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Abstract

Recent experimental investigations have confirmed the possibility to synthesize and ex-

ploit polytypism in group IV nanowires. Driven by these promising evidences, we use first-

principles methods based on density-functional theory and many-body perturbation theory to

investigate the electronic and optical properties of hexagonal-diamond and cubic-diamond Si

NWs as well as their homojunctions. We show that hexagonal-diamond NWs are characterized

by a more pronounced quantum confinement effect than cubic-diamond NWs. Furthermore,
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they absorb more light in the visible region with respect to cubic-diamond ones and, for most

of the studied diameters, they are direct band-gap materials. The study of the homojunctions

reveals that the diameter has a crucial effect on the band alignment at the interface. In par-

ticular, at small diameters the band-offset is type-I while at experimentally relevant sizes the

offset turns up to be of type-II. These findings highlight intriguing possibilities to modulate

electron and hole separations as well as electronic and optical properties by simply modifying

the crystal phase and the size of the junction.

Introduction –Crystal structure and interface engineering are acquiring an increasing impor-

tance in nanoscience because of their enormous potential to conceive new properties and func-

tionalities.1 In the case of nanowires (NWs), the emergence of new stable polytypes of common

semiconductors promises to have an important impact in materials design.1–5 At typical device

operation conditions, semiconductors present a well defined crystal phase: Si, Ge and GaAs have a

zinc-blende structure while, for instance, GaN, ZnO and CdSe have a wurtzite one. Some of these

systems can have other bulk phases which are stable only under extreme temperature and pressure

conditions. This is particularly true for group IV based materials for which the existence of phases

other than the cubic-diamond cannot be achieved in standard conditions.6–8

Nevertheless, in group IV nanowires, the stability of novel polytypes –previously theoretically

predicted9 but experimentally observed only very locally in the form of crystal imperfections10–13–

is now supported by clear experimental evidences.14–19 For instance, Vincent et al.14 reported the

synthesis of quasi-periodic allotrope Ge heterostructures of hexagonal-diamond (wurtzite structure

with single atom type) and cubic-diamond domains. These systems were obtained by a strain-

induced phase transformation in which size effects (in particular the preferential nucleation of

dislocations on the wire surface and the activation of unusual slip planes) play a crucial role by

lowering the value of the stress required by the cubic to hexagonal transition. A similar approach

was adopted by Qiu et al.17 to produce hexagonal Si nanoribbon with a thickness of 5-8 nm. More

recently, Hauge et al.16 have obtained pure and stable hexagonal silicon nanoshells with a thickness

between 5-170 nm by growing them on the top of hexagonal GaP NWs used as a template.20,21
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This experimental scenario suggests that exploiting polytypism in group IV NWs could be

an efficient way to enhance NWs optoelectronic performances while retaining the compatibility

with existent Si technology. As regards as Si NWs, recent experimental and theoretical investiga-

tions seem to confirm this prediction: cathodoluminescence measurements on hexagonal-diamond

Si NWs22 show that these structures can emit visible light with a higher efficiency than cubic-

diamond NWs; on the other hand, results of ab initio calculations23 have demonstrated that strained

hexagonal-diamond bulk Si could be employed as an active layer in photovoltaic devices with ab-

sorption properties that are more favorable than those of cubic-diamond Si.

Furthermore, important progresses in the synthesis of nanowires make possible to create ho-

mojunctions, where two different polytypes of the same material are grown on top of each other.

When the growth is along specific crystallographic directions (e.g. the cubic 〈111〉 parallel to the

hexagonal [0001]), interfaces are in principle well defined and abrupt due to the minimal lattice

mismatch between the two phases. While larger values have been reported for different phases

of III-V semiconductors, the in-plane lattice mismatch between cubic and hexagonal Si is within

0.5 %. This leads to a minor relaxation of atomic bond lengths at the interface, while the stacking

sequence in the growth direction changes, as illustrated in the sketch of Figure 5 for a homojunc-

tion between cubic-diamond and hexagonal-diamond Si. The possibility of growing such kind of

systems is extremely fascinating, as such Si-polytype junctions can be used to encode advanced

functionalities in nanowires, going beyond the properties of their pristine, homogeneous counter-

parts.

