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Crystal Plasticity Forming Limit Diagram Analysis of Rolled
Aluminum Sheets

P.D. WU, K.W. NEALE, E. VAN DER GIESSEN, M. JAIN, A. MAKINDE,
and S.R. MACEWEN

Numerical simulations of forming limit diagrams (FLDs) are performed based on a rate-sensitive
polycrystal plasticity model together with the Marciniak–Kuczynski (M–K) approach. Sheet necking
is initiated from an initial imperfection in terms of a narrow band. The deformations inside and
outside the band are assumed to be homogeneous, and conditions of compatibility and equilibrium
are enforced across the band interfaces. Thus, the polycrystal model needs only to be applied to two
polycrystalline aggregates, one inside and one outside the band. Each grain is modeled as an fcc
crystal with 12 distinct slip systems. The response of an aggregate comprised of many grains is
based on an elastic-viscoplastic Taylor-type polycrystal model. With this formulation, the effects of
initial imperfection intensity and orientation, initial distribution of grain orientations, crystal elasticity,
strain-rate sensitivity, single slip hardening, and latent hardening on the FLD can be assessed. The
predicted FLDs are compared with experimental data for the following rolled aluminum alloy sheets:
AA5754-0-A, AA5754-0-B, AA6111-T4-A, AA6111-T4-C, and AA6111-T4-D.

I. INTRODUCTION

PLASTIC flow localization during sheet stretching lim-
its metal formability. A sheet metal necks and localizes
progressively until it fails when critical limit strains are
approached. Forming limit diagrams (FLDs), which define
maximum allowable strain levels during sheet metal form-
ing, have become a standard tool for assessing and repre-
senting the formability of sheet metals.

Most theoretical and numerical studies on FLD analysis
have been based on the so-called M–K approach developed
by Marciniak and Kuczynski.[1] The basic assumption of
this approach is the existence of material imperfections in
the form of grooves on the surface of the sheet. They
showed that the presence of even slight intrinsic inhomo-
geneities in load bearing capacity throughout a deforming
sheet can lead to unstable growth of strain in the weaker
regions, and subsequently cause localized necking and fail-
ure. Within the M–K framework, the influence of various
constitutive features on FLDs has been explored using phe-
nomenological plasticity models.[2,3] It is now well known
that the FLD is very sensitive to, among others, effects of
yield surface vertices, anisotropy, and material rate sensi-
tivity.[4,5,6] For instance, a slight change of shape of the yield
surface for a sheet metal can result in a large variation of
its FLD.[7] Since the mechanical properties of a sheet metal
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are determined by its microstructure and microscopic prop-
erties, the FLD based on phenomenological models remains
a diagnostic tool rather than a predictive one, because phe-
nomenological models do not account for the effect of
microstructure and its evolution with deformation. Crystal-
lographic texture is usually the prime feature of microstruc-
tural evolution in sheet metals. To incorporate this, a crystal
plasticity FLD analysis is required.

Bassani et al.[6] and Barlat and co-workers[8,9,10] calculated
a series of Bishop and Hill yield surfaces of polycrystals
corresponding to various crystallographic textures. Using
yield surface functions to represent the computed Bishop
and Hill yield surfaces, they obtained FLDs that were in
fair agreement with the corresponding experimental obser-
vations.[11] However, these authors have not considered the
subsequent evolution of the yield surface during deforma-
tion nor the effect of elasticity. Zhou and Neale[12] and Toth
et al.[24] have directly applied a crystal plasticity model in
conjunction with the M–K approach to predict FLDs for
annealed fcc sheet metals. The initial texture and its evo-
lution were considered in their analyses. However, elastic-
ity was neglected in their simulations and the imperfection
groove was restricted to be normal to the direction of major
principal stretch (in Zhou and Neale[12]). The effect of elas-
ticity was considered by Qiu et al.,[13] but again, the influ-
ence of groove orientation was not assessed in their
analysis. Using their elastic-viscoplastic Taylor-type poly-
crystal model, Asaro and Needleman,[14] and later Tver-
gaard and Needleman,[15] calculated forming limit strains,
but only for equibiaxial stretching and in-plane plane strain
stretching rather than for the full range of biaxial strain
ratios.

