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A syst ematic study of t he problem of spherulitic growth in linear polymers in bulk has 
been carried out. A calculation of the radial growth of polymer spherulites is given for four 
models. These concern growth where the surface nuclei t hat control the r a te a re (1) bundle
like and coherent, (2) chain folded and coherent, (3) chain folded and noncoherent, and (4) 
bundlelike and non coheren t. The required modifications of nucleation theory fire given . 
Then the radial growth rate laws are derived for each model, and the type of "spherulite" 
t hat would be formed discussed . 

The model with chain fo lded and coherent growth nuclei leads to a typical lamellar 
spherulite. The properties of the ind ividual chain folded lamellae that form the spherulite 
are predicted, including the change of s tep height with growth t emperature, melting behavior, 
and the behavior on recrys talliza t ion . (Chain folded lamellae may a lso occur in sp ecimens 
t hat are not obviously spherulitic.) Under certain condition , the noncohcrent model with 
chain folds can lead to a mod ified la mellar spherulite. None of t he bundlelike models will 
lead to a typical lamellar spheru li te, though a spherical microcryst alline object might be 
formed . It is concluded that lamellar spherulites consist largely of chain folded structures. 

The fa ctors tha t could cause chain folded crystals to appear in profus ion in bulk polymers 
are discussed. The case of homogeneous initiation is considered first. Homogeneous initia
tion of chain folded nuclei in bulk will prev ail if the end s urface free energy of the bundJelike 
nucleus exceeds that of the folded . It is shown that the end s urface free energy of the bundle
like nucle us, as calculated with a density grad ient model, will be larger t han had been s up
posed previously. It is therefore considered to be theore t ically possible tha t the end surface 
free energy of the bundlelike nucleus may in some cases exceed that of the folded nucle us. 
Attention is given to the possibility tha t folded structures appear in large numbers beca use 
cumulative strain or large chain ends prevent the growth of bund lelike nuclei to la rge si ze, 
e ven when the latter type of nucleus is energetically favored when small. H e terogeneous 
initia tion of fold ed structures is then considered . 

Other topics mentioned include: (1) Condi tions that might lead to nonlamellar or non
spherulitic crystalli zation in bulk, (2) t he origin of the twi t that is frequently exhibited by 
t he lamellae in spherulites, (3) the transitions that may sometimes occur in the rad ial growth 
r a te law, and (4) interla mellar link. 
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* I. Introduction 

In recent years there has been much interest in the 
growth of spherulites in bulk polymers. These ob
jects are the principal site of the crystallization in a 
number of highly crystallizable linear polymers, at 
least under certain conditions. Fmther, the mechan
ical, optical, and dielectric properties of such poly
mers are known to be affected by the presence of 

I It is recommended that only the sections marked with a star (* )' be con· 
sidered in a first r .. adi ng 01 the paper. These sections treat many 01 the main 
issues, and include the most important models 01 lamellar spherulitic growth 
(sections 5 and 6). 

spherulitic crystallinity. Hence the rate of spheru
litic growth, and the type of crystals exi ting in the 
spherulites, are of prime importance in connection 
with any attempt to understand the physical proper
ties of these systems. Except where specifically 
noted otherwise, this paper is confined to cry talliza
tion from the unoriented melt. Attention is directed 
mainly to polymers that may be represented a 
systems of flexible linear chains which can in time 
achieve a high degree of crystallinity. 
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In introducing the subject of the nature of the 
crystals in polymer spherulites, it is essential to 
first mention the important studies of Keller and 
coworlrers [I , 2] 2 on the nature of the platelike single 
crystals of linear polymers that may be deposited 
from supercooled dilute solutions. Polymer crystals 
formed in this manner consist of regularly shaped 
platelets that have a thinness or "step height" of 
roughly 50 to 250 A, depending on the degree of 
supercooling. (The step height is larger the lower 
the supercooling.) By electron diffraction experi
ments, Keller demonstrated that the long axes of the 
polymer molecules in such crystals are approximately 
perpendicular to the large and fiat upper and lower 
surfaces. Since the polymer molecules were known 
to be much longer than the step height, the startling 
but nevertheless definite conclusion was reached that 
the upper and lower surfaces consist of chain folds. 
Stacks of thin platelets resembling a terraced pyra
mid are frequently formed in dilute solution prepara
tions, often around what appears to be a spiral 
dislocation. In such cases, each terrace step corre
sponds to the thickness or step height of a single 
crystal. A theory describing the formation of single 
polymer crystals from dilute solution has been given 
by Lauritzen and Hoffman [3]. 

Spherulites in bulk polymers grow outward from 
a nucleation center that is frequently of a hetero
geneous character. The radial growth of a spheru
lite is commonly the result of the formation of stacks 
of bladelike lamellae that grow outward from the 
nucleation center. As shown in electron micro
graphs of surface replicas of spherulites, these 
lamellae possess a thickness or "step height," corre
sponding to the thin dimensions of the blade, that 
is commonly between 50 and 250 A. The resem
blance between the system of steps seen in a bulk 
polymer and the steps seen in the stacks of chain 
folded platelets in a dilute solution preparation of 
the same polymer is most striking. It is well known 
from optical studies that the polymer chains in the 
crystalline matter in spherulites are appro:A-imately 
normal to the spherulite radius. Since the lamellae 
lie mostly parallel to the radius of the spherulite, it 
is therefore reasonable to assume that the polymer 
chains are more or less normal to the large fiat 
surfaces of the lamellae. (Evidence interpretable as 
proof that the chain axes are nearly normal to the 
fiat lamellar surfaces in polyethylene has been ob
tained by microcamera X-ray diffraction studies by 
Fujiwara [42]. Other investigators [4] have shown 
by optical methods that a similar condition probably 
applies in certain other cases.) The lamellae often 
twist as they grow outward, so that a given sector of 
a spherulite somewhat resembles a stack of propeller 
blades (twisted lamellae) radiating from a central 
point. We refer to an object fitting this general 
descrip tion as a lamellar spherulite. 3 

In view of the above, it is certainly reasonable to 

• Figures in brackets indicate the literature referen ces at tbe end of this paper. 
3 The schematic representation of the orientation of the lamellae and the poly· 

mer molecules in the lamellae, and the general nature of la.mellar twist shown in 
fignres 6 and 7 may prove useful in understanding the above general description 
of a lamellar spherulite. In rea] spherulites, the lamellae may be more fragmented 
and imperfect than shown in these figures. 

give strong consideration to the possibility that a 
lamellar spherulite formed in bulk consists of chain 
folded crystals of the same general type known to 
arise in dilute solution, and to consider spherulite 
growth mechanisms based on the chain folded 
pattern. At the same time, one must attempt to 
construct a lamellar spherulite on the customary 
bundlelike pattern. By carrying out calculations on 
both models, it is possible to arrive at certain conclu
sions concerning the existence of chain folded crystals 
in bulk polymers. In the course of such an attack 
on the problem, it is natural to see if any of the models 
are capable of predicting the existence of a non
lamellar spherulite. 

While no attempt will be made in this paper to 
effect a detailed comparison of theory and experi
ment, or to give a complete survey of the experi
mental situation with respect to the nature of 
spherulitic crystallization in bulk polymers, it is of 
interest to mention some of the studies on which the 
above remarks on spherulitic structure in bulk are 
based. Much of what is known about lamellae in 
spherulites has been learned from studying electron 
micrographs. An outstanding example of this ap
proach is to be found in the recent work of Geil [5] 
on polyoxymethylene, where clear evidence of the 
lamellar structure of bulk crystallized material is 
presented. Geil, Symons, and Scott [6] have shown 
that chain folded crystals with a rather similar step 
height are formed from dilute solution by polyoxy
methylene; the resemblance between the terraces 
formed by stacks of chain folded crystals in dilute 
solution and the terraces seen in material crystallized 
in bulk is especially striking in this polymer. Eppe, 
Fischer, and Stuart have presented clear evidence of 
lamellar structure in bulk polychlorotrifluoroethylene 
[40]. This fl.nd other examples that could be cited 
render it clear that lamellar structlues are common 
in linear polymers crystallized in bulle Information 
on the orientation of the lamellae and polymer chains 
in spherulites, and the twist of the lamellae, has been 
obtained by optical microscopy together with a de
tailed theory of the extinction patterns of such objects 
due to Keller [7], Keith and Padden [8, 9], and Price 
[10]. The beautiful rings seen in spherulites in a 
polarizing microscope are a result of the twist of the 
lamellae. 

The body of the paper begins wi th a -discussion of 
homogeneous initiation of bundle and loop type 
structures in bulle It is concluded that if homo
geneous nucleation is the cause of the prevalence of 
folded structures in bulk, the end surface free energy 
of the bundlelike nucleus, (le, must exceed that of the 
end surface free energy of the nucleus with chain 
folds , fT e• (A simple bundlelike nucleus model that 
explicitly involves the density gradient at the bundle 
end is used to bring out certain factors that may 
contribute to (le' ) Then the possibility that large 
chain ends or strain may tend to subdue growth of 
bundlelike nuclei to large size is considered. Finally, 
since it is by no means certain that spherulites 
are generally of homogeneous origin, heterogeneous 
initiation of chain folded lamellar structures is 
discussed. 
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With this background, attention is then directed 
toward the pl'oblem of calculating the isothermal rate 
oj radial growth oj spherulites as a junction oj tem
perature in supercooled bulk polymers. This prop
erty has been singled out for special emphasis be
cause it can often be determined experimentally as a 
function of temperature, and does not depend on 
whether the spheruli tes are of heterogeneous or homo
geneous origin. 

Radial growth where the rate determining step is 
the formation of a two-dimensional coherent surface 
nucleus is treated first. (By the term "coherent" 
we mean to imply that the crystal structure and 
molecular orientation in the surface nucleus and in 
its polymer substrate are essentially the same.) Both 
bundlelike coherent surface nuclei and coheren t sur
face nuclei with chain folds are considered. 

Treatments of radial spherulitic growth by two
dimen siollal coherent surface nucleation have been 
given by Burnett and McDevit [11], Kahle and 
Stuart [12], Takayanagi [13], and Hirai [14]. We 
must now indicaLe why we shall add yet another. 

FirsL, iL is considered desirable 1,0 give a detailed 
analysis of spheruliLic growth for coherent nuclei 
with chain folds. Second, it is insLructive 1,0 re
examine the theory of the radial growLh rate for 
coherenL bundlelike nuclei. It is evidenL that some 
problems connected with this model have not been 
emphasized previously, nor its full range of behavior 
elucidaLed. Third, it is necessal'Y to treat the gen
eral problem of growth by monomolecular accreLion, 
taking in to account the fact that the acLivated state 
is in sOlll e instances reached in one sLep. This leads 
to an ill1portan I, revision of the nucleation and growth 
rate expressions, especially in the chain fold case. 
Fourth, i t is important to considel' the role of chain 
ends on Lhe formation of polymer crystals. Fin ally, 
it is considered to be of special in teres t to exall1i n e 
closely the connection between a given model for 
the growth rate, and the physical structure and 
orientation of the crystalline bodies that this model 
actually implies in a spherulite. I t will emerge that 
some of the models frequently cited in the literature 
and used for the analysis of radial growth r ate data 
on spherulites will not lead to typical spherulitic 
structures. 

I t will be demonstrated that radial growth through 
the agency of coherent nucleation with chain folds 
can lead to a three-dimensional obj ect recognizable 
as a lamellar spherulite. The existence of the 
lamellae, the orientation of these lamellae and the 
molecules in them with respect to the spherulite 
radius, the dependence of the step height on growth 
temp erature, recrystallizaLion behavior, and the 
twist exhibited by Lhe lamellae, can be predicted. 
It is adduced that the coherent bundlelike model 
cannot lead to a lamellar spherulite. 

The theory given here for the rate of radial spheru
litic growth in bulk as controlled by coherent sur
face nuclei wiLh chain folds is based mostly on an 
analysis by Lauritzen and Hoffman [3] on the appear
ance of polymer crystals with chain folds from dilute 
solution. Price [15] has independently treated 
some aspects of this problem. 

The problem of calcula ting the raLe of radial 
growth of a spherulite where the rate determining 
step is the formation of a three-climen ional non
coherent surface nucleus is treated next. (By the 
term "non coherent" we mean to indicaLe that 
the orientation of the molecules in the surface 
nucleus is different from that in the polymer crysLal 
to which it is attached, so that a definiLe inLerface 
exists beLween the substrate polymer crystal and 
the surface nucleus.) As before, bundlelik e nonco
herent surface nuelei, and noncoherent surface 
nuclei with chain folds, are treated. The concept of 
noncoherent surface nucleation in spherulites Lreated 
here is based largely on an interesting suggestion 
due to Price [16]. The radial growth rate laws are 
given, and th e nature of the resultant physical 
strucLures is predicLed. 

The results obLained for the bundlelike non co
herent growth model resemble in general form those 
given previously by Flory and McInLyre [17], who 
proposed thaI, the free energy of formaLion of the 
three-dimensional bundlelike surface nucleus is in 
some manner lowered in Lhe viciniLy of the growing 
boundary compared Lo the free energy of formaLion 
of t ll e corresponding three-dimensional homogencou 
nucleus. The present treatment is more explicit 
concerning the possible cause of the lowering of the 
free energy of formaLion of the surface nucleus. 
The 1l0ncoherenL bundlelike model might possibly 
lead 1,0 a sph erical and microcrysLalline buL non
lamellar object. The noncoherent chain folded 
model l eads Lo a somewhaL modified lamellar 
spllCrulite. 

In all the calculaLions of the radial growLh rate, 
an efforL has been made not only to derive the raLe 
laws near and somewhat below the melting point, but 
also to determine the Lype of behavior LhaL might 
obtain at strong supercooling. Rather abrupt 
changes in the radial growth rate, and even the 
mode of crystallizaLion, may occur with sufficient 
supercooling. 

Toward the end of the paper, the radial growth 
rate equations are summarized in tabular form, 
and a discussion presented on various aspects of the 
initiaLion and growLh of spherulites, and lamellar 
and nonlamellar crystallization in polymers. 

*2. Rate of Homogeneous Initiation in Bulk 
for Bundlelike and Chain Folded Nuclei 

2 .1. Homogeneous N uclea lion Theory 

Turnbull and Fisher [18] give for th e steady state 
rate of homogeneous nucleation in a condensed 
sys tem the expression 

NkT (/::"8*) (MI*) (/::,.¢*) I = K - h- exp T exp - kT exp - kT . 

(1) 

Here T is the absolu te temperature, h Planck's 
constant , Ie Boltzmann's constant, /::"l-J* the heat of 
activation of the elementary jump rate process at 
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the supercooled liquid- nucleus interface, I1S* the 
corresponding entropy of activation, and 11cf> * the 
free energy of formation of a nu.cle~s of critical 
size, i .e., a nucleus at the saddle pomt m the appro
priate free energy surface. The constant K J:.as a 
numerical value within several orders of magmtude 
of unity for most nucleation problems of interest, 
and may be ignored for the present.4 Equation (1) 
was derived on the basis that th e nucleus contains 
a large number of segments or atoms, an~ is built up 
in a stepwise manner. The net nucleatIOn rate was 
obtained by summation over all forward and back
ward reactions. The pre-exponen tial factor (Nk T/h) 
exp (I1S*/k) nuclei sec-1 mole-1 may be converted to 
10= (NkT/hmo V a) exp (I1S*/k) nuclei sec-1 cm- 3, where 
mo is the molecular weight of the length of polymer 
segment that enters the nucleus in an elementary 
process, and V a the specific volume of the super-
cooled liquid. . . . 

The main problem IS the calculatIOn of 11cf> * m 
terms of the surface free energies and other param
eters associated with the model under consideration. 

2 .2 . Primary Bundlelike Nuclei: The End Surface 
Free Energy Problem 

vVe employ a bundlelike primary nucleus that is 
a rectangular parallelepiped as shown in figure 1a. 
The quantity rJ is the lateral surface free energy, 
and rJ . is the end surface free energy. The surface 
free energies are defmed as the work that is needed 
to isothermally form 1 cm2 of the appropriate type 
of surface from the required number of segments in 
the normal (interior) crystalline phase. 

The r ectangular parallelepiped model is not pro
posed with the intention of conveying the meaning 
that the cross section of a nucleus or crystal is 
necessarily rectangular. The cross section could. 
have other shapes, e.g., a parallelogram, hexagon, or 
other polygon. The lateral faces of the crystal will 
correspond to some single preferred crystallographic 
plane, and the lateral surface free energy rJ will 
correspond to the work required to form 1 cm2 of 
this surface. The particular geometrical model 
chosen is just the simplest that is sufficiently illus
trative of the phenomena we wish to discuss. 
The slight modifications necessary to deal with 
other cross-sectional shapes have been outlined else
where [3]. 

Lateral SU1jace Free Energy (Bundles): The lateral 
surface free energy rJ r efers to a definite and well 
defined surface, and a reasonably good estimate of 
its numerical value can be obtained. We should 
expect rJ to be fairly close to that for a typical molecu
lar crystal of approx.i.mately the same chemical com
position as the polymer, since the molecules on the 
lateral faces are not "connected" through covalent 
bonds to the surrounding supercooled liquid. Rough 
estimates of rJ may be surmised from the results of 
Thomas and Stavely [19] on homogeneous crystalli-

, For many models treated in this paper, K varies as (aTJ-', neglecting less 
important temperatnre variations. Even snch a dependence on temperature in 
the pre-<lxponential term is t rivial in the analysis of data, t he other terms being 
much more importan t. 

FIGURE 1. Bundlelike and chain folded primary nuclei. 

(aJ Bundlelike nucleus; ordinary symbols are used to denote the dim~nsions 
a. b, and I, and the lateral and end surface .free energ~es u and u .. A deusity gra
dient of considerable extent in tbe I dIrectIOn WIll eXist at the end surface. 

(b) Nucleus with chain folds: bold face symbols are used for tbe dImensIOns a, b, 
and I, and the lateral and end surface free energies 17 and 17,. Well defined surfaces 
exist on all faces. 

zation in fogs of supercooled droplets o~ simple non
chain organic compounds. From tIllS work we 
would anticipate that the lateral surface free energy 
a- would frequently be in the range of 5 to 25 erg 
cln- 2. 

It is useful to indicate a method of estimating 
the lateral surface free energy for a polymer that 
should generally give a value that is more 3:ccurate 
than would be guessed simply by perusmg the 
results on nonchain type molecular crystals quoted 
by Thomas and Stavely. Several authors [19, 20] 
have suggested that for a s pe~ific class of compoun~s 
the ratio of the work r eqUIred to form a Cel'tam 
amount of surface phase to the heat of fusion of 
the same amount of bulk phase is approximately a 
constant. This ratio may be written as 

rJ 

(l1hf )d= ex, 
(2) 

where (l1h,) is the heat of fusion in erg cm-3, d the 
lattice spacing in cm, and rJ the surface free energy 
in erg cm- 2• The constant ex is about 0,5 for many 
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metals [20], and abouL 0.3 for simple (non-chainlike) 
molecular crystal [19]. Using the values of <T 

obtained from carefully conducted homogeneous 
nucleation experiments with pure chain hydrocarbons 
dispel' ed in \vaLer recently quoted by Turnbull [21] 5, 
we estimate that a i about 0.1 for the paraffin 
chain system. Thi value of a should hold quite 
well for the calculation of the lateral surface free 
energy <T of polyethylene (<T '"'-' 10 erg cm-2) . I t is 
to be expected that a fairly imilar value of a will 
hold for the estimation of the lateral surface free 
energies of other linear polymer. Turnbull's tech
nique could be used to obtain more precise values 
of a appropriate to other types of chain structure. 

End Surjace Free Energy (Bundles): The value of 
(j e appropriate to the bundlelike nucleus is difficult 
to assess. No r eliable experimental values seem to 
be available. Flory [22] has treated the configura
tional contribution to the end surface free energy for 
a bundlelike crystal as a function of concentration. 
I n this formulation , the end surface free energy at 
V2= 1 (bulk phase) is proportional to RT In D, where 
D is a parameter. No theoretical method of evalu
ating D was given. Also, Flory's treatment do es 
not deal explicitly with the den ity gradient region 
at the btmdle ends, where importan t contributions 
to <T e will arise. 

Insight into some of the factors that will contribute 
to the work required to build the end of a bundlelih:e 
nucleus with a flat end may be gained by noting the 
calculations in the appendix, ection 10, for a cylin
drical buncllelike nucleus with a density gradient at 
the bundle ends. This simplified treatment shows 
to the approximations indicated (see eq (A- 20 ) of 
the appendix) that 

IA 6.hr)Pc + ld(6.P Fpor. 
6PI 6p;pc 

(3) 

~ ere ld is the length of one ?f t~e diffuse bundle ends 
III em, (6.hf ) the heat of fUSion 111 erg cm-3, Pc and PI 
the density in g cm-3 of the crystal and supercooled 
liquid, r espectively, (6.p)= PC-PI, Po= (Pc+ PI) /2, and 
r a constant in erg cm- 3 that may reasonably be 
expected to exceed zero. The magnitude of r is 
r elated to the height of the maximum that will exist 
in the free energy somewhere in the bundle ends. 
This maximum must exist in order to cause phase 
separation, and may r esult from either repulsion or 
abnormal separation of the segments in the partly 
disordered region of the bundle ends. The deriva
tion of eq (3) is valid only when the cross section of 
the nucleus contains a fairly large number of polymer 
molecule. 

Equation (3) with r = o may be used to obtain a 
r easonable lower limit on the value of <T , for a bundle
like nucleus with a flat end, which we call <T,(m!n) ' 

The minimum value of <T , implied by eq (3) is sur
prisingly large. For example, with (Mb/) = 3 X 109 

erg cm- 3, Pc/PI= 1.15, parameters that apply approx-

'Turnbull finds .. =9.6 erg cm-' for n·octadecane and .. = 7.2 erg cm- 2 for 
n-heptadecane. 'rhe high end surface free ellergy that may exist in large bundle· 
like nuclei or crystals in a high molecular weight polymer will not appear in 
sucb sbort cbain materials. 
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im atcly Lo polycthylene,6 when taken -;together with 
the as umption that ld= 10 X IO- 8 cm= lO A, lead to 
<T e( mln ) ~6 0 erg cm- 2• R eflected in this r esult i the 
fact that a fairly large amount of work will be re
quired to construct an interface between two pha es 
that are connected together by chains containing 
covalent bonds. 

The true value of <T , for polyeLhylenc is probably 
ill excess of thi , since r may be greater than zero . 
Also, certain cumulative strain contribution are 
neglected in th e derivation or cq (3), and the e 
would further increase <T , . From the above we draw 
the conclu ion that it is notneces ary to consider the 
effect of small <T, value, i.e., those substantially 
smaller than the lateral smface free energy <T, in cal
culating the properties of bundlelike nuclei.7 I t is 
entirely possible that <T , for bundlelike nuclei may be 
at least everal hundred erg cm-2 in some instances. 

An analysis of the particular model used to arrive 
at eq (3) doe no t suggest a marked dependence of 
<T. on temperature. Nevertheless, even the simpli
fied treatment outlined in the appendix indicates 
that, under certain circumstances, <T. could depend 
on temperature to a noticeable extent. In view of 
the above, we must emphasize that the calculations to 
jollow with <T , treated as a constant aTe ap7J1'oximate. 
Nevertheless, they are believed to be sufficient for 
the purpose of dealing with the question of how 
nuclei with chain folds might come to prevail over 
bundlclike nuclei in bulle The symbol <T , in the ex
pressions to be derived for the bundlelike nucleu 
may be thought of as represen ting an effective value 
containing contributions analogous to those shown 
in eq (3). 

