) is mea-

sured �tord. However, during an FFS simulation, it is expected

that the order parameter is known at all times such that it is

possible to identify exactly when and if a given simulation

reaches an interface. Thus, it is possible that �tord introduces

an additional error into our measurement of the rate.

To examine the effects of (i) the approximation asso-

ciated with our method for calculating �̃Aλ1
, (ii) the short-

time fluctuations of the order parameter (which could be con-

sidered as an error in the measurement of the cluster size),

and (iii) the frequency of measuring the order parameter, we

examined the nucleation rate for a simple one-dimensional

model system in the presence of such features. Details of these

simulations are given in the Appendix. In this simple model

system, we find that none of these features have a large effect

on the rate. In fact, for most cases, the difference is too small

to see within our error bars.

B. Simulation details and results

All simulations were performed with 3000 particle in a

cubic box with periodic boundary conditions. Initial configu-

rations were produced using N PT MC simulations of a liquid

phase with a packing fraction of η ≈ 0.4 and then simulated

at a reduced pressure of βpσ 3 = 1000. The simulations were

TABLE IX. Same as Table VII but for βpσ 3 = 15 and with �tord = 2.

i λi Ci−1 P(λi |λi−1)

2 20 10 0.101

3 26 10 0.104

4 32 10 0.116

5 38 10 0.156

6 44 10 0.225

7 54 10 0.128

8 65 10 0.109

9 78 10 0.083

10 92 10 0.101

11 110 10 0.085

12 135 10 0.062

13 160 10 0.131

14 190 10 0.131

15 230 10 0.134

16 400 10 0.058
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FIG. 8. A comparison of the crystal nucleation rates of hard spheres as determined by the three methods described in this paper FFS, US, and MD with the

experimental results from Refs. 5, 8, and 9 and previous theoretical results from Ref. 10. The nucleation rates are in units of τL where where τL = σ 2/(6DL ).

Note that error bars have not been included in this plot but are discussed in the main text. Within these estimated error bars, all the simulated nucleation rates are

in agreement, while the experimentally obtained rates show a markedly different behavior, particularly for low supersaturations where the difference between

the simulations and experiments can be as large as 12 orders of magnitude.

ξc = 5 ξc = 7 ξc = 9

FIG. 9. Two typical snapshots (top and bottom) of the critical nuclei as obtained with US at a volume fraction η = 0.5355 using different values of the critical

number of crystalline bonds ξc = 5 (left), 7 (middle), and 9 (right) in the biasing potential. The clusters are analysed with three different crystalline order

parameters. The blue particles are found by all three cluster criteria, the green particles have ξ = 7 or 8 crystalline bonds and the red particles have only ξ = 5

or 6 crystalline bonds.
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FIG. 10. Snapshots of nuclei formed spontaneously during an MD simulation at a volume fraction of η = 0.537. The snapshots were taken just before the

nuclei grew. The color coding of the particles is the same as in Fig. 9.

stopped when the packing fraction associated with the pres-

sure of interest was reached. In this way the system volume

decreased rapidly to the target density. This initial configura-

tion was then relaxed using an N PT simulation at the pres-

sure of interest (βpσ 3 = 15, 16, 17). The relaxation consisted

of at least 10 000 MC cycles, after which the simulation con-

tinued until a measurement of the order parameter found no

crystalline particles in the system.

In order to determine the flux and the probabilities, 100

trajectories were started in the liquid and terminated when

n(rN ) = λ1. These trajectories were produced using KMC

simulations. The probability P(λ2|λ1) was then found by

making C1 copies of the configurations that reached λ1, and

following these configurations until they either reached λ2

or returned to the fluid. By taking different random number

seeds, the various copies of the same configurations follow

different trajectories. The fraction of successful trajectories

corresponds to the required probability. The successful trajec-

tories were then copied C2 times to determine P(λ3|λ2). The

remaining P(λi+1|λi )’s are calculated similarly.

To study the effect of the two KMC parameters, namely

�KMC and �tord, on the nucleation rates, we examined the first
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FIG. 11. A comparison of the three components of the radius of gyration ten-

sor as a function of cluster size n, as well as the sum of the three components,

for clusters produced using FFS, MD, and US simulations.

