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Abstract 

Cyclic deformation at elevated temperature has been modeled for a polycrystalline 

nickel-based superalloy using the crystal-plasticity constitutive formulations. Finite element 

analyses were carried out for a Representative Volume Element (RVE), consisting of 

randomly oriented grains and subjected to periodic boundary constraints. Model parameters 

were determined by fitting the strain-controlled cyclic test data at 650°C for three different 

loading rates. Simulated results are in good agreement with the experimental data for both 

stress-strain loops and cyclic hardening behavior. The model was utilized to predict the stress 

relaxation behavior during the hold periods at the maximum and minimum strain levels, and 

the prediction compares well with the experimental results. Localized stress and strain 

concentrations were observed due to the heterogeneous nature of grain microstructure and the 

mismatch of the mechanical properties of individual grains. 

 

Keywords: Crystal plasticity, Cyclic deformation, Finite element, Representative volume 
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1. Introduction 

At grain level, polycrystalline metals possess anisotropic plastic response during deformation 

due to the random orientation of grain lattices. The physically-based crystal plasticity theory 

has been successful for description of anisotropic deformation of single crystals and 

polycrystals, including body-centered-cubic [1, 2], face-centered-cubic [3, 4] and 

highly-closed-packed [5, 6] lattice structures. With the assistance of finite element method, 

the theory is able to predict the global and local stress-strain response [1-3, 5-7], the 

evolution of crystallographic grain texture [1, 4] and micro-structural crack nucleation [8-10] 

in polycrystalline materials under monotonic, creep and fatigue loading conditions. The 

essence of the crystal plasticity is to resolve the macroscopic stresses onto each slip system 

following the Schmid’s law, where the shear strain rate can be expressed as a function of the 

resolved shear stress [11]. Power law [2, 4-7, 10, 11], and exponential functions [1, 3, 8, 12] 

are most commonly adopted in the formulation. Internal variables are also generally 

introduced to represent the evolution of the micro-structural state during the deformation 

process, such as the effects of dislocation interactions, hardening and strain gradient 

phenomena [13, 14]. 

 

Nickel-based superalloys are used for rotating turbine blades and discs in the hot section of 

gas turbine engines due to their exceptional high temperature mechanical properties. The 

crystal plasticity theory has been applied for creep [15, 16], fatigue [15, 17], 

thermal-mechanical fatigue [15], indentation deformation [18] and gradient-dependent 

deformation [13, 14] analyses of single crystal nickel superalloys. Application of the theory 
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has also been extended to model stress-strain response and fatigue crack nucleation for 

polycrystalline nickel superalloy [9, 19] where microstructure was considered as one of the 

major factors influencing the fatigue and creep properties of the material. For instance, 

Dunne et al. [9] used a simplified crystal plasticity model to study the low cycle fatigue crack 

nucleation in a directionally solidified nickel alloy. The experimentally observed sites of 

crack nucleation near a free surface match those of the persistent slip bands predicted from 

the crystal plasticity model. Shenoy et al. [19] formulated a rate-dependent 

microstructure-sensitive crystal plasticity model for correlating the mechanical behavior of a 

polycrystalline Ni-based superalloy IN 100 at 650°C. The model has the capability to capture 

the first order effects on the stress-strain response due to grain size, precipitate size 

distribution, precipitate volume fraction and dislocation density for each slip system. 

 

Alloy RR1000 studied here is one of the new generation polycrystalline nickel alloys, 

developed at Rolls Royce, to meet the demand of increasing turbine entry temperatures and 

rotational speeds for the latest Trent1000 aero-engines, which have been used to power the 

new Boeing 787 aircrafts. The material was produced through a powder metallurgy route and 

has a fine grain microstructure. In this study, the crystal-plasticity theory has been applied to 

model the cyclic deformation for alloy RR1000 at 650°C in order to provide a 

micro-mechanics based understanding of the material deformation and failure behavior at 

grain level. The paper will present a description of the constitutive model in Section 2, 

together with the formulations of internal variables. Section 3 gives the details of the RVE 

construction at the grain level and the periodic boundary conditions required for finite 
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element analyses. Application of the constitutive model to alloy RR1000 and determination 

of model parameters are given in Section 4, where parameter values were calibrated using 

extensive finite element analyses to fit the measured stress-strain response of alloy RR1000 

subjected to strain-controlled cyclic loading history. In Section 5, we present the simulated 

results, including the fitted cyclic stress-strain response and the predicted stress relaxation 

behavior during strain hold periods. Discussions were made regarding the heterogeneous 

stress and strain distributions within the RVE and the mechanical behavior of individual 

grains, followed by the conclusions. 

