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Crystalline metamaterials for topological properties
at subwavelength scales
Simon Yves1,*, Romain Fleury1,2,*, Thomas Berthelot3, Mathias Fink1, Fabrice Lemoult1 & Geoffroy Lerosey1

The exciting discovery of topological condensed matter systems has lately triggered a search

for their photonic analogues, motivated by the possibility of robust backscattering-immune

light transport. However, topological photonic phases have so far only been observed in

photonic crystals and waveguide arrays, which are inherently physically wavelength scaled,

hindering their application in compact subwavelength systems. In this letter, we tackle this

problem by patterning the deep subwavelength resonant elements of metamaterials onto

specific lattices, and create crystalline metamaterials that can develop complex nonlocal

properties due to multiple scattering, despite their very subwavelength spatial scale that

usually implies to disregard their structure. These spatially dispersive systems can support

subwavelength topological phases, as we demonstrate at microwaves by direct field mapping.

Our approach gives a straightforward tabletop platform for the study of photonic topological

phases, and allows to envision applications benefiting the compactness of metamaterials and

the amazing potential of topological insulators.
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M
etamaterials are manmade composite media which are
by definition structured at scales that are much smaller
than the wavelength of operation1–4. As a consequence,

these exotic materials are usually described by macroscopic
effective properties, which can eventually be engineered at a
mesoscopic scale, for instance in the context of transformational
approaches5,6. A specific class of metamaterials, the locally resonant
ones, is composed of subwavelength elements that present a
resonant scattering cross-section. Without loss of generality, we
hereby consider a simple resonant example in the microwave range
which is the quarter wavelength metallic rod standing on a ground
plane. These metamaterials are very analogous to dielectrics that
consist of atoms arranged at very subwavelength scales which,
when illuminated by an incoming electromagnetic radiation, scatter
part of it hence participating to the total field7. The macroscopic
collective action on the electromagnetic propagation of these atoms
is usually accounted for through the index of refraction. Similarly,
locally resonant metamaterials are commonly studied for their
effective properties that can be very high8, close to zero9 or
negative10,11. As these media properties directly stem from the
resonant nature of their building blocks, the effect of spatial
structuration is usually neglected or mitigated when designing
metamaterials with desired properties. Metamaterials are hence
commonly understood, alike dielectrics, as a random collection of
resonant inclusions that present local frequency-dispersive effective

properties. In our chosen example of quarter-wavelength metallic
resonators, this results in high, zero, and then negative effective
permittivity around their resonance frequency.

Yet, it was shown recently that since these metamaterial unit
cells can present albedos very close to unity, multiple scattering
can play a major role in their effective properties12,13, a nonlocal
phenomenon difficult to capture using standard homogenization
schemes14. The resulting spatial dispersion can, for instance, turn
a single negative metamaterial into a negative index one15,16.

In this letter, we demonstrate experimentally the full potential
of crystalline metamaterials, establishing the unique relevance of
resonant multiple scattering to induce new and exciting proper-
ties at the deep subwavelength scale, namely, topological ones17.
Drastically different from previous proposals to obtain photonic
equivalents of condensed matter topological insulators based on
Bragg interferences18–29 or homogenized metamaterials30–34, our
approach allows for an extension of photonic topological phases
down to the deep subwavelength regime, exploiting multiple-
scattering and spatial dispersion.

Results
Subwavelength band structure engineering. To start with, we get
away from the typical description of metamaterials using effective
properties of Fig. 1a,b, and adopt a solid state approach. It is known
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Figure 1 | Subwavelength band structure engineering in resonant metamaterials. (a) A subwavelength resonator and its scattering cross-section.

(b) A dense two-dimensional ensemble of subwavelength resonators with arbitrary structure makes a metamaterial with negative permittivity (orange

band) after the individual resonance of the resonators. Here the resonators are quarter wavelength copper rods sitting on a ground plane. (c) By adding a

periodic subwavelength structure, in the form of a triangular array, such a metamaterial can acquire crystalline properties, involving a Bloch band structure

with typical polaritonic dispersion corresponding to subwavelength bound modes localized to the array of rods. (d) More complex crystalline properties can

be obtained, including point Dirac degeneracy at K point, by considering the polaritons supported by a honeycomb metamaterial. (e) Same lattice as c but

