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We have developed a method for crystal structure prediction from “scratch” through particle-swarm optimi-
zation �PSO� algorithm within the evolutionary scheme. PSO technique is different with the genetic algorithm
and has apparently avoided the use of evolution operators �e.g., crossover and mutation�. The approach is based
on an efficient global minimization of free-energy surfaces merging total-energy calculations via PSO tech-
nique and requires only chemical compositions for a given compound to predict stable or metastable structures
at given external conditions �e.g., pressure�. A particularly devised geometrical structure parameter which
allows the elimination of similar structures during structure evolution was implemented to enhance the struc-
ture search efficiency. The application of designed variable unit-cell size technique has greatly reduced the
computational cost. Moreover, the symmetry constraint imposed in the structure generation enables the real-
ization of diverse structures, leads to significantly reduced search space and optimization variables, and thus
fastens the global structure convergence. The PSO algorithm has been successfully applied to the prediction of
many known systems �e.g., elemental, binary, and ternary compounds� with various chemical-bonding envi-
ronments �e.g., metallic, ionic, and covalent bonding�. The high success rate demonstrates the reliability of this
methodology and illustrates the promise of PSO as a major technique on crystal structure determination.
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I. INTRODUCTION

Crystal structure occupies a central and often critical role
in materials science, particularly when establishing a corre-
spondence between material performance and its basic com-
position since properties of a solid are intimately tied to its
crystal structure. Experimentally, structural determination
through x-ray diffraction technique has been developed ex-
tremely well, leading to numerous crystal structures solved.
However, it happens frequently that experiments fail to de-
termine structures due to the obtained low-quality x-ray dif-
fraction data, particularly at extreme conditions �e.g., high
pressure�. Here, the theoretical prediction of crystal struc-
tures with the only known information of chemical compo-
sition independent of previous experimental knowledge is
greatly necessary. However, this is extremely difficult as it
basically involves in classifying a huge number of energy
minima on the lattice energy surface. 20 years ago John
Maddox even published an article in Nature to question the
predictive power provided with only the knowledge of
chemical composition.1 His words still remain largely true,
as evidenced by poor results of the latest blind test for crystal
structure prediction.2

Owing to significant progress in both computational
power and basic materials theory, it is now possible to pre-
dict the crystal structure at 0 K using the quantum-
mechanical methods, some of which are simulated
annealing,3,4 genetic algorithm,5–9 basin hopping,10,11

metadynamics,12,13 random sampling,14–16 and data mining
methods.17 Simulated annealing, basin hopping, and metady-
namics have focused on overcoming the energy barriers and
are successful in many researches,4,18,19 particularly, when
the starting structure is close to the global minimum. The
data mining method relies heavily on the existence of an
extensive database of good trial structures and is incapable of
generating new crystal structure types in the absence of in-

formation on similar compounds. Random sampling method
seems “simple” in principle but nontrivial in practice and
works well in many applications.14–16,20 The genetic algo-
rithm �GA� starts to use a self-improving method and thus is
successful in predicting many high-pressure structures.21–28

We here have proposed a methodology for crystal struc-
ture prediction based on the particle-swarm optimization
�PSO� technique within the evolutionary scheme. With the
PSO implementation, the computational expense of first-
principles density-functional calculations has been signifi-
cantly reduced. This is stemmed from that PSO is a highly
efficient global optimization method. We have successfully
applied this method to the prediction of various known sys-
tems, such as elemental, binary, and ternary compounds. The
high success rate demonstrates the reliability of this method-
ology and illustrates the promise of PSO as a major tool on
crystal structure determination.

This paper is arranged as follows. In Sec. II, the method
and implementation of PSO algorithm will be discussed in
details. A short overview of results obtained from our
method is presented in Sec. III followed by the summary in
Sec. IV.