 

2. Crystal plasticity constitutive model 

The framework of crystal plasticity theory relies on the multiplicative decomposition of the 

total deformation gradient F into an elastic (F
e
) part and a plastic (F

p
) part [11]: 

 
pe

FFF =                 (1) 

where F
e
 represents the elastic stretching and rigid-body rotation of the crystal and F

p
 

describes crystallographic slip along slip planes due to dislocation motion. 

 

The component F
p
 is calculated from the inelastic velocity gradient [11]: 
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where αγ�  is the shear strain rate on the slip system α, 
α

m and 
α

n are the slip direction 

and the slip plane normal, respectively. 

 

The flow rule is expressed in terms of two scalar state variables per slip system, slip 
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resistance (S
α
) and back stress (B

α
) [12]: 

 )sgn(
/ˆ

/
1exp

00

00

0

αα

ααα

α τ
µµτ

µµτ

κθ
γγ B

SBF

q
p

−

�
�
�

�

�

�
�
�

�

�
−−

−
−

= ��             (3) 

where κ is the Boltzmann constant, τα
 is the resolved shear stress on the slip system α, θ the 

absolute temperature, µ and µ0 the shear moduli at θ and 0 Kelvin, respectively, and F0, 0τ̂ , p, 

q and 0γ�  are material constants. The brackets imply that xx =�	  for 0>x  and 0=�	x  

for 0≤x . 

 

The two internal variables, the slip resistance in each slip system, S
α
, and the back stress, B

α
, 

are introduced at the slip system level, which represent the state associated with the current 

dislocation network. The slip resistance on a generic slip system, associated with the 

dislocation density along that slip system, is assumed to evolve according to the following 

relation, starting at an initial value of 0S  [15]: 

 [ ] αααα γ�� )( 0SSdhS DS −−= ,            (4) 

where the first and second terms are static and dynamic recovery terms associated with the 

material constants hS and dD, respectively. 

 

The back stress is representative of the internal stress state arising due to dislocations bowing 

between obstacles, either precipitates or other dislocations. The back stress evolves according 

to a standard hardening-dynamic recovery format [15]: 

 α
ααα γγ ��� BrhB DB −= ,                  (5) 
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where hB is a hardening constant, and rD is a dynamic recovery function which depends on 

the constant value of the slip resistance and introduces the inherent dependency between the 

slip resistance and back stress, which may be expressed as [12]: 
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where fc is a coupling parameter between the internal slip variables and 0µ ′  the local slip 

shear modulus at 0 Kelvin. 

 

The crystallographic formulation was implemented numerically into the finite element (FE) 

code ABAQUS [20] within the framework of large strain kinematics via a user-defined 

material subroutine (UMAT), where the fully implicit (Euler backward) integration algorithm 

was adopted [13, 14]. 

 

3. Finite element model 

Polycrystalline alloy RR1000 may be viewed as an aggregation of single crystal grains with 

random orientations, as shown in Fig.1a (from [21]), where the color designates 

crystallographic orientation. The material has a fine grain structure with an average size of 

4.76µm. To study the mechanical deformation at the grain level, a representative volume 

element (RVE) consisting of a sufficient number of grains is necessary to statistically 

represent the global material behavior. The RVE approach is capable of accounting for 

equilibrium and compatibility in the microscopically heterogeneous structure. In the present 

work, a two-dimensional geometry of grain microstructure was constructed using the Voronoi 
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tessellation technique [22], where the Sobol sequence [22] was used to generate the Voronoi 

seeds randomly with an average grain size of 4.76µm. The coordinates of the vertices of the 

Voronoi tessellations were used as the inputs in ABAQUS CAE [20], which were then 

connected to generate the FE model of the polycrystalline grain microstructure. Each grain 

was assumed to have a randomly assigned in-plane orientation [23, 24]. 