2.3. Rate of Homogeneous Nucleation for Bundleli ke 
Nuclei 

Region A (steady state nucleation): In the tempera
ture region near and som ewhat below the m.elting 
point, which we designate region A, the pnm ary 
nuclei are much larger than the uni t cell, and the free 
energy of form ation of a bundlelike crystal or em
bryo of the type shown in figure 1a may be written 

6.1>= 2ab<Te+ 2al<T + 2bl<T - abl (6.j ) , (4) 

where a, b, and l are treated as variables. (6.j) is 
the bulk free energy of fusion per unit volume of 
crystal. Bo th <T and <T , are regarded as constants. 
The problem is to calculate 6.1>* by fincli.ng the saddle 
point in the free energy surface described J:>y eq (4). 

The saddle point in the free energy surface 
described by eq (4) is found by set ting o6.1>/oahl, 
o6.1>/ob )al and o6.1>/Ol)ab equal to zero to get a *= 
4<T/ (6.j) , b*= 4<T/ (6.j ), and l * = 4u,/6.j. As plotted on 
the orthogonal coordinates 6.1>, l , (ab )1/ 2, the saddle 

• ( t:.h,) is witbin a factor of 2 of 1.5XlO' erg cm-3 for many linear polymers. 
, This reverses an earlier opinion [3J that detailed consideration should be 

accorded the case where u . is substantially smaller than u . OalculatIons based 
on the assumption ... < < .. lead to a shift in the nucleation rate from tbe 
customary ( t:. TJ-' to a ( t:.T)-1 law at some moderate degree o.f su percooling.l3). 
It is improbable that this will commouly OCCur. Equation (3) mdICates tbat It IS 
highly unlikely that ... will be lero, as bas sometimes been assumed for bundle· 
like nuclei. 



point is at 1*=4(J,/D.j, and (a*b*)!lz= 4(J/ (l1j). In
serting these values into eq (4) the value of the free 
energy of formation at the saddle point is found to be 

(5) 

which may be compared with the value 87r(J2(J ,/ (l1j)2 
for a bundlelike nucleus with a circular cross section. 
Then with eq (1), the steady-state nucleation rate is 

( l1H*) ( 32(J2(J T4 ) 
1A = 10 exp - leT exp T2(f1hf)2(~T)2leT ' (6) 

where we have set 

(7 ) 

Here l1h f is the heat of fusion per unit volume of 
crystal at the equilibrium melting temperature, 
T m, and (f1T) the degree of supercooling, T m-T, 
where T is the crystallization temperature. It has 
been shown in a previous study [23] that eq (7) is a 
good 3:pproximation in a glass-forming system.s 

Regwn B (nonsteady state nucleation): Observe 
from the foregoing that a* = b* = 4(J/ (f1j). From this 
expression and eq (7) it is clear that at some high 
degree of supercooling (large l1T), the a and b 
dimensions of a nucleus of critical size will approach 
their minimal values, amln and bm,n. This will occur 
at a tempera ture T e corresponding to a degree of 
supercooling of approximately 

(8) 

As a rough approximation the product (am,nbm,n) 
may be taken as the area corresponding to a nucleus 
with a cross section containing roughly 5 to 7 
polymer segments, i .e., a body with at least one 
central molecule in an ordered environment. This 
is the smallest object that may be considered as a 
typical nucleus. (N ote that aml n will be somewhat 
larger than the corresponding dimensions of the 
unit cell .) 

Because f1 T e depends on the well-defined lateral 
surface free energy (J, for which numerical values can 
be estimated with reasonable accuracy, a fairly 
reliable conception of its magnitude can be obtained. 
Taking (J = 5 erg cm- 2, am,n= bmln = 10 X 10-s cm, 
T m= 400 OK, and (f1h f) = 109 erg cm- 3, l1Tc calculated 
from eq (12) comes to 80°C. l1Te should rarely be 
less than 30 or 40 °C, and in many cases it may be so 
large that it falls near or below the glass transition, 
which would render it inherently unobservable. 

It is clear that the nucleation rate will change its 
character near and below Te. Attention is now 

8 The usual expression Ilf= llhf(1l T )IT m is less exact than eq (7) for glass-forming 
bulk systems . The extra factor TI T m corrects for the fact that the entropy differ
ence between the supercooled liquid and crystal falls below Ilhd T m as the temper
ature falls below T m . 

directed to the interesting question of the nature of 
the nucleation process in the temperature region 
near and below Te, region B. 

At and below T" the free energy of formation may 
be written 

l14>= 2am,nbm,n(Je+ I[2am,n(J+ 2bm'n(J-am,nbmln(l1j)]. (9) 

The coetIicient of I is zero at T e, but becomes negative 
at lower temperatures. Thus, it is seen that the 
nucleus is formed by "increasing" its length I to its 
minimum possible dimension, which we call lmln' 
Hence, in effect, we are calculating the steady-state 
nucleation rate for a nucleus of fixed dimensions 
amln, bm,n, lm,n. The modification of classical con
tinuum free energy surface theory necessary to deal 
with this type of problem is mentioned in section 3.1. 
The appropriate free energy of formation is given by 
eq (9) with l= lmill' The steady state nucleation 
ra te in region B is 

[ MI* + MI**] 
1B= 1o exp - leT 

(10) 

[(f1T)+! law; will not be directly observable] 

where the constant term 2bm'n(am'n(Je+ lm,nO") is 
denoted as l1H**. (Ordinarily, f1H** will not exceed 
several kcal mole- I. ) This (f1T)+1 steady state 
nucleation rate expression appears to be new in 
nucleation and growth theory. It must immediately 
be pointed out, however, that it is very unlikely 
that such a rate law would be observed over any 
substantial range of temperature because of the 
effect of nonsteady-state nucleation near and below 
T e. In the case of such small nuclei forming by 
steady state nucleation in a strongly supercooled 
polymer, the additional effect of pre-existing embryos 
of minimal size must be taken into account. 9 

At any temperature T ! above the melting point 
of the polymer, the free energy of formation of an 
embryo always increases as its size increases. This 
is in contrast to the case of embryos in the super
cooled liquid state, where the free energy of forma
tion goes through a Inaximum at a saddle point 
so that embryos can become nuclei, and eventu
ally stable crystallites. Nevertheless, numerous 
small embryos will exist in the normal liquid 
above Tm , and the population of such elnbryos 
can be estimated by straightforward methods. (In 
the expression for l1cp, l1T simply changes sign above 
Tm.) Now when a polymer specimen is rapidly 
cooled from a temperature Tl that is above Tm to a 
temperature T2 in the strongly supercooled state, 
a number of these pre-existing embryos will be found 
to be of the critical size relevant to T2• The number 

, Even if the non steady state nucleation effect did not interfere at strong-super
cooling, the (l;T)+! law would not be closely obeyed near T, because of distnrb
ances in the nucleation rate related to the segmental character of the chain that 
will occur as l approaches lw iu. 
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of sucb pre-ex.ris ting embryos that correspond to 
nuclei of critical size will be negligible if tbe s table 
nucl ei arc large, as will be the case at low or moder
ate super cooling, bu t ncar and below T e , where tbe 
nuclei are of t he minim al dimensions amln, bm ln , 

I mln, the number of pre-existing embryos that corre
spond to nuclei of critical size will be high. Thus, 
near and below Te, this transport of bundlelike 
embryos from the normal melt to the strongly super
cooled s tate will greatly increase the rate of injection 
of nuclei above that predicted by eq (10), or eq (6) 
as extrapolated into r egion B. Calculations show 
that this effect migb t become so pronounced some
what below Te as to cause a ver y r apid and fin e
grained cr ystalliza tion to occur tha t might ap tly be 
described as a "nucleative collapse" of the super
cooled liquid state. (This effect may deter glass 
formation as no ted in sec tion 8.2.) 

At sufficiently low t empera tures, the rate of 
inj ection will even tually fall because of the increasing 
importance of the in terfacial jump rate term , 
exp (- t:J.H*/kT). Depending on the values of MI* 
and the various surface free energies involved, this . 
could h appen in regions A or B . 

Summary : The overa ll picture of the homo
geneous nucleation rate for bundlelike nuclei is shown 
in figure 2a. The in terfacial jump rate term, 
exp (- MI*/kT), with i ts positive t emperature co
efficien t, will commonly overcome the strongly 
negative temperature coefficien t of the nucleation 
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FWURE 2. Rale of injection of homogeneous nuclei as a function 
of temperature. 

J is the homogeneous nucleation rate in nuclei per second per unit vol
ume. - - - - hehavior of steady state value of log J if effect of jump rate i, 
small ; -- customary bebavior where jump rate lowers log J; . . . .. shows 
nucleation in excess oC steady state value of log I in region B result ing Crom trans
port of nuclei oC minimal size from above T m. 
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t erm, exp r -32u2u,T;',/T 2(t::.h/) 2 (t:J. T )2kTJ, and cause a 
maximum to appear in the steady state nuclea tion 
rate in r e.~ ion A (see solid line). If the nuclea tion 
rate IS s tul 0 bservable at all a t and below T e, the 
exces nucleation rate characteristic of nons teady 
state nuclea tion in r egion B may be secn . 

2.4. Primary Nuclei With Chain Folds 

Quan tities . that are closely r ela ted or specific to 
c ha ~n fo lds arc denoted by bold face symbol s. N ote 
especially tha t 

folded nuclei{a ,= end sU7f ace fTee eneTgy 
or crystals u = lateral sUTface fTee energy 

The corresponding quanti ties for bundlelike systems 
are 

nuclei or ue=end 8uTface free eneTgy 
bundlclike} 

crystals u= lateml surf ace free energy , 

The specific type of folded nucleus to be discussed 
is shown in figm e lb. 

Lateral S urface Free Energy (Fo lded Crystals): The 
lateral surface free energy a for the folded nucleus 
refers to an abr up t phase boundary, since no polymer 
molecules pass through this surface and connect the 
super cooled liquid and crys talline pha cs. The 
quan tity a is thus similar in general cbaracter to the 
quantity u for the bundlelike system , i .e., u~ u and 
eq (2) applies to i ts estimation. Thus, a will us'ually 
fall between 5 and 25 erg cm- 2• 

End SUTface FTee Energy (Folded Crystal ): The 
end of the chain fold ed n uclcus, unlike the end of 
the bundlelike nucleus, has a well defined phase 
boundary. H ence, the fo lded nucleus has abrupt 
phase boundaTies on all. its .faces. As a. consequ ence, 
the t r eat m ~ n t of cham f?ldeel nuclOl ean be ap
proached vn th more certall1 Ly t han can buncllelike 
nuclei under like cir cumstlu·lces. Bo th u and u e 

may to a good apprOJl.i mation be assum ed t o be 
independen t of temperature and other variables. 

The value of. the surface free energy a e for a 
folded nucleus IS r elated to tl lC work r equired to 
form a fold [3J: 

(11 ) 

H ere q is the work required to form a fold <tnel A o 
is the area. of the cross sec.tion of the polym'er lY.ole
cule. An Important contnbutiOIl to q will ari se from 
the internal rota tional po tential of atoms or groups 
of t~ e loop itself, i .e., from tl~ e s tiffness of the polymer 
cham . Then values of q In the range of rougbly 
1 to 10 lecal per mole of loops arc to be expected . 
F or molecules wi th the cross-sectional area ordinarily 
encountered , say 20 X l 0- 16 cm 2, tbi s means tha t 
q/2Ao might be expected to run from roughly 15 to 
150 erg cm- 2. (1 lecal/mole of folds=6. 95 X 10- H 

ergs/fold. ) The quanti ty a eo is the contribution of 
a . due to factors other than folding, and is probably 
not in excess of a . Thus we might expect u , to be 
somewhere from 15 to 40 erg cm- 2 to roughly 150 



t o 175 erg cm - 2 for chains of normal fiexi bili t Y a~d 
cross section. I t is to be expected that u . WIll 
generally be larger than u in any specific case. 

2.5 . Rate of Homogeneous Nucleation With Chain 
Folds 

Region A: By simply rep.lacing (J . and (J in eq (4) 
with u . and u , and proceedmg as before, we get 

( f:J.H* ) ( 32 u 2 u . T ,~ ) 
IA= Io exp - kT exp T2 (f1hj )2(f1T)2kT (12 ) 

[(f1T)-2Iawl 

for the steady state rate of injection of loop type 
nuclei in bulle 

The auxiliary equation 

I ~ = 4 u ./( f1 f ) ,;;;!Au . T m/( f1hr)(f:J.T) (13) 

which defines the length or "step height" of the 
primary nucleus, is obtained i~ the ?erivation ~f 

eq (12) . A numerical calculatIOn usmg the estI
mated values of u., and reasonable values of the 
other parameters in eq (13) , reveals that the step 
height of the primary nucleus should frequently he 
between 100 and 500 A for a degree of supercooling 
of 20° C. (As will be noted s ub sequ~nt l y , the step 
height of chain folded lamellae growmg by m?no
molecular accretion may initially be substantIally 
less than that given by eq (13) .) 9bserve from 
eq (13) that the step height of the. pnmary nucleus 
increases as the degree of supercoolml?; decreases. 

The derivation of eqs (12) and (13) IS based on the 
idea, that the primary nucleus is large,. i .e. , the 
critical size is reached after many succeSSIve steps. 
Therefore the free energy surface may be treated 
as a conti~uum . As will be seen in section 5. 1, this 
assumption cannot be used for monom~lecular 

growth with chain folds. For the latter, a ~IffereJ?t 
theory of the rate of nucleation and step heIght Wlll 
be given. .. . 

Important restnctIOns eXIst on the path of nuclea-:
t ion on the free energy surface for loop type nuclei 
that are not evident in the simplified derivation 
indicated above. In particular, the step height of 
the primary nucleus, l ~, may be l:egar~ed as essen
tially invariant as the nucleus IS built up. The 
theory for the constancy of the ~tep ~eight ?f loop 
type primary nuclei has been gIven m detaIl else
where [3]. The step h eigh~ of on~ primary nucleus 
as compared with another IS restrIcted to a narrow 
range of values centering about l ~ b~ca~se of the 
steepness of the sides of the saddle pomt m the free 
energy surface, and the fact tha:t the chain folds 
prevent (or seriously deter) ar:- mcrease of l~n~th 
after a loop is laid down. lo ThIS type of restrIctIOn 
does not apply to bundlelike nuclei. 

10 In reference [3], it was shown in eqs (42--48) that the homogeneous nucleatio!' 
rate for folded nuclei between the length I and I+dl ls proportIOnal to exp (-dB / 
kT )exp (-d </>*/kT )exp {-(t;q,*/kT) [(I/It.-l )2 ]/[1+2.c 1 / 1 ~-1)]I, wh~re d</>* is the 
free energy of formation at the saddle pomt, whICh IS 3ZIT' <T ,/(Aj)' m th~ present 
geometry. This expression shows that the nucleatlO? rate IS a maXImum at 
I ~ I ~. This was extended to show that primary nuclCl WIth step heIghts much 
different than I; are highly improbable. 

Effect of Molecular Weight on Nucleation in 
Upper Part of Region A: The critical volume of the 
primary folded nucleus, v*, is a * b * I ~ = 64 u2u ./(4f)3 
~64 u 2 u e T !./( f:J.h j)3( f1T ) 3 . For the parameters u = 5 
erg cm- 2, u.=25 erg cm- 2, T m=400 OK, and (f1h j ) 
= 109 erg cm- 3, this comes to 2.6 X 1O- 16/ (f:J.T)3 cm 3• 

At relatively low supercooling, e.g., ( f1T ~ = ~O °c , 
this would give v*= 2.6 X 10- 19 cm3• If It IS now 
assumed that the average length of the pol~ T mer 

molecules, lm, is 5000 A, and that the cross-sectIOnal 
area is 20 X 10- 16 cm the mean volume per molecule 
is calculated to be' 10- 19 cm3 molecule- I. In this 
case the nucleus would have to be formed from 
mor~ than one polymer molecule. If the polymer 
molecule has large chain ends that are excluded 
from the crystal, it follows that .the folded nucleus 
will occasionally possess a cham that e.manates 
bundle-fashion from the plane of the cham folds. 
This leads to no serious limitation on the theory of 
nucleation as presented above. At f:J.T ?:..14 °c, the 
primary nucleus could form from one molecule .. 

If the chain ends are so large as to be practIcally 
. completely excluded from the crystal, a serious 
limitation on the ability of the polymer to form a 
primary nucleus with chain folds will occur as the 
step height approaches one half the l.ength of the 
molecule. For the parameters Clted above, 
1* = 4000Aj (f1 T) and lm= 5000 A. Then when 
lT~ 1.6 °c, chain folded primary nuclei cannot 
form if chain ends are excluded from the crystal. 
For materials with higher u . values or lower molec
ular weight this limitation will appear fur ther below 
T m. For ~xamp l e, with 0'.=50 erg cm- 2 and lm 
= 2000 A, this limitation would appear at f1T ~8 ~ C . 

This means that simple homogeneous nucleatIOn 
with chain folds will not be possible very near the 
melting point if chain ends ar e strictly excluded 
from the crystal. (The same is of course tr~ l e f~r 
bundlelike nucleation at some low supercoolmg If 
chain ends are excluded from the crystals.) For 
polymers of high molecular weight, th.is limi tat~on 
on folding is no.t apt to be encountered m the regIOn 
where the rate IS commonly observed . 

It will be possible to tolerate a certain concentra
tion of small chain ends as defects in a polymer 
crystal. In this case, the degre~ of supe~'coo lin g. at 
which chain folds would have dIfficulty m formmg 
because of chain end effects would be substantially 
smaller than indicated above. Also, a number of 
short chains may be included bundle fashion in the 
nucleus. 

R egion B: The e:\.-pression given for IA v~ill hold 
from temperatures near Tm on down to conSIderably 
lower temperatures. Then there will be. an increase 
in the rate of injection of loop type nuclm at a degree 
of supercooling f1Tc=4uTm/ (f1hr)am'n resultmg from 
the transport of pre-existing loop type embryos, 
r esembling U shaped kinks, from the m elt .to t he 
supercooled sta te. The argume?t for the . exI ~ te~c e 
of this nonsteady state nucleatIOn effect IS SImIlar 
to that given previously for bundlelike nuclei, and 
need not be repeated here. 

Note tha t the expressions for f:J.Tc for the bundle
like nucleus and the loop type nucleus are simil ar, 
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and involve only the lateral surface free energy. 
The type of nucleus of minimal dimensions that will 
actually be deposited near and below Tc will be the 
one that has the lowest free energy of formation, 
and thi will depend largely on which has the lowest 
end surface free energy. The same symbol is used 
to denote the transition temperature for both types 
of nuclei, since it is generally clear which kind is 
meant. 

Summary: A schematic diagram of the rate of 
homogeneous injection of folded nuclei as a fu~ct~on 
of temperature is shown in figure 2b. The sohd hne 
indicates the manner in which the interfacial jump 
rate term exp (- !5.H*/kT) will generally lower .the 
nucleation rate at some degree of supercoohng, 
causing a maximum to appear in IA. (This maxi
mum would ordinarily appear between 0.8 to 0.9 
Tm.) It is probable that the A-7B transition will 
frequently be unobservable because the jump rate 
term lowers the nucleation rate so much that Tc falls 
near or below the glass transition. The pip mark 
just below Tm represents the temperature above 
which the molecular length is too small to accom
modate chain folding if large chain ends are excluded 
from the crys tal. 

2.6. Bundlelike Versus Folded Nuclei in Bulk 

As will be brought out subsequently, there are 
substantial reasons for believing that lamellar 
spherulites formed in bl~lk .ar:e composed of crystals 
with chain folds, each mdlvldual lamella havmg a 
thickness corresponding to the step height associated 
with the chain folds. The intriguing question of how 
folded structures could nucleate and then propagate 
in linear polymers crystallized in bulk will. now be 
discussed in the light of what may be sald about 
homogeneous nucleation in the bundlelike and folded 
patterns, the .possibilit;y- that .h ~t.er~geneo u s nuclea
tion may be mvolved m the ImtJatlOn act, and the 
fact that under certain conditions chain ends or 
strain mav interfere with the form ation of large bun
dle like objects, even under conditions where small 
bundlelike nuclei arc formed easily. 

Consider first the problem of how folded nuclei 
might predominate in bulk crystallization on the 
assumption that the jo l~ e. d struct'l1:res that ar~ ob~erved 
are of homogeneous ong~n. (TIllS assumptlOn IS by 
no means proved in any case of bulk crystallization 
known to the author, but serves as a convenient 
starting point for the discussion .) We will deal 
only with crystallization near the melting point. 

There is no difficulty in explaining why crystals 
with chain folds are deposited from a sufficiently 
dilute solution of a linear polymer. Lauritzen and 
Hoffman [3] have discllssed this in terms of the 
rate of injection of bundle and loop type nuclei in 
solution which are II 

( MI*) ( 32 (J2(Je) 
I bund1e= l o exp - kT exp (!5.f)2leT 

( 16 (J210ge V?) ( ) 
X exp Ao(NF - 14 

11 The derivation of eq (14) is patterned after one given by M andelkcrn [24J 
for a cylindrical bundlclike nucleus. 

( MI*) (32 CT 2CTe) 
I Joop = l o cA p - leT exp - (!5.j)2leT (15) 

(dilute solution) 

Equation (14) has been recast to accord with the 
part icular notation and geometry used in the present 
papcr. (The parameters (J, (Je, 10, !5.H*, and (!5.j ) 
might have somewhat different values in dilu te solu
tion than in the bulk phase.) The quantity V2 is the 
volume fraction of polymer. The lateral surface free 
energy for the bundlelike nucleus in solution will be 
essen tially the same as the lateral surface free energy 
of the loop type nucleu in solu tion, i.e ., (J~ CT . The 
end surface free encrgies (Je and CT e will differ to a 
significant extent. 

The important point to note in comparing these 
two expressions is that, independent oj the values oj 
(J e and CT e that are chosen, 1 looD will always exceed 
I bund le if V2 is taken to be s1Jfficiently small, since the 
exponent in eq (14) containing loge V2 will be a large 
negative number under these conditions. N umerieal 
estimates given in an earlier paper indicate that even 
if (Te is taken to be considerably smaller than CTe, 
folded nuclei will predominate at concentrations of 
less than about 1 to 10 percent. The term in eq (14) 
involving loge V2 resu lts from the fact that a number 
of different polymer molecules must be gathered 
together to form a bundlelike nucleus, whereas only 
a few polymer molecules (and often a single one) 
can form a loop type primary nucleus. Therefore, 
there is a large configurational enLropy contribution 
to the formation of a buncUelike nucleus in dilute 
solution that does not arise in the case of the loop 
nucleus. 12 In the case where (Je is larger than CT., 
folded nuclei will predominate across the entire con
centration range (see below). 

For this same basie reason, a folded crystal is more 
stable in sufficiently dilute solu tion than a bundle
like one oj the same size and shape even if (Te is smaller 
than CT e• Specifically, it can be shown [3] that the 
total end surface free energy per unit area for the 
two types of crystal may be written as 12 

and 
CTend loop (tot.) = CT e• 

(16) 

(17) 

The term in eq (16) containing loge V2 arises from 
the configurational entropy effect mentioned earlier. 
Thus, even for the case (Je< CTe, (J end bundle (tot.) will ex
ceed CT end loop (tot.) at some low concentration of poly
mer, and the folded crystal will be the most stable 
type in dilute solution because it has less total surface 
free energy. In the event (Te > CT e, the folded crystal 
would be the most stable type across the entire 
concentration range when compared with a bundle
like crystal of the same size and shape. 

