© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of *tert*-butylammonium trifluoroacetyl-*N*-(*tert*-butyl-amino)dioxophosphate acetonitrile solvate hydrate (1:0.333:0.333), (C₄H₉NH₃)[(F₃C₂ONH)(C₄H₉NH)PO₂)] · 0.333 CH₃CN · 0.333 H₂O

K. Gholivand*, M. Pourayoubi, Z. Shariatinia and S. Molani

Tarbiat Modarres University, School of Science, Department of Chemistry, P.O. Box 14115-175, Tehran, I. R. Iran

Received May 24, 2005, accepted and available on-line August 6, 2005; CCDC no. 1267/1559

Abstract

 $\begin{array}{l} {\rm C}_{10.667}{\rm H}_{24.667}{\rm F}_{3}{\rm N}_{3.333}{\rm O}_{3.333}{\rm P}, {\rm triclinic}, P\overline{1} \ ({\rm no.}\ 2),\\ a=10.523(3)\ {\rm \mathring{A}},\ b=16.082(5)\ {\rm \mathring{A}},\ c=17.382(5)\ {\rm \mathring{A}},\\ \alpha=65.120(5)^{\circ},\ \beta=86.867(5)^{\circ},\ \gamma=78.073(5)^{\circ},\ V=2609.2\ {\rm \mathring{A}}^{3},\\ Z=6,\ R_{\rm gt}(F)=0.062,\ wR_{\rm ref}(F^{2})=0.149,\ T=120\ {\rm K}. \end{array}$

Source of material

The title compound was synthesized by the reaction of N-trifluoroacetyl phosphoramidic dichloride (1 mmol) with *tert*-butylamine (4 mmol) in CH₃CN under 4 hours stirring at 0 °C. The solvent was removed and the residue was washed with distilled water. Single crystals of product were obtained from a mixture of methanol and acetonitrile after slow evaporation at room temperature.

Experimental details

Because of the strong correlation, it was impossible to refine both thermal parameters (U_{eq}) and site occupancy factor (*s.o.f.*) simultaneously for the disordered atoms. Therefore, the refinement was done step by step: first thermal parameters, then *s.o.f.*, then again thermal parameters and so on. Final refinement was carried out with fixed site occupancy factor. The refinement with restrained C—C bond distances revealed that the *s.o.f.* values are 0.63 and 0.37. The U_{eq} values for C atoms are 0.062 Å² – 0.078 Å² for the major part and 0.076 Å² – 0.072 Å² for the minor part.

* Correspondence author (e-mail: gholi_kh@modares.ac.ir)

Discussion

In a previous study, we have reported the crystal structure of $(C_{10}H_{20}NH_2)PCl_2O_2$ which consists of two symmetrically independent dichlorophosphate anions as well as cyclohexyl-*tert*-butylammonium cations linked by four different kinds of intermolecular hydrogen bonds [1].

The crystal structure of the title compound is composed of three symmetrically independent trifluoroacetyl-N-(tert-butylamino)phosphate anions and three independent cations of tert-butylammonium, labeled with A, B and C. The anion labeled with "C" indicates disorder in the tert-C₄H₉ moiety (see C4C, C4C', C5C, C5C', C6C and C6C' (figure, top). The P1A—O1A, P1B—O1B and P1C-O1C bond lengths (1.477(2) Å, 1.480(2) Å and 1.480(2) Å) are slightly longer than the P=O double bond length (1.45 Å) [2]. The P-N(amine) bond lengths of 1.626(3) Å, 1.628(3) Å and 1.624(3) Å for P1A-N2A, P1B-N2B and P1C—N2C, respectively, are shorter than the P—N single bond length (1.77 Å) [2] and P-N(amide) bond lengths (due to the resonance interaction of N(amide) with the C=O- π system). The phosphorus atom has slightly distorted tetrahedral configuration. The bond angles around P1A, P1B and P1C are in the range of $102.4(1)^{\circ} - 120.4(1)^{\circ}, 102.9(1)^{\circ} - 119.0(1)^{\circ}$ and $102.8(1)^{\circ} - 118.3(2)^{\circ},$ respectively. The maximum and minimum values in each conformer are corresponding for the O2-P1-O1 and O2-P1-N1 angles. The environments of the nitrogen atoms are practically planar. The bond angles C1A-N1A-P1A, C3A-N2A-P1A, C1B-N1B-P1B, C3B-N2B-P1B, C1C-N1C-P1C and C3C-N2C-P1C are 124.8(2)°, 126.6(2)°, 125.6(2)°, 128.7(2)°, 124.7(2)° and 129.8(2)°, respectively. These results are in agreement with the sp^2 hybridization for nitrogen atoms, although some angles differ from the ideal values. In the network of the title structure, the organo-phosphate anions, tert-C₄H₉NH₃⁺ cations, H₂O and CH₃CN molecules produce fifteen types of hydrogen bonds leading to infinite chains running along [011].