Despite the great interest in Si NWs polytypism, its scientific potential remains largely unex-

plored and a unified description of the main properties of these polytypes and their homojunctions

is still lacking. While the electronic and optical properties of Si bulk polytypes have been exten-

sively studied in the past,24–27 very little is known on the influence of size reduction on the physical

properties of such systems.

In this Letter we investigate, by means of state-of-the-art ab initio calculations, the electronic

structure and optical response of hexagonal-diamond and cubic-diamond Si NWs as well as their
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homojunctions. In a first step we show that quantum confinement effects are more pronounced for

hexagonal-diamond NWs than for cubic-diamond NWs.28,29 Furthermore, we demonstrate that

hexagonal-diamond wires have a higher absorption in the visible spectral region with respect to

cubic-diamond wires of similar diameter. This effect is associated, for most of the studied diam-

eters, with a smaller direct band-gap. In a second step we analyze Si NWs homojunctions and

we determine that the band alignment between the two phases is strongly diameter-dependent. In

particular, for ultra-thin diameters, the cubic segment acts as a single quantum dot leading to a

type-I offset while for larger diameters, the band offset can be tuned and turns to be of type-II.

Altogether, the combination of direct and indirect band-gap domains at different sections of the

wires with the presence of type-II junctions suggests promising applications in photovoltaics.

To this end, we perform density-functional theory (DFT) calculations with the SIESTA code30,31

of bulk Si and nanowires of different diameters in both the cubic and the hexagonal phase. For the

largest NWs considered the structural relaxation has been obtained within the Density Functional

Tight Binding (DFTB), as implemented in the the dftb+ code,32 and the electronic structure of

these pre-relaxed structures with the same DFT computational setup of the bulk and thinner wires.

A higher level description of the electronic structure of pure hexagonal and cubic Si bulk and the

thinner NWs has been obtained following two approaches: using the HSE06 hybrid functional

where a part of Hartree-Fock exchange is mixed into the Hamiltonian to partially correct the self-

interaction error (as implemented in the VASP code33,34); using the GW method (as implemented

in the Yambo code35) on top of DFT self-consistent and non self-consistent calculation performed

with the quantum-espresso package.36 Both the HSE06 and the GW approach have been used sat-

isfactorily in the past and yield a cubic Si bulk band-gap of 1.14 and 1.08 eV, respectively.37–39

Optical properties have been calculated at the indipendent particle level for NWs and including

also excitonic effects for bulks, through the solution of the Bethe-Salpeter Equation (BSE). Full

details of the computational methods can be found in the Supporting Information.

Electronic and Optical Properties of Pure Cubic and Hexagonal NWs–As a first step, we

have studied quantum confinement in pure cubic and hexagonal nanowires. Recently, pure hexago-
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nal Si NWs have been realized,16 thus these results are interesting per se, besides having important

implications for the homojunctions discussed below. The diameter dependence of the electronic

band-gap for a cubic and a hexagonal nanowire is displayed in Figure 1. As expected from previ-

ously published results (see for instance Ref.28,29,40,41), both these curves obey to the power law

dependence

ENW
gap = Ebulk

gap +Cd−α (1)

where C and α are fitting parameters and Ebulk
gap is the band-gap of the bulk of the corresponding

polytype (αhexagonal = 1.16,αcubic = 1.34). The difference in the α values can be ascribed to the

difference in the effective mass among the two phases (see Figure 2). This leads to an inversion

in the relative band-gap width for the two phases. For very small diameters, hexagonal NWs

have a larger band-gap than cubic NWs but the difference vanishes for diameters ∼ 3.5-4 nm

and then it changes sign for bigger diameters. For very large NWs, when quantum confinement