Weare thus led to a discussion of the r elative 
homogeneous injection rates for bundle and loop type 

12 The expressions for Iloop and (Ten d JooP (tot.) do in fact contain a small term 
in loge Vz, but this is entirely inSignificant compared to the ones shown for [ bundle

and Ucnd bund l e (tot.) [3]. 
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nuclei in bulk polymers. The appropriate compari
son is given by eq (15) in the case of loop nuclei, 
and by eq (14) with v2--71 for bundlelike nuclei (cj. 
eqs (6) and (12)): 

( tJ.H*) ( 
ftcundle= I o exp - kT exp (18) 

I loop= Io exp ( - ~~*) exp ( - (~~):;T )- (19) 

(bulk phase) 

Anywhere near the melting point, the exponents 
involving the surface free energies in these two ex
pressions are by far the largest and most temperature 
dependent. Recall also that (J is essentially the same 
as U for the two types of nuclei. It follows that if 
homogeneous nucleation of folded nuclei is to prevail 
over any sensible temperature range in the bulk phase, 
the condition (Je> ue must exist. 

'While the condition (Je> ue for homogeneous nuclei 
would lead to the dominance of folded nuclei (and 
the resultant chain folded lamellar structures) in bulle 
polymers, this is not necessarily the only condition 
that can lead to a significant number of such struc
tures in bulle Other factors must be taken into 
account. For example, chain ends may in some 
instances prevent the formation of large bundlelike 
objects, as Flory's theory [22] suggests. (Cumulative 
strain may have a similar effect.) Also, hetero
geneous initiation , which is certainly a very common 
source of spherulite initiation, must be considered. 
However, before discussing these points it is worth 
.commenting on the important case (Je> ue . 

Conditions giving (Je> ue (chain folding the basic 
mode of nucleation and growth in bulk ) : It has been 
shown for a bundlelike nucleus with a flat end and 
noncumulative strain that the minimum value of (Je 
is given by ld( tJ.h,)Pe/6p Z, where ld is the length of the 
part of the bundle end where the density falls from 
the crystal to the supercooled liquid value (see eq 
(A- 20 ) in the appendix). Further, it was estimated 
in section 2.2 for the particular case of polyethylene 
that (Je(m!n) was in the vicinity of 60 erg cm- 2 on the 
basis of the assumption ld= 10 A. An analysis of U e 
for folded polyethylene crystals based on data on 
single crystals formed in dilute solution due to Keller 
and O'Connor [1] suggests that U e is probably be
tween 30 and 75 erg cm- 2 [3]. More recently, a value 
in the vicinity of 100 erg cm -2 has been suggested 
[41]. (Al tbough these figures apply to folded crystals 
formed in dilute solution, the U e value relevant to 
folded crystals formed in bulk should not differ 
greatly from that appropriate to dilute solution.) 
Thus, wbile it is not altogether certain that (J e(mln ) is 
larger than u e, it is clear for the particular model 
used that (Je for the bundlelike nucleus can readily 
exceed (Je (m!n)= 60 erg cm- 2, since r will generally 
exceed zero. With this considered, (J e could easily 
be as high as several hundred erg cm-2• Therefore, 
the possibility that (Je> ue for polyethylene would 
appear to exist. 

Before drawing any conclusions from the above, 
several points must be made clear: (1) The value of 
(Je(m!n)= 60 erg cm- 2 is admittedly based on the as
sumption ld= 10 A. However, it is believed that 
this is if anything an underestimate, so (Je (m!n) for the 
flat bundle end model without cumulative strain is 
probably even larger than the value cited. (2) The 
expression (Je(m!n ) = ld(tJ.h,) Pe/6p Z depends on the as
sumptions used in the simplified model for the heat 
content and entropy as a function of density in the 
bundle ends. For example, a narrower maximum in 
tJ.H(p) would lead to a lower value of (Je(m!n). N ever
theless, the estimate given for (Je(m!n ) is probably not 
significantly high on this account, and may be too 
low. (3) Cumulative strain at the flat bundle ends 
resulting from the density difference between the 
"connected" liquid and crystalline phases has been 
omitted from the calculations. However, this will 
in general lead (Je to be underestimated. As will be 
seen subsequently in the discussion of the hypo
thetical bundlelike "lamellar" structure, cumulative 
strain will occur at fiat bundle ends of large extent, 
especially in tbe case where the chain axes are per
pendicular to the plane of the bundle ends. Crudely, 
one can think of such strain as greatly increasing r in 
eq (3), causing (Je to attain values far in excess of 
(Je(m! n ) . We regard that it is quite certain that (J e> ue 
for large nuclei with polymer chains that are per
pendicular to fiat end surfaces on account of cumula
tive strain alone. (4) The cumulative strain in the 
flat bundle end model may be reduced by allowing 
the chains in the (still flat ) surface phase to subtend 
a certain angle r with respect to those in the crystal 
itself (see section 4.3 ). (This is related to the fact 
that the end surface of a buncUelike crystal will tend 
to be curved in order to minimize the surface energy, 
as pointed out by Matsuoka and Maxwell [25], and 
Frank [26]. ) Estimates obtained using appropriate 
variations of the model treated in the appendix sug
gest that (Je will be fairly large for the "tilted," model 
even if the cumulative strain is completely removed. 
The bending of the chains at a non tetrahedral angle, 
and the abnormal separation of the chains at the 
boundary neares t the crystal, produce the required 
contributions to the heat content in the surface 
phase. 

With the above remarks in mind, it seems reason
able to suppose that it is entirely possible that 
(J e> ue for polyethylene for the important case of 
flat end surfaces. This would lead in a natural 
way to a predominance chain folded nuclei in bulk 
in this polymer, as opposed to bundlelike nuclei 
with flat ends. From tbis illustrative example 
we consider that it is at least not nonsense to propos~ 
that (Je may exceed U e in some linear polymers. 

The free energy of formation of a bundlelike 
nucleus with curved ends ("ellipsoidal" model) 
has not been explicitly considered here. This would 
probably require the use of considerations akin to 
those proposed by Cahn and Hilliard [27] for homo
geneous nucleation in systems with density gradients. 
This model is not considered revelant to the problem 
of the nucleation and growth of bundlelike "lamellae" 
with large flat end surfaces. Thus, while it seems 

306 



rea onable on the basis of our calculations to suppose formed, a fold ed. crystal will grow slowly, if at all, 
that in some cases CTe> U e for nuclei with fiat ends, no in the chain axis direction because of the existence 
such simple calculations will provide as much infor- of the folds, and. the slowness of the requisite in.ternal 
mation on whether or not the free energy of for- "lengthwise" difl'usion mechanisITl. ) A chain end 
mation in bulk of a folded nucleus (which of course can r eadily be "denucleated." the short distance to 
has fia t ends) is les than that of an ellipsoidal the plane of the chain folds when it finds itself on 
bUlldlelike nucleus under similar conditions. N ever- the lateral (growing) surface, thus being rapidly 
theless, 0UI' surmise would be that the necessity of and efficiently excluded from the interior of the 
having the chain molecules go through a density folded crystal. Such chain ends would protrude 
gradient in the ellipsoidal bundlelike case might outward from the fold plane on a short section of 
well be able to increase i ts free energy of formation polymer chain. 
to the point that folded primary nuclei are still Thus, thin chain folded crystals, once nucleated, 
the favored type in the bulk phase. This is not should be able to grow to large "radial" dimensions, 
certain, however, and the possibility therefore corresponding to a certain fraction or even the entire 
exists that ellipsoidal bundlelike nuclei may form radius of a spherulite. The main limitation would 
more readily at a specified supercooling than folded arise with low molecular weight material where the 
nuclei, even when folded nuclei are preferred to molecular length was less than twice the step height, 
bundlelike nuclei with fiat end faces. However, but all molecules that were significantly longer than 
if strain or chain ends limited bundlelike growth, this would be potentially crystallizable in a basically 
the macroscopically observable crystals would still chain folded manner. Some of the chains (including 
be of the folded type even though coexisting with rather short ones) may be included bundle fashion 
a number of bundlelike microcrystals or embryos in the otherwise folded crystal. 
(see below). The concept that chain ends are excluded from 

Possibility oj chain folds in case CT e< U e : We now polymer crystals must not be pressed too far, espe
mention certain conditions that might lead to the cially in tbe case of small chain ends. A substantial 
appearance of a considerable amount of chain number of sufficiently small chain ends may enter 
folded material in a bulk polymer even in the case chain type crystals. (This evidently applies in the 
where CT e< U e for primary nuclei. case of the - CH 3 end groups in the solid solu tions 

Consider the effect of chain ends on the formation formed by the n-paraffins of different lengths.) In 
of the two types of nuclei (or crystals) under dis- the case where a certain number pCI' unit volume 
cussion, namely the bundlelike and the folded. of such ends can be assimilated by the polymer 
We deal principally with the case where the chain crystal, the restrictions noted in Flory's theory on 
ends are assumed to be sufficiently large so that the size of bundlelike crystals would be relaxed, i.e. , 
the majority cannot enter the crystal. larger crystallites would form. Similarly, anyrestric-

It is reasonable to ignore the effect of even large tions on the ultimate size of t he step height due to 
chain ends in constructing the expression for the finite molecular length would be minimized, as noted 
free energy of formation of relatively small bundle- earlier in section 2.5. 
like nuclei of a polymer of high molecular weight. The radial growth of bundlelike nuclei may be 
However, this is not the case for bundlelike Cl'yS- significantly reduced or even stopped by cumulative 
tallites where large chain ends are excluded. Flory strain at the bundle ends resul ting from the density 
has clearly indicated for this case that there are difference of the liquid and crystalline phases. A 
restrictions of an equilibrium character on the size mentioned earlier, this will certainly be the case for 
of the bundlelike polymer crystals [22]. The bundlelike nuclei with fiat ends where the chain 
restriction discussed explicitly in Flory's paper refers axes are perpendicular to the end face. This may 
to a limitation on the mean length of the crystallites. possibly even occur for ellipsoidal bundlelike nuclei, 
Flory's theory of bundlelike crystallization also or bundlelike nuclei with flat ends where the chain 
implies a limitation on the mean radius of the crys- axes are inclined at an angle to the end urface. In 
tallites. The n et result is that a large number of such situations, the condi tion CTe< U e might exist for 
bundlelike microcrystals of varying sizes is pre- small nuclei or very small crystals, while cumulative 
dicted to exist in a polymer with a distribution of strain leads to CTe > U e for large nuclei or crystals. 
molecular weight. The restriction on the ultimate Homogeneous nucleation of tiny bundlelike nuclei 
(equilibrium) size of bundlelike crystallites must be would then prevail over tbe folded type, but the 
given consideration in dealing with the formation of crystals apparent on a laro'e scale in the system 
large nuclei, and the growth of crystallites, in the would be formed on a ba ically chain folded pattern. 
bundlelike pattern. The description of bundlelike Even in the case where CTe< U . for small nuclei , and 
microcrystallinity just mentioned does not appear to CTe> U e for large nuclei, the rate of homogeneous 
suggest the existence of large numbers of lamellae of nucleation of lamellar spheruli tes with chain folds 
uniform thiclmess and extended "radial" dimen- will be given approximately by eq (19), e pecially 
sions of the type seen in lamellar spherulites. at moderate to low supercooling where the nuclei 

Even the assumption that chain ends are totally will be ra ther large. The nucleus, though tarting 
excluded from the crystal will not cause folded on the bundlelike pattern, would begin folding as it 
nuclei or thin folded crystals to fail to grow to large grew and exhibit the overall energetics characteristic 
dimensions in the "radial" direction, i.e., in the of a folded nucleus. At high supercooling, stable 
direction normal to the polymer chain axes. (Once bundlelike nuclei would appear in profusion, though 
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folding would occur as these grew to large size. In 
this region, the apparent homogeneous injection rate 
of folded objects would increase above that given 
byeq (19). This effect may strongly resemble the 
onset of region B. 

The above remarks form the basis of the concep
tion that even if (Je< (T e for small nuclei, chain folded 
structures may under certain circumstances be the 
most prevalent and physically obvious form of bulk 
crystallization in linear polymers. Specifically, 
cumulative strain or sufficiently large chain ends 
may poison the coherent growth of bundlelike crystals 
to lai'ge dimensions, causing any strictly bundlelike 
crystals that were initiated to be of limited size: 
then any folded structures that were introduced into 
the system tlll'ough the agency of either homogene
ous or heterogeneous nucleation might be able to 
grow to very large size in the two dimensions normal 
to the chain axes in the same general sense that 
folded single crystals do in dilute solution. In this 
case, it is important to distinguish . between the 
prevalence and ease of observation of a certain type 
of crystal on the one hand, and the rate of homogene
ous initiation of small nuclei of limited growth 
potential on the other. For the case where (Je> (T e 

for nuclei, the formation of folded structures will 
dominate the bulk crystallization process. 

The remaining point co ncerning the origin of 
nuclei deals with the possibility of hetcrogeneous 
nucleation. In real polymer systems, the initiation 
of spherulites is for the most part of pseudohomo
geneous or heterogeneous origin . (Pseudohomo
geneous initiation, which refers to the essentially 
spOTadic initiation events that may take place on the 
flat surfaces of weakly wettable heterogeneities, can 
imitate the truly sporadic initiation characteristic of 
homogeneous initiation.) As a result of special 
interactions, heterogeneities might conceivably have 
a strong predilection for producing structures con 
taining loops on their surfaces, even if (Je< (T e for 
the homogeneous process. This might cause chain 
folded structures to be prevalent in linear polymers 
crystallized in bulk. In the case where (Je> (T e, 

chain folded structures of heterogeneous or pseudo
homogeneous origin would arise in numbers far in 
excess of th at characteris tic of homogeneous n u clea tion 
if suitable heterogeneities were present, and these 
structures would certainly be the dominant form 
present. Certain questions relating to homogeneous, 
pseudohomogeneous, and heterogeneous nucleation 
will be discussed subseq uently in section 8. 

Summary: The following conclusions may be drawn. 
If folded nuclei are to predominate in the super
·cooled bulk phase of a polymer on a homogeneous 
basis over any important range of temperature, the 
end surface free energy of the bundlelike nucleus 
must for some reason exceed that of a folded nucleus 
((J e> (T e). (This statement refers specifically to 
nuclei with flat end surfaces.) Because of a certain 
flexibility in the parameters that define (Je and (T e, 

it is not possible to say a priori that homogeneous 
formation of folded nuclei should dominate the bulk 
nucleation mechanism. However, a plausible case 
can be made for supposing that (Je might well exceed 

(T e under certain circumstances. In any event, the 
quantity (Je is evidently considerably larger than has 
been assumed in the past. (A compelling theoretical 
case can be made for the dominance of folded nuclei 
of homogeneous origin in sufficiently dilute solution. ) 
In the case of heterogeneous nucleation under the 
condition (Je> (T e folded structures are to be expected. 
It is probably not absolutely necessary that (J e always 
be greater than (T e to have a significant amount of 
folded structures appeal' in bulle Sufficiently large 
chain ends may poison the formation of large bundle
like crystallites, but at the same time not seriously 
affect the formation of large chain folded objects. 
Similarly, cumulative strain may abort the growth of 
bundlelike crystals ; this corresponds to (J ,< (T , for 
small bundlelike nuclei, and (J ,>(T , for large bundle
like nuclei or crystals. Further, heterogeneities, a 
common source of spherulite initiation, might 
induce folded surface nuclei by specialized inter
actions. 

Attention is now directed to the main problem of I 

the rate of radial growth of spherulites, and the 
connection between the proposed mechanisms and 
spherulite structure. 

*3. Rate of Radial Growth of Spherulites: 
Preliminary Considerations 

3 .1. The Two Types of Nucleation Problem in 
Spherulitic Growth 

We will repeatedly encounter two types of nuclea
tion problem in connection with the rate of radial 
growth of a spherulite. The first of these is quite 
similar to that already treated for primary nuclei in 
the previous sections, in that it deals with a nucleus 
that is built up, step by step, until a critical size is 
finally reached. Nucleation of this type has already 
been treated by Turnbull and Fisher [18], and is 
readily adapted to deal with surface nuclei that are 
gradually built up to critical size in a stepwise manner. 
The second type of nucleation problem commonly 
encountered is that where the maximum in the free 
energy barrier is reached in a single step, rather than 
in a large number of steps. This problem often 
arises when nucleation of a monomolecular layer is 
considered. The problem of monomolecular layer 
growth has been considered by Lauritzen and 
Hoffman [3]. 

If the surface nucleus is built up by successive 
addition of a large number of elements until a 
nucleus of critical size is reached, the free energy of 
formation may be represented as in figure 3a. Each 
elementary forward reaction has a reaction rate of 
the form (kT/h) exp (-wf/kT), and each backward 
reaction a rate of the form (kT/h) exp (-wb/kT). 
Then by summing over a ll the forward and backward ' 
reactions in the manner described by Turnbull and 
Fisher, it is found that the overall rate of nucleation 
per unit area of substrate is 

1.= 18 (0) exp ( - b.:;*) exp ( - ~~} (20) 
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where !:"F* is the free encrgy of activation of the 
interfacial jump rate, !::,.¢: the work required to build 
a nucleus of critical size, and 18 (0) a factor that does 
not depend strongly on Lcmpcrature. As before, the 
term in !::"F* may be broken up to give !::"H* - T!::"S*. 
The quantity !::,.¢; is , in general, calculated in a 

. manner similar to that used previously for primary 
nuclei, i. e., the free energy surface is treated as a 
continuum. Each nucleus then rapidly grows across 
the substrate crystal and produces a new layer, or 
substantial fraction thereof. A new surface nucleus 
will then form on this new layer. Accordingly, the 
rate of growth on tlus crystal face depends on the 
rate of nucleation on the face . When the crystal 
face in question corresponds to that leading to 
radial growth of the spherulite the steady state rate 
of radial growth may be written 

( MI*) (!:,.¢*) G= dl'/dt = Go exp - kT exp - kT . (21) 

(large surface nuclei built up step by step ; !::,.¢ ~ 

calculated from continuum model of free energy 
surface) 

Here Go is a constant ·with the dimensions it- I, r the 
radius of the spherulite at time t. The quantity Go 
contains the factor exp (!::"S* /k) , and certain rela
tively unimportant geometrical factors . The princi
pal problem connected with calculating the radial 
growth rate for a model is the evaluation of !::"¢ ~ . 

As in t he case of homogeneous nucleation, !:,.¢; is the 
free energy at the saddle point described by the ap
propriate free energy function . 

At low to moderate supercooling, the main tem
perature dependence in eq (2 1) is due to the !::,.¢ ~ 

term, thc term in M-I* being next in importance. 
The temperature dependence of Go is negJi&ible in 
comparison. 13 For steady state surface nucleation, 
the term in !::,.¢;' always has a negative temperature 
coefficient. The term in !:"H* has the usual positive 
temperature coefficient. 

The problem takes on a somewhat different char
acter in cases where the activated state is reached 
in one step (fig. 3b). Although from a formal stand
point the free energy surface in question may have 
a saddle point, it is not correct to treat the free 
energy of formation !::,.¢ as a continuous function of 
the width a of the nucleus when the activated state 
is reached at a= ao. Then!:,.¢ is defined only for 
discrete values of a. The net rate is maximized 
when the length of the step clement has a critical 
length l*, the nucleus being formed by passage over 
part of the barrier ridge which is not necessarily at 
the saddle point in the free energy surface treated 
as a continuum. For this problem, a summing of 
all the forward and backward reactions leads to a 
nucleation rate per unit area of surface of the form [3]: 

13 '1"he pt'e-exponential is sometimes written as GoT, apparently in the belief 
that the main temperature dependence of the pre-exponenti al arises from the 
factor (k'l'jh) that applies to the elementary jump rate processes for each indio 
vidual forward and backward reaction . Actually f , (O) contains a factor analo
gous to J( in eq (1) that varies as (A '1')-2 for a n um ber of models. E ven this 
dependence on temperature is negligible in tIle problems of interest here, and 
Go may be co nsidered to bo independent of tempcrature to a sufficient approxi
mation . 
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FIGUHE 3. The two types of nucleation problem encountered in 
calculating the rate of radial growth of polymer spherulites. 

(a) Activated state (*) reached by successive addition of a large number ofele 
meots (Turnbull and Fisher, continuum free energy surface model) . 

(b) Activated state (0) reached in Single step , I.e., by the accretion of one ele
ment of length Z*, as in certaill cases of monomolecular layer growth (Lauritzen 
and Hoffman, discrete free energy surface model). 

[ sinh (E/2kT) ] 
/ .=1.(1) l+exp (-!:,.¢i(I)/2kT) sinh (E/2kT) 

[ !:"H*] [!:,.¢*(J)] 
X exp - kT exp - kT . (22) 



Here t.ct>:(l) is the free energy function t.ct>s evaluated 
for the case v= 1, where v is the number of elements 
(i.e., the number of chains of critical length l*) laid 
side by side on the crystal substrate, and E the 
incremental increase of stability on adding each new 
element (see fig. 3b). 

In the case under consideration, the activated 
state is reached when one such element of length l* 
attaches to the surface. This is what is meant by 
the statement that the activated state is reached in 
" one step"; the term "one step" does not refer here 
to the elementary process where a single polymer 
segment is laid down during the process of building 
up th e length l*. The value of t.F* and t.H* relevant 
to the interfacial jump rate characteristic of the 
laying down of an entire step element of length l* 
may be larger than t.F ~eg and t.H ~eg, which refer to 
the jump rate at the interface for the elementary 
segmental processes. The principal contribution to 
t.F* and t.H* probably comes from jump rate proc-

. esses at the end of the nucleus, especially in the case 
of folded systems. 

In most cases of practical interest, the term in 
brackets involving sinh (E/2kT) will be sufficiently 
independent of temperature to be taken into the 
pre-exponential. Then by applying the same argu
ments used earlier, I s may be transformed into an 
expression for the radial growth rate of a spherulite: 

( MI*) (t.ct> ~(j) ) 
G= dr/dt = GO (l) exp - kT exp -lCf' . (23) 

(small surface nuclei where activated state is reach ed 
in single step; t.ct>* (l) calculated from discrete free 
energy surface model) 

It is emphasized t hat eq (23) frequently applies 
in the important case of growth by addition of 
monomolecular layers. If eq (21) is inadvertently 
applied in such instances, misleading or even errone
ous results may be obtained; it is important not to 
confuse t.ct>: (continuum model ) with t.ct> ~(l) (discrete 
model) in calculating the work required to form the 
nucleus of cri tical size. 

The calculations of the radial growth rate of 
spherulites to be given in this paper refers to experi
ments where an unoriented polymer is first heated 
well above Tm and then rapidly cooled to the growth 
temperature. The less readily interpretable experi
ments where specimens are fu'st quenched from the 
melt and then rewarmed to the growth temperature 
are discussed briefly in section 8.2. 

3.2. The Jump Rate Term in Supercooled Liquids 

Another point of interest is that the interfacial 
jump rate term may require modification, particu
larly if it depends strongly on segmental motions in 
the supercooled liquid polymer. If such motions 
dominate the interfacial jump rate process, it can 
be shown that the term exp [- t.H*/kT] in the vari-

ous equations that have been given may be replaced 
by the empirical expression based on the work of 
Williams, Landel, and Ferry [28] 

that is valid between Tg and Tg+ 100°. Here T g is 
the glass transformation temperature . This is 
equivalent to the statement that t.H* depends on 
temperature, and has the value 4.12 X 103T2/(51.6 + 
T - Tg)2. For the sake of simplicity, and for the 
reason that crystallization temperatures of interest 
often lie above T g+ 100°, we have not employed this 
empirical expression in the body of the paper. Near 
the melting point, the constant value t.H* = 20,000 I 

cal mole- 1 may be employed for trial purposes. 

.. 

...... 