Very recently, Wu et al.[16] directly used the Asaro and
Needleman polycrystal plasticity model[14] in a nonlinear
numerical solution to calculate the FLDs for fcc polycrys-
tals. This approach is also based on the M–K approach, in
that sheet necking is initiated from an initial imperfection
represented in terms of a narrow band, with the deforma-
tions inside and outside the band being homogeneous.
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Thus, the rather complex polycrystal model needs only to
be applied to two separate stress-strain histories, one inside
and one outside the band. The conditions of compatibility
and equilibrium are enforced across the band interfaces.
Each grain is modeled as an fcc crystal with 12 distinct slip
systems. The response of an aggregate comprised of many
grains is based on the elastic-viscoplastic Taylor-type poly-
crystal model of Asaro and Needleman.[14] Since the defor-
mations are assumed to be uniform both inside and outside
the band, the computational requirements are relatively
modest. The influence of the various model parameters on
the FLD has been assessed systematically by Wu et al.[16]

They showed that the initial texture and its evolution, initial
imperfection groove orientation, and elasticity have signif-
icant effects on the predicted FLDs. The agreement be-
tween the predictions and the experimental data for one
example of a rolled aluminum alloy sheet was shown to be
quite good.

In this article, this technique is applied further to study
the formabilities of five different rolled aluminum alloy
sheets, namely, AA5754-0-A, AA5754-0-B, AA6111-T4-
A, AA6111-T4-C, and AA6111-T4-D. The predictions are
compared with the corresponding experimental data ob-
tained from hemispherical punch stretching tests.

The plan of the article is as follows. In Section II, we
briefly recapitulate the constitutive model. The problem for-
mulation and the method of solution are presented in Sec-
tion III. The predicted results and their comparisons with
the experimental data are given in Section IV. The conclu-
sion is presented in Section V.

Tensors and vectors will be denoted by boldface letters.
The tensor product is denoted by J and the following op-
eration for second-order tensors applies (a 5 aijei J ej, b
5 bijei J ej, ei being a Cartesian basis): ab 5 aikbkjei J ej,
a z b 5 aijbij, with proper extension to high-order tensors.
Superscripts T and 21 denote the transpose and inverse of
a second-order tensor, respectively. The trace is denoted by
tr. Furthermore, the range of Greek indexes is 1 . . . 2, while
Latin indexes run from 1 to 3.

II. CONSTITUTIVE MODEL

In this section, we briefly recapitulate the constitutive
framework adopted throughout this article. For details, we
refer to Asaro and Needleman.[14] In the rate-sensitive crys-
tal plasticity model employed, the elastic constitutive equa-
tion for each crystal is specified by

¹ z 0s 5 LD 2 s 2 s tr D [1]

where is the Jaumann rate of the Cauchy stress, D rep-¹s
resents the strain-rate tensor, and L is the tensor of elastic
moduli. These moduli are based on the anisotropic elastic
constants of the fcc crystal and thus exhibit the appropriate
cubic symmetry. The term 0 is a viscoplastic type stresszs
rate that is determined by the slip rates on the various slip
systems in the crystal.

The slip rates are taken to be governed by the power-
law expression

t 1/m(a)z zg 5 g sgn t [2](a) 0 (a)  g(a)

where t(a) is the resolved shear stress on slip system a (the
parentheses in the subscripts (a) indicate that a is not a
tensor index and ranges from 1 to the number of slip sys-
tems), g(a) is its hardness, m is the strain-rate sensitivity
index, and 0 is the reference shear rate. The g(a) charac-zg
terize the current strain hardened state of all slip systems.
For multiple slip, the evolution of the hardness is governed
by

zzg 5 h |g | [3]Σ(a) (ab) (b)
b

where g(a)(0) is the initial hardness and is taken to be a
constant t0 for each slip system and where the h(ab) values
are the hardening moduli. The moduli are assumed to have
the form

h 5 q h (no sum on b) [4](ab) (ab) (b)

where h(b) is a single slip hardening rate and q(ab) is the
matrix describing the latent hardening behavior of the crys-
tallite. The latter is determined by a latent hardening param-
eter q ≥ 1, if q 5 1, hardening is isotropic.