Table 1. Data collection and handling.

Crystal:	colorless prism,
	size $0.10 \times 0.15 \times 0.45$ mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
<i>u</i> :	2.01 cm^{-1}
Diffractometer, scan mode:	Bruker SMART 1000 CCD, φ/ω
$2\theta_{\rm max}$:	52.24°
N(hkl)measured, N(hkl)unique:	21211, 10129
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 5713$
N(param)refined:	604
Program:	SHELXTL [3]
C	

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Table 2. Continued.

Atom	Site	Occ.	x	у	z	$U_{ m iso}$	Atom	Site	Occ.	x	у	z	Uiso
H(1AA)	2i		0 5372	0 2304	-0.0049	0.037	H(3AA)	2i		0 3328	0 6408	-0.0793	0.04
H(2AA)	$\frac{2i}{2i}$		0.7234	0.0252	0.2035	0.037	H(3AB)	$\frac{2i}{2i}$		0.4346	0.5671	-0.0892	0.04
H(4AA)	$\frac{2i}{2i}$		0.8115	-0.0232	0.1507	0.061	H(3AC)	$\frac{2i}{2i}$		0.3664	0.5463	-0.0080	0.04
H(4AB)	$\frac{2i}{2i}$		0.9132	-0.0862	0.2124	0.061	H(8AA)	$\frac{2i}{2i}$		0.3387	0.5818	-0.2145	0.06
H(4AC)	$\frac{2i}{2i}$		0.9591	-0.0891	0.1241	0.061	H(8AB)	$\frac{2i}{2i}$		0.2287	0.6650	-0.2106	0.06
H(5AA)	$\frac{2i}{2i}$		0.9386	0 1499	0.0936	0.060	H(8AC)	$\frac{2i}{2i}$		0.1886	0.5775	-0.2100	0.06
H(5AB)	$\frac{-i}{2i}$		1.0383	0.0645	0.0854	0.060	H(9AA)	2i		0.1365	0.5436	0.0004	0.06
H(5AC)	$\frac{-i}{2i}$		0.9924	0.0573	0.1769	0.060	H(9AB)	2i		0.0608	0.5511	-0.0805	0.06
H(6AA)	$\frac{2i}{2i}$		0.7903	0.1383	-0.0108	0.062	H(9AC)	$\frac{2i}{2i}$		0.1047	0.6412	-0.0817	0.06
H(6AB)	$\frac{2i}{2i}$		0 7414	0.0428	0.0137	0.062	H(10A)	$\frac{2i}{2i}$		0.3836	0.4275	-0.0900	0.06
H(6AC)	$\frac{2i}{2i}$		0.8892	0.0482	-0.0108	0.062	H(10R)	$\frac{2i}{2i}$		0.2345	0.4192	-0.0891	0.06
H(1BA)	$\frac{2i}{2i}$		0.4411	0.4957	0.2832	0.039	H(10C)	$\frac{2i}{2i}$		0.3031	0.4121	-0.0060	0.06
H(2BA)	$\frac{2i}{2i}$		0.2032	0.6280	0.0763	0.040	H(3BA)	$\frac{2i}{2i}$		0.4114	0.2338	0 2243	0.04
H(4BA)	$\frac{2i}{2i}$		-0.0237	0.6882	0.0553	0.083	H(3BR)	$\frac{2i}{2i}$		0.3676	0.2179	0.3112	0.04
H(4BR)	$\frac{2i}{2i}$		0.0482	0.7587	0.0706	0.083	H(3BC)	$\frac{2i}{2i}$		0.3237	0.3104	0.2392	0.04
H(4BC)	$\frac{-i}{2i}$		-0.0812	0.7330	0.1196	0.083	H(8BA)	2i		0.2729	0.2458	0.1149	0.06