... .. (ii) i~"""""" (I\T)-I 

••• (i) • 

.... .. 
- S' A' ------+i 

Tc 

GROWTH TEMPERATURE 

( b) 

FIGURE 4. The coherent bundlelike surface nucleus model and 
its crystal growth rate behavior. 

(a) Ooherent nucleus of length I, widtb a, and monomolecular layer tbiekness 
bo on substrate crystal. Heavy arrow marked G indicates direction of crystal I 
growth. 

(b) Tbe logarithm of growtb rate versus tem perature, ---- log G versus T 
if ef[ect of jump rate is small; - - behavior wberejump rate lowers log G caus· 
ing maximum to appear in log G versus T; • ... possible ef[ect of interference I 
witb growth by excess nucleation in surrounding medium (cf. fig. l (a)). 
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4. Polymer Crystal Growth by Coherent 
Bundlelike Surface Nucleation 

4 .1 . Model 

The model used is shown in figUI'e 4a. The 
polymer molecules in the nucleus are colin ear with 
those in the substrate, i.e., the sUI'face nucleus is of 
the coherent type. The thickness of the surface 
nucleus is bo, corresponding to one molecular layerY 
O~ce formed, this nucleus, which has a length land 
wl~lth a, leads to the rapid completion of a layer of 
thIckness bo on some large area of the growing face. 
Note tha.t the molecules are oriented at a right angle 
to the dIrection of growth, which is marked "G". 
The lateral sUI'face free energy is U and the end 
surface free energy is u e. ' 

The coherent bundlelike surface nucleus model 
(or one of several simple modifications of it) has been 
presented at various places in the literature as a 
pattern for typical spheruliLic growth. However 
calculations on this model should be approached with 

I full recognition of the fact that it is very improbable 
. that it will lead to a typical lamellar spherulite. 

The relationship of this model to the structure of 
spherulites will be discussed shortly. MeiLnwhile, 
we shiLll treat ~he model as if it did produce a large 
crystal for whICh one could define a radial growth 
rate G. 

4.2. Growth Rate for Bundlelike Coherent Nucleus 
Model 

I A prime w.ill be used to distinguish the quantit.ies 
connected WIth coherent surface nuclei from those 
b~longing to primary nuclei. Later, a double prime 
will be used to denote quantities related to non
coherent nuclei. 

Region A': In region A' , i.e., from temperatures 
n~ar Tm on do.wn to those corre ponding to rather 
hIg~ supercoolIng, 0 an~ ~ may be regarded as not 
havmg reached theIr mInImal values and the free 
energy of formation may be WI·itten a~ 

otice that no term involving al appears in this 
expression.: for a str~ctly co~erent nucleus, only the 
work requIred to bUlld tbe SIdes enters. By setting 
Co.t::,.r/> /oa) I and (ot::,.r/>/ol)a equal to zero , it is deter
mmed that a* = 2u/ (t::,.f) andl* = 2ue(t::,.j). Then it is 
found that 

(26) 

Since a and l are variiLbles, so that the surface 
nucleus is not formed in one step G is to be cal-
culated with eq (21): ' 

" Note tbat ao bas a d ifferent meaning tban a mino Tbe qu antities ao and bo 
refer to tbe appropriate later.al lattice spacings iu the polymer crystal , wbile 
amiD and bmin re fer to tho LTIlllJmUrn values that a and b may take on in a homo· 
geneous nucleus. In general, am in and bm in wIll be larger tlian ao and boo 

G - G " ( t::,.H*) ( 4bo(]"(]" er;" ) 
A'- 0 exp - leT exp T (M f)(6T)leT ' (27) 

[(t::,.T) -1 law] 

R egion B': The question must now be rai ed as to 
what behavior mu t be expected of the ra,dial growth 
rate at high degrees of supercooling, provided Lhat 
the jump rate term has not already caused G to fall 
to a low value. 

Suppose that the crystals whose radial growLh rate 
we have discussed were of heterogeneous orio-in 0 

that in region A' they were born near t= O. I::> Then 
at the Tc transition in the supercooled bulk phfL e, a 
vast number of tiny bundlelike nuclei would b e in
jected by the nonsteady state nucleation mechanism 
described in section 2.3 into the matrix in which the 
crystal was attempting to grow. Thus, at or near 
the T c transition characteristic of the pure bull 
phase, ~hich will take place at t::,.T c ~4uT m/( t::,.h f)amln, 
the mdial growth of the older fLnd larger crystals 
would be rather abruptly slowed down because of de
pletion of crystallizable material, and impingements. 

If it is assumed that the crystallites are of entirely 
homogeneous origin, a rather similar phenomenon can 
tfLke place. H ere l A, as calculated for a bundlelike 
nucleus in section 2 may be regarded a being pro
portional to the rate of injection. Barring interfer
ence from the jump rate term, the in jection rate 
would rather abruptly attain a value considerably in 
~x~ess. of the extrapolated value of l A. Such a high 
ll1]ectlOn rate at and below Tc due to non teady 
state nucleation would lead to iL massive number of 
impingements. Any cry tallites formed in these cir
cumstances would tend to be smiLll, and have a ignif
icantly reduced growth rate. 

Summary: A schematic diiLgram of tbe variation 
with temperatme of the radial growLh rate of a body 
that is governed by a coherent bundlelike smface 
nucleus is shown in figure 4b. Curves (i) and (ii) 
in region B' are intended to represen t different 
degrees of interference with the growth re ulting from 
the incmsion of a vast number of competing micro
crystals resulting from nonsteady state nucleation. 
The solid line in region A', which exhibits a maxi
mum in G because of the effect of the jump rate 
term, shows the type of behavior that i most prob
able if the model is valid. 

It is considered that the treatment of the secondary 
(coherent) bundlelike smface nucleus outlined in ee
tion 4.2 is more fully illustrative than that given 
previously using the customary pillbox surface nu
cleus (cf. reference [11]) . The pillbox nucleu re
quires only a single surface free energy that corre
sponds to our u, and leads to a nucleation term 
involving u2 • For a surface nucleus consisting of 
chain molecules lying on a flat smface, it seems better 
to distingui h between the lateral surfaces, and the 
end surface, giving a nucleation term involving the 
product uue. If the growth nucleus were assumed to 
form on the end of the bundle, so that the direction 
of growth was parallel to the polymer chains, then 
the pillbox nucleus with its single lateral surface free 
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energy would be justified. However this model 
'vo~ld not lead to a "spherulite" wher~ the polymer 
chams were normal to the radius. 

4.3 . Coherent Bundlelike Growth and Spherulite 
Structure 

Thougb much attention has been given here and 
elsewhere to various coherent bundlelike growth nu
cleus models, it remains to be seen whether or not 
such ~ grow~b mechanism would lead to a roughly 
spherIcal object that would be recognized as a 
spherulite. When this is done, it will emerge that 
one must have strong reservations about the ability 
of ~he model to reproduce anything resembling a 
tYPICal lamellar spherulite. 

Suppose that we attempt to construct a single 
" lamella" on the strictly bundlelike pattern of the 
type shown in fi~ure 5(a) where the polymer chain 
axes are perpendICular to the IT. plane. It is simply 
not possible to ~reate a large flat surface of the type 
commonly seen 111 lamellar spherulites in this manner 
because of the density difference between the super
cooled liquid and crystalline phases and the fact that 
polymer molecules with covalent b~nds connect these 
two pha~ es in the bundlelike system of crystallization. 
Gro:vth In the "radial" direction, GT , for such a hypo
thet.ICaJ "lamella" would clearly result in cumulative 
stram at the bundle ends. As pointed out by 
Matsuoka and Maxwell [25], and Frank [26], the 
crystal woul.d a~tually tend to become ellipsoidal 
(see dotted hnes m figure 5(a)) in order to minimize 
the total surface free energy. If the bundle end 
were assu.med to remain flat, the effective value of 
IT. would. mcr.ease enormously as. the crystal grew in 
the G.r dI~ 'ec tlOn, thus abortmg Its growth. 
Th~s effect should ?ecome distinctly apparent for 

nucleI where the radIUS corresponds to a mismatch 
between th~ supercooled liquid and crystal of one 
molecular dIameter. A conservative estimate would 
place this radius at less than 50 A under normal cir
cumstances. The coherent bundlelike growth model 

~~ 

~ 
I I 
I I 

(a) ( b) 

where the polymer chains in the crystal are peI'pen
J.ICul~r ~o the. ~ypothetical IT. plane is clearly defec
tIVe. 111 Its abilIty to predict anything resembling a 
tYPIcal lamella. 

It might be suggested that the cumulative strain 
problem .di~Cl:ssed above for the perpendicular case 
c~n be mmmllze~l by allowing the chains on the faces 
of a flat bundlehke lamella to exit from the crystal 
at an angle t. In such a " lamella" the chain axes 
would t~us be tilted with respect to 'the presumably 
flat surface of th.e en~, as shown schematically in 
figure 5 (b) . The Idea IS that the chains in the surface 
region open up to spacings ao+ .'lao and bo+ .'lbo that 
closely correspon~s t? the mean molecular spacing in 
the supcrco~led lIqUId :polymer. It is not entirely 
clear that thIS would relIeve the cumulative strain of 
the t~pe that exists in the perpendicular case if the 
IT. surface must be kept flat. It must be remembered 
that the "lamella" will be three dimensional, i.e., 
both the a and b spacings in the surface phase must 
be larger than ao and boo It seems likely that the 
end surface would tend to become curved. Even 
ig~oring these effects, it is clear that the work re
qUIred to bend. the polymer bonds at the required 
angle, aT,ld to mcrease the spacings in the surface 
phase, willl~ad to a~ least a fairly large IT. value from 
ll?ncumulatlve stram as noted in section 2.6. As 
WIll be demonstrated below, a lamella with a sensible 
e!ld surfa.ce fr~e energy that is not subject to cumula
tIve stram will not maintain its "step height" or 
"lamellar" thickness. 

Consider now the relative growth rates in the radial 
(r) and lengthwise (l) directions for a bundlelike 
crystal of the type illustrated in figures 5 (a) and 5 (b) 
on the assumptlOn that cumulative strain is absent. 
The growth in the radial direction has already been 
calculated: 

Gr= Go exp ( - ~~*) exp ( 

( c ) 

• FIG U RE 5. Hypothetical structure oj bundlelike lamellae. 

. (a) Isolated lamclla with cbains perpendicular to fiat bund l d L ' ht .. ' h ' " 
bnes illustrate how crystal would round off end to red uce stra1;~ ~ t t 11 al IO\\ ? s ow site of cumnlat! ve stram. " h " represents hypothetical step heigbt Dotted 

(b) Isolated lamelia with chains tiltcd with respect to flat bnnd l 0 na sur ace reeenergy: . . 
(c) Stacks of intcrconnected bundlelike " lamellae" with tilted c~ al n ~ l : Cumulative stralllls reduced , but" lamella" will gro w in both 0 , a nd G, di rections. 
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The conesponding growth rate on the (J e faces of the 
"lamella" is 

where lmln is the leng Lh of Lhe eoherent surface nu
cleus tha t forms on the bundle end . (II cumulative 

I strain occurred in the bundle ends, both (J and (J e 

would increase rapidly with coher ent growth in the 
r and l directions, and the crystal would not grow to 
form a large crystal like a lamella, but would form 
instead an ellipsoidal bundlelike microcrystal of 

, limited size as noted in section 7.) 
The quantity l mln may be taken as the minimum 

length of polymer chain that is crystallizable. It is 
impossible to escape the fact that t he bundlelike 
cr ystal will grow at a sensible rate on the (J e face if 
growth on th e other surfaces is r apid at the sam e 
supercooling. Even if l mln is assumed t o be several 

, times larger than bo, it must be r em ember ed that (J e 

i will probably be substantially larger t han (J. Thus 
we mus t expect G1 to be roughly comparable to GT) 
or possibly even considerably larger . In such a case 
the bundlelike " lamella" would not mainta in its 
hypo thetical s tep height " 71," as radial growth pro
gressed . The above calculat ion accords wit h the 
concept tha t a high energy surface will grow more 
rapidly th:w a low energy one. 15 It m ay be con
cluded tha t an isolated "lam ella" t hat main tain ed 
its thicl\:ness or "step heigh t " caDnot be predicted 
with either of th e bundlelike models depi ct ed in 
fig ure 5(a) and 5(b) .16 

We consider it pre I' erable to consider only Lheori es 
of polym er crys tal growth capable of predi cting th e 
existence of an isolated lamella in a straigh t forward 
m ann er. It is then a simple ma nn er to generalize 
to the case where the lamellae occur in stacks. How
ever , there is on e ra ther arbitrary model involving 
s tacks of bundlelike "lamellae" that deserves com
m ent. This is shown in figure 5 (c). H er e one 
polym er molecule participates in more than on e 
shee t, with entangled and " amorphous" polym er 
between. By drawing the model as shown, i .e., with 
chains ti l t ed with r espect to the (J e plane, the qu es
tion of cumulative strain is supposedly minimized. 
Also th e point that bundlelike lam ellae will grow 
on the (J e face is t emporarily evaded, except at the 
outer edges. This model of "lamellar " stru cture 
suffers from some drawbacks. First , there would 
appeal' t o be no simple way to predict th e formation 
of such a structure on theoretical grounds. Second, i t 
is difficult to discern how such a structure could lead 
to the fracture or surface replica pat terns, with 
m a n~ T easily distinguishable steps, that characterize 
lamellar sph erulites. To do th is, i t would apparently 

15 An exce ption to th is occurS in the case of a lligh energy surface comprised of 
chain fold s, which for obvious reasons caunot grow in the same seDse as a bundJe
liko crystal in tl,0 chain clirection. 

16 It is extremely improbable that chain cntanglements would cause all bundle· 
like nu clei to abruptl y stop growi ng in the 0, direction in such a manner as to 
produce a uniform length COml)arable to tho thickness of a lamella. 

be necessary t o assume t ha t covalen t bonds broke 
only in t he amorphous regions. It seems much 
m.ore lil\:ely t hat r elatively few covalent bonds ar e 
broken , and that t he lam ellar separation is oppo ed 
mainly by van der Waals forces, for example those 
a t t wo chain folded surfaces. Fin ally, the t ipping 
of crystal at low draw ratios is difficul t to explain 
with the mod el. 

The bundlelike models for " lamellae" criticized 
above are all in the category where the fla t "lamellar" 
surfaces are a umed to be of the (Je type, i.e., where 
polymer chain s protrude from the smface. We now 
consider briefly the possibili ty that the fla t faces of 
the lamellae might correspond to polymer chains 
that lie bundle fashion parallel to the large fla t faces, 
but where the chains still sub tend a right angle to 
the radius of the spherulite. Entirely apart from 
t he fact that there is already some evidence that the 
polymer chain s are essentially normal t o the large 
flat lamellar faces (see [4] and [42]) , this is an un
likely model for a stable lamella of uniform step 
heigh t. The flat faces would be (J type, and would 
therefore grow normal to the spherulite r adius at a 
rate comparable to the radial growth r a te, as im
plied by eq (28), if cumulative strain did Do t occur. 
If cumulative strain did occm , large lamellae with 
large fla t (J-type faces would no t be formed since the 
crystalli tes would be of limi ted size, and t end to be 
ellipsoidal in shape. 

Our conclusion is that t he coherent bundlelike 
smface nucleus model docs no t lead to a tenable 
r epresentation of a typical lamellar spheruli te, where 
large stacks of more or less separable lamellae com
prising t he major fraction of the cr ys tallization 
present exist , and where a t a fixed growth tempera
ture each lamella has a r elatively uniform step heigh t 
even with extended growth. 

The remaining question concerns whether t he 
coheren t bundlelike model of polymer crystal growth 
can lead to a spherical obj ect that is no t lamellar. 
For the case of large chain ends that are excluded 
from the crys tal, t his theory appears Lo lead t o 
microcrys tals scattered here and there thToughout 
the m edi um, t he equilibrium dimensions of the e 
microcrystals being determined by the distribution 
of molecular weight (see sec. 2.5). Similarly, cumu
lative strain would lead to ellipsoidal microcr ys tals 
of limited size. For the strictly coheren t case, there 
is no reason t o suppose that these microcrystals would 
be arranged into a spherical array. vVith the ad
ditional assumption of noncoherent nucleation on 
the surfaces, a spherical array of bundlelike but 
nonlamellar microcrys tals can be predicted (sec. 7). 

*5. Radial Spherulitic Growth by Coherent 
Surface Nucleation With Chain Folds 

5.1. Details of the Model and Derivation of the Radia l 
Growth Rate Law 

H ere it is assumed t hat the rate determining step 
is the formation of a coherent surface nucleus of 
monomolecular t hickness bo, length I, and width a on 
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the substrate crystal (fig. 6a). The end surface free 
energy of this nucleus is U e, and the two lateral surface 
free energies are each taken as u . The quantityueis 
defined as in eq (1), and U has the same meaning as 
in section 2.4. Both of these surface free energies 
refer to abrupt phase boundaries, and are well 
defined quantities. 

The objective is to calculate the rate of nucleation 
on the growing face of the lamella , since this estab
lishes the radial growth rate of the spherulite (the 
direction of radial growth is denoted by the heavy 
arrow marked " G"). The growing face may actu
ally be wedge-shaped, the face on either side of the 
peak having a surface free energy u . The assumption 
of such a geometry would not materially alter the 
calculations to be given, and it is sufficient for the 
purpose of calculating the radial growth rate to con
sider the simpler model with one growing face. Note 
that the polymer chains are normal to the spherulite 
radius. 

The value of 1 for the initial substrate could be as
sumed to be that of a primary nucleus, 1;=4ue/( t.f) , 
but this is not necessary for the treatment: one co uld 
equally well assume heterogeneous initiation . The 
model leads in a natural way to many features of 
lamellar spherulites. The connection between this 
model and spherulite structure will be discussed in 
section 5.4. 

Region A' : The free energy of formation of the 
surface nucleus is 

The edge free energy E is included to take account of 
the possibility that a loop in a surface nucleus where 
1::;1* may be more difficult to form than one where 
1> 1*.17 The inclusion of the edge free energy leads 

17 The edge free energy is taken as < for 1:$1', and zero for 1> 1'. In a more de
tailed analysis, the edge free energy might be taken as <, for 1< 1', <, for 1= 1', and 
zero for 1> 1'. 

/ 

/ * 
/ / 

/ I * 
/ // 
/1// 

/,'l 

to only a slight complication of the resul ts , and is 
useful in discussing the step height and mel ting be
havior of the crystal lamellae that will b e observed 
(see sec. 5.2). 

The treatment for the coherent surface nucleus 
with chain folds differs significantly from that given 
for the corresponding bundlelike nucleus. The 
quantity 1 will not change rapidly with growth, and is 
to be regarded as fixed for a given nucleus as it 
traverses the nucleation path. (Other folded nuclei 
may of course have different values of I, but in each 
case 1 is constant for a given nucleus.) In this situa
tion, the barrier ridge that must b e overcome to form 
a stable surface nucleus is at a= ao. Thus, during 
the formation process for a given nucleus, two of its 
dimensions, namely, b = bo and 1= 1*, are fixed . It 
remains to be determined what value of 1 leads to the 
maximum rate of steady state nucleation. This 
value of 1 is denoted 1*. 

From eq (30) it is readily determined that a grow
able nucleus can be form ed only when 1 is slightly in 
excess of 

(31) 

1£ 1 has a value less than this, the embryo becomes 
increasingly less stable as the width a is increased, 
as shown in figure 6b. Similarly, if 1 has exactly 
the value given by eq (3 1), no stable nucleus will be 
formed , since the free energy of formation is a con
stant and cannot ever become negative with any in
crease of a (fig . 6b). Hence 1* must be slightly in 
excess of that given by the above expression. 

The competition between two effects determines 
the conditions under which the maximum rate of 
nucleation will be observed. Notice from the 
schematic diagram in figure 6b that at a= ao the 
activated state with the hi ghest free energy is associ- , 
ated with a value of I that leads to the formation of 

( b) (c) 

legG 

Tc Tm 

GROWTH TEM PERATURE 

2 3 4 

NUMBER OF STEP EL EMENTS OF WI DTH 00 

CENTER OF SPHERULITE 

FIGU RE 6. The coherent chain folded surface nucleus model of spherulitic growth and its rate behavior. 

(a) Lamella with folded coherent nucleus of length I, width a, and monomolecular layer tbickness bo on its surface. H eavy arrow marked G, indicates direction 
of radial growth of lamellar spberulite. Arrow s-s' indicates axis of spiral dislocation. Chain y-y' indicates molecule incorporated bundle fashion into lamella. 

(b) Schematic diagram illustrating cause of a certain value of the step beight, I', giving maximum surface nucleation rate. 
(c) Logarithm of radial growth rate ofspherulite as function of tem perature. - - --log G versus '1' if jump rate effect is small; -- most representative case 

where jump rate lowers log G causing maximum to appear near (T m+T .)/2; . . . . exhibits effect of excess nucleation rate in medium surrounding spherulite. 
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a stable nucleus on further addition of step elements, 
and conversely, the activated state with the lowest 
free energy is associated only with the formation of 
a metastable embryo. (The free energy of activation 
at a = ao is marked "*,, in each instance.) Thus there 
is some length slightly greater than that given by eq 
(31) which will lead Lo a maximum steady state rate 
of nucleation. 

It has been shOl\Tll in detail elsewhere (see eqs (59) 
to (66) and appendix 5.2 of reference [3]) that 

(32) 

is the value of the length of the growth nucleus that 
leads to the maximum rate of steady state nucleation. 
This is, of course, the step height of the crystal that 
will actually be formed by the coherent nucleation 
process. 

On inserting eq (32) into (30) with a = ao, the free 
energy of formation is found to be 

4(bnO'O'e+ O'e) 

(t.!) 
(33) 

The second two term s in eq (33) arise from the term 
k T /boO' in eq (32). On inserting Aq, *(1) into eq (23), 
there is obtained 

if the unimportant factor e2 arising from 2kT in eq 
(33) is ignored. An evaluation of the term exp 
[ao(t.h j)(t.T)T /T;'O' ] shows that it comes to appro:xi
mately exp [(t.T) / lOO ] for normal values of the 
parameters. This dependence on temperature is 
completely negligible compar ed to the other two ex
ponential term in eq (34a), and th e term may safely 
be taken into the pre-exponential factor G O(l). Then 
we have as a good approximation the expression 

[(t.T) - l law] 

for the rate of growth of ehain folded systems in 
region A' , which extends from near Tm down to Tc 
(see below). The term e/bo will not exceed O'e in 
magnitude, and may be considerably smaller. 

It is somewhat misleading to derive eq (34b ) by 
differentiaLing eq (30) with respect to a and I, setting 
the resulLs equal to zero to get 1*= 2O' ,/(t.f)+ 
2e/bo(!::,.j) and a*= 2O'/ (t.j), inserting these into (30) 
to get !::,.cf> *= 4(boO'O'e+ O'e)/(!::"j), and thence to eq (34b) 
by way of eq (21). Calculations involving this 
method have been proposed in the literature in con
nection with chain fold growth for the case e= O [15]. 

The free energ surface is not a continuum in the 
r egion of interest as implied by the differentiation, 
and the valu e of 1* obtained does not perm.it growth 
at all , as is seen in figure 6b. 

AL very low supercooling, t he step height ,,,ill be
come large enough so that a considerable number of 
the molecules cannot fold if large chain ends a rc ex
cluded from the crystal , as mentioned in secLion 2.5. 