 

To realize repetitive deformation of the RVE, periodic boundary conditions are applied, 

which enforce parallel deformation of opposite edges [25, 26], as sketched by dashed lines in 

Fig.1b. The periodic boundary conditions were implemented in ABAQUS [20] by using the 

multiple constraints option. To remove the rigid body motion, the vertex A was fixed in both 

x and y directions, and B and C were fixed in the x and y direction, respectively. 

Displacement was applied to vertex B in the y-direction to simulate the uniaxial 

strain-controlled loading condition. To obtain the global response of the material, 

homogenization based on averaging theorem over the RVE area was adopted to make the 

transition from micro- to macro-variables of the RVE [27], which was programmed into a 

post-processing numerical subroutine using computer language FORTRAN and interfaced 

with ABAQUS [20]. 

 

To adequately describe the mechanical properties of a polycrystalline material, the size of the 

RVE needs to be large enough to contain a sufficient number of grains. A series of FE 

analyses were performed to assess the RVE size based on the convergence of stress-strain 

curves. Five RVEs, containing 50, 100, 150 and 200 grains respectively, were created for the 
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FE analysis under monotonic tensile loading condition up to 5% strain at a strain rate of 

0.005%/s. The results in Fig.2a show that the convergence of stress-strain curve is well 

achieved at 150 grains, which is slightly more than the estimated 120 grains from the 

anisotropic stiffness values of the material [28]. Further FE analyses also confirmed that, for 

150 grains, the effects of random orientations on the stress-strain curves become negligible 

(see Fig.2b). 

 

The FE mesh consists of 1450 first-order four-node plane-strain elements with four Gauss 

integration points (see Fig.1c) and a mesh-sensitivity study shows that the stress-strain curves 

have reached a good convergence for the 1450-element mesh (see Fig.3). It was also verified 

that the global stress in the x-direction and the global in-plane shear stress are negligible (see 

Fig.4), which confirms the predominant uniaxial strain-controlled loading condition of the 

RVE in the y-direction. In what follows, FE analyses were performed for the RVE with 150 

grains and 1450 elements to evaluate the global and local cyclic deformation for alloy 

RR1000 at 650°C. 

 

A convergence study was also carried out at grain level, where both the stress/strain 

distribution of the RVE and the stress-strain response for given grains (i.e., grain 1~4 in 

Fig.12) were examined for three different meshes (921, 1450 and 4315 elements, 

respectively). The results showed that a very good local convergence has been achieved for 

the 1450-element mesh. 
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It should be pointed out that the RVE shown in Fig.1c does not satisfy the geometrical 

periodicity [22], rather, the RVE represents the random nature of the microstructure of the 

material (see Fig.1a). Nevertheless, FE analyses have been carried out for a RVE with 

geometrical periodicity, and the results are almost identical to those presented in this work. 

As long as a sufficient number of grains is contained in the RVE (150 grains for our case), 

either model (i.e., with or without geometrical periodicity) can be used in the FE analyses. 

 

4. Determination of model parameters 

Both back stress B and slip resistance S were included in the formulation of the crystal 

plasticity model, where 12 octahedral and 6 cubic slip systems were considered. 

Consequently, a number of model parameters were introduced and need to be determined. 

Model parameters were determined through extensive FE analyses using the complete 

histories of cyclic experimental data at three different strain rates, following the procedures 

below. 

 

Anisotropic stiffness constants were first evaluated by simulating the elastic response of the 

material from the FE analysis of the RVE subjected to monotonic loading. The constants were 

taken as C11 = 166.2 GPa, C12 = 66.3 GPa and C44 = 138.2 GPa, which are close to those for a 

nickel single crystal superalloy [15]. Using these elastic constants, FE analysis of the RVE 

give a global Young’s modulus of 190 GPa for alloy RR1000 at 650°C, which matches the 

experimental measurement [29]. 
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The crystal-plasticity model was then calibrated by fitting the stress-strain response of the 

strain-controlled cyclic tests at three different strain rates (0.5%/s, 0.05%/s and 0.005%/s) 

[29]. Prior to the fitting process, some material constants, namely, F0, 0τ̂ , p, q and 0γ� , were 

estimated from the literatures. For instance, the full model parameters are already available 

for CMSX4 nickel single crystals [13-15], which serve as a general guideline on the initial 

estimations. Following each simulation, the resulting stress values at each strain point were 

compared with the experimental data, the magnitude of the difference was considered in an 

error function (objective function) over the history. Optimization was carried out until the 

error was minimized. 