effects become negligible, band-gaps converge to the bulk value, which is ∼ 0.1-0.3 eV larger for

cubic than for hexagonal Si (depending on the computational framework: LDA, HSE06 or GW),

in agreement with other theoretical studies.23,42 Notice that in quantum confined NWs the band-

gap is essentially determined by the growth orientation and the diameter, while the shape of the

cross-section, thus the wire faceting, plays a negligible role.43,44

Noteworthy, as clearly shown in Figure 2, the band-gap of hexagonal NWs is indirect for the

smallest diameter considered, but it becomes direct at the Γ point for all the remaining diameters.

On the other hand, the band-gap of cubic NWs shows an opposite behavior where only ultra-thin

nanowires present a direct band-gap (see Figure 2), as previously reported.38,39,45

Local and semi-local approximation of the exchange-correlation energy yield to the well-

known underestimation of the band-gap that bedevils the most common implementation of density-

functional theory. Indeed, we obtain 0.63 eV for cubic bulk Si, which should be compared with

the experimental value of 1.1 eV. To provide an improved description of the electronic structure

of bulk and pure hexagonal and cubic Si NWs, we employed the HSE06 hybrid functional and
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the GW approximation formalisms. Due to the high computational cost required by these meth-

ods, we tackled only the extreme cases of the bulk systems and the smaller diameter NWs, 1.0

to 1.75 nm for HSE06, 1.0 to 1.25 nm for GW. Results are plotted in the inset of Figure 1. We

obtain a qualitative agreement with the DFT-LDA trend, i.e. small diameter hexagonal NWs hav-

ing larger band-gap than cubic NWs and cubic bulk Si having a larger band-gap than hexagonal

bulk Si. These results vouch for the reliability of the DFT-LDA results obtained for thicker NWs,

where using these more sophisticated methods would be unpractical. Notice that fitting the GW

results to the power law of 1 predicts as well an inversion of the band-gap widths, in agreement

with DFT-LDA, though it occurs at a slightly smaller diameter.

Next, we computed the optical response within an IP-RPA framework. Crystal local fields have

been neglected since in nanowires they yield negligible depolarization effects when light is polar-

ized along the wire’s axis.46 In Figure 3 we report the calculated ε2(ω) for hexagonal-diamond

(right panel, bottom line) and cubic-diamond (right panel, top line) nanowires with diameter up to

1.8 nm. The corresponding spectra of the two bulk phases are also shown (left panel of Figure 3)

both at IP-RPA (orange curve) and BSE (blue curve) level of approximation to verify the consis-

tency of our results with those published in Ref.23 As for the bulk, it is clear that also nanowires

with the hexagonal-diamond phase present larger absorption in the visible region with respect to

the cubic-diamond phase with a bigger overlap close to the maximum of the solar reference spec-

trum, possibly suggesting an improved power conversion efficiency. A graphical representation of

this behavior is clearly shown in Figure 4, where a comparison between the absorption coefficients

of bulk cubic and bulk hexagonal Si is presented.

Band-offset in cubic/hexagonal NW homojunction–We now move our attention to hexagonal-

cubic homojunctions in Si NWs of different diameter. This kind of structures can now be grown

through advanced synthetic techniques and recent experimental results hint that a short hexagonal

segment could behave as an optically active quantum dot.47,48 We computed cubic-hexagonal Si

junctions with a [111]cubic/[0001]hex interface in NWs of diameters 1, 1.8, and 3.2 nm (see Fig-

ure 5). For all NWs considered, cubic regions contain three unit cells (corresponding to a 2.82 nm
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section along the growth direction) while hexagonal ones have five unit cells replicas (that amounts

to a length of 3.14 nm).

To characterize the band-offset at the cubic-hexagonal interface, we have projected the total

density of states (DOS) on two slices of material conveniently far from the interface: one in the

cubic region and one in the hexagonal region. The results obtained are displayed in Figure 6.

