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Crystal Rotations Represented
as Rodrigues Vectors
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Rodrigues vectors are explored as a means of representing crystal orientation
distributions. Relationships between the Rodrigues vectors and several more
commonly utilized representations of rotations are presented. The restrictions which
cubic material symmetry imposes on the Rodrigues space are examined and
relationships for special equivalent configurations are developed. Common crystal
orientation distributions are presented as Rodrigues vectors and compared to the
more standard representations in terms of pole figures and Euler angles. Applica-
tions of the Rodrigues space for illustrating misorientations between neighboring
grains are also discussed.
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INTRODUCTION

The Crystallite Orientation Distribution Function (CODF) is widely
used to represent the relative orientation of individual crystallites
within a sample to a set of sample axes. Since the CODF is
computed in terms of spherical harmonics expressed as a function of
the three Euler angles, a natural choice of variables with which to
represent the distribution of orientations, or texture, are the Euler
angles. In most cases, these three angles are uniquely defined by the
rotation of the sample axes to the orientation of the crystal axes. A
drawback to the use of Euler angles, however, is that it is difficult to
visualize rotations when given the angles. The representation does
not have a simple physical interpretation and identification of
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168 R. BECKER AND S. PANCHANADEESWARAN

particular orientations involves comparison with calculated stand-
ards. A more easily interpreted representation of rotations would
be desirable.

An extensive discussion of various representations of rotations is
given by Altmann (1986) and Hansen et al. (1978). While several of
these are readily handled mathematically, rotations expressed as
axis-angle pairs are both conceptually and mathematically simple.
This representation follows from a theorem by Euler. Euler (1775)
has shown that the rotation of a rigid body from a reference
orientation can be characterized uniquely by an axis of rotation,
given in terms of its direction cosines ¢ (a unit vector), and the
angle of rotation about that axis, w. The representation is unique if
@ is within a range of rotations which is determined by the
symmetry of the material.

Hence, an alternative method of representing crystallographic
orientations within a sample would be in terms of an axis of rotation
and a simple function of the rotation angle.

A =cf(w). 1)

The choice of an appropriate form for f(w) is discussed by Frank
(1986) who considers several functional forms. A relation that
stands out because of its algebraic significance and geometric
simplicity is f(w) = tan(w/2). The representation of rotations in this
space, for materials with cubic symmetry, is examined by Frank
(1986). Here his findings are reproduced by a more direct method.
Details of the calculations are included for completeness.

Calculated textures from several simulated deformation histories
are presented as pole figures, CODFs in terms of Euler angles and
as vectors in the space defined above. In addition, the measured
misorientation of neighboring grains within a specimen are shown to
illustrate an alternative application of the axis-angle pair repre-
sentation. Several advantages and disadvantages of this repre-
sentation compared to the standard CODF in terms of Euler angles
are discussed.

RODRIGUES PARAMETERS

The origin of (1) with f(w)=tan(w/2) can be attributed to
Rodrigues (1840). He determined the composition of two rotations,
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expressed in terms of their axes and angles of rotation, and
obtained the axis and angle of the resultant rotation. To achieve
this, the rotation is expressed in terms of 4 parameters,

p=cos(w/2), A=cysin{w/2), p=c,sin(w/2), v=c;sin(w/2),
@

known, perhaps inappropriately,t as the Euler parameters or
Euler—Rodrigues parameters. While there are 4 parameters, in
general only 3 are needed to characterize a rotation; the condition

PPHA+pt+vi=1, 3)

resulting from ¢ being a unit vector, provides an additional
restriction on the parameters.
These parameters can be combined to represent rotations in

terms of (Korn and Korn, 1968):

a) Rotation matrix}

MB—p?—v+p®  2Au - vp) 2(vA + pp)
A= 2(Au + vp) ur—vi— A%+ p? 2(uv — Ap)
2vA— pup) Auv+ip) V=X —pP+p?
4
b) Euler angles
¥ =tan"Y(v/p) — tan"'(A/u)
_ AZ + “2 172
6 =2tan 1(v2+p2) )
¢ =tan"!(v/p) + tan"*(A/p).
¢) Rodrigues vector
A u v
R=—e¢;+~-e¢,+—¢;, 6
pp p” ©

where e; are rectangular Cartesian base vectors.