H(5BA)	$\frac{-i}{2i}$		0.1674	0.6083	0.2814	0.089	H(8BB)	2i		0.1779	0.3310	0.1265	0.06
H(5BB)	$\frac{-i}{2i}$		0.0353	0.6855	0.2562	0.089	H(8BC)	2i		0.1227	0.2430	0.1325	0.06
H(5BC)	$\frac{-i}{2i}$		0.1650	0.7102	0.2071	0.089	H(9BA)	2i		0.1394	0.2119	0.3490	0.07
H(6BA)	$\frac{-i}{2i}$		-0.0191	0.5313	0.1670	0.074	H(9BB)	2i		0.0383	0.2306	0.2752	0.07
H(6BB)	$\frac{-i}{2i}$		-0.0777	0.5764	0.2310	0.074	H(9BC)	$\frac{2}{2i}$		0.1056	0.3129	0.2712	0.07
H(6BC)	2i		0.0537	0.4986	0.2566	0.074	H(10D)	2i		0.3391	0.0950	0.2387	0.06
H(1CA)	2i		0.5984	0.2115	0.5450	0.043	H(10E)	2i		0.1903	0.0886	0.2588	0.06
H(2CA)	2i		0.2676	0.3060	0.4023	0.045	H(10F)	2i		0.2863	0.0819	0.3303	0.06
H(4CA)	2i	0.63	0.0770	0.4014	0.4120	0.117	H(3CA)	2i		0.4268	-0.0834	0.6081	0.05
H(4CB)	2i	0.63	0.0364	0.4022	0.5018	0.117	H(3CB)	2i		0.3743	-0.0795	0.6879	0.05
H(4CC)	2i	0.63	0.0531	0.3075	0.4892	0.117	H(3CC)	2i		0.3815	0.0085	0.6121	0.05
H(5CA)	2i	0.63	0.2698	0.4631	0.4099	0.113	H(8CA)	2i		0.1473	-0.0043	0.4839	0.07
H(5CB)	2i	0.63	0.3694	0.4148	0.4902	0.113	H(8CB)	2i		0.2957	-0.0572	0.4913	0.07
H(5CC)	2i	0.63	0.2276	0.4704	0.4970	0.113	H(8CC)	2i		0.2617	0.0486	0.4812	0.07
H(6CA)	2i	0.63	0.3402	0.2752	0.6100	0.093	H(9CA)	2i		0.1444	-0.0015	0.6890	0.08
H(6CB)	2i	0.63	0.2132	0.2327	0.6166	0.093	H(9CB)	2i		0.0501	0.0234	0.6098	0.08
H(6CC)	2i	0.63	0.2015	0.3310	0.6218	0.093	H(9CC)	2i		0.1596	0.0827	0.5997	0.08
H(4CD)	2i	0.37	0.1718	0.4673	0.3993	0.114	H(10G)	2i		0.2052	-0.1630	0.7059	0.08
H(4CE)	2i	0.37	0.0680	0.4486	0.4724	0.114	H(10H)	2i		0.2763	-0.1870	0.6318	0.08
H(4CF)	2i	0.37	0.0776	0.3968	0.4106	0.114	H(10I)	2i		0.1233	-0.1452	0.6236	0.08
H(5CD)	2i	0.37	0.3645	0.4054	0.5157	0.107	H(1SA)	2i		0.4643	0.0331	0.7835	0.0
H(5CE)	2i	0.37	0.3685	0.3040	0.5912	0.107	H(1SB)	2i		0.4310	0.0862	0.6827	0.0
H(5CF)	2i	0.37	0.2576	0.3907	0.5868	0.107	H(2SA)	2i		0.6705	0.1638	0.8260	0.07
H(6CD)	2i	0.37	0.0801	0.2642	0.5315	0.114	H(2SB)	2i		0.8109	0.0989	0.8336	0.07
H(6CE)	2i	0.37	0.0918	0.3109	0.5952	0.114	H(2SC)	2i		0.6842	0.0538	0.8547	0.07
· · · · /	-						(=)						