8 FFS windows for βpσ 3 = 15 for various values of the num-

ber of MC steps between the order parameter measurements

�tord and the maximum displacement �KMC for the KMC

simulations. The results are shown in Table V. As shown in

this table we do not find a significant effect on the rate from

either parameter. Thus, for numerical efficiency, unless other-

wise indicated, the rates in this section come from �tord = 5

MC cycles and �KMC = 0.2σ .

For pressures βpσ 3 = 16 and 17 we have performed two

separate FFS calculations to determine the nucleation rates,

and for pressure βpσ 3 = 15 we have the result from a sin-

gle FFS simulation. A summary of the results are given in

Table VI. A complete summary of the results for P(λi+1|λi )

for each simulation is given in Tables VII, VIII, and IX.

VII. SUMMARY AND DISCUSSION

A. Nucleation rates

In this section we examine hard-sphere nucleation rates

predicted using US simulations, MD simulations and FFS
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FIG. 12. Fraction of particles identified as either FCC or HCP respectively,

in the clusters produced via molecular dynamics (MD), forward flux sam-

pling (FFS), and umbrella sampling (US) simulations as a function of cluster

size n. All three methods agree and find the precritial clusters predominately

FCC.
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TABLE X. Nucleation rates for the one-dimensional potential given by Eq. (A1) and shown in Fig. 13 for �tord as indicated. For each �tord, we performed 10

independent FFS simulations. The average rate and associated standard deviation is also as indicated. In all cases, 100 configurations were started in the fluid,

and at each interface Ci = 10 copies of the successful configurations were used to calculate the proceeding probabilities. The interfaces were placed at λ0 = 0,

λ1 = 1.5, λ2 = 1.7, λ3 = 1.9, λ4 = 2.2, λ5 = 2.6, λ6 = 3.3, and λ7 = 4.0 and the flux was calculated using Eq. (21).

�tord 1 2 5 10 50

1.2723 × 10−12 1.0589 × 10−12 1.8075 × 10−12 1.5455 × 10−12 1.3835 × 10−12

1.3780 × 10−12 1.7217 × 10−12 1.3314 × 10−12 1.4461 × 10−12 1.0666 × 10−12

1.2364 × 10−12 1.2924 × 10−12 1.4847 × 10−12 1.1482 × 10−12 1.6134 × 10−12

1.6942 × 10−12 1.6422 × 10−12 1.9482 × 10−12 1.4383 × 10−12 1.7550 × 10−12

1.2662 × 10−12 1.2340 × 10−12 1.5692 × 10−12 1.6060 × 10−12 1.2908 × 10−12

1.6918 × 10−12 1.3530 × 10−12 1.6238 × 10−12 1.6244 × 10−12 1.4012 × 10−12

1.4646 × 10−12 1.1788 × 10−12 1.6928 × 10−12 1.0191 × 10−12 1.3403 × 10−12

1.6809 × 10−12 1.5860 × 10−12 1.1903 × 10−12 1.6227 × 10−12 1.0582 × 10−12

1.4602 × 10−12 1.7018 × 10−12 1.3191 × 10−12 1.3850 × 10−12 2.3732 × 10−12

1.7459 × 10−12 1.9154 × 10−12 1.5638 × 10−12 1.2378 × 10−12 1.2692 × 10−12

Avg. Rate 1.5 × 10−12 1.5 × 10−12 1.6 × 10−12 1.4 × 10−12 1.5 × 10−12

Std. Error 6.0 × 10−14 8.4 × 10−14 7.0 × 10−14 6.3 × 10−14 1.2 × 10−13

simulations together with the experimental results of Harland

and van Megen,5 Sinn et al.8 and Schätzel and Ackerson9

and the US simulations of monodisperse and 5% polydisperse

hard-spheres systems examined by Auer and Frenkel.10 The

experimental volume fractions have been scaled to yield the

coexistence densities of monodisperse hard spheres.16 Simi-

larly, we scale the polydisperse results of Auer and Frenkel

with the coexistence densities determined in Ref. 39. Inspired

by the recent work of Pusey et al.,16 we plot the nucleation

rates in units of the long-time diffusion coefficient. In exper-

iments with colloidal particles, the influence of the solvent

on the dynamics cannot be ignored. Specifically, the system

slows down due to hydrodynamic interactions when the den-

sity is increased. However, by presenting the nucleation rates

in terms of the long-time diffusion coefficient, we expect our

simulated nucleation rates from the hard-sphere model with-

out an explicit solvent to be in agreement with the experimen-

tal rates with a solvent. The time in experiments is typically

measured in units of D0, the free diffusion at low density. We

convert the short-time diffusion coefficient D0 to the long-

time diffusion coefficient DL using

DL (η)