viewed in the extended unit cell picture, allowing for mathematical folding of two time-reversed Dirac cones at the G point. These two time-reversed

degenerate states are exploited here as the equivalent of Kramers pairs to induce topological properties at the subwavelength scale.
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that a 2D-metamaterial presents the peculiar dispersion relation of
a polariton, that is, an anti-crossing between the line of the waves
propagating within the host medium—here air—and that of the
unit cell resonance. The two branches of propagating modes—
subwavelength and supra-wavelength—resulting from this level
repulsion are separated by a so-called hybridization bandgap that is
a consequence of the out of phase response of the unit cells right
above their resonant frequency12. On top of this very general effect,
considering spatial ordering, for instance a triangular lattice of
wires (Fig. 1c), the first consequence of the crystalline nature of the
metamaterial appears: the dispersion relation which links the
frequency to a wavenumber can become direction dependent.
However, very different from photonic crystals, such spatial
dispersion is here induced at the subwavelength scale by multiple
resonant scattering. In the case of simple lattices like the triangular
one, this effect is weak and mostly gives rise to isotropic properties,
a reason why metamaterials are usually described with effective
parameters.

Now we would like to induce more crystalline effects in the
dispersion relation. To do so, we move from the triangular lattice
of Fig. 1c, to the honeycomb one whose unit cell contains 2
resonators, as schematized in Fig. 1d. The band structure of the
new metamaterial displays more branches and can no longer be
simply described in terms of local effective permittivity. Notably,
as a direct consequence of the symmetry of the honeycomb
lattice, a typical degeneracy of two modes appears at the K point:
a Dirac cone. Note that the triangular lattice also supports Dirac
cones at higher frequencies (outside the range represented in
Fig. 1c) that are located within the light cone. Very differently, the
Dirac points in the subwavelength honeycomb lattice are located
well below the light cone (dashed line); Thus, the modes existing
at and around this Dirac degeneracy are evanescent in the
surrounding air and display spatial variations that, akin to
the metamaterial typical spatial scale, are much smaller than the
freespace wavelength. Importantly, this graphene-like dispersion
relation results directly from the structure of the metamaterial,
which enables multiple scattering to occur between the resonators
despite their deep subwavelength spacing15. Interestingly, this
multiple-path propagative coupling, which creates the polaritonic
dispersion, is totally different from the typical tight-binding
electronic coupling occurring in a graphene sheet, which would
lead to sinusoidal branches.

Going from the triangular lattice to the honeycomb one can be
pictured as a folding of the band structure, the area of the
first Brillouin zone being divided by 3 (Fig. 1d). To start off
ideal conditions for inducing topological properties, we take
inspiration from an idea initially proposed by Wu and Hu in the
context of non-resonant photonic crystals26 and fold again the
obtained band structure, creating additional point degeneracies.
Thus, we consider the supercell containing a full hexagon of
resonators (Fig. 1e) instead of the primitive one containing only
the 2 resonators (Fig. 1d). The band structure is now a
mathematical folding of the previous one i.e., it has no real
physical meaning but it is merely used as a preliminary trick to
introduce a topological behavior in the system. In this
interpretation of the honeycomb structured metamaterial,
multiple scattering occurs between hexagons arranged on a
triangular lattice, and the two Dirac cones previously located at
þK and �K are now folded into the G point, thereby resulting
in a fourfold degeneracy at the center of the first Brillouin zone.
It is worth pointing out that although the fourfold degenerated
modes at the double Dirac degeneracy are located at the G
point, they are still evanescent and hence of deep subwavelength
spatial scale. Indeed, we have solely mathematically folded
the dispersion relation of the metamaterial structured on a
honeycomb lattice, meaning that very high wavenumber modes

have fallen into the first Brillouin zone, yet still keeping their
evanescent nature.