II. METHOD AND IMPLEMENTATION

PSO is a branch of evolutionary methodology but quite
different with GA. In particular, the major evolution opera-
tions of “crossover” and “mutation” in GA have been
avoided. PSO was first proposed by Kennedy and Eberhart in
the mid 1990s.29,30 As a stochastic global optimization
method, PSO is inspired by the choreography of a bird flock
and can be seen as a distributed behavior algorithm that per-
forms multidimensional search. According to PSO, the be-
havior of each individual is affected by either the best local
or the best global individual to help it fly through a hyper-
space. Moreover, an individual can learn from its part expe-
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riences to adjust its flying speed and direction. Therefore, all
the individuals in the swarm can quickly converge to the
global position and near-optimal geographical position by
the behavior of the flock and their flying histories. PSO has
been verified to perform well on many optimization
problems.31–35 We have implemented PSO algorithm on crys-
tal structure prediction in crystal structure analysis by par-
ticle swarm optimization �CALYPSO� code.36

Our global minimization method through CALYPSO code
for predicting crystal structures comprises mainly four steps
as depicted in the flow chart of Fig. 1: �1� generation of
random structures with the constraint of symmetry; �2� lo-
cally structural optimization; �3� postprocessing for the iden-
tification of unique local minima by geometrical structure
parameter; �4� generation of new structures by PSO for itera-
tion.

A. Step 1: Generation of random structures
with the constraint of symmetry

Two types of variables are necessary to define a crystal
structure: lattice parameters and atomic coordinates. There
are six lattice parameters: three angles and three lattice vec-
tors. Each atom has three coordinates coded as a fraction of
the corresponding lattice vectors. The first step of our ap-
proach is to generate random structures symmetrically con-
strained within 230 space groups. Once a particular space
group is selected, the lattice parameters are then confined
within the chosen symmetry. The corresponding atomic co-
ordinates are generated by the crystallographic symmetry op-

erations through matrix-column pairs �W , w�,37 where the
point operation W is a 3�3 matrix and the translation op-
eration w is one column. Using the matrix-column pairs, one
obtains new coordinates by matrix multiplication,

x̃1 = W11x1 + W12x2 + W13x3 + w1,

x̃2 = W21x1 + W22x2 + W23x3 + w2,

x̃3 = W31x1 + W32x2 + W33x3 + w3.

This can be written in an abbreviated form:x̃=Wx+w.
Within this matrix-column pairs operation, one random
atomic coordinate can be used to generate other symmetri-
cally related coordinates. For different symmetries, the op-
eration rules within the matrix-column pairs for generating
symmetrically related atomic positions are different, ensur-
ing unduplicated generation of different structures.

The generation of random structures ensures unbiased
sampling of the energy landscape. The explicit application of
symmetric constraints leads to significantly reduced search
space and optimization variables, and thus fastens global
structural convergence. For example, in the case of mono-
clinic crystals, the symmetric constraint limits the range of
fractional atomic coordinates within 0–0.5, namely, only half
of the search space, at the same time, the optimization vari-
ables are reduced to five thanks to a fixed lattice angle �90°�.
Moreover, we have applied a symmetry checking technique,
in which the appearance of identical symmetric structures is
strictly forbidden. This allows the generation of diverse
structures, which are crucial for the efficiency of global mini-
mization.

Since crystal structure prediction is performed on a blind
base, the choice of the simulation cell sizes �not prior
known� is critical to target the global minimum structure. In
practice, one can choose all possible cell sizes to perform the
separate simulations and then compare all the resulting struc-
tures to derive the global stable structure. However, this pro-
cedure is extremely computational costly and for some par-
ticular cases, is not affordable. Here, the fast learning ability
of PSO technique has allowed us to implement a variable
cell-size technique enabling the intelligent selection of the
correct cell sizes during the structural evolution, and thus the
computational cost has been significantly reduced.

B. Step 2: Local optimization

The potential-energy surface can be regarded as a multi-
dimensional system of hills and valleys with saddle points
connecting them. The valleys are the local basin of attrac-
tions on the potential-energy surface. The local optimization
�such as line minimization, steepest descents, conjugate gra-
dient algorithm, or Broyden-Fletcher-Goldfarb-Shanno algo-
rithm� can drive the structural energy to the local minimum,
which may or may not be the global minimum. The approach
of locally optimizing every candidate has been used with
great success. Local optimization increases the cost of each
individual, but effectively reduces the noise of the landscape,
enhances comparability between different structures, and
provides locally optimal structures for further use. We use

Generation of random structures
with the constraint of symmetry

Local optimization

Generation of new structures by PSO
( Some structures are generated

randomly)

Local optimization

Stop

Converged or not ?