 

The calibration of material constants also involves certain constraints, which were imposed as 

ranges of target values based on published work. For example, the value of p and q were 

recommended to be 0 < p < 1 and 1 < q < 2 [1], which greatly facilitated the calibration 

process. Also, to improve the efficiency of the fitting process, a sensitivity analysis of 

parameters with respect to the stress-strain response was conducted in the first stage of 

calibration. Given all of the crystal plasticity parameters that needed to be calibrated, it is 

known that some of them have specific influence on the stress-strain response, such as that 

the parameters p and q mainly influence the shape of the loops. 

 

The whole process began with fitting the monotonic stress-strain curves and the first cyclic 

loops for all three loading rates. During this process, the main target was to identify the 

material parameters p, q and 0τ̂ , which control the rate sensitivity, and work out their sensible 
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values. Then efforts were made to improve the cyclic hardening simulation, which involves 

re-calibration of some of the critical material parameters which control the cyclic hardening 

behavior. In this process, the major influencing parameters were found to be a combination of 

the parameters fC and hS. Extensive FE analyses were carried out to work out the best 

parameter values which give a good description of material hardening behavior. Cyclic 

hardening behavior is of great importance for materials under cyclic deformation, which has 

been captured very well in continuum viscoplasticity simulation [29, 30]. In crystal plasticity, 

simulation of cyclic hardening is a difficult task for polycrystalline materials, which has been 

tackled in the present work through extensive FE analyses in the fitting process. The final 

parameter values determined by the fitting process are listed in Table 1 for both octahedral 

and cubic slip systems. Other fitted parameters include the coefficient λ = 0.85 and the shear 

modulus at 0 Kelvin µ0 = 192 GPa. 

 

5. Results and discussion 

The simulated stress-strain response for monotonic and the first cycle of fatigue loading are 

shown in Figs.5 to 7 for three different strain rates, with a direct comparison against the 

corresponding experimental data [29, 30]. Clearly, the model simulations agree very well 

with the test data for all three cases. The stress response and the shape of hysteresis loops 

were both well captured by the crystal-plasticity-based FE analysis of the RVE. 

 

Cyclic hardening behavior was presented in Fig.8a and b by plotting the stress amplitude as a 

function of the number of cycles for two different strain-loading rates (0.05%/s and 
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0.005%/s). Test data [29, 30] were included for a direct comparison, where a good match is 

clearly demonstrated for both strain-loading rates. For the nickel alloy RR1000, cyclic 

deformation seems to reach saturation after about 30 cycles. As shown in Fig.9, simulated 

stress-strain loop at saturation also agrees very well with the experimental results. 

 

As an independent evaluation of the model, the same parameters were used to run simulations 

for cyclic uniaxial strain-controlled histories with 100-second hold time superimposed at both 

the maximum and minimum strain levels (strain range 1.6% and strain rate 0.05%/s). The 

resulting stress-strain predictions and the stress relaxation during the strain hold periods are 

shown in Fig.10a and b, which are again in good agreement with experimental data [29]. 

Simulation was also given for the stress relaxation behaviour during a 100-second hold 

period for a strain range of 2% and strain rate of 0.5%/s. Again good agreement with the 

experimental data[29] is obtained. 