The presence of this double Dirac cone is of primary
importance to induce nontrivial topology. Indeed, a single
Dirac degeneracy is not sufficient to obtain topological properties
in a time-reversal invariant system and the presence of degenerate
time-reversed Kramers pairs is also required, or in other words,
the band structure should feature two overlapped, time-reversed
Dirac cones, as those obtained in Fig. 1d. For fermions, for which
the time-reversal operator squares to � 1, this condition is
automatically fulfilled due to Kramers theorem17. Conversely, for
bosons or classical waves, the time-reversal operator squares to
þ 1. In systems below three dimensions, this prevents topological
properties to be protected by time-reversal symmetry alone.
In order to circumvent this obstacle, it is possible to design
an effective fermionic time-reversal operator, augmenting
time-reversal symmetry with another symmetry operation, such
as electromagnetic duality22,25, inversion28 or rotational
symmetry26. In this way, as long as this additional symmetry is
preserved, we can use the same formalism as for fermionic time-
reversal invariant system and construct Kramers pairs. Here,
following the seminal proposal of Wu and Hu26, we have
exploited the six-fold rotational (C6v) symmetry of a triangular
lattice, by considering a honeycomb lattice but with a supercell.
We now show that very simple C6 compatible modifications of
the honeycomb structured metamaterial can provide a physical
folding of the band structure and result in the opening of a
topological band gap, which allows the emergence of
subwavelength photonic states with non-zero topological charge.

Topological phase transition. Two types of structural deforma-
tions are considered here, and represented in Fig. 2a,b (the wires
are viewed from the top). In panel a, the size of the hexagons
within the previous supercell is shrunk compared to the
undeformed honeycomb lattice (transparent resonators). We
obtain a new metamaterial built from hexagonal clusters of
resonators, circled with green dashed lines. These building blocks
are referred as metamolecules: they provide the resonant modes
that interact through multiple propagative coupling to create the
photonic bands of the medium. In Fig. 2b, we consider the
opposite situation of increased sized hexagons compared to the
undeformed situation. In this case, the resonators are brought
together into different clusters, and although the lattice is built
from a periodic arrangement of large hexagons, the natural
backbone metamolecule to consider has a different shape and
symmetry: it involves a trimer of resonator pairs, belonging to
three different hexagons, circled again in green dashed lines.

To understand how these deformations modify the mathema-
tically folded band structure of Fig. 1e, it is first instructive to look
at the resonant modes of the individual metamolecules, shown in
Fig. 2c,d. Indeed, the band structure of the designed metamaterial
crystals can be interpreted as the hybridization between these
eigenmodes and the plane waves propagating in air, in the same
way as the simple triangular lattice of wires of Fig. 1c. Because of
the propagative coupling between the resonators, modes with
higher spatial variations along the curvilinear path of the
considered metamolecules are more energetic (Fig. 1c), that is,
occur at higher frequencies: therefore, the eigenmodes of the
hexagonal metamolecule feature first a monopolar mode,
followed by two dipolar ones, two quadrupolar modes, and a
hexapolar mode (Fig. 2c).

Moving from a single metamolecule to a metamaterial crystal,
the discrete eigenmodes become a complete band structure.
Figure 2e shows the case of the lattice of shrunk hexagons
(thick lines), and compares it to the case of the undeformed
honeycomb lattice (thin lines) previously shown in Fig. 1e. The
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previous mathematical fourfold degeneracy at G disappears and
we notice the physical opening of a complete band gap at this
frequency. Because of the C6 symmetry, the top and bottom
bands remain doubly degenerate at G (ref. 26). Consistent with
the metamolecule eigenmodes ordering, the band structure hence
starts at low frequency with a band built on the monopoles

(s type). Next, the two degenerate dipolar modes of the hexagonal
cluster form a pair of bands (p1 and p2). The next bands are due
to the quadrupolar resonances of the hexagons (d1 and d2).
Finally, the last band is due to the hexapolar mode (f ). The lattice
field distributions at G showing all of these geometries are
represented below the dispersion relation.
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Figure 2 | Opening of a topological band gap by subwavelength structural modifications. (a) Starting from the honeycomb lattice in the extended unit cell

picture of Fig. 1e, we shrink the size of the hexagonal arrangement of resonators composing each unit cell, obtaining a triangular lattice of hexagonal

metamolecules (circled in green). Conversely, in b we expand the size of the hexagons, obtaining an array composed of a different metamolecule involving a

trimer of resonator pairs (circled in green). (c,d) The resonant modes of the two metamolecules, responsible for the six bands observed in the band structures

of the two crystals (e,f). (e) The band structure of the lattice of shrunk hexagons, and the associated electric field distribution for the Bloch modes of the six

bands at the G point. (f) Similar to e for the lattice of extended hexagons, except that the p and d bands are now inverted with respect to the bandgap. As