+ Although the concept of the axis-angle pair was proposed by Euler (1775), the
key feature here is the use of the half angle, which is due to Rodrigues (1840).

t Here the rotation matrix describes the rotation of a body to a new configuration
in terms of the original unrotated axes. This is equal to the transpose of the matrix
often cited in Material Science literature (e.g. Roe, 1965), which is essentially a
coordinate transformation relating a vector in the original coordinate system to the
same vector in the rotated system.
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d) Caley—Klein parameters (complex numbers)
a=p+iv, b=pu+iA. @)
¢) Quaternions
P=p+il+ju+kv 8
The inverse relationships for (4) and (5) allow determination of
the Euler-Rodrigues parameters in terms of more conventional
representations. The direction cosines of the rotation axis, ¢;, and
the rotation angle, @, can be obtained from a rotation matrix, A,
by:
cos w = 3[Tr(A4) — 1],
c =A32_A23 =A13~A31 c =A21—A12 (9)
7 2sine 27 2sinw 2sinw ’
where Tr(A) indicates the trace of matrix A. The parameters in (2)
can also be expressed in terms of the Euler angles, (¢, 6, ¢), as

_ +¢ 0 . $—y .0

= COS 2 cos2 , A =sin > sin 5
o—vy 6 y+¢ 6 (10)

U =cos 5 sma, v =sin > cosE.

Combinations of two rotations to obtain a composite rotation of
the same form can be achieved directly for each of the above
representations except the Euler angles. For example, two rotation
matrices, A; and By, can be multiplied directly by standard matrix
algebra to determine the composite rotation;

3
Cu= Z AiiBjk' (11)
j=1

The Rodrigues vector, R, resulting from two successive rotations,
R, followed by R,, is obtained by standard vector operations;

. _R,+R,— (R, XR,)
¢ 1-R;'R, '
The Caley-Klein parameters can be combined in various ways to

represent rotations. They are commonly associated with Pauli spin
matrices for quantum mechanics applications. In a simpler form,

(12)
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however, they can be viewed as a mapping which rotates stereo-
graphic projections of one configuration, U, to another, U’.

alU - b*
“hUTar (13)

where a* and b* are the complex conjugates of a and b,
respectively. Frank (1986) uses these parameters to find the
boundaries of the Rodrigues space imposed by cubic crystal
symmetry, but a more direct approach involving quaternions is used
here.

Quaternion algebra is not as widely known as matrix or vector
algebra, so a few of the basic rules are presented below. First, it
should be mentioned that a quaternion is a mapping and that the
quaternion in (8) with the parameters given by (2) is a pure
rotation, |®| = 1. For a more general quaternion, each of the terms
would be multiplied by a constant, allowing for expansion in
addition to rotation. The combination of rotations involves succes-
sive mappings and therefore the product of quaternions. The
product rules for the three quaternion units, i, j and k, are

U'

i=jj=kk=-1,

N . . . (14)
ij=—ji=k, jk=—kj=i, ki=-—ik=j,

from which it can be seen that multiplication is noncommutative. It
is interesting to note that if u = v =0, the quaternion behaves as a
complex variable mapping in 2-dimensional space. Using the above
product rules, the product of 2 quaternions, ®, followed by ®,,
yields a third quaternion, ®..