R egion B' : The rate law cited above will be valid 
from ncar T m on down to a temperaLure T c corre
sponding to a degree of upercooling of approxim.ately 
t.Tc= 4O'Tm/(t.h j) amln. At this temperature and be
low, folded nuclei of minimal size of the type de
scribed in section 2.5 will appear in profusion in the 
super cooled medium due to nonsteady staLe nuclea
tion, and slow up or even Lop the radial growth of 
any fairly well developed spherulites that are already 
present. The region below T c is called region B'. 
If it were not for the nonsteady state nucleation 
effect, R egion B' would exhibit a (t.T) +! radial 
growth rate law analogou to eq (10). Altel'l1atively, 
bundlelike nuclei of nonsteady sLaLe origin may ap
pear at Tc if rTe is sufficiently small for embryos of 
minimal size. 

Summary: A schematic diagram of the growth rate 
behavior of thi model is shown in figure 6c. Curves 
(i) and (ii) in region B' represent different degrees of 
interference with the radial growth rate of the spltem
lite caused by the rapid incursion of crystalli tes of 
nonsteady sLate origin inLo the smrounding medium. 
The vertical mark near Tm indicates th e resLricLion 
that will occur on chain folding when the step h eight 
approaches one half the molecular length if large 
chain ends are excluded from the crystal. In the 
case of small chain ends that can be accepLed as de
fects in the crystal, this restriction will be relaxed, 
and chain folding can then occur nearer Lo Tm. 

In these plots, the negaLive temp era Lure coefficient 
part of the cmves ncar the melLing point is clue to the 
nucleation Lerm, and the positive temperatme part 
occurring at lower temperatures is due to the effect 
of the jmnp rate term. 

Using normal values of the parameters in the nu
cleation term in eq (34b), and setting t.H*= 20 ,000 
cal mole- 1 (or altel'l1atively, using eq (24) in its range 
of validi ty), the maximum in log GA, is found to ap
pear somewher e between 0.8 and 0.9 Tm. Since the 
glass transition temperature T g for many polymers 
obeys the empirieal relat ion T g= 0.66 Tm , it is seen 
that the maAimum in log GA, falls about midway be
tween T m and T g. Tc will oiLen occur well below the 
maximum in log GA" say at 0.75 Tm. It follows tha~ 
the T c transition will frequently be obscured by the 
lowering of log GA, by the jump rate term. Thus it 
is to be expected that only a simple maximum of log 
GA, versus T will appear in many instances, as de
noted by the solid line in figure 6c. The Tc transition 
would be most easily found in a polymer with low 0' 

and high amln , the transition being closest to Tm in 
this case. 

It can be shown for a number of systems Lhat an 
excellent fi t of the radial growth rate of the spheru
lites as a function of temperature can be obtained 
with an expression of the form of eq (34b), i.e., 
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oge(G/Go)= - I:lH*/RT-Kd T2(t:,T), where K\ is a 
constant. The value of Kl can be used to determine 
the product uUe, or more precisely u (ue+ E/bo), for a 
chain folded lamellar spherulite. This product should 
frequently lie in the range 100 to 1,000 erg2 cm- 4• 

Such values are obtained, but it is not certain that 
they all refer to distinctly lamellar spherulites. 

5.2. Behavior of the Step Height 

The step height of a growing lamella, 1*, is given 
by eq (32). This expression holds no matter 
whether the lamella was originally heterogeneously 
or homogeneously nucleated. The term 2u,/(l:lj) 
will contribute at least one half of the full value of 
I *, and possibly almost all of it. The contribution 
from the kT/bou term is rather small, and nearly 
constant, as indicated previously. The other term, 
2E/bo(l:lj) , will now be considered, especially in re
lation to how it affects the step height of the growth 
nucleus compared to the primary one. 

The step height of a homogeneous nucleus with 
folds is 4uc/(l:lj).18 If E is negligible, the step height 
of the coherently grown lamella will be only slightly 
over one half of this value, namely, 2u ,/(N) + 
kT/bou . As the effect of E increases, the step height 
of the growing lamella will eventually approach the 
value 4u ,/(l:lj). The step height of the growth 
nucleus will not exceed that of the primary nucleus 
because E is a function of position, and will fall to a 
low or zero value outside the edge of the primary 
nucleus. (It will be recalled that E is a measure of 
any extra work that might be required to cause a 
loop to lie on a flat substrate in from the edge or itt 
the edge; it is therefore either zero or quite small for 
a loop protruding over the edge.) 

The main point here is that it is not always to be 
expected that a growing lamella will have the same 
step height as the primary nucleus with folds. 

Temperature Dependence oj Step Height: The tem
perature dependence of the step height is of con
siderable interest. It is seen from eqs (7) and (32) 
that the step height of a growin g lamella is 

1* (35) 

Ignoring relatively unimportant variations with 
temperature, this may be written in the approxi
mate form 

(36) 

Thus, 1 * will increase with rising temperature, 
reaching large values near Tm. In most experiments, 
the quantity Z = kT/bou will be negligible compared 
to Y / (I:lT). (The value of Z will commonly be 
roughly 20 A. ) 

It should prove possible in some cases to verify the 
temperature dependence of the step height pre
dicted by eq (36) by careful low-angle X-ray studies 
on unoriented bulk polymer specimens crystallized 

" The primary nucleus may have a characteristic value of the edge free energy 
' p, wbich will cause I; to slightly exceed 4u ./(A f) [3J , but tbis m ay be ignored. 

at various temperatures. If the X-ray spacings 
indicate such a dependence of step height with de
gree of supercooling, this may be regarded as a 
confirmation of the kinetic nucleation viewpoint of 
chain folded growth proposed in this paper. This 
confirmation would be especially convincing in the 
case of a polymer that was 1m own from electron 
microscope studies to have a lamellar texture, 
since this in itself strongly implies the existence of 
substantially chain folded crystals. It is very 
doubtful that strictly bundlelike crystallization 
could lead to eq (36), because such crystals would 
either grow in the I direction (noncumulative strain) 
or abort (cumulative strain). However, a demon
stration that eq (36) is obeyed may still only mean 
that a substantial fraction of the crystallization 
present is in the chain folded configuration, rather 
than all of it; some bundlelike character is to be 
expected in the otherwise chain folded lamellae, and 
mmlerous small bundlelike embryos may be present. 
(See also remarks in section 8.3 concerning crystal
lization from the highly oriented melt.) 

An interesting point that arises in connection 
with the above is that the theory predicts that the 
characteristic step height of the lamellae in a spheru
lite can be alternated between different values by 
successively crystallizing at different temperatures. 
In this way it should be possible to make lamellae 
that are alternately thick and thin as the radial 
growth of a spherulite proceeds. 

It is emphasized that the results quoted above 
refer to isothetmal crystallization. For slowly grow
ing s pheruli tes, sufficien tly iso thermal concli tions 
will be maintained, but at strong supercooling 
where the rate of crystallization becomes high, the 
heat of crystallization may raise the local tem
perature and tend to artificially flatten out the 1* 
versus T curve predicted by eq (35) or (36). 

Nlelting Behavior: Consider now the melting point 
of the chain folded lamellae. It is readily deduced 
from eq (30) that the temperature of melting of a 
lamella that is large in the a and b dimensions is 
given by 

(37a) 

where 1 is the step height of the crystal [3]. It is 
seen that the equilibrium melting temperature, Tm, 

is the melting point of a lamella of infinite step 
height. From this expression and eq (32) with 
E= O, it is readily found that a lamellae of step hClght 
1 * formed at a crystallization temperature Tx will 
melt only slightly above T x on rewarming if the edge 
free energy is unimportant. If on the other hitnd 
E is large, so that the step height of the lamellae is 
the same as that of a primary nucleus, 4u ,/(l:lj) , then 
its melting point T;n will be just midway between 
T x and Tm , i .e., T:"'= (Tm+ Tx) /2. 

The melting point of a polymer is commonly 
understood to refer to the temperature where the 
last detectible trace of crystallinity disappears. 
Lamellae will ordinarily exhibit a certain distribu
tion of step heights, and the "observed" melting 
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point, T;" (obs.), will thus refer to the larger of these. 
We must expect t he s tep height at the observed 
melting point to reflec t the mean step height of the 
growth or primary nucleus, whose 1 value varies as 
l / (ll.T). Suppose that the observed m elting point 
corresponds to a step height f3 times larger (or 
smaller) t han the mef1n step height of a primary 
nucleus. Then l = f3l ~~ 4u , f3T m / ( ll.h f)( ll.T) , where f3 
is to a first approximation assumed to be constant. 
For this simple illust rative example one find s 

T ;" (obs .)= T m (1 - 2~) - ~;' (37b) 

This expression indicf1tes thf1t a plot of the observed 
melting point (as obtained on warming without 
recrystallization) as a function of crys tallization 
temperature will be a straight line that intersects the 
line Tx= T :n (obs.) at Tm. This may prove useful 
in determining the equilibrium melting t empemture. 
However , the main points here are tha t the observed 
melting point will tend to increase as t he crystal
lizf1tion t empera ture is increased , and t ha t it is 
entirely possible tha t such melting points may either 
all be above the line T '", (obs.) = (Tm+ Tx) /2, as for 
f3 > 1, or all belo 1'1 as for {3 < 1. If the edge free 
energy is large, and the dis tribution fairly broad , f3 
mfLy be in the vicinity of 1.5 or slightly more. 011 
the other hand, if the edgc free energy is negligible 
and the distribution narrow, {3 will tend to ffL11 in 
the range 0.6 to perhaps 1.0. E xperiments showin g 
that f3 was in the range 0.6 to say 1.5 or 2.0 would 
provide strong evid ence for the retention of the step 
height of the crys tal near tha t of the nucleus length . 

The above results apply to the case where the 
lamellae maintain their original s tep heights as they 
arc rewfLrmed. Small 1fLmellae will melt out well 
below T m, and any subsequent r ecrystallization at 
this higher temperature would form higher-melting 
lamellae (see below). Also, a cer t fLin increase in 
step height may sometimes arise from lengthwise 
diffusion effects in the chain folded crys tal. Either 
WfLY, f3 will incr ease, and T;, (obs.) will be corre
spondingly closer to T m- Values of f3 as high as 5 
or so may still be regard ed as being consis ten t with 
chain fold ed growth, but the most clear cut case is 
that where {3lies in the range of about 0.6 to roughly 
1.5 or 2.0. 

Some recent experiments indica te that a satisfac
tory explanation of the melting of certain bulk 
polymers of the lamellar type is given by eq (37b) 
with reasonable f3 values [44]. 

Combination of eqs (37a) and (38) shows tha t the 
melting process will be sharper for an assembly of 
thick lamellae formed near T m than the thinner on es 
produced at lower temperatures. To this approxi
mation , the breadth of the melting process is pro
portional to (ll.T) . This result will be modified 
som.ewhat when the distribution of s tep heigh ts 
within a given lamella is considered. 

Recrystallization on W arming: R ecrystalliza tion 
may occur on rewarming. The thinner lmnellf1e 
formed in the original crystallization at Tx (!) will 
melt out a t the T '", value charac teristic of their step 

height as described above. Then lamellar crystals 
with the larger step height characteristic of the 
crystallizaLion t emperature TX (2 ) = T ~ , will Lend Lo 
form from the melted material. Thus, on warming 
from T x (! ) to T X (2), a small step height will tend to be 
replaced by a larger one. This effect should no t be 
confused with t he slow and monotonic increase of 
s tep height due to lengthwise diffusion of the chains 
in the crys tal that may sometimes take place. The 
la t ter process, i[ it occurs, hould be identifiable, 
since it will lead to a slow and isothermal incr ease of 
step height a t the original crys tfL11ization tem
pcrature. 19 

Since the step height increases on recrystalliza tion, 
the new lamellae formed in this process will be 
smaller in the a and b direc tions than the patch 
originally melted out. The r ecrys tallization process 
may be promoted by the presence of loop type 
crystals in the immedia te vicinity. Something 
rather like what has been described m ay occur for a 
lam ella on a heterogeneous surface, but here t he 
problem is more complicated b ecause of the inter
action with the foreign substrate. 

Growth of t he step height to increasingly higher 
values by recrystallizing a t successively higher 
Lempera tures through slow warming cannot be 
cal'l'ied out indefinitely , since kinetic considerations 
will fLt some t emperature near the melting point 
prevent sLlch recrystalliza tion from t aking place at 
H, sensible ra te. The large step height achieved by 
recrystalliza tion at the highest practical tempera ture 
is not t o be regarded as a " limiting" step height from 
a theoretical point of view. 

Distribution oj Step H eights: We turn now to the 
qu estion of what the model implies about t he dis
tribution of s tep heights of various lamellae. To 
a good approximation, it has b een shown th at the 
mean square devia tion of the step heights of different 
lamellae abou t the mean value [is given by [3] 

< _)2 1 (kT)2 
(I - I) = 2 bou . (38) 

For u= 10 erg cm- 2, T = 400 OK, and bo= 5 X 10- 8 cm, 

the quantity «(1- 1)2 comes to 60 A, corresponding 

to a mean devia tion about r of only 7.8 A. Thus 
the mean st ep height of a given Imnella formed in t he 
coherent growth process is apt to be quite close to 
the average for the entire assembly of lamellae. 

If the edge free energy is greater than zero on the 
face of the crystal, and falls to a lower valu e at the 
edge, then the distribution of step heights of dif
ferent lamellae will be even less than that given by 
eq (38). The case described amounts to the physical 
situation where a loop is a little easier to form at t he 
edge ra ther t han upon the fla t face of the lamella. 

The t r eatment leading to eq (38) for surface 
nucleation with chain folds is quite different from 
t.he one tha t establishes the distribution of step 
heights for primary fold ed nuclei . The differ ence 
is that the distribution of step heights for various 

" If the step height does not increase to any m arked extent on storage under 
isothermal conditions at Tz, and if on rewarming in the manner indicated, a 
small step height is replaced by a larger one, melting followed by recrystallization 
is reasonable as tbe mechanism of the increase I. 
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folded primary nuclei about I; may be properly 
treated in terms of a continuum model of the free 
energy surface (see p. 83 and appendix 5.1 of refer
ence [3]),10 while in the case of the folded surface 
nucleus of monomolecular thickness the discrete 
character of the free energy surface must be recog
nized in the calculation of the distribution of step 
heights abo u t 1* (see pp . 86- 87 and appendix 5.2 of 
reference [3]). However, the narrow range of values 
of the step height at a certain growth temperature 
is in both cascs a result of the fact that the rate of 
formation of the appropriate nucleus is at a sharp 
maximum for some value of the step height, i.e. , at 
1* or 1;. 

The question of the constancy of the step height 
within a given coherently growing lamella subsequent 
to the initial sUTface nucleation act has been treated 
in some detail by Lauritzen [29].20 Allowing the 
height of each step element to fluctuate occasionally 
about 1 *, and assuming that the polymer chain (be
cause of its segmental character) can take on only 
discrete values of I, it was shown that the step 
height would maintain itself slightly above the 
value 1= 2u./(f1j) for the case (; = 0 from near Tm 
down to temperatures corresponding to a rather high 
degree of supercooling. Though some minor dif
ferences exist, the more rudimentary theory given 
in this paper, where 1 * is assumed to remain constant 
after the initial surface nucleat,ion act, is verified on 
the main points .20 Physically, the constancy of the 
step height of a given lamella during growth is a 
result of the fact that the step height cannot become 
smaller than 2u ./(f1j) without becoming unstable , 
and does not tend to become substantially larger 
than this value because it is expensive from an 
energetic standpoint to allow a loop to protrude 
much out of the fold plane. This causes the lamella 
to have the maximum steady-state growth rate when 
its step height is 1* (cf. sec. 5.1 ). 

Insofar as the disorder of a folded crystal is a 
result of the distribution of step height.s, i.e. , irregu
larities in the fold plane, Lauritzen's calculations 
indicate that crystals formed at low supercooling 
should be more ordered than those produced at 
high supercoolin g, where fluctuations are more 
pronounced. 

5.3. Coherent Loop Type Growth and Spherulite 
Structure: Lamellar Twist 

Growth by coherent nucleation of folded nuclei 
can lead to the formation of a spherical object that 
in most important respects strongly resembles a 
lamellar spherulite. 

" Tbe authors are deeply indehted to Prof. F . C. Frank and Dr. M. P. Tosi 
for sending them a manuscript [41] of tbeir work onfiuctuations of step beight prior 
to publication . The paper of Lauritzen 's referred to above, also unpublished, 
borrows heavily from tbe methods ontlined by Frank and Tosi. However, tbey 
do not treat a polymer cbain tbat is explicitly made up of discrete units. As a 
result of tbis and possibly otber differences, }'rank and 'l.'osi predict tbat cbain 
folded growtb will not occur above a certain temperature because 1*42cr,/(I1f). 
Lauritzen's calculat ions indicate tbat tbis upper limit is removed by the assump· 
tion of discrete chain segments. 

Botb of the treatments with ftuctu ations suggest that I', after falling initially 
with in creasing supercooling more or less according to eq (36), will begin to rise 
again at strong supercooling. HoWe\7cr, J..Jauritzen's analysis suggests that this 
would probably be seen experimentally as a certain ftattening out of the 1* versus 
T curve; the sharp rise in 1* occms at such strong supercooling tbat it will fre· 
quently not be in the experimentally nccessibJe range, and may be below T ,. 
Hence eq (36) applies as a good approxima tion from model'ate to very low 
supercooling. 
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Consider first the case of a heterogeneously ini
tiated spheruli te. H ere stacks of lamellae of the 
general type shown in figure 6a will grow outward 
from various sites on the nucleation center. (The 
reader is reminded again that the growing surface 
may actually be wedged-shaped.) The u . planes of 
the lamellae (loop containing surfaces) will be more or 
less parallel to the spherulite radius, and the polymer 
chains will be essentially normal to the radius. 

The spherulite will tend to fill out and become a 
three-dimensional object by virtue of one or more of 
several processes. First, new lamellae will tend to 
form and grow along the u . faces of those already in 
existence. Second, spiral dislocations can occur. 
The axis of these dislocations, 8-8', will be at. a 
right angle to the u . plane, i.e., normal to the 
spherulite radius, and "radial" growth will occur 
from the edges of such dislocations. Certain types 
of branching are also possible as secondary nucleation 
events. For example, noncoherent nucleation may 
occur on the faces or edges of a lamella. 

It is evident from the above that this model leads 
in a natural way to the lamellar and polymer chain 
orientation common in spherulites, and it is also 
clear that a three-dimensional spherical object can 
be formed. If the number of active heterogeneous 
nuclei is very large, easily recognizable spheruli tse 
may not form because of early impingement, but the 
polymer texture will still be basically lamellar. 
This effect may be greatly reduced by ridding the 
system of the heterogeneities, which is difficult, or 
somewhat reduced by destroying some of the em
bryos in the fissures on the surface of the heterogenei
ties by heating the sample further above Tm prior to 
crystallization (see sec. 8.4.). 

Homogeneous nucleation can also lead to a lamellar 
spherulite. Here the nucleus will first grow a small 
platelet. Then by the mechanisms mentioned above, 
a three-dimensional object can form from it. Early 
in its life, the spherulite may be fan or sheaftike. 
(The same would be true of a heterogeneously 
nucleated spherulite if only a few nucleation sites 
on each heterogeneity were active.) The spiral 
dislocation mechanism is probably important in 
creating a three-dimensional spherulite, but the 
radial growth itself is not due to the formation of 
such spiral ramps. At sufficient supercooling, the 
number of homogeneolls nuclei will become very 
large even early in the crystallization process, so 
that obvious spherulites may not appear despite the 
fact that the texture is actually lamellar. 

An essential point to bear in mind in the case of 
ideal coherent growth with chain folds is that a num
ber of the lamellae should extend outward from the 
nucleation center without interruption a substantial 
fraction of the way to the boundary of the spherulite. 
It should be possible to obtain information on this 
point by examining electron micrographs of a cross 
section of a spheruli te. Evidence that a single la
mella without any obvious disruption extended over 
a substantial fraction of the spherulite radius would 
be consistent with the coherent growth with chain 
folds mechanism, and at the same time give reason 
for anticipating a (f1T) - l radial growth rate law. 



Geil [5] has shown tha,t individual lamellae extend 
over the entire radius in t he spherulitic structures 
of bulk polyoxymethylene. 

In the coheren 1, growth process, chain ends will 
appear from tim e to tim e on the growing surface as 
the loops are laid down . ConLinuation of growth of 
t he s urface layer involved may be accomplished by 
allowing the incomplete step element to come off 
the crys tal face and protrude like a cilia from the 
CT . face. This is cer tainly what will happen in high 
molecular weight mn. terial if t he chain ends are suf
ficiently large. R enu cleation with a new molecule 
a t the sites where t he other molecule terminated 
would be more rapid than th e formation of a new 
coherent surface nucleus, so such a process would 
not m aterially alter the ra te equations given . Small 
ends tha t can enter the crystal in sufficient numbers 
will allow relatively normal chain folding even for 
materi al of moderate molecular weight . Chain ends 
may playa role in init iating dislocations. 

It h as already been noted th n. t the peri"eetion of th e 
folded surface will increase with increasin g crys talli
zation tempera ture. Thi s will tend to cause more 
perfect crys tals of higher density to be formed at 
higher tempera tures. It might be thought tha t the 
inclusion of chain ends in the folded crystal migh 1, 

have a s trong effect in the opposite direction . 
Actually , a simple calculation shows that over a wide 
range of step height, the number of chain ends 
included in the crys tal per unit volume will not 
depend strongly on the step height, so incren.sin g 
density with increasing crys talliza tion temperature 
is commonly to be expected .2! The inclusion of it 

certain number of chain ends in the folded crys tals 
of a high molecular weigh t polym er must be expected 
to slightly lower the melting point. Nevertheless, 
for polymer crys tallized in the usual range of super
cooling, the fini te step height must be expected to be 
the m ain callse of the lowering of the melting point 
below Tm , as described by eqs (37). 

Some homopolymers may be pmctically com· 
ple tely lamellar when crys tallized , but in other cases 
a considerate amoun t of amorphous m at ter may exis t 
between the lamellae, especially if the lamellae arc 
s trongly twisted . The amorphous material between 
lamellae may be oriented , and abnormal in other 
respects. 

The chain fold model of spheruli tic growth lead s 
in a s traightforward way to the existence of terraces 
corresponding to the lamellar step height in surface 
replicas of fractm'ed spherulites. In the case where 
th e number of in terlamellar links is low (see below), 
van der Waals interactions comprise the main forces 
that must be over come to separate the lamellae. 
Steps of the type illu strated in figure 6 (a), as viewed 
from a diree-tion essentin.lly normal to the CTe plane, 
are to be expected . This appears to correspond 
closely to what is often obser ved in elec tron micro
graphs of materin1 crystallized from the unoriented 
melt. If Lhe Jl umber of interlamellar links is high, 
cleavage of the lamelln.e may be quite difficult , an d 
r esult in considerable damage to t he step stru cture. 

I nterlamellar Links: A fairly large Dumber of 
molecules may be incorporatcd bundle-fashion into 
a chain folded lamella growing in the bulk super
cooled liquid, as illustrated in figtu'e 6a by the mole
cule marked y - y '. This may be done to a cer tain 
exten t without eriously affec ting th e step height 
of th e folds or th e rate expressions. Even the 
fairly frequ ent inclusion of such chain will no t tend 
to inctu' th e cumulative strain effec ts tha t may be 
associa ted with the forma tion of ptu'ely buncllelike 
s tru cttu'es. Also, groups or lamellae will tend to 
grow outward from the nucleation cen ter together . 
The situation should resemble that shown in figure 
6a, except that the growing faces of th e lamellae 
will frequently be closer together . Under these 
circnmstan ces, i t is inevitable that one polymer 
molecule will occasionally become involved in two 
or perhaps even three different lamellae, crea ting 
interlamellar links. These links should affec t the 
mechanical properties of spheruli tic bulk polymers, 
since th e lamellae will be more difficult to separate 
than wonld be the case if such links were a bsent. 