demonstrated in the text, the bandgap (blue shaded area) in e is topologically trivial, whereas the one in f is associated with a non-trivial topology.
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Interestingly, the case of the expanded hexagons comes with a
twist. A similar complete band gap appears at G, however the
band structure is now inverted around the gap: the two bands
below the gap are now of d-type, whereas the two bands above are
of p-type (Fig. 2f). Such a band inversion follows from the
eigenmodes ordering of the metamolecule consisting of a trimer
of resonator pairs shown in Fig. 2d, which is again dictated by
the propagative coupling between the resonators. For each band,
the resonant mode profile on the metamolecule (Fig. 2d)
construct the p and d symmetries on the expanded hexagons
(see field distributions in the bottom panels of Fig. 2f). These
mode profiles highlight how dipolar modes on the trimer
metamolecule create quadrupolar modes on the hexagon, and
vice versa. This simple picture explains the inversion or the order
of appearance of the p and d bands in this second case.

To further determine the topology of these band gaps, we have
computed numerically the spin Chern numbers associated with
the bands p1±ip2 and d1±id2 (see Methods). The latter
correspond to positive and negative angular momentum of
the out –of –plane electric field, and can be considered as the
pseudo-spin analogues of our system. We find that the band gap
is topologically trivial in the case of the shrunk hexagons, whereas
the case of the expanded hexagons is associated with spin-Chern
numbers of þ 1 for the p1þ ip2 and d1� id2 bands, and -1 for
the p1� ip2 and d1þ id2 bands. This confirms the topological
nature of the associated band gap. Consequently, a topological
transition happens exactly at the undeformed honeycomb lattice,
demonstrating the drastic effect of C6 compatible deformations
on the topology, even at the deep subwavelength scale of
metamaterials. We will now move on to an experimental
demonstration of these observations.

Experimental demonstration of subwavelength band inversion.
Figure 3a,b show pictures of the fabricated samples of topologi-
cally trivial and non-trivial metamaterials (see Methods for the
sample fabrication). The total size of the samples is comparable
with the wavelength in freespace l0, pointing out the deep
subwavelength nature of the metamaterial crystals. To observe the
topological band inversion process, we excite both samples locally
in their close vicinity with a homemade antenna (see Methods)
and measure the transmitted electric field right above the
resonators using a network analyzer. The latter allows us to make
a broadband measurement in one step with a high frequency
resolution. We carry out a scanning of the full area of the
metamaterial. The frequency spectrum of the field amplitude,
averaged spatially over a large area corresponding to 6 unit-cells
in the center of the bulk, is shown in Fig. 3c (trivial sample) and
Fig. 3d (topological sample). As predicted by the band structures
of Fig. 2e,f, we observe zero field amplitude in the band gaps,
between 4.9 and 5GHz (shaded area). Outside these frequency
regions, peaks in the spectrum traduce efficient coupling between
the excitation and a bulk stationary mode. Here we notice
the presence of several discrete peaks, in the frequency range
corresponding to the continuous band obtained numerically. This
discretization of the spectrum comes from the finite size of the
sample. In the figure, we therefore include the experimental field
maps associated to various frequency peaks, which correspond to
different bulk bands in Fig. 2e,f. The insets located at the top right
corners of the field maps reproduce the field profile measured
over a given hexagon in the sample, allowing the classification of
the modes into s, p, d and f types. By allowing for direct mapping
of the bulk field distribution, our experiment unambiguously
demonstrates the band inversion phenomenon. This, associated
with the computed topological invariant, provides a direct
confirmation of the distinct topological properties of the two
samples. We also note here that the results of the finite-element

simulation for the infinite crystals (Fig. 2) are in excellent
quantitative agreement with the experimental results, since the
modes we measure and compute possess the same symmetries
at the same frequencies. The minor deviations between the
measured field maps and the computed eigenmodes of the crystal
are due to the losses inherent to the metallic wires in the sample,
that lead to peak broadening and weak, but noticeable, mode
overlapping.