Do =pc+ike+juc+ kve = Pp P, = ppp, — Apha — pplta — VoVa
+i(ApPa + Poha — Volia + UpVa)
+j(uppa + Voha + Potia — ApV,)
+ k(Vopa — oha + Aptts + PyV.)-

(15)

Defining ®* =p —iA —ju — kv, then ®®* =d*® =|P|>. For the

pure rotations considered here, |®|=1. The inverse rotation,

®*/|®[*, can be viewed as a rotation about the same axis with a
negative angle of rotation or as the same angular rotation with the
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direction cosines equal to the negative of those for ®. Here, all
rotations will be assumed 0=<w <m so that the trigonometric
functions always evaluate as positive.

MATERIAL SYMMETRY

For an arbitrary body, representation of rotations by Rodrigues
vectors is unique when w <, with the space being unbounded for
o = . For materials which exhibit symmetry, however, the rota-
tions can be defined within a finite subspace. Here, the bounds of
the space are determined for materials with cubic symmetry.
Consistent with the adopted convention that all rotation angles be
positive, the subspace contains the origin and the bounds are
orthotropic with respect to the Cartesian coordinate axes, for cubic
materials.

The bounds of the subspace are determined by searching for
rotations, with different rotation axes but the same rotation angle,
which give equivalent configurations. For example, a cube initially
aligned with the coordinate axes, X;, rotated 45° about the *X; axis
gives the same configuration as a 45° rotation about the ~X; axis,
Figure 1a. To determine the boundaries that the symmetry imposes
on the space, consider a cube with edges initially parallel to the
coordinate directions which will be rotated to a generic orientation
@ with respect to the coordinate axes, Figure 1b. Rotation of the
cube 90° about the cube’s x; axis, ®' =1/V2+ k(1/V?2), prior to
the rotation, ®, will give an equivalent orientation,

<D”=t1><1>’=\—/13(p—v)+i%(l+u)+j%(u—l)+k%(p+ V).
(16)

With the angles of rotation for @ and ®” set equal to determine
the location of the symmetry boundary,

p"=\if2(p—v)=p, 17

which gives;
v=(1-V2)p = c;sin(w/2). (18)
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Figure 1 (a) Rotation of a cube about X,, (b) Rotation of local coordinate axes
about a rotation axis.

Since the angle is positive, this condition defines a surface for which
¢3<0. Solving for sin(w/2), substituting in (2) and using the
resulting expressions for the Euler—Rodrigues parameters in (16)

yields:
1-V2 1-V2
@' =p +i(c; + +j(cz— - p.
p+i(ce c2)—c3,7§_p Jlez—cy) V2 p+k(V2-1)p
(19)
Applying the condition that p"* + A" + u"? + v? =1,
—cs
= 2 =
P COS((D/ ) [Cg + (\/E _ 1)2]1/2 ’ (20)
where the minus sign is chosen to retain p > 0. Thus,
1-v2 2—-1
sin(@/2) = V2 v (21)

o U B VI- DT

and

®" = cos(w/2) + i% (¢, + cy)sin(w/2)

+j % (c2 — ¢y)sin(w/2) — kcs sin(w/2). (22)
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Table 1 Equivalent locations

Face direction o ch c3
1 1
(-1,0,0) = ﬁ(cz +¢3) ﬁ(cs )]
1 1
0, -1,0) Vi(cl —¢3) —C W(% +¢y)
1 1
EO, :), “11) ) \/_7 (c1tcr) % (c2—¢y) —C3
-1 -1,- —C3 €1 —C2
(-1,1,1) C3 c —Cy
(1) _1; 1) —C3 (2] [+7]
1,1, -1) c3 -y ¢,

Hence, for this particular symmetry rotation about the x; axis,
=@ +e)/V2  dg=(a-c)/V2 d=-c, (23)

which define the direction cosines of the equivalent rotation vector.
Furthermore, tan(w/2) = —(V2—1)/c; so that, for the material
with cubic symmetry, the extent of the Rodrigues space in the X,
direction is (1 —\/EZY) and (V2-1). This defines two planes per-
pendicular to the X; axis as bounds to the subspace. Similar
calculations yield equivalent relations for boundaries of the space
perpendicular to the other coordinate axes. These are summarized
by the first three entries in Table 1.