For sufficiently narrow NW diameter, the band-offset is type-I, with both the valence and the

conduction band edge states localized on the cubic side of the junction (top panel of Figure 6).

This is still the case for the 1.8 nm NW (middle panel of Figure 6), but not for the 3.2 nm, where

the band-offset is now type-II (bottom panel of Figure 6): the conduction band edge states are

still localized on the cubic side of the junction, but the valence band, at variance with the thinner

NWs discussed above, is now on the hexagonal side. The observed change in the band-offset

can be qualitatively related to the dependence of the band-gap of the pure phases as a function of

the diameter (Figure 1). At very small diameters the band-gap of the cubic phase is considerably

smaller than the band-gap of the hexagonal phase, a necessary condition for creating a sink for both

electrons and holes and, hence, a type-I alignment. When the diameter increases, the difference

between the cubic and the hexagonal band-gap vanishes and it is much easier that small differences

in the electron affinity of the two phases result in a type-II band-offset. Notice that these are only

qualitative considerations and that a self-consistent calculation of the electronic structure of the

homojunction at a given diameter is always needed to assess the electrostatics at the interface and

the band-offset analysis. For instance, as we discuss below, in the limit of very large diameter it

is the band-gap of the hexagonal phase to become smaller than that of the cubic phase, but the

band-offset remains type-II.

Although very thin diameters of the order of those studied above can nowadays exceptionally be

achieved,29 routinely grown NWs have diameters in the 50-100 nm range. For this reason, we now

study the band-offset in the limit case of large diameters where quantum and dielectric confinement

effects are negligible. These systems can be effectively modeled by the corresponding bulk and

hexagonal phases. We construct a bulk homojunction of cubic and hexagonal Si and study the
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position of the band edges as a function of the distance from the interface. To do that we proceed

like for Figure 6, but project on several slices of material. As it is shown in Figure 7, holes

are completely localized on the hexagonal region of the junction while the cubic part contains

electrons thus demonstrating a type-II offset. This particular band alignment evokes the physics

of single isolated hexagonal stacking faults in bulk cubic silicon. Indeed, as demonstrated in

both experimental and theoretical works (see for instance Refs.49–51), the presence of hexagonal

stacking faults in cubic Si is responsible for the creation of shallow states within the gap, usually

0.1-0.15 eV above the valence band maximum. This occurrence was also confirmed in the case of

[111]cubic/[0001]hex and {115}/{33̄02} Si superlattices by Raffy and coworkers.52 This means

that the valence states at the Γ point are located on the hexagonal side, but, since the indirect band-

gap of the cubic-diamond phase is preserved, the junction presents a type-II band alignment. This

conclusion is further confirmed by GW calculations which give the same type of band alignment

with the offset of valence and conduction bands amounting to 0.25 and 0.2 eV (to be compared

with 0.2 and 0.17 obtained with DFT-LDA).

However, a word of caution is of order here: as clearly explained by Raffy et al.,52 the accurate

evaluation of the conduction band-offset in such junctions requires a very precise determination of

the position of the conduction band minimum in the k space (the accuracy should be lower than

few ten meV). This difficulty has led in the past to contradictory results.26,52,53 Here, we confirm

qualitatively the results of Ref.52 which also predicted a type-II band-offset for hexagonal-cubic

Si superlattices, but with a smaller offset in the conduction band. To double-check the robustness

of our results, we also carried out the calculation of the bulk band-offset with the same plane-

wave computational framework54 used in Ref.52 and obtained an excellent quantitative agreement

with their results.55 These results agree well also with the values obtained within our localized

basis function setup used throughout the paper and that allowed tackling directly NW junctions

that involve a few thousands of atoms. The valence band-offset is in excellent quantitative agree-

ment with the plane-wave results, while the conduction band-offset is somewhat smaller and the

agreement is only qualitative (0.1 eV with plane-wave, 0.2 eV with localized basis).
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Conclusions–In this work we shed light on the electronic and optical properties of Si NWs

polytypes and their homojunctions. By applying several quantum-mechanical simulation methods

with increasing levels of accuracy, we have carefully investigated the electronic band-gap scaling of

hexagonal-diamond and cubic-diamond NWs confirming the validity of the power law dependence

on the diameter. Interestingly, hexagonal-diamond NWs, unlike the corresponding bulk system,23

have a direct band-gap for most of the diameters considered. Furthermore, they absorb more light

in the visible region with respect to cubic-diamond ones.