Experimental study of subwavelength topological edge states.
A striking consequence of the fundamental topological difference
between the designed media is the occurrence of topological edge
modes when these samples are put into contact. As represented in
Fig. 4a, we connect the two armchair edges of the experimental
samples to create an interface, and excite it with a small antenna
placed close to the bottom of the sample, in the axis of the
domain wall. Looking at the spectrum of the electric field
measured directly above the wires along the interface (Fig. 4b),
we clearly observe two peaks within the frequency region
corresponding to intersection of the band gaps of both bulk
media (shaded zone). These peaks are symptomatic of the
presence of two edge modes along the interface, one at lower
frequency (LF) and the other one at higher frequency (HF). Here,
because of the breaking of C6 symmetry at the interface, the
edge states are gapped. Again, our experimental setup allows us
to map the field distributions excited at these frequencies, which
are shown in Fig. 4c,d, and confirm the presence of edge states.
We compare these maps with the prediction of a semi-analytical
model solving the multiple scattering of an ensemble of coupled
dipoles (Fig. 4e,f, see Methods for details of the model).
We obtain good agreement between our experimental and
semi-analytical maps. Remarkably, the field emitted by the source
efficiently couples to the interfacial modes due to the interaction
between their shared symmetries. It also seems that the guided
mode radiates energy towards far-field when reaching the top-end
boundary, thanks to good matching between the resonant
dipole located at the end and the free-space solutions. In
stark contrast, leaky wave out of plane radiation is much less
efficient along the interface due to the subwavelength nature of
the edge mode, even if the mode enters the light cone. More
precisely, the modes of the waveguide have a strong spatial
Fourier component in the second Brillouin zone, since built on
folded bands, and therefore the leaking rate for the edge mode is
very small compared with the leaking rate at the end of the
sample, which is the one associated with a matched dipole.
The possibility to couple energy in and out of the interface at
its ends could provide a way to exploit the unique properties of
these subwavelength modes directly from the far field. Again, we
emphasize that the total size of the samples is about one wave-
length, so this demonstration corresponds to a subwave-
length topological routing of the electromagnetic energy.

Carefully looking at the local field of the two modes reveals
very different local symmetries which we now investigate by
simulating an infinite interface. We evaluate the dispersion
relation of potentially existing edge modes by applying Bloch
boundary conditions. As shown in Fig. 4g, in the frequency range
corresponding to the intersection of the two bandgaps of the bulk
metamaterials (non-shaded area), two modes appear that do not
exist when connecting two trivial samples or two topological
ones. These modes are one-way propagating at frequencies in the
close vicinity of the Gamma point. Small deviations between
the frequencies obtained from FEM simulation and experiment
are attributed to the imperfect alignment of the two domains in
the experiment, due to geometrical constraints. The field
distribution associated to each mode explains their existence
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with respect to the bulk properties of each medium creating the
interface. Indeed, the lower frequency interface states connect
the lower frequency bulk bands of each metamaterial, and hence
they share both of their symmetries: they are a mixture of the
d-symmetry of the topological medium on the left and the p-band
of the trivial medium on the right (see inset). Conversely, the
upper interface band that binds the higher frequency bulks of
both metamaterials, is made out of modes that are mainly a

mixture of p modes of the topological medium and d modes of
the trivial one (see inset). When the two samples have the same
topology, those symmetry connections appear for frequencies
within a propagating band of one of the two bulks, preventing the
occurrence of an edge mode in the gap. On the contrary, thanks
to the band inversion, the interface connecting a topological
sample to a trivial one always creates modes within the bandgap,
explaining the subwavelength confinement along the interface.
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Eventually, because of the breaking of the C6 symmetry
induced by the interface, these topological edge modes
(topological in the sense that their existence is due to the
different bulk topologies) are not topologically protected, and are
potentially sensitive to backscattering. However, as the interface
we designed is associated with a relatively weak breaking of the
C6 symmetry, the topological edge modes propagation, although
not unidirectional, remains very robust. In order to demonstrate
this, we induced a defect along the interface by positioning a piece
of copper plate transversely to the guiding direction (Fig. 4h).
Despite the presence of such a conducting wall, the measured
field maps (Fig. 4i,j) are identical to the ones obtained without the
defect, demonstrating qualitatively the inherent robustness of the
edge states even in the presence of stringent, C6 incompatible
defects. Notably, the field amplitude is the same before or after
the defect, confirming the absence of strong Fabry-Pérot
interferences within the sample. Note that we could play other
tricks to minimize the coupling between the two modes at the C6
symmetry breaking interface. For instance, we could consider,

instead of an abrupt interface, an adiabatic deformation between
one sample to the other. Locally, the deformation of the crystal
would be so slow that the sample would not feel at all the
breaking of C6 symmetry. The edge modes would then be even
more robust. In addition, they would retain their main interesting
features: localization to the surface, ultraslow propagation and
subwavelength confinement. In the methods, we further investi-
gate the robustness of the edge modes in the presence of
subwavelength turns along the interface, confirming the excellent
resilience of the edge modes.