List the geometric structure parameter

YES

NO

FIG. 1. The flow chart of CALYPSO.
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free energy �here, at T=0 K, free energy reduces to en-
thalpy� of the locally optimized structure as fitness function
throughout the simulation. Both the atomic coordinates and
lattice parameters are locally optimized. Among the locally
optimized structures, a certain number of worst ones are re-
jected, and the remaining structures participate in creating
new structures through PSO for the next generation.

C. Step 3: Postprocessing for the identification
of unique local minima

Our method which solves the packing problem contains a
critical step where a large number of preliminary trial struc-
tures are generated and then structurally optimized. At this
step, many newly generated structures are very similar or
even identical. The direct use of these similar structures to
generate next generation will significantly slow down the
convergence to the global minimization solution.38 It is thus
highly beneficial to remove these duplicates to accelerate the
search process. We have designed a method to identifying
structural similarity named as geometrical structure param-
eter on the basis of interatomic distances, which are calcu-
lated according to the so called “bond types.” For example, if
there are two types �A and B� of atoms in the simulation cell,
three bond types, i.e., A-A, A-B, and B-B, will be evaluated.
In order to avoid the problems raised by the periodic bound-
ary conditions, 4�4�4 supercells are constructed to calcu-
late the interatomic distances. This procedure ensures a safe
calculation of first and second nearest neighbors. Then, one
can determine the distances and number of the first and sec-
ond nearest neighbors for different bond types, which are
then listed in the matrices as backup for future comparison.
Once a new structure is generated, the geometrical structure
parameter is applied to check the similarity of this structure
with those in the saved matrices within specified tolerances.
Specifically, if this structure shares the same number of
bonds with one structure in the matrices, the deviation of
bond length is then calculated according to the equation
�d=��i,j�Li−Lj��

2�i,j, where Li and Lj� are the bond lengths
in the two structures, respectively, and �i,j is the delta func-
tion. If the deviation ��d� is less than the preset threshold,
the two structures are considered to be equivalent. Thus, the
newly generated structure will be discarded. Otherwise, it is
kept and documented in the matrices. The matrices contain-
ing all the structure information are updated after local opti-
mization at every generation and used in next generation.

D. Step 4: Generation of new structures by PSO

In the next generation, a certain number of new structures
�the best 60% of the population size� are generated by PSO.
Within the PSO scheme, a structure �an individual� in the
searching phase space is regarded as a particle. A set of in-
dividual particles is called a population or a generation. Dur-
ing the evolution Eq. �1� is used to update the positions of
particles,

xi,j
t+1 = xi,j

t + vi,j
t+1. �1�

It is necessary to note that the velocity plays an important
role on determination of the speed and direction of particle

movement. The new velocity of each individual i at the jth
dimension is calculated based on its previous location �xi,j

t �
before optimization, previous velocity �vi,j

t �, current location
�pbesti,j

t � with an achieved best fitness, i.e., lowest enthalpy,
of this individual, and the population global location �gbestt�
with the best fitness value for the entire population according
to Eq. �2�. The initial vij was generated randomly. The posi-
tion of each particle is updated using its velocity vector as
depicted in Fig. 2,

vi,j
t+1 = �vi,j

t + c1r1�pbesti,j
t − xi,j

t � + c2r2�gbesti,j
t − xi,j

t � ,

�2�

where j� �1,2 ,3�, � �in the range of 0.9–0.4�30 denotes the
inertia weight and controls the momentum of the particle.
High settings of � as 0.9 facilitate global search, and lower
settings facilitate rapid local search. In our methodology, � is
dynamically varied and decreases linearly from 0.9 to 0.4
during the iteration according to Eq. �3�,

� = �max −
�max − �min

itermax
� iter , �3�

where �max and �min equals to 0.9 and 0.4, respectively. c1 is
a self-confidence factor and expresses how much the particle
trusts its own past experience while c2 is a swarm confidence
factor and expresses how much it trusts the swarm. Earlier
study39 has demonstrated that c1=c2=2 gave the best overall
performance. Accordingly, in our implementation, we keep
c1 and c2 as constant 2. r1 and r2 are two separately gener-
ated random numbers and uniformly distributed in the range
�0, 1�. The velocity update formula includes random param-
eters �r1 and r2� to ensure good coverage of the searching
space and avoid entrapment in local optima. As shown in Eq.
�2�, it is quite obvious that the movement of particles in the
search space is dynamically influenced by their individual
past experience �pbesti,j