 

Figs.12 and 13 show the contour plots of the normal stress and strain in the y-direction at the 

maximum strain level of the 25
th 

cycle (saturation stage) for the 0.005%/s loading rate case 

(see Figs.7 and 8b), where heterogeneous stress and strain distributions can be clearly 

observed. The maximum value of the local stress is about 1.4 times the global stress and the 

maximum local strain is about 1.7 times the global strain. The pattern of stress concentration 

differs from that of strain concentration. Further investigations indicate that the highest strain 

concentrations are located within the “soft” grains, which have low strain hardening in the 

stress-strain response (see Fig.14). On the other hand, the highest stress concentrations are 
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typically located within the “hard” grains, which have high strain hardening in the 

stress-strain response (see Fig.14). As demonstrated in Fig.14, the stress-strain loops are 

much wider for the soft grains than those for the hard grains, indicating more inelastic 

deformation in the soft grains. 

 

A close inspection of Fig.12 and 13 shows that the hard grains with high stress concentration 

tend to neighbor with the soft grains which have high strain concentration. This arrangement 

of neighboring hard and soft grains introduces large mismatches of deformation and 

generates pronounced stress and strain concentrations between the neighboring grains 

[31-33]. Overall, the stress and strain heterogeneities remain similar for all three cyclic 

loading histories. Specifically, strain concentrations are consistently located within the soft 

grains while stress concentrations occur in the hard grains, which is also true for other sets of 

randomly assigned grain orientations. Also, most stress and strain concentrations are located 

at the triple or multiple points due to the mismatch of the mechanical properties of multiple 

grains. The local convergence study shows that these are characteristics of the microstructure 

and not artifacts of the finite element simulation. 

 

6. Conclusions 

Crystal plasticity modeling of cyclic deformation has been presented for a polycrystalline 

nickel-based superalloy at elevated temperature. An RVE, consisting of a number of 

randomly oriented single crystal grains, has been constructed using the Voronoi tessellation 

and meshed for finite element analyses under periodic boundary constraints. The model 
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parameters were determined from strain-controlled cyclic test data at 650°C for different 

loading rates using a fitting process. Simulations using fitted parameters showed good 

agreement with experimental data for both stress-strain loops and cyclic hardening behavior. 

The model predicted well the stress relaxation behavior during strain hold period. 

 

Stress and strain contour plots of the deformed RVE showed heterogeneous distribution due 

to orientation mismatch between neighboring grains. Strain concentrations are basically 

located within soft grains, while stress concentrations are localized within hard grains, 

particularly at the grain boundaries next to soft grains. 
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Figure Captions 

 

Fig.1, (a) Grain orientation distribution for alloy RR1000, where the color designates 

crystallographic orientation [21]; (b) Illustration of the RVE and periodic boundary 

conditions; (c) Finite element mesh. 

 

Fig.2a Effect of number of grains on the stress-strain response of the RVE subjected to 

monotonic tensile loading at a strain rate of 0.005%/s. 

 

Fig.2b Effect of random orientations on the stress-strain response for the 150-grain RVE 

under monotonic tensile loading (strain rate 0.005%/s). 

 

Fig.3 Effect of number of elements (or element size) on the stress-strain repsonse for 

150-grain RVE under monotonic tensile loading (strain rate 0.005%/s). 

 

Fig.4 Response of the normal stress in the x-direction and the in-plane shear stress for the 

first cycle (strain range 2% and strain rate 0.05%/s). 

 

Fig.5, Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.5%/s and strain range ∆ε = 2% 

[29]). 
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Fig.6, Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% 

[30]). 

 

Fig.7. Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2% 

[29]). 

 

Fig.8a, Comparison of simluated cyclic hardening and experimental results for a 

strain-controlled test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [30]). 

 

Fig.8b, Comparison of simluated cyclic hardening and experimental results for a 

strain-controlled test (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2% [29]). 

 

Fig.9, Comparison of simluated stress-strain loop at saturation and experimental results for a 

strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% 

[30]). 

 

Fig.10a, Comparison of model simulation and experimental data for the first cycle of a 

strain-controlled cyclic test with a superimposed 100-second dwell period at both 

maximum and minimum strain levels (strain rate dε/dt = 0.05%/s and strain range ∆ε 

= 1.6% [29]). 
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Fig.10b, Comparison of model simulation and experimental data for the stress relaxation 

behaviour during 100-second dwells at maximum and minimum strain levels (strain 

rate dε/dt = 0.05%/s and strain range ∆ε = 1.6% [29]). 