Discussion
To conclude, in this Letter we have demonstrated the full power
of crystalline metamaterials, which can be judiciously structured
to induce very complex properties at the subwavelength scale.
Our proposal not only allows us to demonstrate a new form of
topological wave propagation at the subwavelength scale, but also
highlights a very fruitful and general approach that can be
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exploited to observe the metamaterial analog of many exciting
condensed matter systems. Furthermore, while subwavelength
topological properties are demonstrated here in the microwave
range with quarter-wavelength resonators, we have tested it for
acoustic metamaterials made out of Helmholtz resonators and for
all dielectric metamaterials composed of resonant Mie particles,
obtaining similar results; together with the coupled dipole
simulations presented in the Methods section, this asserts the
broad generality of the proposal. The method may be directly
extended to acoustic35–39 or mechanical40 topological insulators,
to obtain topological vibrations at the subwavelength scale.
Finally, we would like to emphasize that none of these results
would have been easily foreseeable considering metamaterials for
their local effective properties only: it demonstrates the unique
relevance of a crystalline approach of metamaterial science that
fully considers the effect of multiple scattering at the level of the
subwavelength structure. This suggests a new era where spatial
dispersion can be fully controlled and engineered together
with frequency dispersion to unleash the full potential of
metamaterials, and make disruptive advances in the ability to
control waves down to the subwavelength scale.

Methods
Experimental samples. The samples are three-dimensional (3D) printed in an
ABS-like polymer resin using an Objet30 Pro 3D printer. The surface of the
polymer is first annealed then submitted to an acidic treatment to produce
chemical functions for the copper metallic ions chelation. The latter are chemically
reduced to create copper nanoparticles or clusters onto the surface that acts as a
seed layer catalyzing the copper electroless plating. To reach the copper bulk
electrical properties and hence minimize the dissipation of waves in the polymer
matrix, the thickness of the copper electroless plated layer is further increased over
20mm by performing copper electroplating of the resulting conductive samples.

Experimental set-up. We conduct spectral measurements using a network
analyzer (Agilent Technologies N5230C) for frequencies ranging from 4.3GHz to
5.3GHz. It allows to make a broadband measurement (1GHz) in one step, whose
peak bandwidth is 625 kHz. It is by far sufficient to resolve any physical peak of the
sample. Indeed, losses inherent to the metallic wires impose a lifetime below the
microsecond, which is smaller than the 1.6 ms corresponding to the peak resolution
we have. In particular for the domain wall experiment, this bandwidth of excitation
equals to 0.3% of the small bandgap between the two edge modes LF and HF.
The experimental setup is displayed in Supplementary Fig. 1. The system is fed by a
magnetic source (a small current loop of 2mm diameter) placed close to the
bottom of the wires where the magnetic field is maximum, for optimal coupling.
For the experiments on the two triangular samples (Fig. 3 in the main text) the
source is set at the middle of the lower side of the triangle. Concerning the domain
wall experiment (Fig. 4 in the main text), it is placed along the axis of the interface
at the bottom of the samples. We probe the electric field with a homemade antenna
consisting of a very short wire, so inefficiently radiative to preferentially probe
the evanescent field. This process prevents from directly measuring the signal
emitted by the source and therefore guarantees a better acquisition of the
metamaterial’s response. This probe, mounted on a 2D translational stage
(Newport M-IMS400PP), scans the electric field above the whole sample around
1mm away from the top of the wires, with a step of 1mm. The measured spectra of
each of the triangular sample we present in Fig. 3 are averaged on an area
which covers six unit cells in the center of the sample to avoid boundary effects.
Concerning the domain wall experiment (Fig. 4 in the main text), the spectrum is
averaged on an area containing one unit cell from each side of the interface and
centered in the middle of the domain wall. This is again done in order to average
out the effect of the boundaries of the samples with air.