Table 3. Atomic coordinates and displacement parameters (in \AA^2).

Atom	Site	Occ.	x	у	z	U_{11}	U_{22}	U ₃₃	U_{12}	U_{13}	U ₂₃
P(1A)	2i		0.64659(8)	0 17137(6)	0 12316(5)	0.0291(5)	0.0258(5)	0.0304(5)	-0.0057(4)	-0.0016(4)	-0.0101(4)
F(1A)	2i		0.2654(2)	0.1179(2)	0.0011(1)	0.051(1)	0.055(2)	0.055(1)	-0.028(1)	-0.014(1)	-0.004(1)
F(2A)	$\frac{2i}{2i}$		0.2031(2) 0.4344(2)	0.1079(2)	-0.0689(2)	0.051(1) 0.067(2)	0.033(2) 0.079(2)	0.055(1) 0.057(2)	0.010(1)	-0.018(1)	-0.044(1)
F(3A)	2i		0.3419(2)	0.2386(2)	-0.0706(1)	0.050(1)	0.038(1)	0.052(1)	-0.014(1)	-0.020(1)	0.001(1)
O(1A)	2i		0.5666(2)	0.1730(2)	0.1952(1)	0.033(1)	0.035(1)	0.032(1)	-0.004(1)	-0.003(1)	-0.013(1)
O(2A)	$\frac{2i}{2i}$		0.7182(2)	0.2465(2)	0.0768(1)	0.031(1)	0.027(1)	0.033(1)	-0.006(1)	-0.003(1)	-0.013(1)
O(3A)	2i		0.4462(2)	0.0588(2)	0.1199(1)	0.047(2)	0.033(1)	0.032(1)	-0.016(1)	-0.001(1)	-0.006(1)
N(1A)	$\frac{2i}{2i}$		0.5385(3)	0.1831(2)	0.0451(2)	0.032(2)	0.026(2)	0.032(1)	-0.007(1)	-0.002(1)	-0.006(1)
N(2A)	2i		0.7406(3)	0.0683(2)	0.1546(2)	0.035(2)	0.026(2)	0.029(1)	-0.004(1)	-0.001(1)	-0.004(1)
C(1A)	$\frac{2i}{2i}$		0.4585(3)	0.1264(2)	0.0554(2)	0.033(2)	0.026(2)	0.021(1) 0.036(2)	-0.005(2)	0.001(2)	-0.013(2)
C(2A)	$\frac{2i}{2i}$		0.4303(3) 0.3740(3)	0.1204(2) 0.1480(2)	-0.0217(2)	0.031(2) 0.035(2)	0.020(2) 0.031(2)	0.036(2)	-0.003(2)	-0.001(2)	-0.010(2)
C(2A)	21		0.3740(3)	0.1400(2) 0.0306(2)	-0.0217(2) 0.1006(2)	0.035(2)	0.031(2)	0.030(2)	-0.003(2)	0.003(2)	-0.010(2)
C(3A)	21		0.8317(3)	0.0390(2)	0.1090(2) 0.1520(2)	0.030(2)	0.030(2)	0.033(2)	-0.004(2)	0.003(2)	-0.011(2)
C(4A)	21		0.8870(4)	-0.0003(2)	0.1330(2)	0.042(2)	0.032(2)	0.042(2)	-0.001(2)	-0.001(2)	-0.012(2)
C(5A)	21		0.9654(3)	0.0816(3)	0.1170(2)	0.036(2)	0.038(2)	0.042(2)	-0.006(2)	0.002(2)	-0.012(2)
C(6A)	2i		0.8149(4)	0.0699(3)	0.0173(2)	0.043(2)	0.044(2)	0.033(2)	-0.002(2)	0.003(2)	-0.016(2)
P(1B)	2i		0.31583(8)	0.50589(6)	0.17606(5)	0.0283(5)	0.0272(5)	0.0340(5)	-0.0058(4)	-0.0024(4)	-0.0106(4)
F(1B)	2i		0.5228(3)	0.7154(2)	0.2552(2)	0.105(2)	0.039(1)	0.090(2)	-0.005(1)	-0.051(2)	-0.028(1)
F(2B)	2i		0.6587(2)	0.5999(2)	0.2550(2)	0.040(1)	0.088(2)	0.076(2)	-0.010(1)	-0.012(1)	-0.041(2)
F(3B)	2i		0.5148(3)	0.5790(2)	0.3460(1)	0.093(2)	0.091(2)	0.039(1)	-0.054(2)	-0.002(1)	-0.020(1)
O(1B)	2 <i>i</i>		0.3965(2)	0.4914(2)	0.1086(1)	0.031(1)	0.032(1)	0.036(1)	-0.002(1)	-0.006(1)	-0.011(1)
O(2B)	$\frac{2i}{2i}$		0.2712(2)	0.4255(2)	0.2429(1)	0.034(1)	0.026(1)	0.043(1)	-0.010(1)	0.002(1)	-0.009(1)