The single slip hardening law employed in this article
takes the following power-law form of the constitutive
function h(b):

n21h g0 ah 5 h 1 1 [5](b) 0 ~ !t n0

where h0 is the system’s initial hardening rate, n is the hard-
ening exponent and ga is the accumulated slip.

The response of a polycrystal comprised of many grains
is obtained by invoking the Taylor assumption. Thus, at a
material point representing a polycrystal of N grains, the
deformation in each grain is taken to be identical to the
macroscopic deformation of the continuum. Furthermore,
the macroscopic values of all quantities such as stresses,
stress rates, and elastic moduli are obtained by averaging
their respective values over the total number of grains at
the particular material point.

III. PROBLEM FORMULATION AND METHOD
OF SOLUTION

The FLD analysis is applied to polycrystalline sheets
having orthotropic textures. The axes x1 and x2 define the
directions of orthotropy in the plane of the sheet, while x3

represents the direction normal to the sheet. In the numer-
ical simulations, textures satisfying these conditions of or-
thotropy will be employed.

We consider a sheet having a nonuniformity in the form
of a groove or band that is initially inclined at an angle cI

with respect to the x1 reference direction (Figure 1). Quan-
tities inside the band are denoted by ( )b. The thickness
along the minimum section in the band is denoted by hb(t),
with an initial value hb(0). The initial geometric nonuni-
formity is defined by

bh (0)
f 5 [6]

h(0)

where h(0) is the initial thickness outside the band.
The loading imposed on the edges of the sheet is as-

sumed to be such that
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Fig. 1—Thin sheet with an initial thickness imperfection.

zD ε22 225 5 r 5 const., D 5 0, W 5 0 [7]12 12zD ε11 11

where 22 [ D22 and 11 [ D11 are the (principal) logarith-z zε ε
mic strain rates and the Wij values are components of the
spin tensor. We further assume that D13 5 D23 5 W13 5
W23 5 0, while D33 is specified by the condition 33 5 0.zs
For the orthotropic textures considered, these boundary
conditions imply that the average stress components s13 5
s23 5 0. Under this deformation model, the current groove
orientation c is given by

tan c 5 exp [(1 2 r)ε ] tan c [8]11 I

Since uniform deformations are assumed both inside and
outside the band, equilibrium and compatibility inside and
outside the band are automatically satisfied, apart from the
necessary conditions at the band interface. Following
Hutchinson and Neale,[4] the compatibility condition at the
band interface is given in terms of the differences in the
velocity gradients inside and outside the band:

zbL 5 L 1 c n [9]ab ab a b

or

1 z zb bD 5 D 1 (c n 1 n c ), Wab ab a b a b ab2
1 z z5 W 1 (c n 2 n c ) [10]ab a b a b2

Here, n1 5 cos c and n2 5 sin c are the components of
the unit normal to the band in the current configuration and
the a values are the parameters to be determined. Equilib-zc
rium requires balance on each side of the interface,

b bn s h 5 n s h [11]a ab a ab

in the current configuration. Now, a set of incremental
equations for a are obtained by substituting the incrementalzc
constitutive relation [1] into the incremental form of Eq.
[11], using Eq. [10] to eliminate the strain increments .bDab