Bloch band structure calculations. The band structures presented in the main
text were obtained by three-dimensional full wave finite-element simulations using
the eigensolver of Comsol Multiphysics, RF module. The wires were modeled as
perfect electrical conductors, and the crystal unit cells were surrounded by periodic
boundary conditions.

Semi-analytical model. We have developed a semi-analytical model to demon-
strate the generality of our results and investigate the physics associated with finite-
sized samples. The model is based on a two-dimensional coupled dipole
method41,42, in which each two-dimensional dipole pi is modeled by its electrical
polarizability ai, following a Lorentzian model fully taking into account the optical
theorem (energy conservation)43. Dipoles can be excited using an external
source electric field Ei

S, and are coupled to each other using the free-space Green’s
functions Gij linking the field created at the location i by the two-dimensional

dipole located at the position j:

a
� 1
i pi �

X
j 6¼ i

Gijpj ¼ ES
i : ð1Þ

In the calculations, only the source dipole is excited and is associated with a non-
zero source field ES

i . The linear system above is solved at each frequency by direct
matrix inversion implemented in a C code based on the LU decomposition with
partial pivoting and row inter-changes44 implemented in the lapack package from
IBM company. The electric field is then calculated at each frequency by summing
all the individual contributions of all the dipoles. These simulations can
incorporate losses by adding inelastic losses to the radiative losses already present
in the polarizability model.

Calculation of the spin Chern numbers. The spin Chern numbers of the
bands p1±ip2 and d1±id2 are calculated using the method of Fukui, Suzuki and
Hatsugai45 for fast calculation of topological invariants over a roughly discretized
(15 points by 15 points) portion of the Brillouin zone around its center. The
eigenmode profiles are taken directly from our 3D finite-element simulations
performed with Comsol Multiphysics.

Bulk semi-analytical simulations. We reproduce the experiments on both
topological and trivial samples with our semi-analytical model. Dipoles are
displayed on the exact same lattice nodes as the wires in the experiments. The
source is placed 8.5mm below the lower side of the triangle, at the middle. The
results are presented in Supplementary Fig. 2. The transmission spectra are cal-
culated at one point in the center of the sample. As their experimental counter-
parts, the simulated trivial and topological samples present transmission peaks
below f/f0¼ 1. Moreover, within this frequency range, there is a zero-transmission
window centered on f/f0¼ 0.965, which is larger for the topological sample. The
latter, shaded on the figure, corresponds accurately to the bandgap observed
experimentally.

We now take a closer look at the calculated modes corresponding to the
different transmission peaks in order to look at their symmetries. Those modes are
represented, with a zoom-in showing their symmetry, below the spectra
Supplementary Fig. 2. In the case of the trivial sample simulation, the modes
appearing at the lowest frequency have the s-symmetry. Next comes the p-modes
before the bandgap opening. After the bandgap closing the modes have a d-
symmetry followed by an f-symmetry for the highest frequency peaks. For the
topological sample simulation, the d-modes corresponds to the peaks before the
bandgap opens, and the p-modes occurs when it closes. This, added to the great
similarities between the calculated modes and the experimentally measured ones, is
a strong proof of the band inversion that happens between the p and the d bands in
any metamaterial composed of resonant scatterers and for which near field
inductive or capacitive couplings can be safely neglected.

Experimental observation of edge states between metamaterial and free-space.
In the main text we present the experimental results concerning the bulk behavior
of the two types of metamaterials. Here we focus on what occurs at their edges. The
results are displayed on Supplementary Fig. 3. In both cases, the spectra are
averaged along the triangular contour of the sample and the shaded area corre-
sponds to the trivial or topological bandgap frequency range measured from the
bulk. In the trivial case, there are no transmission peaks inside the bandgap,
consequently no edge modes are measured on the interface between free space and
the trivial sample. This is different in the topological case. Indeed, transmission
peaks appear for frequencies at the beginning of the bandgap. Looking at the field
map corresponding to those peaks, one can see a mode propagating along the edge
of the topological sample, and turning around the first corner of the triangle. Since
free-space acts as a trivial insulator for such a subwavelength varying field, the edge
of the topological sample is considered as an interface between a trivial system and
a topological one whose band structure is inverted. This gives birth to edge modes
propagating along this domain wall, which we observe experimentally. Note,
however, that contrary to the edge modes between two bulk domains, these edge
modes are not robust: this is due to the very large breaking of C6 symmetry
between the crystal and air. Indeed, it is impossible to define two degenerate
pseudo-spin states that are compatible with C6 symmetry in a continuous medium
such as air.