Atom	Site	Occ.	x	у	z	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
O(3B)	2i		0.4193(2)	0.6855(2)	0.1363(1)	0.039(1)	0.030(1)	0.035(1)	-0.012(1)	-0.004(1)	-0.001(1)
N(1B)	2i		0.4130(3)	0.5376(2)	0.2320(2)	0.037(2)	0.028(2)	0.030(2)	-0.009(1)	-0.006(1)	-0.008(1)
N(2B)	2i		0.1969(3)	0.5948(2)	0.1311(2)	0.038(2)	0.031(2)	0.029(1)	-0.011(1)	0.001(1)	-0.009(1)
C(1B)	2i		0.4487(3)	0.6195(3)	0.2044(2)	0.030(2)	0.033(2)	0.039(2)	-0.006(2)	-0.003(2)	-0.016(2)
C(2B)	2i		0.5359(4)	0.6291(3)	0.2665(2)	0.041(2)	0.036(2)	0.042(2)	-0.008(2)	-0.006(2)	-0.015(2)
C(3B)	2i		0.0801(3)	0.6271(2)	0.1697(2)	0.032(2)	0.028(2)	0.045(2)	-0.008(2)	0.002(2)	-0.014(2)
C(4B)	2i		-0.0014(4)	0.7090(3)	0.0974(3)	0.044(2)	0.046(3)	0.058(3)	0.004(2)	0.002(2)	-0.010(2)
C(5B)	2i		0.1151(4)	0.6608(3)	0.2344(3)	0.041(2)	0.077(3)	0.079(3)	-0.011(2)	0.009(2)	-0.052(3)
C(6B)	2i		0.0025(4)	0.5518(3)	0.2095(3)	0.035(2)	0.044(2)	0.065(3)	-0.009(2)	0.004(2)	-0.020(2)
P(1C)	2i		0.42030(9)	0.20025(6)	0.48562(6)	0.0419(6)	0.0289(5)	0.0319(5)	-0.0094(4)	-0.0013(4)	-0.0098(4)
F(1C)	2i		0.7566(3)	0.4028(2)	0.3990(2)	0.081(2)	0.093(2)	0.084(2)	-0.061(2)	-0.016(2)	0.017(2)
F(2C)	2i		0.8089(3)	0.2646(2)	0.4888(2)	0.064(2)	0.071(2)	0.131(3)	-0.017(2)	-0.044(2)	-0.016(2)
F(3C)	2i		0.6947(3)	0.3629(3)	0.5235(2)	0.120(3)	0.169(3)	0.119(3)	-0.088(3)	0.020(2)	-0.097(3)
O(1C)	2i		0.4478(2)	0.1692(2)	0.4164(1)	0.043(1)	0.032(1)	0.038(1)	-0.005(1)	-0.005(1)	-0.013(1)
O(2C)	2i		0.4079(2)	0.1291(2)	0.5721(1)	0.056(2)	0.035(1)	0.035(1)	-0.017(1)	0.004(1)	-0.010(1)
O(3C)	2i		0.5397(2)	0.3644(2)	0.3686(2)	0.051(2)	0.037(2)	0.036(1)	-0.009(1)	-0.011(1)	0.001(1)
N(1C)	2i		0.5530(3)	0.2414(2)	0.4966(2)	0.041(2)	0.031(2)	0.029(2)	-0.010(1)	-0.004(1)	-0.004(1)