In addition to these boundaries, other boundaries are found by
composite rotations such as 90° about the x; axis followed by a 90°
rotation about the x; axis; ®' =2+i3+ji+ ki This is a 60°
rotation about a cube diagonal. Manipulations similar to those
above yield:

p=cos(w/2)=—(A+u+v)=—(c;+c,+c3)sin(w/2), (24)
where (¢, + ¢, + ¢3) <0. Applying the condition that |®"| =1,

“‘(Cl +c5+ C3) . _ 1
[+ (c1+ ¢+ o)) S/ = o e et PRUTE
(25)

cos(w/2) =

The equivalent rotation is
P" = cos(w/2) — icy sin(@/2) — jc, sin(w/2) — kc, sin(w/2), (26)
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and
¢l = ~c3 3= —Cy c3= —Cy. 27

The limiting surface in Rodrigues space determined by this
symmetry condition is found by substituting (25) into (2) and using
the resulting parameters in (6). The vectors define the surface at

—C3 ~C1 —Cy

R= e + e,+ e;. 28
C1+C2+C3 ! cl+C2+C3 2 Cl+C2+C3 3 ( )

These coordinates satisfy the equation for a plane, aX; + bX, +
cX; = d, with its normal in the (—1, —1, —1) direction. The angle for
symmetry rotations about the cube diagonal, ¢;=c,=c;= -1/V3,
is then o =2tan"'(1/V3)=60°. Additional planes are found at
other corners of the space. These are listed in Table 1 with their
equivalent material symmetry orientations.

For a material with cubic symmetry, all rotations are uniquely
represented within a cube with truncated corners defined by the
inner envelope of the surfaces described above, Figure 2. Rodrigues
vectors falling outside of this surface have an equivalent rotation
inside the surface. For any set of equivalent symmetry rotations, the
one with the smallest angle, w, lies within the surface. Points on the
surface represent rotations which have an equivalent rotation on
another face. Given a rotation axis, ¢, the Rodrigues vector
increases in length as the angle of rotation about that axis increases.
When the vector reaches one of the bounding surfaces, the rotation,
which had been represented by @, has an equivalent representation
in ®", with axis ¢’. The point corresponding to ®” is located by
referring to the entry in Table 1 corresponding to the face which the

Figure 2 Planar bounds of the subspace set by consideration of cubic material
symmetry.
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vector has exited. Relations for the faces not listed in the table can
easily be obtained by inverting the relation between ¢ and ¢”. On
the bounding surfaces, the angle of rotation, ®, is the same for ®
and ®”.

Similarly, a texture fiber leaving the space with direction cosines ¢
will reenter the subspace on another face where the Rodrigues
vector has direction cosines ¢”. As indicated above, these surfaces
are identified in Table 1 by their outward normal direction. The
direction cosines of the Rodrigues vector on the face which the fiber
exits are used to identify the direction cosines of the equivalent
rotation where the fiber will reenter the subspace.

Calculating the Rodrigues vectors for a material with cubic
symmetry requires determination of which of the 24 equivalent
rotations places the vector within the subspace. This is computa-
tionally efficient when done either in terms of rotation matrices or
quaternions, since only (9a) or p. from (15), respectively, needs to
be determined for all 24 symmetry rotations. For rotation matrices,
this involves only 4 addition operations per symmetry rotation. The
number of operations for quaternions ranges from a simple assign-
ment statement to a multiplication and 4 additions for each of the
24 rotations. The symmetry rotation which yields the greatest result
for (9a) or for p, from (15) will give the smallest rotation angle.
With the rotation determined, the remaining parameters are only
calculated for the selected rotation.