Experimental study of the interface between the two samples. We present a
study of the interface experiment complementary to what is shown in the main text
(Fig. 4). The results, displayed on Supplementary Fig. 4, focus on the other parts of
the spectrum that is the frequencies that do not belong to the intersection of the
bandgaps of the two samples. For frequencies below 4.85GHz, none of the samples’
band structure has a bandgap, therefore propagating modes are excited in both
metamaterials. Both sides of the interface lighten, as we can see in the field map
(Supplementary Fig. 4b). Between 4.85GHz and 4.9 GHz, the behavior of each
sample is now different. Indeed, while these frequencies correspond to bulk bands
of the trivial sample, they fall within the bandgap of the topological one. Moreover,
as explained in the previous section, the latter possess propagating modes along its
edges with free space at these frequencies. This situation corresponds to the field
map of the Supplementary Fig. 4c. For the situation in Supplementary Fig. 4d, the
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topological sample does not have edge modes with free space. Finally, in the field
map (Supplementary Fig. 4e), alike what happens in (Supplementary Fig. 4b),
corresponds to the excitation of bulk bands in both samples.

Numerical simulations of the interface between the two samples. We carried
out the equivalent of the interface experiment using our semi-analytical model
(Supplementary Fig. 5). The spectrum is calculated at one point in the middle of
the interface. As for the experiment, peaks appear inside the total calculated
bandgap (blue shaded area on the spectrum). In the corresponding calculated field
maps, displayed in (Supplementary Fig. 5b,c, we recognize the two modes guided
along the interface between the two samples (Fig. 4c,d of the main text). Moreover,
we carry out other computations simulating a longer domain wall between the
exact same two systems, and adding a crystalline perfectly matched layer built by
adiabatically adding absorption losses to the dipoles forming the last ten crystal
columns at the right of the figure. This allows us to guarantee no reflection at the
end of the interface, and look at the symmetry of a purely forward propagating
interface mode. The field maps corresponding to the two guided modes are dis-
played in Supplementary Fig. 5d (low-frequency) and Supplementary Fig. 5e
(high-frequency). They are exactly the same as the ones simulated in the case of the
experimental samples. This is a proof that the modes we measure experimentally at
the interface between two media made of quarter wavelength resonators also exist
when considering analytical resonant point scatterers, thus confirming the gen-
erality of our approach. In addition, the PML simulation confirms the good
matching of the edge modes in Supplementary Fig. 5b,c, which are radiated at the
end of the interface.

Numerical study of the robustness of the guided modes. We carry out another
set of numerical simulations so as to account for the relative robustness of the
guided mode along a tortuous interface between a trivial and a topological medium.
Hence, we impose a series of bends to the guide as displayed on Supplementary
Fig. 6. Each field map presented here is calculated for a feeding frequency that
corresponds to the center of the Brillouin zone of the interface, meaning that all
cells are in phase. The first simulation (Supplementary Fig. 6a for the procedure
and Supplementary Fig. 6d for the results) prove that our subwavelength guided
mode is efficiently propagating along a curved interface involving turns and
changes in direction. We implement another complex path for the subwavelength
guided mode: a sharply designed cavity shaped as the Eiffel tower (Supplementary
Fig. 6b,e). The source is placed at the bottom of the tower’s first floor. The field is
guided from the left side (blue arrow) and from the right side (green arrow) of the
source and then turn around the complex contour of the tower, exciting the cavity.
This way we build a complex cavity where the electric field is confined on a
subwavelength scale. To study the coupling of this guided mode to the radiation
continuum, we remove the crystal at the top of the previous Eiffel tower simulation
(Supplementary Fig. 6c,f). Unlike before, once the electric field has reached the top
of the tower, it does not turn around but leaks out with the right rate, due to good
matching with the environment. Hence, subwavelength edge states can be coupled
to the far field. Again, one can notice the difference between the wavelength outside
and inside the broadcasting tower. To conclude, this numerical study shows that
this system allows to robustly guide waves around sharp corners at a sub-
wavelength scale, and interact with other systems placed in the far field.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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