 

Fig.11, Comparison of model simulation and experimental data for the stress relaxation 

behaviour during 100-second dwells at maximum and minimum strain levels (strain 

rate dε/dt = 0.5%/s and strain range ∆ε = 2% [29]). 

 

Fig.12, Contour plot of the normal stress in the y-direction at the maximum strain level of the 

25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%). 

 

Fig.13, Contour plot of the normal strain in the y-direction at the maximum strain level of the 

25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%). 

 

Fig.14, Stress-strain loops of individual grains for the 25
th

 cycle (strain rate dε/dt = 0.005%/s 

and strain range ∆ε = 2%). 
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Table Caption 

 

Table 1, Fitted model parameters for alloy RR1000 at 650°C. 
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Fig.1, (a) Grain orientation distribution for alloy RR1000, where the color designates 

crystallographic orientation [21]; (b) Illustration of the RVE and periodic boundary 

conditions; (c) Finite element mesh. 
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Fig.2a Effect of number of grains on the stress-strain response of the RVE subjected to 

monotonic tensile loading at a strain rate of 0.005%/s. 

Fig.2b Effect of random orientations on the stress-strain response for the 150-grain RVE 

under monotonic tensile loading (strain rate 0.005%/s). 
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Fig.3 Effect of number of elements (or element size) on the stress-strain repsonse for 

150-grain RVE under monotonic tensile loading (strain rate 0.005%/s). 
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Fig.4 Response of the normal stress in the x-direction and the in-plane shear stress for the 

first cycle (strain range 2% and strain rate 0.05%/s). 
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Fig.5, Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.5%/s and strain range ∆ε = 2% [28]). 
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Fig.6, Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [29]). 
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Fig.7. Comparison of simluated stress-strain loop and experimental results for the first cycle 

of a strain-controlled cyclic test (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2% [28]). 
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Fig.8a, Comparison of simluated cyclic hardening and experimental results for a 

strain-controlled test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [29]). 
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Fig.8b, Comparison of simluated cyclic hardening and experimental results for a 

strain-controlled test (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2% [28]). 
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Fig.9, Comparison of simluated stress-strain loop at saturation and experimental results for a 

strain-controlled cyclic test (strain rate dε/dt = 0.05%/s and strain range ∆ε = 2% [29]). 
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Fig.10a, Comparison of model simulation and experimental data for the first cycle of a 

strain-controlled cyclic test with a superimposed 100-second dwell period at both maximum 

and minimum strain levels (strain rate dε/dt = 0.05%/s and strain range ∆ε = 1.6% [28]). 
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Fig.10b, Comparison of model simulation and experimental data for the stress relaxation 

behaviour during 100-second dwells at maximum and minimum strain levels (strain rate dε/dt 

= 0.05%/s and strain range ∆ε = 1.6% [28]). 
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Fig.11, Comparison of model simulation and experimental data for the stress relaxation 

behaviour during 100-second dwells at maximum and minimum strain levels (strain rate dε/dt 

= 0.5%/s and strain range ∆ε = 2% [29]). 
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Fig.12, Contour plot of the normal stress in the y-direction at the maximum strain level of the 

25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%). 

σyy  (MPa) 

(Avg: 75%) 
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Fig.13, Contour plot of the normal strain in the y-direction at the maximum strain level of the 

25
th

 cycle (strain rate dε/dt = 0.005%/s and strain range ∆ε = 2%). 
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(Avg: 75%) 
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Fig.14, Stress-strain loops of individual grains for the 25
th

 cycle (strain rate dε/dt = 0.005%/s 

and strain range ∆ε = 2%). 
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Table 1. Fitted model parameters for alloy RR1000 at 650°C. 

 

Parameters Octahedral slip Cubic slip 

F0 (kJmol
−1

) 295 295 

  p 0.31 0.99 

  q 1.8 1.6 

0γ� (s
−1

) 120 4 

0τ̂ (MPa) 810 630 

S0 (MPa) 350 48 

fC 0.42 0.18 

hB (GPa) 400 100 

hS (GPa) 160 4.5 

dD (MPa) 6024 24 

'
0µ (GPa) 72.3 28.6 

 

 

 