Together with the condition 5 0, this furnishes threez bs33

algebraic equations for solving 1, 2, and the unknownz zc c
.bD33

The solution is obtained numerically by a linear incre-
mental procedure. At any given stage of the prescribed
strain path, the moduli L and 0 in Eq. [1] are calculatedzs

for all grains inside and outside the band, by updating from
the previous increment. The corresponding moduli and the
viscoplastic type stress rates for the polycrystals represent-
ing materials inside and outside the band are obtained by
averaging over all grains inside and outside the band, re-
spectively. Therefore, the rates a, or , and insidez b bc D Dab 33

the band are directly calculated by solving the three afore-
mentioned algebraic equations. The sheet thicknesses out-
side the band h and inside the band hb are updated based
on the rates

z z
b b bh 5 D h, h 5 D h [12]33 33

For numerical stability, the polycrystal constitutive equa-
tions are implemented via the one-step, explicit rate-tangent
method described by Peirce et al.[17] Moreover, an adaptive
time-stepping method developed by Van der Giessen and
Neale[18] is used. Finally, an equilibrium correction proce-
dure is applied to prevent drifting of the solution from the
true equilibrium path.

The onset of sheet necking is defined by the occurrence
of a much higher maximum principal logarithmic strain rate
inside the band than outside, taken here as the condition
b/D11 ≥ 105. The corresponding principal logarithmic strainszε

and outside the band are the limit strains. For a realε* ε*11 22

sheet material, numerous initial imperfections exist with
different orientations, resulting from surface roughness[9] or
from microvoids in the materials.[19] The most conservative
estimate of a forming limit strain is obtained by calculating
the limit strain for various values of the chosen initial
groove orientation and selecting the minimum limit strain
as the predicted forming limiting strain. The entire FLD of
a sheet is determined by repeating the procedure for dif-
ferent strain paths outside the band as prescribed by the
strain ratio r.

IV. RESULTS AND DISCUSSION

We have investigated the formabilities of the following
rolled aluminum sheets: AA5754-0-A, AA5754-0-B,
AA6111-T4-A, AA6111-T4-C, and AA6111-T4-D. Figure
2 shows their initial textures represented by the {111} ster-
eographic pole figures. For all of these cases, about 400
grains are used to represent initial textures. We take the
rolling direction (RD) to be aligned with the major strain
direction (x1).

In all simulations, the crystal elastic constants are taken
to be C11 5 206 GPa, C12 5 118 GPa, and C44 5 54 GPa.
The slip system reference plastic shearing rate is assumed
to be 0 5 0.001 s21, while the slip rate sensitivity param-zg
eter m 5 0.002. These values of the material parameters
are typical for an aluminum alloy. Furthermore, we assume
isotropic slip system hardening (q 5 1) in all the simula-
tions reported here.

The hardening parameters in the constitutive model are
estimated by curve fitting numerical simulations of uniaxial
tension (in the RD) to corresponding experimental data.
The values of the hardening parameters found by this pro-
cedure are as follows:

AA5754-0-A: t0 5 22 MPa, h0/t0 5 182, n 5 0.245,
AA5754-0-B: t0 5 21 MPa, h0/t0 5 182, n 5 0.245,
AA6111-T4-A: t0 5 42 MPa, h0/t0 5 29, n 5 0.24,
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(a) (b) (c)

(d) (e)

Fig. 2—Initial textures represented by {111}
stereographic pole figures for (a) AA5754-0-A,
(b) AA5754-0-B, (c) AA6111-T4-A, (d )
AA6111-T4-C, and (e) AA6111-T4-D.

AA6111-T4-C: t0 5 47 MPa, h0/t0 5 30, n 5 0.23, and
AA6111-T4-D: t0 5 46.5 MPa, h0/t0 5 30, n 5 0.23.

The correspondences between the calculated responses and
the experimental stress-strain curves are presented in Figure
3. The curve fits are seen to be very good.