D0

=
(

1 −
η

0.58

)δ

. (22)

Harland and van Megen5 claim that δ = 2.6 gives a good fit

to their system and Sinn et al.8 use δ = 2.58. Since the sys-

tem that Schätzel and Ackerson9 examine is very similar to

the other two, we use δ = 2.6 to convert their nucleation rates

in terms of DL . We note that both δ = 2.58 and δ = 2.6 give

very similar results. The results for both the theoretical and

experimental rates in terms of τL = σ 2/6DL are shown in

Fig. 8. Note that for clarity reasons the error bars have not

been included in this plot. In general, the error bars of the sim-

ulated nucleation rates are largest for lower supersaturations

(i.e., lower volume fractions), as the barrier height is higher.

For the FFS and US simulations, the error for βpσ 3 = 15

(η = 0.5214) is between 2 and 3 orders of magnitude, and

for βpσ 3 = 17 (η = 0.5352) is approximately one to two or-

ders of magnitude. The MD results are quite accurate around

TABLE XI. Nucleation rates for the one-dimensional potential given by Eq. (A1) and shown in Fig. 13 where the order parameter is given by Eq. (A2) and

σGauss is as indicated. For each σGauss, we performed 10 independent FFS simulations. The average rate and associated standard deviation is also as indicated. In

all cases, 100 configurations were started in the fluid, and at each interface Ci = 10 copies of the successful configurations were used to calculate the proceeding

probabilities. The interfaces were placed at λ0 = 0, λ1 = 1.5, λ2 = 1.7, λ3 = 1.9, λ4 = 2.2, λ5 = 2.6, λ6 = 3.3, and λ7 = 4.0 and the flux was calculated using

Eq. (21).

σGauss 0.02 0.04 0.06 0.08 0.1

1.8623 × 10−12 1.7281 × 10−12 1.2630 × 10−12 1.0634 × 10−12 1.9158 × 10−12

1.7627 × 10−12 1.6090 × 10−12 1.6402 × 10−12 1.5655 × 10−12 1.8785 × 10−12

9.9796 × 10−13 1.6305 × 10−12 1.5799 × 10−12 1.6936 × 10−12 1.4937 × 10−12

1.3743 × 10−12 1.2261 × 10−12 1.8305 × 10−12 1.7733 × 10−12 1.1142 × 10−12

1.6917 × 10−12 1.8054 × 10−12 1.6191 × 10−12 1.8941 × 10−12 1.0402 × 10−12

1.1842 × 10−12 1.3337 × 10−12 1.3283 × 10−12 1.4039 × 10−12 7.0735 × 10−13

1.5289 × 10−12 8.6859 × 10−13 1.3129 × 10−12 2.7115 × 10−12 2.4711 × 10−12

1.8918 × 10−12 1.4325 × 10−12 1.3203 × 10−12 1.3792 × 10−12 1.6288 × 10−12

1.3144 × 10−12 1.2283 × 10−12 1.0459 × 10−12 1.7194 × 10−12 1.3764 × 10−12

1.6654 × 10−12 1.1236 × 10−12 1.2572 × 10−12 1.9631 × 10−12 1.8976 × 10−12

Avg. Rate 1.5 × 10−12 1.4 × 10−12 1.4 × 10−12 1.7 × 10−12 1.6 × 10−12

Std. Error 9.5 × 10−14 9.4 × 10−14 7.5 × 10−14 1.4 × 10−13 1.6 × 10−13
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FIG. 13. Toy model potential used to study forward flux sampling in the

presence of various types of measurement errors.

βpσ 3 = 17, however the error bars are larger for the higher

pressure MD results.

In Ref. 16, Pusey et al. showed that the nucleation rates

for various polydispersities (0%–6%) of hard spheres col-

lapsed onto the same curve when the rates were plotted in

units of the long-time diffusion coefficient. We find similar

results here. Both the monodisperse and polydisperse US re-

sults of Auer and Frenkel,10 in addition to our own US pre-

dictions of the nucleation rate, agree well within the expected

measurement error. Additionally, we find that the simulation

results of the US, FFS, and MD all agree. Whereas the simu-

lation results agree well with the experimental results for the

nucleation rate at high supersaturation there is still a signifi-

cant difference at low supersaturations. Unfortunately, the ori-

gin of this discrepancy remains unsolved.