TEXTURE REPRESENTATIONS

A distribution of rotations characterized by Rodrigues vectors
resides in a 3-dimensional space. If the rotations of crystallites are
represented by discrete points at the ends of the vectors, a line
drawn from the center of the space through a point is the rotation
axis for that crystallite. The amount of rotation about the axis is
related to the distance from the center by d = tan(w/2). The crystal
is rotated from its reference configuration, where the crystal axes
are coincident with the subspace axes, to its present orientation.
This provides a simple physical representation of rotations.

Several techniques are available for examining the spatial dis-
tribution of rotations in Rodrigues space. In addition to viewing the
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Figure 3 Stereographic pair showing a random distribution of rotations represented
by Rodrigues vectors.

space from various projections and by stereoscopic images, Figure
3, video displays which can rotate the space in real time provide an
excellent means for visualizing the 3-dimensional structure. Such
tools are invaluable for assessing the pattern of rotation distribu-
tions in Rodrigues space.

The rotations must be presented in 2-dimensions for printed
presentation. Here, the space is sectioned into finite width slices
perpendicular to an axis. The ends of the vectors are indicated as
points with all points within a slice being plotted in one frame. The
frames are labelled by the specimen coordinate axes and the
sections are identified by the normalized distance from the center to
the midplane of the slice, with the faces being unity. This is
illustrated by Figure 4 which shows 500 random rotations. In this
space, random rotations will appear as nearly uniform coverage at
the center and the points will be somewhat more diffuse at the
boundaries. This appears to be the case in Figure 4, but here there
are too few points to give a good feel for the density distribution.

Texture evolution with deformation was simulated using the rate
dependent Taylor-type polycrystal model of Asaro and Needleman
(1985). The initial grain distribution, represented by Figure 4, was
subjected to various deformation histories. Details of the model and
properties used are not important in this context.

Figure 5a shows the Rodrigues space representation of the
distribution of grain orientations following uniaxial compression to
25% of its original height. The space is sectioned perpendicular to
the compression axis, X,. The texture fibers form as shells around
the ideal (110) fiber which is shown in Figure 5b. The ideal (110)
fibers run basically in the direction of the compression axis along
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Figure 5(a) Rodrigues space representation of grain orientations following uniaxial
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Figure 5(b) Ideal (110) fiber texture in Rodrigues space.

Figure 5(c) (111) pole figure of compression texture.
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the boundaries of the subspace with a 45° counterclockwise twist
from —1 to 1. Figure Sc shows the same orientation distribution in
the form of a (111) pole figure with the compression axis, X,,
normal to the plane of the paper. A strong fiber component near
(110) may be seen as two rings on the pole figure. In Figure 5d, the
crystallite orientation distribution function (CODF) is plotted as a
function of the Euler angles ¥, 0 and ¢ in Roe’s (1965) notation.
This is obtained by expanding each ideal orientation in generalized
spherical harmonics. The CODF is represented in the form of
contour plots in constant ¢ cross sections. In order to show the fiber
texture, however, the sample coordinates are rotated such that X is
the compression axis. Two variants of (110) fiber may be observed.

The calculated grain orientation distribution for uniaxial tension
is shown in Figure 6. Figure 6a is the distribution of rotations in
Rodrigues space, sectioned parallel to the tensile axis (X;). Two
developing fiber textures are shown. The weaker fiber is (100) type
that lies along a line through the center of each frame, parallel to
the tensile axis. The stronger texture is near an ideal (111) fiber,
shown in Figure 6b. A (111) pole figure and a representation in
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Figure 6(a) Rodrigues space representation of grain orientations following uniaxial
tension along X,.
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Figure 6(b) Ideal (111) fiber texture in Rodrigues space.

Figure 6(c) (111) pole figure of tension texture.
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Euler space are shown in Figures 6¢c and 6d, respectively. The
strong (111) fiber and a mild (100) fiber are seen here also.