We proceed by numerically calculating the FLDs of the
sheets, based on the crystal plasticity model together with
the M–K approach, using the corresponding values of the
material parameters determined previously. It is well known
that the prediction of the FLD for elastic-viscoplastic ma-
terials, as considered in this article, relies on the gradual
amplification of initial inhomogeneities. However, the value
of the initial imperfection parameter f cannot be directly
measured by physical experiments. The initial imperfection
was assumed in Barlat and co-worker’s study[20,21] to result
from homogeneously distributed microcavities. Using a
physical description of the cavities, they estimated an im-
perfection value of about 0.996 or 0.997. In this work, we
have chosen the value of f for each sheet alloy by fitting
the FLD prediction of in-plane plane strain tension (r 5 0)
to the corresponding experimental limit strain. Thus, we
arrived at the following values of the initial imperfection
parameter f: 0.996, 0.998, 0.996, 0.992, and 0.9985 for
AA5754-0-A, AA5754-0-B, AA6111-T4-A, AA6111-T4-
C, and AA6111-T4-D, respectively. For each material,
these values are now used to predict the complete FLD.

Figures 4 through 8 show the predicted and measured
FLDs. The general appearance of these figures is that the
experimentally determined major limit strain decreasesε*11

with r, almost linearly between uniaxial tension (r 5 20.5)
and in-plane plane strain tension (r 5 0) to reach a mini-
mum point, and then increases. With further increases in r,

increases but eventually reaches a maximum and onceε*11

again decreases. It is seen that the agreements between the
simulated and the measured FLDs are quite good and that
the shapes of the experimental FLDs are well predicted.
Figure 4(b) shows the predicted critical groove orientations
for AA5754-0-A. We scanned every 5 over the range of
cI’s and then determined the critical groove angle that pro-
duces the minimum predicted localization strain. It was
found that a groove oriented at cI 5 0 is favorable for
necking when 0 ≤ r ≤ 0.7. With increasing r from 0.7 to
1, the critical groove orientation increases from 0 to about
35 deg. In the region 20.5 ≤ r ≤ 0, the critical groove
orientation decreases from 20 to 0 deg with increasing r.
The trends for the predicted critical groove orientations for
the other five sheet alloys are very similar to those shown
in Figure 4(b).

The observed dip in the FLD near in-plane strain tension
(r 5 0) is rather significant for AA5754-0-B (Figure 5),
AA6111-T4-A (Figure 6), and AA6111-T4-D (Figure 8),
but is less so for AA5754-0-A (Figure 4) and AA6111-T4-
C (Figure 7). This dip has also been observed experimen-
tally by others,[22] but had not been predicted until very
recently. Wu et al.[16] discussed the effect of crystal elastic-
ity on the predicted FLDs. They pointed out that for a given
initial texture, it is the elastic effect that determines the
shape of the FLD near in-plane plane strain tension and



METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 29A, FEBRUARY 1998—531

(a) (b)

(c) (d)

(e)

Fig. 3—Tensile stress-strain responses in uniaxial tension for (a) AA5754-
0-A, (b) AA5754-0-B, (c) AA6111-T4-A, (d ) AA6111-T4-C, and (e)
AA6111-T4-D.
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(a)

(b)

Fig. 4—Formability of AA5754-0-A: (a) FLDs and (b) the predicted
critical groove orientations.

Fig. 5—Predicted and measured FLDs for AA5754-0-B.

Fig. 6—Predicted and measured FLDs for AA6111-T4-A.

that ‘‘rigid’’ plasticity eliminates the dip in the FLD near
in-plane plane strain tension. Their numerical simulations
also indicated that increasing the elastic modulus of a sheet
metal improves its formability.

It is well-known that the predicted FLD is very sensitive
to effects of yield surface vertices and anisotropy; for in-
stance, a slight change of the shape of the yield surface for
a sheet metal can result in a large variation of its FLD.[7]

In the crystal plasticity FLD analyses carried out here, the
shape of the yield surface for a sheet metal is determined
by the initial texture and its evolution. Consequently, the
initial texture is one of the most important parameters af-
fecting the FLD. It is noted that the differences in uniaxial
tensile response between AA5754-0-A and AA5754-0-B
and between AA6111-T4-C and AA6111-T4-D are very

small (Figure 3). However, the differences in the corre-
sponding FLDs are significant (Figures 4, 5, 7, and 8).
These differences could be partially due to the different
forming processes and heat treatments and must be partially
due to the differences in the initial textures. Apparently, the
effect of initial textures on FLDs needs to be further ex-
plored.