t , vi,j
t � and successful experiences at-

tained by the whole swarm �gbestt�. Thus the velocity makes

FIG. 2. �Color online� Depiction of the velocity and position
updates in PSO. The black solid line approximates a typical energy
landscape. Arrows represent either the velocity or the relative posi-
tions of a particle �here, a structure�. An initial velocity Vt develops
to Vt+1 after one PSO step through Eq. �2�. A high-energy structure
�Xt� evolves to a much lower-energy structure �Xt+1� after one PSO
operation through Eq. �1�. This illustrates the efficiency of PSO in
exploration of low-energy structures.
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the particles to move toward to global minimum and accel-
erates the convergence speed. Moreover, to overcome explo-
sion and divergence, the magnitudes of the velocities are
necessary to be confined within the range of �−0.1,0.1�.

In order to improve the efficiency of the procedure, only
the low-energy structures �the best 60% of the previous gen-
eration� which are on the most promising area of the con-
figuration space, are selected to produce the next generation
by PSO. In order to keep the population diversity, a certain
number of structures �40% of the population size� whose
symmetries must be distinguished from any of previously
generated ones, are generated randomly. More specifically,
we first set up a list for 230 space groups functioned as a
comparison basis. Second, if the generated structures have
already gone beyond all 230 space groups, another list in-
cluding the crystallographic atomic sites is built and used to
compare with the newly generated structures. The identical
structure is discarded.

III. APPLICATION AND RESULTS

Here we benchmark our methodology on systems with
known structures and explore unknown high pressure struc-
tures for Li. All the calculations were performed in the
framework of density-functional theory within the all-
electron projector-augmented wave �PAW� method40 as
implemented in the VASP code.41 Ab initio total-energy cal-
culations are performed at 0 K and thus the free energy is
reduced to enthalpy. Some basic parameters used in CA-
LYPSO code can be found in Table I. An overview of the
benchmark systems including elements, binary compounds,
and ternary compounds with known structures can be found
in Tables II and III.

A. Elements

Lithium is a simple metal at ambient pressure but exhibits
complex phase transitions under compression. Experimen-
tally, it has been demonstrated that lithium takes the phase
transition sequence of bcc→ fcc→hR1→cI16,42–45 above
which new phases are observed but remain unsolved. In
theory, the complex post-cI16 structures above 70 GPa,
such as Cmca-24, C2, Aba2, and P42 /mbc, are proposed by
using molecular dynamics, genetic algorithm and random
sampling method, respectively.46–49 Here, we used the PSO

method through CALYPSO code to predict the stable structures
at 0, 10, 40, 70, 80, 100, 120, 200, and 300 GPa, and found
all the experimental and theoretical structures mentioned
above at certain pressure ranges. It is remarkable that for all
the simulation of these complex structures, only less than
300 generated structures are needed to derive the correct re-
sults. For example, the cI16 structure is successfully identi-
fied at the seventh generation with a population size �Npop�
of 30, i.e., only 210 structures are generated and locally op-
timized. Here, we present a newly discovered orthorhombic
Cmca-56 structure at 200 GPa, which is most stable among
all earlier theoretical structures. Our ab initio structure relax-
ations were performed using density-functional theory within
the local-density approximation. The PAW potential with 1.2
a.u. core radius was used, and the 1s and 2s electrons were
treated as valence. A basis-set cutoff energy of 1000 eV was
used for the plane-wave expansion of the wave functions. A
Monkhorst-Pack50 grid of 12�12�12 was used to ensure
that the enthalpy calculations are well converged to better
than 1 meV/atom. Here, the complex Cmca-56 structure con-
tains 56 atoms per unit cell, which can be viewed as alterna-

TABLE I. Some of standard input parameters of CALYPSO code.
The minimal interatomic distances must be sufficient to ensure that
there is no pathological overlap of pseudopotential core regions.
The best 60% of the population size are generated by PSO. Npop is
short for the population size and should be big for large systems.

Parameters Value

Minimal interatomic distances 0.8 �Å�
Proportion of the structures generated by PSO 0.6

Npop 20–50

Self-confidence factor �c1� 2.0

Swarm confidence factor �c2� 2.0

TABLE II. Systems on elements with known structures on
which calculations were performed by CALYPSO. All the experimen-
tal structures are reproduced within the given generations and popu-
lation sizes. Note that our choice of population sizes is based on
experience and it is highly possible that the use of smaller sizes
could also result in the correct structures, with lower computational
cost and should be bigger for larger systems.