Figure 7a shows a distribution of grains about an ideal rolling
texture (Hirsch et al., 1987). This texture is generated by mixing
several Gaussian distributions around individual rolling com-
ponents. The space is sectioned perpendicular to the rolling
direction and the normal and transverse directions are labelled.
Ideal components along a fiber from the Brass orientation (labelled
1) through Copper (6) are plotted in Figure 7b and listed in terms of
Euler angles and Rodrigues vectors in Table 2. These are also
indicated on the (111) pole figure, Figure 7c. Specimen symmetry
provides for three additional fibers with equivalent characteristics.
Figure 7d shows the CODF in the Euler angle representation.

The next example considered is uniaxial compression of a sample
made from an extruded rectangular bar. The compression samples
were prepared with the compression axis, X,, parallel to the short
transverse direction in the extrusion geometry. Because the starting
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+
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Figure 7 Simulated rolling texture generated by allowing a 5° spread along a skelton
line. (a) Representation in Rodrigues space.
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Table 2 Ideal rolling texture components

Component Y 6 ¢ R, R, R,
1 54 45 0 0.4142 0.1346 0.3249
2 47 38 10 0.3214 0.1602 0.2962
3 37 37 20 0.2805 0.2076 0.2962
4 26 33 30 0.2112 0.2265 0.3057
5 8 32 40 0.1489 0.2686 0.3839
6 0 31 45 —0.1149 0.2773 —0.4142

material has a strong texture, the deformation is not axisymmetric.
The sample, which was originally circular in cross section, trans-
formed into an oval shape with predominant elongation in the
extrusion direction, X;. The details of the experimental procedure
will be described in a separate report. The final texture, as
predicted by the polycrystal deformation model, has a fairly strong
rolling texture due to the anisotropic nature of the deformation. As
may be observed in Figure 8, the model predicts the development of
“rolling like” texture in the original extrusion direction, X;. It may
also be noticed that, unlike the case of compression with random
starting texture (Figure 5d) where uniform distribution of planes
containing (110) fiber is observed, here the fiber is clustered near
(110)[001] or the “Goss” orientation.

The final texture after 75% reduction is shown in Figure 8a,
sectioned parallel to the X, direction with X, being the compression
axis (also the short transverse direction). The similarity between
Figure 8a and the ideal rolling texture of Figure 7b can be seen. In
comparing these two figures, however, it must be remembered that
the compression axis is labelled “X,” in Figure 8a and is labelled
“normal direction” in Figure 7a. The (111) pole figure and a CODF
in Euler angle space are shown in Figures 8b and 8c, respectively.
In Figure 8c, the CODF is plotted in a transformed coordinate
system with the sample X; axis parallel to the compression axis and
X; being the original extrusion direction. This was done to
emphasize the predominantly rolling like texture that was predicted
by the polycrystal model. The “Goss” texture may be seen in zero
degree ¢ cross sections at =90 and 6 =45. In Rodrigues space
the “Goss” texture is in the center of the 0.875 and —0.875 cross
sections of Figure 8a.
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Figure 9 Measured distribution of grain orientations from an annealed sheet (a)
and rotational misorientation of neighboring grains (b).

In order to emphasize a compression fiber parallel to the X, axis,
the CODF would have to be reconstructed in another coordinate
system. On the other hand, the representation in Rodrigues space is
fixed for a given grain distribution, and in order to view it from a
different orientation it is merely sectioned along a different axis.
The description of orientation in Euler angle space is, therefore, at
a disadvantage because it does not have a direct contact with
physical space through the laboratory or sample coordinte system.
A different 3-dimensional representation must be constructed de-
pending on which of the coordinate axes is designated X;. Three
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dimensional texture representation in Rodrigues space eliminates
this problem.