The study of the junctions has shown that the diameter has a crucial effect on the band align-

ment at the interface. In particular, at small diameters the band-offset is type-I while at experimen-

tally relevant sizes the offset turns up to be of type-II. This nanoscale effect suggests intriguing

possibilities to modulate electron and holes separations as well as absorption and emission proper-

ties by simply modifying the size of the junction.

At ultrathin diameters, cubic inclusions in an hexagonal wire act as a quantum dot that, together

with the observed direct band-gap, could be exploited for quantum photonics and opto-electronics

applications.

Yet, at larger diameters, the higher absorption of hexagonal NWs towards the visible region

(that could even be improved by strain23) together with the demonstrated type-II band-offset sug-

gests novel concepts in Si NWs photovoltaics. We argue that creating NWs homojunctions of

hexagonal and cubic-diamond could be a way to increase the absorbed portion of the solar spec-

trum as well as to enhance, thanks to the particular band alignment, the electron-hole separation.
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Figure 1: Bandgap of cubic (black dots) and hexagonal (red diamonds) Si NWs as a function of
the diameter calculated with DFT-LDA; the arrows indicate the direct band-gaps. Results for the
thinner wires calculated with HSE06 and GW are shown in the inset. Direct band-gaps have the
maximum of the valence band and the minimum of the conduction band at Γ. In indirect band-gaps
the minimum of the conduction band moves somewhere between Γ and the zone boundary, while
the maximum of the valence band remains at Γ.
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Figure 2: Band-structure diagram for (top row) cubic Si NWs and (bottom row) hexagonal Si NWs
with a diameter of 1, 1.3, and 1.5 nm. Red arrows indicate the fundamental band-gap, highlighting
the indirect-direct and direct-indirect transitions as a function of the diameter.
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Figure 3: Left panel: absorption spectra of (top) cubic and (bottom) hexagonal bulk Si within an
IP-RPA (orange line) and GW-BSE (blue line) framework. Right panel: absorption spectra of (top)
cubic and (bottom) hexagonal Si NWs as a function of the diameter within an IP-RPA framework.
The values have been properly normalized. However, due to the arbitrariness when it comes to
estimate the diameter of the nanowires, comparisons between nanowires of different diameter or
between nanowires and bulk are intended to be qualitative.
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Figure 4: Absorption coefficient of bulk (orange line) cubic and (blue line) hexagonal Si within
the GW-BSE framework. The AM 1.5 solar spectrum is shown for comparison.
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Figure 5: Cubic Si-hexagonal Si homojunctions in NWs of (a) 1, (b) 1.8, and (c) 3.2 nm diameter.
Si atoms in the cubic (hexagonal) phase and hydrogen atoms are represented with blue (yellow)
and white spheres, respectively. The stacking sequence along the wire axis is also indicated. Cross-
section views of the NWs are displayed on the right-hand side of the figure.
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Figure 6: Projection of the density of states on atoms in the cubic and hexagonal phase for the
homojunctions of Figure 5. Sketches on the band alignment type for each diameter are shown on
the right-hand side.
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Figure 7: (a) Band-edges DFT-LDA eigenvalues as a function of the position in a bulk cubic-
hexagonal homojunction. (b) GW correction to the band-offset scheme of panel (a). (c) Wave-
functions of the band-edge states of the bulk homojunction: the valence band maximum is localized
on hexagonal Si, while the conduction band minimum is localized on cubic Si, thus the band
alignment is type-II.
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