Systems
Pressure

�GPa� Structures Generation Npop

Li 0 bcca 1 30

0 9R b 3 30

10 fccc 1 20

40 hR1 d 4 30

70 cI16 d 7 30

C 0 Graphitee 30 30

0 Diamondf 6 30

Si 2 bc8 g 6 30

10 cdh 1 20

10 shi 2 20

10 �-Sn j 3 20

10 Imma k 4 20

40 Cmca l 2 20

40 hcpl 4 20

80 fccm 1 20

Mg 0 hcpn 6 30

100 bcco 4 30

aReference 42.
bReference 43.
cReference 44.
dReference 45.
eReference 51.
fReference 52.
gReference 53.
hReference 54.

iReference 55.
jReference 56.
kReference 57.
lReference 58.
mReference 59.
nReference 60.
oReference 61.
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tively stacking of Cmca-24 �Ref. 46� and P42 /mbc �Ref. 37�
structures. The history of the CALYPSO search performed on
Li is shown in Fig. 3. The complex Cmca-56 structure was
identified at fourth generation.

Other elements, such as carbon,51,52 silicon,53–59 and
magnesium60,61 �Table II�, were also tested and the simula-
tions quickly reproduced all the experimental structures. Par-
ticularly, several metastable structures �Fig. 4� proposed ear-
lier by other theoretical methods7,62 of carbon were predicted
at 0 GPa and the bc8 structure �metastable phase� of silicon
is also predicted at 2 GPa. This indicates that our method can
be used to predict metastable structures.

B. Binary compounds

Silica is a binary semiconductor which exhibits many
novel polymorphs at elevated pressures. We have success-
fully reproduced the experimental �-quartz, stishovite,
CaCl2-type, �-PbO2-type, and pyrite-type structures63–67 at
the certain pressure regimes by the structural prediction
through CALYPSO code. Again, all the structures rapidly con-
verge to the global minimum with less than 300 local opti-

mizations. Specifically, the structural search easily found the
�-quartz structure at the fifth generation with only 120 struc-
tures at 0 GPa. The history plot of the simulations by CA-

LYPSO code for silica at 70 GPa is shown in Fig. 5�a�. The
experimental CaCl2-type structure was found at the fifth gen-
eration.

Other binary compounds36,68–74 are also benchmarked as
listed in Table III. All the simulations show fast convergence
to the experimental structures.

TABLE III. Systems on binary and ternary compounds with
known experimental structures on which calculations were per-
formed by CALYPSO. All the experimental structures are reproduced
within the given generations and population sizes. Note that our
choice of population sizes is based on experience and it is highly
possible that the use of smaller sizes could also result in the correct
structures, with lower computational cost and less generated
structures.

System
Pressure
�GPa� Structures Generation Npop

SiO2 0 �-quartza 5 20

20 Stishoviteb 1 20

70 CaCl2-typec 5 30

100 �-PbO2-typed 4 20

500 Pyrite-typee 15 20

SiC 0 Zinc blendef 2 12

0 Moissanitef 3 30

150 Rocksaltg 2 30

ZnO 12 Rocksalth 2 30

TiH2 0 I4 /mmm i 2 20

0 Fm3̄m j 3 20

MoB2 0 R3̄m k 1 30

TiB2 0 AlB2-typel 1 30

MgSiO3 120 Cmcm m 5 20

CaCO3 0 Calciten 13 30

aReference 63.
bReference 64.
cReference 65.
dReference 66.
eReference 67.
fReference 68.
gReference 69.

hReference 70.
iReference 71.
jReference 72.
kReference 73.
lReference 74.
mReference 75.
nReference 76.
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FIG. 3. Main figures: the history of CALYPSO structure search on
Li at 200 GPa. Insets: the predicted Cmca-56 structure at the fourth
generation. For the Cmca-56 structure at 220 GPa, the lattice pa-
rameters are a=15.687 Å, b=3.855 Å, and c=3.847 Å with
atomic positions at 16g �0.14302, 0.83356, 0.43863�, �0.21482,
0.10157, 0.15158�, �0.92849, 0.86370, 0.87551�, and 8f �0.00000,
0.44292, 0.83303�, respectively.