However, on the experimental side, the nucleation rates

of Harland and van Megen5 are approximately 1–2 orders of

magnitude below the experiments of Sinn et al.8 and Schätzel

and Ackerson.9 This is unexpected due to the similarity be-

tween the experimental systems. The main difference between

these experiments is the size polydispersity of the particles:

5% in the case of Harland and van Megen,5 2.5% in the

case of Sinn et al.,8 and < 5% for Schätzel and Ackerson.9

However, as demonstrated by Pusey et al.,16 and now also in

Fig. 8, the nucleation rate when measured in long-time diffu-

sion coefficient units should not be effected by the polydis-

persity. Thus, this seems unlikely as an explanation.

B. Nuclei

To examine whether the structure and shape of the critical

clusters from US simulations depended on the precise thresh-

old values used for the crystalline order parameters, we com-

pared and analyzed the critical clusters obtained when three

different crystalline order parameters were used to bias the

US simulations, namely, ξc = 5, 7, and 9. Subsequently, we

analyzed these critical clusters using the three different order

parameters. In Fig. 9, two typical critical clusters from differ-

ent biasing order parameters are shown on the top and bottom

rows. The nucleus of the cluster, shown in blue, was identi-

fied by all three cluster criteria (ξc = 5, 7, and 9). The main

difference between the criteria is the location of the fluid-

solid interface as shown by the green and red particles. The

strictest order parameter finds only the more ordered center

whereas the loosest version detects the more disordered par-

ticles at the interface as well. In Fig. 10 we show some of

the nuclei obtained from MD simulations. These snapshots

were taken just before the nuclei grew out so they are not nec-

essarily precisely at the top of the nucleation barrier. They

appear very similar in roughness and aspect ratio to those

obtained from US simulations. We note here that this is not

meant to be a thorough study of the critical clusters, but rather

just a rough comparison to demonstrate, to a first approxima-

tion, the clusters formed by the three simulation techniques

are the same. A more thorough examination of the struc-

ture of the nuclei for high supersaturations can be found in

Ref. 42.

To further examine whether the choice of method influ-

enced the resulting clusters, particularly the presence of the

biasing potential in the US simulations and the choice of re-

action coordinate and interfaces in FFS, we calculated the ra-

dius of gyration tensor for each of the methods for pressure

βpσ 3 = 17 as a function of cluster size (see Fig. 11). There is

no indication that the clusters in any of the simulation meth-

ods differed substantially.

Additionally, we examined whether the simulation tech-

nique influenced the type of precritical nuclei that formed in

the simulations, i.e., FCC and HCP. To do this we used the or-

der parameter introduced by Ref. 41 which allows us to iden-

tify each particle in the cluster as either FCC-like or HCP-

like. The results for a wide range in nucleus size is shown in

Fig. 12. We find complete agreement between the three simu-

lation techniques. Specifically, in all cases we find that the nu-

cleus is composed of approximately 80% FCC-like particles.

This was unexpected as the free-energy difference between

the bulk FCC and HCP phases is about 0.001kBT per parti-

cle at melting43 and hence random-hexagonal-close-packing

order in the nuclei would be expected.44 Note that using our

order parameter this would appear as an approximately 50%

occurrence of FCC-like and HCP-like particles in the nucleus.

We speculate that this predominance of FCC-like particles in

the nuclei arises from surface effects.

VIII. CONCLUSIONS

In this paper, we have examined in detail three indepen-

dent simulation techniques for studying nucleation processes

and predicting nucleation rates, namely forward flux sam-

pling, umbrella sampling, and molecular dynamics. We have

shown that the three simulation techniques are completely

consistent in their prediction of the nucleation rates for hard

spheres over the large range of volume fractions studied,

despite the fact that they treat the dynamics differently. Addi-

tionally, in agreement with the recent work of Pusey et al.,16

we find that by measuring the nucleation rates in terms of the

long-time diffusion constant and scaling to the coexistence

density of monodisperse hard spheres, the 5% polydisperse

results of Auer and Frenkel10 also agree. On examining
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the critical clusters, we also do not find a difference in the nu-

clei formed using the three simulation techniques. Hence, we

conclude that the original prediction of Auer and Frenkel10 for

the nucleation rates in hard-sphere systems was indeed robust.