Polymer molecules emanating bundle-fashion 
from the fold plane may sometimes rettu'n to the 
same crys tal a t a position well r emoved from the 
original point or exi t . This type or " folding" 
may be denoted as " non adj acent re-entry", as 
opposed to the usual typ e or chain folding, which 
exhibits adj acent re-entry . However , i t seems qui te 
unlikely th a t the basic stru cture of a well-defined 
lamellar polymer crystal formed a t low to moderate 
supercooling consis ts of folds th a t largely or entirely 
exhibit nonadjacent re-en try. 

In unorien ted bulk polymers crys tallized under 
conditions wh ere the number of in terlamellar links 
is low, elongation of th e specimens by cold s tretch
ing in one direc tion should cause the lamellae to 
tend to aline in the direction or stretch ; in such a 
case, the polymer molecules in the crys tals would 
ten d to be orien ted more or less perpendicular to 
t he direction of stress. Such a result would provide 
s trong support for the existence of lamellae with 
chain folds . The existence of too many in terlamellar 
links, local melting caused by rapid stress, or exces
sive elon ga tion , could easily lead to the opposite 
r esult . (It should be under tood that the above 
refers to polymer crystallized from th e unoriented 
and relatively unstrain ed supercooled liquid state; 
experiments carried out on crys talliza tion of highly 
oriented liquids, e.g., cooling of hot-drawn filaments, 
are specifically exempted .) E xamples where t he 
tipping of crystals a t low draw ra tios has been 
observed may be found in the literature [30, 31, 
32, 33]. At least some of these studies appear to 
refer to the required typ e of experimen t. R esults 
of thi s kind led Storks [34] t o originally suggest 
th e exis ten ce of chain folds. 

The existence of interlamellar links in polymer 
crys tallized in bulk may cause such ma terial to 
differ from masses of chain folded polymer platelets 
filtered from dilute solution preparations. In t he 
latter case, interlamellar links should be vir tually 
absent. If numerous, the in terlamellar link in 

" Otber manifestations of Increased perfection, snch as a sbarpening of certain h b lk 11· 'l 1 . h d· 
X-ray lines, are also to be expected as tbc crystallization temperature is Increased. 1, e u ~ crysta IZeC po ym.er mIg t cause Is turb-
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ances in the solubility, mechanical properties, and 
melting behavior. 

Lamellar Twist: The remaining question is that 
of the origin of twist of the lamellae. The optical 
studies noted earlier indicate that the lamellae (or 
more correctly stacks of lamellae) in many real 
spherulites are twisted, and it remains to be seen if 
coherently grown lamellae with chain folds could 
exhibit such an effect. The type of twist under 
consideration here is shown schematically in figure 
7a. The bladelike lamellae have a definite pitch, 
and revert from time to time to their original orien ta
tion at a repeat distance de as one proceeds along the 
radius of the spherulite. The heavy arrow marked 
" G" indicates the direction of radial growth. The 
leading face of the lamella has been drawn wedge
shaped to correspond to growth in a preferred 
crystallographic plane (see also fig. 7b). 

The twist of the lamellae can arise from stress 
in the plane of the chain folds. One way in which 
the required type of stress can arise will now be 
outlined. 

Let the polymer chains in the interior of a lamella 
be arranged in some definite pattern, say the hex
agonal array shown as small heavy black dots in 
figure 7b. It is assumed that this internal packing 
arrangement does not lead to twist . Now consider 
the "lattice" of the chain folds that is consistent 
with this internal structure. If we consider the 
chain folds as occupying a roughly spherical volume 
element, the situation shown in figure 7b results. 
If the chain folds occupy more than a certain volum e 
(denoted by large open circles) repulsive forces will 
act between the folds as indicated by the overlap 
(shaded). The main point to notice is that the 
"lattice" created by the chain folds on the two u . 
surfaces is not the same as that characteristic of the 

SPHERULITE 

interior of the crystal , and that if the folds are 
larger than a certain size, an anisotropic surface 
stress is certain to result. (A different packing of 
the chain folds can be introduced by al ternating 
the chain folds in the layers of molecules in figure 
7b, but this simply leads to straight rows of folds 
that lie at an angle of 60° to those shown.) The 
surface stress increases the free energy of the crystal , 
and the system will tend to undergo slight rearrange
ments that will minimize the total free energy. 

There are two basic ways in which the lamella 
can reduce the repulsion of the chain folds. First, 
the lamella can twist slightly to create better surface 
packing (see below). This will, of course, tend to 
be balanced by forces due to the internal packing 
arrangement. Second, the chain folds may tend 
to become staggered, causing the folded surface to 
resemble a terra cotta roof. The staggered config
uration corresponds to that where the polymer 
chain axes are no longer perpendicular to the plane 
of the chain folds. 22 Specific forces in the interior 
of the lamella, related to the particular way in which 
the X-X-X groups that comprise the chain achieve 
best packing, may tend to resist such staggering. 
It is possible that the minimum in free energy will 
be achieved if both effects occur. 

Now consider the problem of the origin of the 
twist in a body with surface stress of the type that 
may occur in polymer lamellae. The particular 
type of surface stress arising from the model shown 
in figure 7b may be illustrated schematically as in 
figure 7c. Here the solid body of dimensions x, y, 
and 1* possesses a surface stress f in dynes cm- 2 

that is distributed over a surface layer of thickness 

" The individual cbain folded crystals formed from dilute solution may either 
be ftat, or resemble hollow pyramids. In the latter case tbe folds are staggered, 
and tbe chains are not perpendicular to the cr. plane. (See for example ref. (43).) 
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FIGU RE 7. Origin of lamellar twist in spherulites. 

(a) Schematic representation of lamellar twist. 
(b) Schematic view normal to fold plane of lamellar crystal showing repulsion (shaded areas) leading to surface stress J. 
{c) Macroscopic model of surface stress. A similar stress pattern exists on the opposite side of tbe body. 
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'YI * where 'Y is a mall fraction. The situation on 
th; opposite side of the parallelepiped is identical 
to that just described. . . 

From the theory of the bucklmg of plates,23 It 
can be shown that such an object will develop 
twist or warp whenj cxceeds a certain value which is 

(39) 

Here S is the shear modulus. Numerical estimates 
for the extremely thin lamellae characteristic of 
spherulitic crystallization indicate that twist can 
arise for surprisingly low values of j C/S if 1* is in 
the usual range for such crystals. It is therefore 
considered entirely reasonable to propose that 
surface repulsions of the type described can lead to 
the twist of the lamellae. Surface stress arising 
from other causes could also lead to a similar effect. 

If for some value of 1* the crystal is already 
twisted, the twist will tend to become more prom
inent if 1* is reduced further. This assumes, of 
course, that x does not fall off as rapidly as 1*. 
The variation of 'Y with 1* is unimportant in most 
applications. 

Perhaps the most important prediction that 
arises from the present conception of the origin of 
twist in coherently grown lamellae is that de will 
tend to increase rapidly as the growth temperature 
is increased and at some temperature become ex
tremely large. In practical terms this means that 
the concentric bands observed in many spherulites 
when viewed with crossed nicol prisms will become 
separated more and more as the growth temperature 
is increased, finally disappearing altogether. The 
latt ice forces in the interior of a lamella tend to 
keep it in the untwisted state, while the surface 
stress promotes twist. Hence, if the step height 
1 * increases as it does with an increase of growth 
temperature, the twist will rapidly become less pro
nounced at the same time. 

When a certain value of 1* is reached (or more 
precisely, a certain value of I*/x), the twist w:ill 
disappear completely. Examples where the tWlSt 
diminishes rapidly with increasing growth tempera
ture are well known in lamellar spheruli tes. It is 
conceivable that the situation described above could 
be reversed in some cases because x increases more 
rapidly than 1* with rising growth temperature. 

Considering the proposed mechanism leading to 
twist it would not be surprising to find that lamellae 
with 'a marked warp or twist were also characterized 
by the polymer chains being not exactly perpendic
ular to the plane of the chain folds. 

A heterogeneously nucleated spherulite may have 
sectors with both right and left handed twist. At 
any given nucleation site on a heterogeneity, lamellae 
with a given sense of twist will be generated, and the 
sector that grows out from this site will tend to 

23 The author is indebtccl to J. N . Frankland of NBS for deriving this result, 
and for scveral helpful di scussions of the problem of twist in lamellar systems. 

preserve this particular twist (see below) . The 
quantity de will be the same for both right and left 
handed sector. If the polymer is heated above Tm, 

embryos preserving the sense of twist may be re
taincd in cracks or pores in a heterogeneity, with 
the result that a spherulite similar to the original 
one will frequently be regenerated at the same place 
on subcooling. A boundary will exist between right 
and left handed ectors. Since the probability of 
polymer chain connections between these sector is 
small, spherulites should frequently fracture under 
shear at such boundaries. 

If the lamellae growing out from a nucleation cen
ter are either densely packed, or grow out together 
as a stack, the sense of the twist in the sector under 
consideration will be preserved. (This is t he "co
operative effect" of Keith and Padden [9]. ) How
ever, if the individual lamellae are fibril-like and 
loosely packed, a spherulite where right- and left
handed lamellae are intertwined may appear. Such 
a spheruli te would not exhibit distinct bands when 
viewed under crosscd nicol prisms, despite the fact 
that the individual lamellae, or groups of lamellae, 
were actually twisted . Only the maltese cross effect 
would then be seen. 

Summary: The foregoing development indicates 
that the coherent growth mechanism with chain folds 
can reproduce many of the structural features of 
lamellar spherulites. The existence of the lamellae 
themselves, and the behavior of the step height that 
characterizes them is explained. The orientation of 
the lamellae, and the orientation of the polymer 
chains in the lamellae, is in the correct relation with 
respect to the radius of the spherulite. Moreover, 
the twist frequently exhibited by stacks of the 
lamellae can be accommodated by the theory, thus 
removing one of the objections that had heretofore 
been leveled at coherent growth mechanism generally. 

Our conclusion is that the coherent growth mecha
nisms with chain folds , with its (t.T) - l radial growth 
rate law, is worthy of serious consideration in the 
analysis of the behavior of lamellar spherulites. 

Consideration will now be given to the problem of 
spherulitic growth by noncoherent surface nucleation 
with chain fold 

* 6. Radial Spherulitic Growth by Non
coherent Surface Nucleation With Chain 
Folds 

6.1. Basis of Model] 

It is conceivable that coherent growth of the kind 
described in the previous section will be hampered 
by certain cffects so that such growth practically 
ceases after a time. For example, continued co
herent growth may in some cases lead to cumulative 
surface strain on the a . faces because of the e:tlstence 
of chain folds that are slightly too large. Then after 
coherent growth has proceedcd for a time, the end 
surface free energy will take on a value a 0(&) that is 
larger than a., which is sufficient to practically 
completely arrest coherent growth. The value of 
a on the coherently growing face will probably 
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also take on a higher value which may be denoted 
U (,) . The subscrip t (8) denotes strain . 

The problem that will be studied in this section is 
whether or not it is possible that radial growth can 
be reactivated in such a case by the formation of a 
rwncoherent surface nucleus on the presumably still 
wettable face of the stunted lamella. The rate laws 
for such growth will be derived, and the conditions 
under which the formation of a noncoherent surface 
nucleus will be the rate determining step in the radial 
growth of a spheruli te determined. The effect of 
such nucleation on spherulitic structure will be 
mentioned. 

The concept that noncoherent surface nucleation 
may be involved in spherulitic growth is due to 
Price [16]. H e suggested that the cessation of co
herent growth might result from chain entangle
ments. The assumption used here that the cessation 
of coheren t growth results from cumulative strain 
seems justified, if only as an initial hypothesis, by the 
structural considerations mentioned above. The 
rate laws to be derived below should hold at least 
approximately for noncoherent surface nucleation 
t hat follows upon the cessation of coherent growth 
due to any cause. 

The model shown in figure Sa is used . A non
coherent surface nucleus with chain folds in the form 
of a parallelepiped of dimensions a, b, and 1 is as
sumed to form the face of the stun ted lamella The 
non coherent nucleus has normal "unstrained" values 
of a , a e, and [).h,. The substrate lamella bears the 
strained values of the surface free energies U (8) and 
U e (8) , but the volume contribution, [).h" has its normal 
value. The noncoherent surface nucleus attaches 
to the substrate lamellar face at an angle, 1/; or 27r 
- 1/;, that is consistent with minimizing strain. Thus, 
there is a true interface between the surface nucleus 

. and the strained substrate crystal. This means 
that the noncoherent surface nucleus will behave in a 
three-dimensional manner, provided that neither a , 
b, nor 1 falls to minimal dimensions. Observe that 
the term "noncoherent" does not mean that the 
surface nucleus is not attached to the substrate. 

Once a non coherent surface nucleus of stable size 
is attained, coherent growth begins again, and the 
spherulite radius at first grows rapidly in the direc
t ion indicated by the heavy arrow marked " G". 
Then the surface strain gradually accumulates, and 
the lamella is stunted after growing a distance A. 

After a time, a noncoherent surface nucleus forms, 
and the process is repeated. Under appropriate 
circumstances, the formation of the three-dimensional 
noncoherent surface nucleus may be t he rate de
termining step in the radial growth process. 

6.2 . Rate of Radial Growth With Chain Folded 
Noncoherent Surface Nuclei 

Region A" (upper): Assuming that a , b , and I may 
be regarded as variables in the sense that they have 
not reached minimal values, the free energy of forma
tion of th e unstrained noncoherent surface nucleus 
illustrated in figure Sa may be written 

AI/> = 2abae+ 2bla+ (2 a - o)al - abl[).j (40) 

where 0 is defined by the relation 

U interface= U (,) - 0+ u . (41) 

Here a interface is the total interfacial free energy be
tween the surface nucleus and the lamella to which 
it is attached; a (,) is the surface free energy on the 
face of the strained lamella. The other quantities 
have the same significance as in section 5. The 
edge free energy is omitted for simplicity. 
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FWURE 8. The noncoherent chain fold ed surf ace nucleus model 
of spherulitic growth and its rate behavior. 

(a) Noncoherent snrface nucleus of dimensions a , b , and I on strained substrate 
lamella. Heavy arrow marked G shows direction of radial growth of modified 
lamellar spherullte. 
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representative cases where jump rate causes maximum to appear in log .G;. 
exhibits efIect of excess n ucleation in medium surrounding spherulite. 
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The quantity 0 is a measure of the interaction of 
the noncoherent sUl'face nucleus with the strained 
substrate lamella. It Lakes on a value of zero if 
there i no interaction between the two objects. In 
this case Acf> is identical Lo Lhat for a primary nucleus 
with chain folds. On tbe other hand, if U(S)--'7 u 
and 0 --'72u , eq (40) becomes identical to the expres
sion for s trictly coherent surface nucleation (ef. 
eq (30) with «; --'70). Thus 0 will in general have a 
value between zero and 2 u . 

A large value of 0 thus ind icates strong interaction 
of the noncoherent surface nucleus with the substrate 
(high degree of wettability), and a small value of 0 
indicates weak interaction (low wettability). 

N ear the melting point, a , b, and I may be regarded 
as variables, and it is therefore proper to calculate 
Acf> * on the basis that the nucleus is formed from 
many step elements. Using procedmes of the type 
outlined in sections 2.3 and 2.5, it is found that 

1*= 4u e/ iJ.j, (42a) 

a*= 4u /iJ.j, (42b) 

and 
b*= (4 u - 20)/iJ.j, (42c) 

so the free energy of formation at the saddle point 
in the free energy surface described by eq (40 ) is at 

A *_ 32 u (u - o/2 )u e. 
cf> - (iJ.j) 2 

(43) 

Thus from eq (21 ) the radial growth rate would be 24 

( Ml*) (32u ( u - O / 2 ) u e T ~ n ) 
GA"(up per)= G o exp - leT exp - T2(iJ.hr)2(iJ.T)2leT 

(44) 
[(iJ.T) - 2Iaw] 

provided that (1) the quantity b* had not fallen to 
bo because of too large supercooling and (2) nonco
herent smface nucleation was actually the rate 
determining step. 

Let us now consider the range of validity of eq 
(44) . First, it is readily found from eq (42c) that the 
nucleus will maintain its three-dimensional character 
only if the degree of supercooling is less than 

iJ.T o'" 4 (u - o/2)T m. 

(iJ.hr) bo 
(45) 

At temperatmes lower than T o, the nucleus is mono
molecular, i. e., h = ho, and t.he (iJ.T) -2 law does not 
apply. Fmther, the condition 

exp ( - t :; ~;T» > exp ( -3 2~~ ~ ~2 ) u e ) 

» . ( 4 bou (s) u e(SJ ) 

exp (iJ./) leT 
(46) 

" If an edge free energy 2a. bad been included in cq (40), I ' would have been 
4u ./Af+Z./(Zu-o ), and eq (44) would have an additional tcrm exp [- 8u.T?.!T (AM) 

(AT)kTJ . 'rh is will not seriously alter the (AT)-' la w predicted byeq (44) in its 
range o( v alidity. 

must bold. The left hand inequality simply states 
that " unstrained" coherent nucleation must be more 
rapid Lhan noncoherent nucleation. This will always 
be tru e when Lhe degree of supercooling docs not ex
ceed iJ.T o, and need not be considered fUl'ther . The 
right hand inequality states that noncoherent nucle
ation m usL be more rapid than "strained" coherent 
growth, so that noncoherent nucleation will be the 
rate determining step in the radial growth process.25 
This will be true when 

U ('J U e(S» 2 (iJ. T o) J 

UUe (iJ.T) 
(47) 

a condition that will hold according to the assump
tions used in the model. 

Region A" (lO\ver): At a degree of supercooling 
equal to or exceeding that given in eq (45), the non
coherent nucleus becomes monomolecular. Here the 
free energy of formation at a = a J is 

4b3u (ue+ E/bo) 
bo(iJ.j) - (2 u - o) 

(48) 

when the edge free energy is included. Somewhat 
below T o, ho(iJ.j) will be considerably larger than 
(2 u - o), and the radial growth rate may be approxi· 
mated as 

[(iJ.T) - l law] 

4 bou (u e+ «;/ bo)T ;,) 

T (iJ.hr)(iJ.T)kT ' 

(49) 

which is identical to the radial growth r a te for co
herent loop type growth in region A' . 

Region B": The rate law described by eq (49) will 
hold down to tempera tures corresponding to a super
cooling iJ.Tc';;;A uT m/ (iJ.hr)a mln ' There and below, the 
rate of injection of nuclei in the surrounding medium 
will increase as described under Region B' of section 
5.2. 

Summary: A schematic diagram of the growth rate 
behavior of this model is shown in figure 8b. Even a 
fairly large value of 0, say in the vicinity of 3u /2, 
will still give a (iJ.T)- 2 radial growth rate region that 
extends from neal' the melting point on down to 
growth temperatures corresponding to a rather high 
degree of supercooling. For such values of 0, 
U(S) U.(s) need be only several times larger than au. 

at ordinary supercooling to sa tisfy eq (47 ). How
ever, the possibility exists that a rate transition from 
a (iJ.T)- 2 to a (iJ.T)- 1 law may occur at T o, a noted 
in figure 8b. This transition will not be particularly 
abrupt, and in the case where iJ.T o is large, the r ate 
laws will be mixed to the point that they cannot be 
clearly differentiated . 

" The righ t hand term in eq (46) will be even smaller than indicated when tbe 
growth is strongly arrested by cumulati ve strain. 
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6.3. Noncoherent Loop Type Growth and Spherulite 
Structure 

In broad aspect, a spherulite built up with chain 
folds by the process (rapid coherent growth---7arrested 
"strained" coherent growth ---7noncoheren t nuclea
tion) will resemble on.e bu~lt on the. coherent loop 
pattern. The spheruh te wlll be baslCal.ly lamellar, 
the chain axes will be normal to the radms, and the 
plane of the chain folds will tend to lie along the 
spherulite radius. Also, the. coherently gr?w~ part 
of the lamellae will behave m a manner slmllar to 
that described in the previous section. ~~wev.er, 
there will be certain differences that may dlstmgUlsh 
coherently grown from non coherently grown loop 
type spherulites. . 

During the growth process, the lamellae wlll be 
disoriented with respect to the substrate at an angle 
of ,p or 27r-,p at intervals of X. For a co.mpletely 
isolated lamella the noncoherent nucleus will attach 
to the substrat~ with equal probability at ,p or 27r-,p, 
so that such a lamella might show disturbll:nc~s in,its 
sense of twist at intervals of X. Also, a dlstnbutlOn 
of ,p values may exist. . . 

Perhaps the most unusual feature of spheruh tlC 
growth on this pattern th!1t may .become observable 
in an optical microscoJ;>e IS ~hat If X becomes suffi
ciently large, spasm~dlC radl~l gro~th may be ob
served. Each rapid mCl'ease m radIal growth would 
correspond to the coherent growth that follows upc;m 
the formation of a noncoherent nucleus. The dIs
tance traveled in each pulse would correspond to X. 
If sufficiently small , the repeat distance X may lead 
to characteristic X-ray spacings, but these would 
probably be very difficult to identify or. observ~. 

Since fT. increases because of cumulatIve. s~ram as 
coherent growth proceeds, the charactenstlc step 
height I * will tend to increase somew:ha~ as the 
coherent growth step takes pl~ce. Thls lS shown 
schematically in "figure Sa. ThIS effect would prob-
ably be observed only with difficulty. . 

The extension of the interface between the stramed 
crystallites should provid ~ possible sites. for the 
initiation of spiral dislocatlOns (see 8- 8' m figure 
8a). 

Another interesting point is that the accumulated 
strain will tend to cause the lamellae to melt out on 
rewarming just a li ttle aboye the crystallization 
temperature. As noted earher, coherently grown 
lamellae with chain folds will generally melt out well 
above the crystallization temperature (eq 37b). 
The predicted low melting of the ~ ame ~l a: w~th 
cumulative strain may prove useful m eillmnatmg 
the possibility of noncoherent growth in specific 
cases where such behavior is known not to occur. 

Noncoherent nucleation may contribute to the 
formation of dendritic structures even in the case 
where the rate detennining step is strictly coherent. 
Thus noncoherent nucleation on the u-type faces 
of a ~oherent l y formed lamella (such as that fac~ng 
the reader in figure 6a) could lead to fern- or treelIke 
structures. Such effects probably assist spiral dis
locations in forming three-dimensional semicrystal
line spherulites in some instances. 

The noncoherent loop type growth model is real
istic enough to at least warrant testing spherulite 
growth rate data to see if they accord with a (t:.T)-2 
law. This rate law is to be anticipated in lamellar 
spheruli tes that grow in a spasmodic manner n~ar 
the melting point, since the coherent model WIth 
chain folds will not lead to such an effect.26 

7. Polymer Crystal Growth by Noncoherent 
Bundlelike Surface Nucleation 

7.1. Basis of Model 

Suppose that large chain ends limit coherent 
bundlelike growth as described in section 4, so that 
only tiny crystallites can develop by this mechanism. 
We will now examine the possibility that noncoherent 
surface nucleation will enter and reinitiate growth, 
and thereby produce a large microcrystalline and 
spherical object. 

The model employed is shown schematically in 
figure ga . The inhibition to continued coherent 
growth of the substrate crystal is a re~ult of the 
physical obstruction presented by the cham ends- x. 
We assume that the presence of the chain ends also 
causes the surface free energies of the substrate 
crystal to have the "strained" values CT ,s) and CT ,Cs) 

which are larger than the normal values CT and CT • • 

The latter refer to the surface free energies of rela
tively small bundlelike structures as yet unaffected 
by chain ends. 

Alternatively, it could be assumed that cumulative 
strain resulting from growth ill the a and b directions 
caused CT and especially CT . to increase. 