Rotation of a crystallite to its present orientation (from a
reference orientation which is fixed with respect to the specimen
axes) defines the rotation axis in terms of the sample coordinates.
Hence, the vectors in Rodrigues space are fixed by the specimen
and are not an artifact of the representation. If the coordinates of
the Rodrigues space are aligned with the specimen axes, sample
symmetries will also show up as symmetries in Rodrigues space.
This symmetry is evident in the simulated rolling texture of Figure
7a. Likewise, any asymmetry in the distribution of grain orienta-
tions manifests itself as an asymmetry in Rodrigues space. Figure 9a
shows a distribution of rotations measured from annealed sheet
material. The orientations were determined for individual grains by
examining the Kikuchi patterns created by backscatter electrons in
an SEM (Venables and Harland, 1973; Dingley, 1987). While the
number of grains is small, the asymmetry of the orientation
distribution is evident.

A significant advantage of the Rodrigues representation may be
realized in analysis of nonconventional features such as representing
the misorientation between neighboring grains. Here the symmetry
of the space is a particular asset. Using the technique described
above for measuring individual grain orientations, it is also possible
to keep track of which grains are neighbors. Consider the rotation
of two neighboring grains, designated by superscripts o and 8, from
a reference orientation, coincident with the specimen axes, to their
present orientations. If the components of these rotations, Aj and
A8, are referred to the specimen axes, then rotation of a crystallite,
whose axes are referred to configuration «, from configuration « to
B is given by

3
Azf"=§1 AZAS, (29)

By writing the rotation as viewed from the crystal axes, the axes of
the Rodrigues space coincide with the crystal axes. Since the
relative orientation of o as viewed from the coordinate system of
configuration § is the transpose of (29), the components of the
Rodrigues vector for one rotation are the negative of the com-
ponents of the vector for the other. Thus, since which grain is taken
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as reference is arbitrary, distributions of grain misorientations may
be represented in half of the subspace. This representation of near
neighbor misorientation is shown in Figure 9b. For this particular
specimen, the points are clustered more heavily near the center,
implying that the neighboring grains tend to have similar
orientations.

REMARKS

One of the attractive features of the Rodrigues space representation
is that the Rodrigues vectors reside in a rectangular Cartesian
coordinate system in which the axes of the space can be chosen to
coincide with the specimen axes, and labelled accordingly. The
rotations vectors (and the Rodrigues vectors) are determined by the
grain orientation and specification of a reference orientation and,
therefore, are fixed with respect to the specimen. It follows that
(unlike the Euler angle representation) the representation in
Rodrigues space rotates with the specimen and does not depend on
an established convention that treats each axis differently. Axes of
the Rodrigues space coincide with the axes of the refererence
orientation and can be used to identify important directions for the
specimen.

As illustrated above, crystal orientations plotted in Rodrigues
space can show symmetry or asymmetry in a specimen. This is a
useful feature for illustrating property variation within a product.
Identification of symmetries about 3 orthogonal axes is more
difficult in the Euler angle representation.

With more emphasis being placed on effects of neighboring grain
interactions, the Rodrigues space representation could be utilized to
characterize relative orientations of neighboring grains. Similarly, it
also could be used in recrystalization studies where attention is
focussed on prior grain orientation and identification of which grain
orientations are more likely to consume others during grain growth.

The Rodrigues parameters provide a conceptually simple, physi-
cally based method of representing orientation distributions. How-
ever, because of the difficulty in imagining objects in three
dimensional space, visualizing something as straightforward as
rotation of a cube about an axis is not easily accomplished. Analysis
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of orientation distributions will still require comparisons with
calculated standards to determine crystal orientations in much the
same way that CODFs are analyzed.

Determination of the Rodrigues vectors directly from X-rays
remains a major obstacle. Presently, the only method available for
determining the parameters from pole figure data is by first
determining the Euler angles, and converting. In this regard,
numerical inversion in the spirit of the “vector” method for Euler
angles, or some technique utilizing the pole figure rotation with the
Caley-Klein parameters, Eq. (13), may prove useful. Determina-
tion of the parameters is not a problem when using the Kikuchi
pattern method (Venables and Harland, 1973; Dingley, 1987), but
the process is long and tedious, even with much of the process
automated. The Rodrigues space does, however, offer advantages
over the CODF in terms of Euler angles.
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