FIG. 4. �Color online� The metastable structures of carbon pre-
dicted by CALYPSO. �a� bc8 structure predicted at 2000 GPa. �b�
C6 Im3̄m structure predicted at 0 GPa. �c� �-Sn structure predicted
at 0 GPa. �d� Chiral framework P6122 or P6522 structure predicted
at 0 GPa.
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C. Ternary compounds

We have successfully identified the most stable structures
of MgSiO3 and CaCO3 under pressure. The postperovskite
Cmcm structure of MgSiO3 �Re. 75� was quickly found in
the fifth generation at 120 GPa with only 100 local optimi-
zations. In addition, the metastable perovskite phase of
MgSiO3 was identified in the sixth generation with less than
120 structures. This simulation further illustrates that our
method is able to find both stable and metastable structures.
Moreover, the experimental calcite phase of CaCO3 �Ref. 76�
has been reproduced in the 13th generation at 0 GPa. In Fig.
5�b�, we show the history plot of the structural search on
CaCO3 with the only input information of chemical compo-
sition. At the 13th generation, the enthalpy shows a pro-
nounced drop, and the examination of lowest enthalpy struc-
ture confirmed the convergence to the experimental calcite
structure �Fig. 5�b��.

In order to demonstrate the performance of our algorithm,
we present a direct comparison with the available data9 from
GA for several systems as listed in Table IV. It can be clearly

seen that all of the predicted structures in our methodology
were identified within five generations, i.e., our method only
needs fewer optimization steps. The reasons why our method
is efficient can be traced back to several true facts: �i� PSO is
a highly efficient global minimization algorithm; �ii� the
symmetry constraints are imposed to significantly reduce the
search space and utilize the structure diversity; �iii� the elimi-
nation of similar structures has greatly reduced the number
of local optimizations, expediting the global minimization
convergence; �iv� a variable cell-size technique was imple-
mented to efficiently reduce the computational cost.

IV. CONCLUSION

We have developed a systemic methodology for the crys-
tal structure prediction based on PSO technique within evo-
lutionary scheme as implemented in CALYPSO code. Our
method could efficiently search the free-energy space of the
lattice geometry and atomic configuration of a solid looking
for the ground-state and metastable structures in complex

FIG. 5. �Color online� Main figures: enthalpy history of CALYPSO structure search on SiO2 �a� at 70 GPa and CaCO3 �b� at 120 GPa.
Insets: the predicted CaCl2 �Pnnm� structure of SiO2 �a� at the fifth generation and perovskite structure of CaCO3 �30 atoms/cell� �b� at the
13th generation.

TABLE IV. The comparison between PSO and GA from Ref. 9 for several systems with equal population
sizes �Npop�. Nopt is short for the number of locally optimized structures. In our PSO results, the number of
generations and Nopt are averaged out over five different runs. It is noteworthy that the GA data from Ref. 9
is published in 2007 and one should aware that later GA algorithm can be significantly improved. The
comparison of PSO with GA is only to illustrate the true facts of PSO performance.

Systems Algorithm
Pressure

�GPa� Structures Generations Npop Nopt

Si PSO 0 Diamond 8/5 16 128/5

GAa 0 Diamond 15 16 60

SiC PSO 0 Zinc blende 8/5 12 96/5

GAa 0 Zinc blende 5 12 20

GaAs PSO 0 Zinc blende 16/5 12 192/5

GAa 0 Zinc blende 19 12 70

aReference 9.
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systems. The key elements of the proposed approach are
PSO algorithm, the state-of-art ab initio structural optimiza-
tion based on density-functional theory, the symmetry con-
straint on the structural generation, and the geometrical
structure parameter technique on elimination of the similar
structures. We have implemented a variable cell-size tech-
nique enabling the intelligent selection of the correct cell
sizes, and thus significantly reducing the computational cost.
This methodology has been successfully applied to various
known experimental structures on elemental, binary, and ter-
nary compounds with, but not limited to, metallic, ionic, and
covalent bonding. Our method is proved to be powerful with
high efficiency and high success rate. Future development of
this efficient PSO technique on prediction of much larger
systems �say 	100 atoms /cell or above� is foreseeing fea-

sible and thus the predictive power on structure solutions of
nanomaterials, surface or thin films, and biomaterials are
highly expected. Within this PSO algorithm the doors toward
materials design �e.g., design of novel superconductive, ther-
moelectric, superhard, and energetic materials, etc.� could
open.
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