We have also compared our nucleation rates with previ-

ous experimental data, specifically, the nucleation rates pre-

dicted by Harland and van Megen,5 Sinn et al.8 and Schätzel

and Ackerson.9 As was found first by Auer and Frenkel,10

while the simulation results agree well with the experimen-

tal results for high supersaturations, there is a significant dif-

ference between the simulations and experiments for smaller

volume fractions. The agreement between the three theoret-

ical methods examined in this paper, namely molecular dy-

namics, umbrella sampling, and forward flux sampling, seems

to indicate that either there is a fundamental difference be-

tween the simulations and theory, which we are not taking

into account, such as some form of collective hydrodynamics

which are included in the experiments but not considered in

the theory or some difficulty in interpreting the experimen-

tal data. In either case, the origin of the huge discrepancy in

the theoretical and experimental nucleation rates remains a

mystery.
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APPENDIX: FFS IN THE PRESENCE OF
MEASUREMENT ERROR

As mentioned in Sec. VI of this paper, the FFS technique

assumes that the reaction coordinate is known exactly at all

times. However, for the hard-sphere system examined in this

paper, this is not possible due to the computational time re-

quired for measuring the order parameter. In applying the FFS

technique to hard spheres, two separate types of error are in-

troduced: (i) error associated with our inability to know the

value of the reaction coordinate at all times, and (ii) an error

in measuring the number of particles in a cluster for a given

configuration. Additionally, as discussed in Sec. VI, in this

paper we have applied FFS in a slightly novel manner. In this

appendix, we introduce a simple model to examine the effect

of this approximation and the effect such measurement errors

have on the nucleation rate predicted by forward flux sam-

pling.

To this end, we study the transition rate for a single Brow-

nian particle to surmount a one dimensional potential energy

barrier given by

βU (x) = 8x2 − 2x3. (A1)

A plot of the barrier is shown in Fig. 13. For this potential, we

consider the “liquid” state to be near x = 0 and the “solid”

phase to be near x = 4.

We first determine the “exact” nucleation rate using spon-

taneous simulations. To do this we perform a random walk

starting at x = 0 and determine the time it takes the ran-

dom walk to surmount the barrier. The rate is then given by

R = 1/〈t〉. Performing 40 such random walks we find the nu-

cleation rate to be 1.3 × 10−12. In all the calculations in this

section, we set the KMC step size equal to �K MC = 0.025.

Second, we explore the effect on the nucleation rate of

not knowing the value of the order parameter at all times. For

this purpose we have performed FFS simulations when the

order parameter was measured every �tord = 1, 2, 5, 10, 50

kinetic Monte Carlo steps. The results are shown in Table X.

The average nucleation rates predicted for all values of �tord

clearly are the same within error. Similarly, the standard er-

ror associated with �tord = 1, 2, 5, 10 are approximately the

same, and is only marginally larger for �tord = 50. Hence, we

conclude that the frequency of measuring the order parame-

ter does not significantly affect the predicted nucleation rate.

Additionally, these nucleation rates agree with the nucleation

rate predicted from spontaneous simulations, indicating that

of applying FFS as outlined in Sec. VI predicts the correct

nucleation rates.

Finally, we examine the effect that measurement error in

the cluster size has on the nucleation rate. For this purpose,

we apply a noise term to our order parameter such that

xm = xtrue + δ, (A2)

where xm is the value of the order parameter used in the FFS

simulation, xtrue is the true value of the order parameter, and

δ is taken from a Gaussian distribution with a mean of 0 and

a standard deviation σGauss. In Table XI we demonstrate the

effect on the predicted nucleation rate for various choices of

σGauss. The resulting nucleation rates are in good agreement

with the spontaneous results. For larger σGauss, e.g., σGauss

= 0.08 and 0.1, the standard error in the results is slightly

larger, however, the predicted nucleation rates are still correct.

In summary, we have examined the effect of the approx-

imation described by Eq. (21), as well as the effect of mea-

surement error in the order parameter and the measurement

frequency �tord of the order parameter. We do not find a sig-

nificant effect on the predicted nucleation rates. Thus, we con-

clude that FFS should be robust to the types of error we are

introducing when we apply the technique to hard spheres.
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