N(2C)	2i		0.2967(3)	0.2875(2)	0.4546(2)	0.041(2)	0.038(2)	0.034(2)	-0.009(2)	-0.004(1)	-0.015(1)
C(1C)	2i		0.5921(4)	0.3147(3)	0.4377(2)	0.042(2)	0.033(2)	0.043(2)	-0.009(2)	-0.004(2)	-0.013(2)
C(2C)	2i		0.7137(4)	0.3379(3)	0.4612(3)	0.054(3)	0.048(3)	0.047(2)	-0.021(2)	-0.006(2)	-0.008(2)
C(3C)	2i		0.2259(4)	0.3404(2)	0.5008(2)	0.054(3)	0.041(2)	0.040(2)	-0.005(2)	0.004(2)	-0.019(2)
C(4C)	2i	0.63	0.0861(6)	0.3650(7)	0.4736(7)	0.052(5)	0.103(8)	0.101(8)	0.004(5)	-0.004(5)	-0.072(7)
C(5C)	2i	0.63	0.2778(8)	0.4302(5)	0.4719(6)	0.099(6)	0.059(5)	0.096(6)	-0.033(5)	0.034(5)	-0.055(5)
C(6C)	2i	0.63	0.2470(8)	0.2905(5)	0.5955(3)	0.083(6)	0.051(5)	0.044(4)	0.011(4)	-0.009(4)	-0.023(3)
C(4C')	2i	0.37	0.127(1)	0.4202(9)	0.4405(8)	0.08(1)	0.08(1)	0.064(9)	0.010(9)	0.008(8)	-0.032(8)
C(5C')	2i	0.37	0.312(1)	0.362(1)	0.5531(9)	0.077(9)	0.07(1)	0.09(1)	-0.011(8)	0.012(8)	-0.063(9)
C(6C')	2i	0.37	0.141(1)	0.2783(8)	0.5629(8)	0.09(1)	0.064(9)	0.074(9)	0.010(8)	0.008(8)	-0.037(8)
N(3A)	2i		0.3574(3)	0.5784(2)	-0.0655(2)	0.031(2)	0.026(2)	0.032(2)	-0.005(1)	-0.000(1)	-0.009(1)
C(7A)	2i		0.2566(3)	0.5472(2)	-0.0980(2)	0.029(2)	0.029(2)	0.036(2)	-0.010(2)	-0.001(2)	-0.010(2)
C(8A)	2i		0.2528(4)	0.5972(3)	-0.1935(2)	0.048(2)	0.039(2)	0.035(2)	-0.012(2)	-0.005(2)	-0.007(2)
C(9A)	2i		0.1284(3)	0.5730(3)	-0.0618(2)	0.032(2)	0.045(2)	0.054(2)	-0.011(2)	0.004(2)	-0.020(2)
C(10A)	2i		0.2981(4)	0.4422(2)	-0.0681(2)	0.047(2)	0.029(2)	0.047(2)	-0.009(2)	-0.001(2)	-0.013(2)
N(3B)	2i		0.3441(3)	0.2475(2)	0.2551(2)	0.032(2)	0.025(2)	0.034(2)	-0.005(1)	0.000(1)	-0.011(1)
C(7B)	2i		0.2289(3)	0.2154(2)	0.2394(2)	0.033(2)	0.031(2)	0.036(2)	-0.011(2)	-0.002(2)	-0.009(2)
C(8B)	2i		0.1979(4)	0.2629(3)	0.1451(2)	0.047(2)	0.044(2)	0.042(2)	-0.011(2)	-0.008(2)	-0.011(2)