It is considered that if a large spherical object is 
to be built at all on the bundlelike pattern, the 
present model is, at least in the beginning, a more 
reasonable one than the strictly coherent bundlelike 
model discussed in section 4, where the possible 
restrictions imposed on crystallite size by large chain 
ends or strain were arbitrarily neglected. 

We will assume that a non coherent surface nucleus 
in the form of a parallelepiped with the dimensions 
a, b, and l forms on the .strained substrate crystal. 
This non coherent bundlehke surface nucleus has nor
mal values of CT . and CT. The noncoherent surface 
nucleus is assumed to form by virtue of the wetta
bility of some portion of the substrate crystal by 
a normal crystal. Once it reaches critical size, this 
noncoherent surface nucleus will lead to coherent 
growth of a new crystallite of limited size. Then 
the process will be repeated . It is emphasized 
that the noncoherent surface nucleus is actually 
attached to the substrate, and that there is a true 
interrace between the two objects. 

7 .2 . Rate of Radial Growth With Noncoherent 
Bundlelike Surface Nuclei 

Region A" (upper): Sufficiently near the me]ting 
point, a, b, and l may be regarded as unrestrIcted 

26 In making this comment, it is assumed that other possible causes o[ spasmodic 
growth, such as fluctuating temperature at the spheruhte boundar! due. to 
experimental conditions (e.g., rise and fall o[ batb temperatill'e) or beat dissipatwn 
effects, bave been eliminated. 
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by any minimal molecular dimensions. T he free 
energy of form ation of the noncoherent bundlelike 
surface nucleus shown in figure 9a is 

t:,cp = 2abrJe+ 2bla+ (2rJ- o)al - abl (t:,f) (50 ) 

where 0 is defined in a m anner analogous to eq (41) . 
It is readily determined tha t 

log G 

l*= 4rJe/ (t:,j) 

a*= 4a/ (t:,j) 

b*= (4rJ - 2o)/(t:,j) 
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FIGU RE 9. The noncoherent bundle like swjace nucleus model 
and its growth mte behavior. 

(a) I oncoberent su rface n ucleus oflengthl, width a, and tbickness b on strai ned 
substrate crystal. Obain ends denoted --X. 

(b) Logarithm o[ radial growth rate as a [unction of temperature. 'r be solid, 
dasbed, and dotted lines have the same signifi cance as in previous diagrams. 
(Sec text for assnmptions required to obtain spberical object from tbis model.) 

which on inser tion in eq (50) leads to 

(52) 

Then with eq (21) we have 

( t:,H*) ( GA" (u ppcr) = Go exp - leT exp 

(53) 
[(t:,T) - 2 law] 

if the format ion of th e noncoherent surface nucleus 
is indeed the rate determining st ep in t he radial 
growth process. The quantity l* is n ot a step height 
in t he case of a bundlelike nucleus, since the nucleus 
will grow to at leas t a certain ext ent in th e l direction. 

By comparison of eq (53) with the correspondi.ng 
expression for homogeneous nucleation of bundle
like nuclei, eq (6) or (18), it is seen t hat the non
coher en t surface nucleus model can provide a simple 
physical explanation for the r eduction in th e free 
energy of formation of a three-dimensional growth 
nucleus below that of the corresponding three
dimensional primary nucleus proposed by Flory and 
McIntyre [17] . The reduction factor is 1- (0/2rJ) , and 
this r esults from the assumption that an unstrained 
surface nucleus can wet a strained crystallite of the 
same polymer to some extent . 

Region A " (lower): Equation (53) will hold on 
down to a t emperature wher e b approach es boo This 
will occur at a degree of supercooling 

(54) 

Below Ta, the rate law may be approximated as 

( t:,H*) ( GA" (Iower ) = Go exp - kT exp 

(55) 
[(t:,T)- l law ] 

R egion E": At a growth temperature correspond
ing to a degree of supercooling of t:,Tc= 4rJTm/(M/'J) 
aml n , bundlelike embryos or small size will be trans
ported from the superheated state a bove Tm in to the 
supercooled state by nonstefLdy staLe nucleation 
where they will b ecome nuclei of stable size. As in 
previous cases, this will lower th e radial growth r at e 
of any spherulites born at or neal' t= O. 

Summary: A diagram of the radial growth rate 
behavior possible with this model is shown in figure 
9b . A (t:,T)-2 law will appear near and somewhat 
below the melting point because of th e three-dimen
sional charact er of the noncoherent surface nucleus 
in that r egion. A t ransition to a ( t:,T ) ~ 1 r ate law 
may occur if the 0 is fairly large. This transit ion 
will not be abrupt. 
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7.3. Noncoherent Bundlelike Growth and Spherulite 
Structure 

There is nothing in the present model that sug
gests the existence of lamellae of large extent that 
·have a uniform step height . 

If large chain ends that cannot be assimilated into 
the crystal are taken to be the cause of the limitation 
on lengthwise growth of each of the individual 
crystallites in the coherent growth process, a large 
distribution of lengths, i.e., "lamellar thicknesses" 
would result. The mean length of the individual 
crystallites would depend on the molecular weight 
and its distribution, rather than on the degree of 
supercooling. With small chain ends that can oc
casionally enter the crystal, there is still no reason to 
suspect anything but a large distribution of such 
lengths, though the mean length would be larger 
and in any event not be of the correct magnitude to 
correspond to the thickness of a lamella. It is in 
our view extremely improbable that a collection of 
bodies of varying radii and length would aggregate 
in such a manner as to form slabs of uniform th ick
ness with flat faces. We therefore conclude that 
the asumption that chain ends limit lengthwise 
growth is not consistent with the prediction of typi
cal lamellae. Even if one considers bundlelike 
crystals before such a mean "equilibrium" length is 
attained, one must contend with the fact that large 
bundlelike crystals will tend to be ellipsoidal in order 
to minimize the total surface free energy and strain 
[25, 26], and the fact they will continue to grow in 
the l direction. 

If cumulative strain at the bundle ends is taken 
as the cause of the cessation of coherent growth, the 
" length" of the crystals might be quite uniform. 
However, the existence of such strain would clearly 
tend to force the individual bundlelike crystallites 
to have curved end surfaces, which is inconsistent 
with lamellar structure. Here again the mean length 
of the ellipsoidal crystallites would not depend 
strongly on the degree of supercooling. 

In both of the cases mentioned above, the intro
duction of the noncoherent nucleation step allows 
the continuation of radial gro'wth, but in no way 
suggests that true lamellae could be produced from 
the decidedly irregular or ellipsoidal microcrystals 
produced in the coherent step. 

No contradiction to the concept that bundlelike 
crystallization will not lead to typical lamellar struc
t ures arises when the non coherent variations of the 
special models depicted in figures 5b or 5c are con
sidered. If the model illustrated in 5b were actu
ally capable of eliminating cumulative strain (which 
is by no means certain) , such strain could not be the 
cause of the cessation of coherent growth. The 
" lamella" would grow in the l direction as noted in 
section 4.2 until chain ends stopped them, but then 
they would possess a distribution of lengths as noted 
previously. Alternatively, if cumulative strain were 
not relie:ved by the tilting, each crystallite would 
have curved ends, and therefore not be able to form 
a lamella. The latter objection also holds for the 
model shown in figure 5c if cumulative strain is not 

relieved by t il ting. If such st.rain is eliminated by 
the t il t for 5c, one is forced to the assumption that 
unassimilable chain ends must be the ultimate limi
tation on coherent growth, but this has already been 
seen to be inconsistent 'with the existence of typical 
lamellae. Also, the other objections to 5c noted in 
section 4.3 still hold. 

The bundlelike microcrystals will tend to melt 
close to the crystallization temperature because of 
the accumulated strain. 

The bundlelike noncoherent growth model might 
lead to a more or less spherical and semicrystalline 
aggregate composed of a vast number of small 
crystalli tes of nonuniform size. (The introduction of 
the noncoherent step involves the assumption that 
suitable surfaces for such nucleation are formed by 
the individual coherently grown crystals. ) If such 
an object is identified in some bulk polymer by 
electron microscopy or other methods, it would be 
reasonable to attempt to treat its radial growth with 
this model. However, it would seem more appro
priate to treat a typical lamellar spherulite in terms 
of the coherent or noncoherent chain fold models. 

If noncoherent nucleation is impossible because 
no suitable surface is presented by the coherently 
grown crystal (e.g., because of excessive curvature), 
small bundlelike crystallites may appear more or 
less at random in the system. These aborted struc
t ures migh t coexist with folded structures that were 
meanwhile growing to large size . 

*8. Discussion 

8.1. Synopsis of Radial Growth Rate Laws 

The most important laws describing the rate of 
r adial growth of spherulites derived in this paper 
may be summarized in the general form: 

and 

loge (G/Go)=- (t::.H* /RT)-K I/ T 2(t::.T) (56) 

[(t::. T) -1 law] 

loge (G/Go) = - (Ml*/RT) - K 2/T 3(t::. T) 2. (57 ) 

[(t::. T) - 2 law] 

Another law was mentioned, but it is probably of 
li ttle importance and is included mainly for the sake 
of completeness: 

loge (G/Go) = [- (t::.H** + Ml*)/RT] + K3 (t::.T). (58 ! 

[(t::.T)+1 law] 

A convenient summary of the rate laws as they 
arise in the various models is given in table 1 for 
coherent and noncoherent surface nuclei for both the 
bundlelike and chain folded classes. Given also is 
the best estimate of the type of "spherulite" that 
each model implies, and the sequ ence of rate 
transi ti ons . 

General Interpretation of Rate Laws: The (t::.T)+I 
radial growth rate law holds when the rate deter
mining surface nucleus has no dimensions that may 
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be regarded as variables in the expression for the 
free energy of formation of the nucleus. The 
nucleus associated with this model, which is of the 
size amin, bmin, lmin , may therefore be described as 
zero-dimensional . 

The (t:,.T)- l radial growth rate law bears the 
general meaning that the rate determining step 
involves a surface nucleus Lhat has one flxed and 
two variable dimensions. (Such a body is commonly 
called a two-dimensional surface nucleus. ) This 
meaning holds true for both the (t:,.T)-l law that 
appears beginning at the melting point in the 
coheren t growth model , and the (t:,.T)-l law that 
arises at moderate or strong super cooling for the 
noncoherent growth models. 

The (t:,.T)- 2 radial growth rate law arises when the 
rate determining step is the formation of a surface 
nucleus that has three dimensions that are to be 
regarded as variables in the expression that describes 
the free energy of formation ; such a body is com
monly referred to as a three-dimensional sur face 
nucleus. In the pre ent conception, such a nucleus 
could be Jormed if the polymer molecules ,vere 
deposited on the polymer substrate in uch a nmnn er 
that they were no longer colinear with those in the 
substrate, thus forming an interface between the two 
bodies. In this event, the surface nucleus takes on 
the three-dimensional character of a primary n ucleu 
as regards temperature dependence, bu t is energeti
cally preferred to the corresponding primary nucleus 
by virtue of the wettabiliLy of the substrate by the 
noncoher ent surface nucleus. In our view, then , 
the observation of a (t::.T) -2 radial growth rate law 
would not only mean that the rate determining step 
was the formation of a Lhree-dimensional surface 
nucleus, but would also imply that a non coheren t 
surface nucleus was involved . 

Experimental Expectations: It is of interest to 
indicate what the theory implies concerning the 
probabili ty that the various rate laws will be ob
served experimentally, together with a number of 
related points that may prove useful in attempting 
to apply the theory. 

I t is considered highly improbable that the (t:,.T)H 
rate law will be Jrequently encountered in experi
mental studies. This rate law will generally be 
obscured or distorted by nonsteady state nucleation 
effects. If it did appear, it would do so at moderate 
to strong supercooling wher e the jump rate term 
would make it difficul t to iden tify. 

The (t:,.T)- l radial growth rate law would appear 
to deserve strong consideration in the analysis of 
data, especially in the case of obviously lamellar 
spherulites. We refer here specifically to the (t:,.T)-J 
law arising from the coheren t model with chain folds. 
This model is capable of predicting many of the 
details of a lamellar spherulite, and coherent growth 
must be regarded as a probable mechanism, partic
ularly if there i any reason to believe that a mall 
and efficiently packed chain fold that is consisten t 
with Lhe interior lattice structure can be formed. 
On the grounds that studies on solution-grown single 
crystals appear to indicate that such folds can be 
formed in a number of cases , and the fact that lamellae 
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of considerable extension have been observed in 
spherulitic bulk polymer samples, we believe that it 
is reasonable to suppose that a (t:,.T)-1 radial oTowth 
rate law arising from coher ent growth with chain 
folds hould be Jound experimentally. Linear poly
mers with no bulky side groups or effecLive atactic 
section are doubtless promising sy terns for such 
studies. 27 The melting behavior of a number of 
spherulitic polymers seems more consistent with 
coherent growth than noncoherent growth. 

The coherent bundlelike model also lead to a 
(t:,.T)- l growth rate law, but we do not consider this 
a likely source of such a rate law. It cannot produce 
a lamellar spheruli te at all . Under a variety of con
ditions, the model does not even lead in a straight
forward way to any kind of spherical object. 

The (t:,.T) - 2 radial growth rate law deserves con
sideration in the analysis or data, most particularly 
in connection with thenoncoherent chain fold model. 
It seems conceivable that in some polymers the chain 
folds may be too bulky to allow continued coherent 
growth, and in such cases it is possible that non
coherent three-dimensional surface nuclei may form, 
and constitute the rate determining step in the radial 
growth mechanism. (It is to be expected Lhat uch 
bulky chain folds would fu'st induce a tilting of the 
polymer chain axes with respect to the CT. plane, 
lamellar twist, or even a change of crystal structure 
to a more open form. ) If spasmodic growth of the 
spherulite radius is ob erved near the melting point, 
a (t:,.T) - 2 law becomes a good possibility. 

The (t:,.T)-2 law arising from the 110ncoherent 
bundlelike model need only be con idered for nOl1-
lamellar spherulites. 

It is evident that a combin ation of lmowledge 
obtained from electron and optical microscopy and 
other appropriate physical methods concerning the 
texture of a spherulite, together wiLh a lmowledge 
of its radial growth rate law, would be very useful in 
deciding in detail how these objects were formed .28 

8.2 . Tra nsitions in the Radial G rowth Rate 

The objective of this section is to bring out some 
points connected with the rate transitions that may 
occur in the radial growth rate of spheruli te when 
the growth rate is considered as a function of 
temperature. 

Two different types of rate transition have been 
postulated. In the first, the transition is due to some 
dimension of the surface nucleus approaching a 
minin1al value, causing a different radial growth rate 
law to exist at lower temperatmes (transition in 
sU7jace nuclei). The second type or transition postu
lated in the radial growth rate i not due to any 
change in the surface growth nucleus iLself; bundle 
or loop type nuclei where all three dimensions are of 

27 Even when presen t ill low concentration, non crystal1izable units in a copoly
mer must be expected to disrupt the [ormation o[ regul arly folded crystals. 

" It is actuaUy quite difficult to distinguish expel"imentally between th e (6 T )-' 
Slld (aT)-Z laws in many cases, largely beca use of the unccl'ta inty in 'I'm. r:l"'be 
value of 6[-[* mllst not eitber impliCitly or explicitly be set equa l to zOrO in a t
tempting to determin e t be 6 T law. 'fhis s trongly and incorrect ly fa vors t he 
(6T)-' law over t be (6T)-' law. M ethods 01 determ inlng the !'adial growth rate 
la w from data on spherulites will be discussed in deta il in a fo rthcoming publi
ca tion [35J. 



minimal size appear in large numbers as a result of 
nonsteady state nucleation in the surrounding 
medium, and interfere with the growth of well 
developed spherulites (transition in surrounding 
medium). 

Transitions in Surface Nuclei: In the text, these 
are denoted A" (upper)-?A" (lower) and A" (upper) 
-?A" (lower). Such transitions occur only for 
noncoherent surface nuclei (see table 1) . The transi
tion is a result of the b dimension of the growth 
nucleus falling to its minimal value. 

If it occurs, this type of transition will not be 
particularly abrupt. The theory for G in the transi
tion region can be worked out for some simple models. 
The resul t is that G is actually continuous across the 
transition, provided that Go and t..H* are either con
stant with growth temperature, or smooth and con
tinuous functions of temperature. It could happen 
that t..H* or Go was different in the two regions, so 
that the plot of log G against T near the transition 
resembled a branch point, or even exhibited a small 
discontinuity. In any event, it is emphasized that 

the rate laws cited in this paper hold at growth 
te~p e ratures somewhat removed from the transition 
reglOn. 

The coherent folded nucleus model does not exhibit 
this type of transition, but the noncoherent folded 
nucleus model does. Therefore, if a rate transition 
involving a (t..T) - 2 Iaw near the melting point and a 
(t..T)-l law beginning somewhat below it is found in a 
lamellar spherulite, the non coherent model with 
chain folds would be indicated. A similar situation 
in a nonlamellar spherulite would point to the non
coherent bundlelike model. 

In general, the appearance of transitions due to a 
dimension of a surface nucleus approaching a minimal 
value is not considered very likely, with the possible 
exception of the one associated with the noncoherent 
folded model. If found , such transitions would pro
vide valuable insight into the spherulitic growth 
process. 

Transition in Surrounding M edium (nonsteady 
state nucleation): Consideration will now be given 
to the transition at Tc resulting from the rapid 

TABLE 1. Sphe1"Ulitic growth 

Model log, (G/Go) T emperature I Rate law I 
range 

Coh ere nt surface nucl eus models· 

Coherent folded nuclei b ____ _ t:.H* 4bouu , 
- k T - (t:. f)k T 

(two-dimensional nucleus) 

Coherent bundlelike nucleL__ t:.H* 4boCTCT, 

- kT - (t:.f)k T 

(two-dimensional nucleus) 

R egionA', T mto (t:.T)-1 
Te. 

R egionA',Tmto (t:.T) -1 

T e· 

Noncoherent surface nucleus models· 

Noncoherent fold ed nuclei b_ _ t:.H * 32u (u - o /2)u , 

N oncoherent bundlelike nu
clei. 

- kT (t:. f)2k T 

(three-dimensional nucleus) 

t:.H * 4bouu , 
- k T - (t:.f)k T 

(two-dimensional nucleus) 

t:.H* 32CT(CT - 5/2) CT, 

- k T (t:.f) 2k T 

(three-dimensional n ucleus) 

t:.H * 4boCTCT e 
- k T - (t:. f)k T 

(two-dimensional nucl eus) 

R egion A " (up- (t:. T) -2 
per), T m to T'o'. 

R egion A" (low- (t:.T)- l 
er), T'o' to T e. 

R egion A" (up- (t:.T)-2 
per), T mto T '{ 

R egion A" (low- (t:. T) - I 
er), T'o'to T e. 

R emarks 

Predicts a typical lam ellar 
spher ulite. 

Do e~ not lead to lam ellar 
spherulitc. Will give mi
crocr ysta ls scattered 
t hroughout m edium ; for
mation of spherical object 
of macroscopic size doubt
ful. 

Produces a modified lamel
lar spherulite. R adiu 
will increase spasmodically 
in Region A" (upper) . 

May lead to a microcrystal
lin e nonlamellar spherulite. 

• u and u . are t he lateral and end surface free energies, respectively, for fold ed nu clei; CT and CT e are the corresponding 
quantities for bundlelike nuclei. The quantity (t:.f) is given by [(t:.h f ) (t:.T) / T mHT/ T ml· 

bIn t he expressions for log, (G /Go) for t he folded nuclei, t he edge free energy E has been set equal to zcro to simplify t hem 
(see text for complete expressions). 
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ingress o[ loop (or bundlelike) nuclei in the medium 
surrounding a spheruliLe Lhat may interfere with 
its growth. 

It is to be expected Lhat the To transition can be 
r elatively ahrupt , occlUTing over a temperature 
r ange as little as several degrees . It will be aecom
panied by a noticeable fall in G. A transition fitting 
this general description has b een found by Takaya
nagi [13] in poly (e thylene adipate) as may b e seen 
by noting the lower transition in his figure 7. All 

even more remarkable drop in the radial growth 
rate of spherulites in poly (chlorotrifiuoroethylene) 
at 156 DC, which is about 65 DC b elow Tm , h as been 
found by Hoffman and W eeks [35]. Another point 
of interest is that the rate of bulk crystallization , as 
measured dilatometrically, should increase at T e , 

even though G falls. This effect is particularly 
striking in the case of poly(chlorotrifiuoroethylene). 

The Tc transition as such is certainly not to be 
expected in radial growth rate s tudies in all polymers. 
For many polymeric subs Lances, U will be around 10 
erg cm- 2, and a mln will b e perhaps 10 A. Then th e 
Tc transition would appear only at a degree of super
cooling of abou t 150 DC or more if (I::,.hf ) li es in the 
usual range. This will usuall.v be below T o, where 
the radial growth rate h as already been grea Lly 
lowered by Lhe jump rate effect. Even i[ Tc is nearer 
to the m elting point than this, it is rather lik e l : \ ~ to 
be obscured by experimental diffi cul ties arising from 
extr emely rapid growth . The Te transition is most 
ap t to b e observed in materials where it is neares t Lo 
the melting point, i.e., those with a low lateral 
surface free energy and a large molecular diameter. 

On the b asis o[ the above r emarks, Lhe si tuation 
where the radial growth rate is low n eal' Tm , rises to 
a maximum below T m, and then falls again wi thou t 
any obvious discontinui tics anywhere is the one to be 
most commonly expected. However , it is impor tant 
to bear in mind the possibility that rate tran sitions 
can occur when analyzing radial growth rate da ta 
for polymeric systems. 

Glass [ormation migh t b e prac Li cally impossible, 
even with the most rapid quenching, j( Te falls well 
above the glass Lran si tion temperature. Then the 
supercooled liquid (which would otherwise form a 
glass on cooling bclow T v) would tend to nucleate 
and crystallize rapidly at or somewhat b elow T e. 

At the very least, such a "glass" would contain a 
large number of " frozen in" embryos, nuclei , or 
crystallites in addition to any truly amorph011 s 
gl<1ssy m aterial. The ordinary homogeneous mecha
nism (or a h eterogeneous one) could, of course, cause 
cr ystallization to b ecome very rapid above Te. In 
any event, the failure of many linear polymers to 
easily form truly amorphous glasses may involve the 
"nuclea tive collapse" effect beginning a t Te. 

The basic effect that causes th e Te transition , 
namely, Lranspor t of a large number of nuclei of 
minimal size from the mclt to the supercooled state , 
can be emplo?ed to explain certain effec ts associated 
with prequ enching on spheruliti c growth. In the 
case o[ Lhe theory discussed so far, it h as been 
assumed that we were d ealing with specimen that 
were cooled direc tly from well above T m to the 
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growth tempera Lure, and the rate o( radial growth 
ob erved under these conditions. Suppose, how
ever, LhaL experim.ents were carrie l ou t by first 
quenching Lhe polymer to some low temperature, and 
then observing rad ial growth after the specimen is 
1'ewa1'med Lo a cer tain growth temperat1.lre. Then aL 
this growth Lemperature, G will often b e lower Lhan 
if the value of G Ilad b een obtained in the norm al 
way at the same growth temperature . R esulLs of 
th is type are known , and may be ascribed Lo Lhe 
incursion of small nuclei during the quen ching 
process . The differ en ce might be n egli gible if Te 
is near or below T o. Growth rate data obta in ed on 
prequenched and reheated specimens should be 
regarded with cau tion from an interpretive s tand
poin t, since the r etardations to radial grov,r th will 
involve Jactors that h ave not been considered in 
deriving the expressions for G.29 

8 .3. Crystallization Without Chain Folds or 
Spherulites 

The ohjective of this section is to emphasize the 
possibili ty that (1 ) cr ystallizaLion without chain 
fold s m ay occur , and (2) that crysLallizaLion with 
chItin folds but without any obvious pherulites may 
exist. 