The influence of texture evolution on FLDs has already
been shown to be important. Figure 9 gives the calculated
textures at necking for AA6111-T4-A under in-plane plane
strain tension. The texture outside the band at necking is a
typical plane strain tension texture (Figure 9(a)). As ex-
pected, the texture inside the groove (Figure 9b) is stronger
than that outside the groove. The simulated textures for the
same sheet under balanced biaxial tension at necking are
presented in Figure 10. Again, the texture outside the band
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Fig. 7—Predicted and measured FLDs for AA6111-T4-C.

Fig. 8—Predicted and measured FLDs for AA6111-T4-D.

(a)

(b)

Fig. 9—Calculated textures at necking for AA6111-T4-A under in-plane
plane strain tension (a) outside and (b) inside the groove.

at necking follows the applied deformation and is a typical
balanced biaxial tension texture (Figure 10(a)). The RD of
the simulated texture inside the groove (Figure 10(b)) is
found to be inclined at about 35 deg, since the critical
groove orientation is, in this case, inclined at an angle cI

5 35 deg. Furthermore, the deformation-induced shear
strain components inside the groove become noticeable. It
is well known that the material inside the groove tends
toward a plane strain deformation state irrespective of the
deformation imposed outside the groove.[9] However, the
simulated textures inside the groove (Figures 9(b) and
10(b)) only show a very weak plane strain tension texture,
due to the fact that computations were stopped at the onset
of necking (when b/D11 ≥ 105), and at that instant, thezε
deformation inside the groove has not yet become very
large as compared to the applied deformation. Figure 11

shows the calculated textures at a point well beyond neck-
ing for AA6111-T4-A under the strain path r 5 0.5. It is
found that as the applied deformations concentrate com-
pletely in the groove after necking, the material inside the
groove demonstrates texture development corresponding to
a plane strain deformation state (Figure 11(b)).

One of the most important differences between the sim-
ulated and experimentally measured FLDs is that our sim-
ulations tend to underestimate the limit strains as r
approaches equibiaxial stretching (r 5 1). This could be
due to the fact that we simulated in-plane stretching defor-
mation processes, while the experimental data were ob-
tained from hemispherical punch stretching tests. In punch
tests, there are compressive stresses normal to the sheet,
frictional shear stresses, and sheet curvature. Furthermore,
proportional straining (constant r) is assumed in our cal-
culations. This is not necessarily true for the punch stretch-
ing experiments. These complicating factors have not been
accounted for in our analyses, while they are likely to have
a stronger effect as the strains become larger. Furthermore,
it should be noted in making these comparisons that it has
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(a)

(b)

Fig. 10—Calculated textures at necking for AA6111-T4-A under balanced
biaxial tension (a) outside and (b) inside the groove.

(a)

(b)

Fig. 11—Calculated textures at a point well beyond necking for AA6111-
T4-A under biaxial tension r 5 0.5 (a) outside and (b) inside the groove.

been found[23] that FLDs measured from in-plane stretching
tend to lie below the corresponding punch-stretching FLDs.

V. CONCLUSIONS

In this article, we have predicted complete FLDs, using
the elastic-viscoplastic Taylor-type polycrystal plasticity
model developed by Asaro and Needleman,[14] for five alu-
minum alloy sheets: AA5754-0-A, AA5754-0-B, AA6111-
T4-A, AA6111-T4-C, and AA6111-T4-D. The computa-
tions for each material are based on the initial texture mea-
sured experimentally and on material parameters
determined using the uniaxial stress-strain curve. The ef-
fects of initial imperfection intensity and orientation, tex-
ture evolution, crystal elasticity, strain rate sensitivity,
single slip hardening, and latent hardening on the FLD have
been accounted for in the simulations. The predicted FLDs
have been compared with experimental data obtained from
standard hemispherical punch tests used in practice. The
agreements between the simulated and measured FLDs are

quite good. The characteristic shapes of the experimental
FLDs are predicted well, but details of the FLDs may be
somewhat different quantitatively.
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