C(9B)	2i		0.1183(4)	0.2453(3)	0.2880(2)	0.038(2)	0.047(2)	0.053(2)	-0.012(2)	0.006(2)	-0.017(2)
C(10B)	2i		0.2642(4)	0.1112(2)	0.2694(2)	0.058(3)	0.030(2)	0.043(2)	-0.018(2)	0.000(2)	-0.008(2)
N(3C)	2i		0.3671(3)	-0.0506(2)	0.6302(2)	0.038(2)	0.028(2)	0.030(2)	-0.008(1)	-0.001(1)	-0.006(1)
C(7C)	2i		0.2328(3)	-0.0464(3)	0.6015(2)	0.038(2)	0.044(2)	0.034(2)	-0.015(2)	-0.002(2)	-0.012(2)
C(8C)	2i		0.2345(4)	-0.0118(3)	0.5061(2)	0.053(2)	0.051(3)	0.034(2)	-0.016(2)	-0.004(2)	-0.013(2)
C(9C)	2i		0.1386(4)	0.0203(3)	0.6273(3)	0.040(2)	0.075(3)	0.047(2)	-0.005(2)	-0.001(2)	-0.025(2)
C(10C)	2i		0.2072(4)	-0.1438(3)	0.6444(2)	0.057(3)	0.058(3)	0.048(2)	-0.033(2)	0.001(2)	-0.012(2)
O(1S)	2i		0.3893(3)	0.0814(2)	0.7419(2)	0.069(2)	0.057(2)	0.044(2)	-0.019(2)	-0.001(1)	-0.005(1)
N(1S)	2i		0.6966(4)	0.1356(3)	0.6629(2)	0.089(3)	0.069(3)	0.045(2)	-0.022(2)	-0.013(2)	-0.013(2)
C(1S)	2i		0.7061(4)	0.1247(3)	0.7311(3)	0.048(2)	0.042(2)	0.046(2)	-0.016(2)	-0.009(2)	-0.006(2)
C(2S)	2 <i>i</i>		0.7189(4)	0.1091(3)	0.8183(2)	0.052(2)	0.041(2)	0.039(2)	-0.016(2)	-0.007(2)	-0.006(2)

Acknowledgments. Support of this investigation by Tarbiat Modarres University is gratefully acknowledged. We thank the Institute of Organoelement Compounds of the Russian Academy of Science for the X-ray structure determination.

References

- 1. Gholivand, K.; Pourayoubi, M.: Crystal structure of cyclohexyl-*tert*-butyl-ammonium dichlorophosphate, $(C_{10}H_{20}NH_2)PCl_2O_2$. Z. Kristallogr. NCS **219** (2004) 314-316.
- Corbridge, D. E. C.: Phosphorus, an outline of its Chemistry, Biochemistry and Technology, 5th Edition. Elsevier, The Netherlands 1995.
- Sheldrick, G. M.: SHELXTL. Structure Determination Software Suite. Version 5.10. Bruker AXS, Madison, Wisconsin, USA 1998.