Normal Bundlelike Orystallization: In Lhe event 
that (J.<ue for both nuclei and crystals, and assuming 
that loop type sLrucLures are not iniLiated at heLcro
genei ties, bundlelike crystalli tes mighL occur on a 
considerable scale. If non coherent surface nucleation 
did not take place, the (proba bly ellipsoidal) crystal
JiLes formed would b e scatter ed tlu'ougho1.1 L the me
dium, i.e., no spherulites would form, but if nonco
h erent nucleation did tak e place, a spherical and 
microcrystalline bu t distinctly nonlamellal' "sph eru
Ii te" might form (sec sections 4 and 7) . The condi
Lion (J.>u. will lead Lo ch ain folded sLrucLures, but 
und er certain conditions th ese m ay not b e in a r eadily 
identifiable spheruliLe (sec below). 

Crystallization oj Oriented Polymers : Suppose it is 
known for a certain polymer that when i t is crys tal
lized by cooling the unorien ted mel t to a tCJr1])er aLure 
slightly below T m that lamellar spherulitcs are 
formed, and that the principal site of the crys Lalliza
tion is in the sph eruli tes. T ypical lam ellar spher
ulitic crystallization frequentl.v occurs und er th ese 
condiLions . W e now ask what migh t change this 
state of affairs. 

Assume now that the polymer liquid is in some 
manner caused to b e in a highly oriented state above 
Tm , and that this system is then supercooled. The 
possibility then exis ts that bundlelike raLher than 
loop type crystals will form . In Lhis even t , Lhe sam
ple would contain n eith er lamellae or lamellar spheru
li tes. A distinct long X-ray spacing may arise from 
such bundlclike crysLalli tes if Lhe.v have a fairly uni
form size in the L direcLion clue to s ll'l1,in or other 
factors . Thi s spacing will almost cer tainly not var y 
as l /( I::,.T) as will the spacings from chain fol ed crys
tals formed [rom th e unorientecl. melt, and care 

"Abnormall y large t;H* val ues can result for spheruli tic growth taklng place 
in a medium that contains competing nuclei or crystallites. 



should be taken not to confu se the spacings obtained 
on strongly oriented and un oriented specimens. In 
moderately oriented systems, chain folded and bun
dlelike crystals may coexist. 

Crystalli zation in Region B: Another possible source 
of nonspherulitic crystallization in a polymer whose 
macroscopically observable growth form at low to 
moderate super cooling is of the lamellar spheruli tic 
type is rapid crystallization well b elow T Cl i .e., in 
region B . This will often lead to a hierarchy of very 
tiny crystallites, most so small they scatter but little 
visible light. (A similar failure of 'well developed 
pherulites to appear may be caused by the presence 

of large numbers of active heterogeneous nuclei, or 
a very high rate of homogeneous nucleation.) It is 
reasonable to suppose that O"e< u e might hold for 
nuclei of minimal size even when O"e> u e for larger 
nuclei and crystals. This is implied by the con cept 
that cumulative strain may e:A'i.st at the bundle ends. 
In such a case, chain folded lamellar spherulites or 
other lamellar structures would form above T e, 

while many of the small crystals and embryos formed 
b elow Te would be bundlelike. The fine-grained crys
tallization produced below Te will tend to be mixed 
with spherulites formed above Te during the sub
cooling process. 

In summary, the presence (or absence) of typical 
lamellar spherulites could depend on the previous 
orientation of the melt, the temperature of crystal
lization, the number of heterogeneities present, and 
the ratio O"e/u e. Condi tions may m..'i.st where bundle
like and chain folded structures occur together. 

8.4. The Initiation of Spherulites in Real Systems: 
Heterogeneous, Pseudohomogeneous, and Homo
geneous Nucleation 

One important reason for attempting to obtain 
the homogeneous injection rate of spheruli tes as a 
function of temperature lies in the fact that the 
temperature dependence of this quantity determines 
certain products involving the surface free energies 
that are different from those obtained from t he 
radial growth rate. Thus, for a lamellar spheruli te 
near T m , a knowledge of IA as a function of tempera
ture would allow the product u 2u e to be determined 
by eq (6) or (18) . However, certain phenomena 
stemming from the presence of heterogeneities can 
closely imitate homogeneous inj ection , and lead to 
" U 2U e' , values that are significantly low. These 
effects are discussed below, partly with the objective 
of indicating why the radial growth rate of spheruli tes, 
rather than their "homogeneous" inj ection rate, was 
stressed in the paper. 

Consider first heterogeneous nucleation of spheru
lites. Turnbull [36] has shown th at if a substance 
contains thermally stable (and wettable) hetero
geneities containing pores or cavities on their surfaces, 
crystalline embryos can persist in these on an equilib
rium basis well above the melting point. Such a 
body will act as a center of growth at or near t= O 
after the material is supercooled . The number of 
such active embryos is strongly dependent on the 
temperature T] above Tm to which the system is 

ini tially heated if a crack-size distribution exists. 
By sufficient superheating, the embryos in the pores 
or cavities can be melted out, thus rendering them 
inactive as nucleation centers in a subsequent crystal
lization . Turnbull's theory shows that, other things 
being equal, the embryos in the larger pores are 
melted out first as TJ is increased . In cases where 
the cavities are small, and where the heterogeneity 
is rather strongly wetted by the crystalline phase, 
the embryos may persist hundreds of degrees above 
the bulle melting point. 

Spherulites in many cases are well known to follow 
this pattern of heterogeneous initiation. In such a 
case t hey are all born at or near t= O, and their 
number per unit volume is markedly dependent on 
TJ- increasing TJ substantially reduces this number. 
(In cases where they are born later than t= O, t hey 
tend to be born in a narrow range of t imes about an 
induction time, T i') It is therefore clear that 
spherulite producing structures can be, and fre
quently are, maintained in cracks or fissures in 
heterogeneities. 

We t urn now to pseudohomogeneous nucleation of 
spherulites. Heterogeneities may contain flat but 
wettable regions in addit ion to pores or cracks. No 
embryos will persist on these flat surfaces above the 
bulk melting point. However , when a system con
taining such heterogeneities is supercooled , nuclei 
will preferentially appear on these flat surfaces by 
virtue of the wettability of these slll'faces by the 
polymer crystal. If the number of heterogeneities 
with flat surfaces is large, the resulting crystals can 
appear in the supercooled system essentially sporadi
cally in time instead of at t= O or t= Ti' Under 
these conditions the crystals will appear not only 
sporadically in t ime, but also (on a macroscopic 
scale) randomly in space. For convenience we have 
denoted this as "pseudohomogeneous" nucleation. 
(This is the case of "heterogeneous" nucleation dis
cussed by Avrami [37, 38].) Sporadic birth is, of 
course, also a property of crystallization in a tru ly 
homogeneou bulk phase. 

Spherulites are sometimes seen to appear nearly 
sporadically in time and space in polymers. Pseudo
homogeneous initiation should be suspected in any 
sample where the number of spherulites formed per 
uni t volume in unit t ime for a given growth temper
ature depends on T], or where a hierarchy of 
spherulites born at t= O also appears together with 
those born sporadically. Such effects indicate the 
presence of numerous wettable heterogenei ties. 
Some of the studies r eported in the literature, where 
the polymer spheruli tes were believed to be of truly 
homogeneous origin for the reason that they 
appeared more or less sporadically in time and ran
domly in space, may actu ally refer to the pseudo
homogeneous category. 

Homogeneous nucleation refers to the process 
where crystalli.zation centers are spontaneously 
formed at random positions in the pure (homophase) 
mother phase by thermal flu ctuations. Such a 
process is characterized by a r ate of production of 
nuclei per unit volume of mother phase that is, after 
the establishment of the steady state, truly constant 
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in t ime. In short, the nuclei appear sporadically 
in time and randomly in space in the supercooled 
liquid. This proces will be independent of TI for 
a wide range of TI values. True homogeneous 
nucleation of a hulk phase is an ideal si tuation not 
easily achieved experimentally in any bulk system, 
heterogeneous or pseudohomogeneous nucleation 
undoubtedly b eing much more common. 

Spherulites of strictly homogeneous origin may 
appear in polymers, but a proof that this is true 
would be quite difficult . The following conditions 
are consistent with homogeneous initiation: (a) The 
spherulites appear sporadi cally in time with no 
excess population at or near t= 0 ; (b ) the spherulites 
appear at random positions in space, and show no 
memory of previous position in space in su ccessive 
experiments ; 30 (c) further steps to rid the sys tem of 
heterogeneities (e.g., filtration , centrifugation, or 
par tial precipi tation of solutions) do not al ter the 
r esults; and (d) the rate of injection of spheruli tes 
is not dependent on T I • 

It should be r ealized that true homogeneous 
nucleation has rarely been achieved or proved even 
wi th very carefully prepared specimens of ordinary 
size of any bulk material. One would hardly expect 
polymers to be an exception. Only work with 
fogs [19] or dispersions [21], where the heterogeneous 
nuclei are greatly outnumbered by the number of 
particles with no adventitious centers, has heretofor e 
been found effective in producing conditions where 
homogeneous nu cleation predominated and could 
be identified . Accordingly, rate of spherulite inj ec
t ion data on bulk samples should not be treated using 
homogeneous nucleation theory unless there is 
substantial reason to beli eve that the inj ection 
mechanism was principally homogeneous. I t seems 
probable that a number of the " (J2(Je' , values quoted 
in the literature on the basis of the assumption of 
llOmogeneous nucleation in the bulk phase are too 
low. 

It would be of grea t interest to obtain r eli able 
u 2u e values using dispersions of polymers in a mann er 
analogous to that used by Turnbull for th e 
n -paraffin s [21]. 

8.5. Comment on Alternative Theory of Step Height 

An alternative theory for the existence of a "step 
height" in polym er crystals has been advanced by 
Peterlin and Fischer [39]. They propose that the 
length ("step height") of a polymer crystal is limited 
because the longi tudin al lattice vibrat ions become 
in coherent, and raise t he free energy of the crystal 
if its gets too long. The "step height" of lamellae 
is thus believed by these authors to exist because of 
equilibrium consideration . They predict that the 
step height decreases with lowering temperatme. 

Entirely apart from the question of whether or not 
such a concept is correct in principle, the following 
commen ts are relevant : (1) The Peterlin-Fischer 
theory does not predict , or even in the mode analysis 
take account of, the existence of chain folds in bulk 

30 In polymers, retained orientation migh t create memory en'ects but it should 
be possible to eliminate these by storing the samples above Tm fo~ a time. 

or in dilute solution. (2) To the extent that their 
work may be interpreted as referrin g to the bundle
like system with chains normal t o the bundle ends, 
the objection illustrated in figure 5a applies to the 
prediction of bundlelike " lamellae" of large dimen
sions. (3) in ce t he "step height" is a I henom enon 
based on equilibrium considerations in the P eLerlin
Fischer theory, it should depend on the amb~ en t 

tem peratu:re r ather than t he growth temperature, 
the latter being the case for the theory presented in 
this paper . There is no evidence suggesting, for 
example, tha t the lamellae in bulk become thinner 
with lowerin g ambient temperatureY It is our con
clusion that if the limi tation on length proposed by 
P eterlin and Fischel' exi ts, it evidcn tly refers to a 
much larger dimension than the step height of a 
lamella. 

The theory presented here and in an earlier paper 
shows how chain folded crystals can com e into being, 
and provides a reasonably detailed picture of the 
properties of systems crystallizing in this pattern . 

*9. Summary and Conclusions 

We now give a brief s ummary of some major point 
that have been brought o ut concerning sphel'ulitic 
crystallization in bulk polymers. 

It wa demonstrated t hat if one assum es that the 
end surface free energy of a bundlelike nucleus is 
larger than the corresponding quantity for a folded 
nucleus, i .e., (Jc> G"e, then homogeneo us nucleation of 
chain folded structures will prevail in bulle It was 
noted that heterogeneous nucleation is much more 
probable in r eal polym er sys tems, but that if (J e> G"e, 

this type of n ucleation will in all likelihood still 
initiate chain folded structmes in bulle It was then 
shown that coherent surface nucleation with ch ain 
folds will lead to structures pos essing a considerable 
number of physical features commonly associated 
with lamellar spherulites. (The chain folded mode 
of crystal growth is highly probable if (Je> G"e, and 
coheren t nu cleation is feasible if the folds are s uch 
that they do not lead to cumulative s train in the fold 
plane.) It was also indicated that the ass umption of 
noncoherent nucleation with chain folds co uld pro
duce a modified lamellar spheruli te. In eftch case, 
emphasis was placed on predicting the radial growth 
rate of the spherulite as a function of the crystalliza
tion temperature. This proper ty follows a different 
law for coherent and noncoherent growth , and a 
differen tiation of the two is amenable to careful 

31 Experiments aimed at differentiati ng between the "eq uili brium" theory of 
Peterlin and Fischer, where the step height is a function of ambicnt temperat ure, 
and the" kinetic" theory presented in this paper, where thc step height is a 
function of the growth temperature, must be carried out and interpreted with 
caution . For example, if a lamella with a certain step height in bulk is warmed, 
it will mclt, and if kinetics permit, recrystallize at a new and larger step height 
(sec. 5.2), This must not be mistaken for an u cq l1 i1ibrium" increase in step 
height. Experiments conducted by lowerin~ the temperature after crystalliza
tion are free of t his objection provided no additional crystallization of supercooled 
liq uid polymer take place at the lower temperatures, thus introducing thi nner 
lamellae. Studies of the changes of step height of chain folded lamellae in (\ilute 
solution are of problematical val ue in tbis connection. Tbey may show an in
crease of step height on warming due to melting followed by recrystallization. 
If the solubility is finite, thi n lamellae will form from thicker ones in dil ute solu
tion on loweri ng tbe temperature. Neither of these eflects in dil ute solution may 
be interpreted as supporting the "cquilibdum" theory. In some polymers, a 
slow increase of step height due to internal diffusion mechauisms iu the crystal 
may take place, and further complicat~ matters. However, as notpd in section 
5.2, sueb a di ffusion meebanism is distinguished by tbe fact it can take place 
isothermally at the odginnJ crystallization temperature. 
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experiment. Also, the behavior of the step height 
of a chain folded lamella in bulk was discussed. 
This included the st ep height as a function of 
growth temperature, the behavior on rewarming 
(melting, recrystallization), and the uniformity of the 
step height. The predictions given are mostly 
subj ect to experimental verification, and some are 
known to be at least qualitatively correct. It is 
highly significant that a kinetic theory of crystal 
growth, wherein a nucleus length maintains itself 
during growth because of chain folds, can reproduce 
so many of t he known features of spherulitic crystalli
zation in bullc 

Given the basic lamellar structure produced by the 
kinetic crystal growth t heory with chain folds, it 
was shown how surface stress could cause the lamellae 
to warp or twist. A slight and noncumulative repul
sion of the chain folds in the U e plane is sufficient to 
create the required type of surface stress. Others 
have previously shown that such twist can explain 
many aspects Qf the optical extinction patterns of 
spherulites, most particularly the complex rings that 
are often seen with a polarizing microscope. 

An effort was made to indicate the na ture of the 
reasons that (f . might exceed Ue. It was conclud ed 
that the value of (fe will be considerably larger than 
had been supposed heretofore, because of the fact 
that a bundlelike nucleus clearly must possess a 
density gradient of considerable size at the bundle 
ends: calculations with a simple model were given 
showing t hat even the minimal value of (f . would be 
quite large because of the work required to construct 
this density gradien t region. When considered to
gether with the theoretical and experimental esti
mates for U " the result is that it is certainly not 
implausible to suppose that (f.>ue, at least in some 
situations. In t he one specific case that was con
sidered (polyethylene), it was clear enough that this 
condition might indeed apply. If (f.>u. for a poly
mer, chain folded growt h is to be regarded as an 
intrinsic mode of crystallization in the bulk phase. 

Certain circumstances were mentioned whereby 
chain folded structures might be prevalen t, t hough 
in competition with numerous small bundlelike 
crystallites, in a bulk polymer even if (f.< u. (poison
ing of growth of extend ed bundlelike structures by 
cumulative strain or large chain ends; heterogeneo us 
nucleation with special interactions). In sufficiently 
dilute solution, chain folded platelets will form, no 
matter whether (fe>u. or (f.<u., because of entropy 
considerations. 

Assuming that the condition (f.>u. docs exist, 
at least for fairly large crystals, we regard the most 
probable cause of this condition to be cumulative or 
noncumulative strain at the ends of the bundlelike 
nucleus or crystal. Such strain arises ultimately 
from the fact that for a bundlelike system, the 
crystal and liquid phases are" connected" through 
covalent bonds, a situation that does not occur to a 
significan t extent in the folded system. Again we 
emphasize the fact that the condition (ft>u. virtually 
assures the predominance of the chain folded growth 
mechanism, whatever the type of initiation . 

Considerable attention was directed toward a 
critical examination of whether the classical bundle
like model of polymer crystal growth, or certain 
variations of it, could lead to a lamellar spherulite. 
It was concluded that this was highly improbable. 

In general, the bundlelike models suffered one or 
more of the following drawbacks: (1) The bundlelike 
nucleus with noncumulative strain is fOlmd to grow 
in t.he polymer chain direction, thus destroying any 
semblance of the stability or uniformi ty of the step 
height as observed experimentally in spheruli tes. 
(2) Bundlelike crystallites will have a tendency to 
exhibi t rounded ends because of considerations based 
on strain or minimization of total surface free energy, 
or both, and this is no t consistent with the existence 
of lamellae with large and fia t (f.-type faces . The 
bundlelike nucleus with cumulative strain will not 
grow to large size, and will definitely have rounded 
ends. (3) The assumption that the exclusion of 
large chain ends from the crystal ultimately causes 
the cessation of lengthwise growth of the bundles 
(on an equilibrium basis) leads to a wide distribution 
of crystallite lengths that is not consistent with 
either the uniform thickness, or the surface smooth
ness of a typical lamella. (4) The tipping of polymer 
crystals at low draw ratios is not readily understood 
in terms of bundlelike crystals. (5) It seems im
probable that assemblies of strictly bundlelike 
"lamellae" would cleave along the required planes. 

The deficiencies of the bundlelike models, as con
trasted with the ability of t he chain fold models to 
reproduce many of the significant structural feaures 
of lamellar spherulites, leads to the conclusion that 
it is highly probable that lamellar spherulites formed 
in bulk consist of structu res that are built on a 
basically chain folded pattern. 

To t bis it must be added that some bundlelike 
character, in the form of interlamellar links, or 
chains protruding froll1. the fold plane, must be ex
pected in lamellar spherulites. Further, the exist
ence of a microcrystalline but nonlamellar spherulite 
built on the bundlelike pattern by noncoherent 
nucleation is by no means excluded. Therefore, the 
possiblilty exists that there is more than one basic 
scheme for the eonstruction of spherulites in bulk 
despite the evidence that a number that have been 
carefully studied are lamellar. 

Finally, some limitations that may exist on spher
uli tic growth with chain folds were noted. Exclu
sion of chain ends from the crystal for reasons of 
large size may hinder fold formation at low super
cooling where the step height is large. At high 
supercooling, nonsteady state nucleation may occur 
in the medium surrounding a spherulite, and seriously 
hinder its growth. 

10. Appendix: Simplified Density Gradient 
Model of the Prima ry Bundlelike Nucleus 

Density Gradient Model: The treatment given 
below is not represented as a rigorous or complete 
solution of the problem of the bundlelike nucleus 
with a density gradient at the bundle ends. Our 
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intention in presenting the treatment below is to 
illuminate with a simple example some of the factors 
that might contribu te to rre' 

Consider a bundlelike nucleus with a middle 
section of normal crystal density Pc and lateral 
surface free energy rr, which has length lJ and radius 
r, In addition, the nucleus has t wo diffuse bundle 
ends where t he density gradually falls off from Pc to 
p'z, ~he latter being .the ~ensity. of the supercooled 
hqUlCL Call the radlLls of the dIffuse end r and let 
the total length of the nucleus be II + l2' Let the l 
coordinate be zero at the center of the nucleus, 
Then t b ~ normal crystalline section of density Pc 

extends 1 rom zero to ll /2, and the diffuse section 
where the density falls to p /, extends from ld2 t~ 
(ll + l2)/2, (Sce ng.lOa,) 

For this model, the free energy of formation may 
be approximated as 

where 
!(lI+12) 

W s= f u(p)dl CA- 2) 

~tl 

and 
!(lI+12) 

W e= f f>F (p)dl. 

!IJ 

(A- 3) 

H ere rr(p) is the lateral surface free energy as a 
function of density in the diffuse end region, and 
f>F(p) the free energy of formation as a function of 
density in the same region. 

27rl'll is the work required to form the lateral 
surface of the normal crystalline section of length 
ll' and 47r1' W. is the work required to form the lateral 
surface of both diffuse ends. The quantity rr(p ) will 
be equal to rr at ld2, and zero at (ll + l2) /2. lV. will 
have a positive value, and not depend trongly on 
temperature. 

27r1,2W e represents the free energy of formation of 
the two diffuse bundle ends. This will contain some 
negative contributions, since f>F(p) is equal to 
- (/::"j) at ld2, and zero at (ll + l2) /2. However, 
f>F(p) will be positive for a certain range of l values 
between these limits, causing th e net value of W e to 
be positive. W. may depend on temperature to 
some extent. 

The model does not explicitly treat cumulative 
strain caused by radial growth. To do so would 
greatly complicate the model. 
. By the usual methods one frnds r* = 2rr/( N) and 
li = 2W./rr+ 4We/f>j. On substitution of these in 
eq (A- I), there is obtained. 

(A- 4) 

H ence, t he homogeneous nucleation rate is, 

. f>H*) ( 1= 10 exp ( - leT exp 87rVVsrr) ( ex (/::,,]) leT . P 
87rC)"2We) 
(f>])2lcT . 

(A- 5) 

The (/::"T) - I term involving W. will in some cases be 
nearly cancelled by components of opposite sign 
arising from W e (see below). In any event, eq 
(A- 5) will lead to a (/::"T) - 2 nucleation rate behavior 
sufficiently near T m-

Comparison With Sharp Boundary Model: The 
corresponding cylindrical bundlelike model with rr. 
treated as a single constant representing the surface 
free energy as if it were concentrated at an abrupt 
phase boundary has the free energy of formation 

(A- 6) 

CA-7) 

and 

(A-8) 
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Except for unimportant difference's in geometry, 
eqs (A- 6) and (A- S) are analogous to eqs (4) and (6) 
or (IS) of t he text . 

Comparison of eqs (A-4) and (A- 7) show that 

(A- g) 

A similar result is obtained if the parallelepiped 
geometry is used to treat the bundlelike density 
gradient model. Therefore, to the approximations 
inherent in eq (A- I) , the above expression may be 
regarded as showing some of the factors that con
tribute to the effective value of u e for the bundlelike 
nucleus treated as if it had a sharp phase boundary 
at the bundle ends. 

Application: A highly approximate but neverthe
less instructive application of the density gradient 
model will now be given. The objective is to cal
eulate Ue as given by eq (A- g) in terms of the appro
priate quantities. Tills requires that W s and vVe be 
evaluated. 

In order to calculate W e, some assumptions must 
be made concerning !::..F(p) . A crude model will 
suffice for the purpose of illustrating what contributes 
to We. 

Begin by assuming that, at constant temperature, 
the entropy as a function of density in the diffuse 
bundle end has the form 01 (po/p) , where 0 1 is a 
positive constant in the units erg deg- 1 cm- 3 , Po a 
reference density (Pz+ Pc) /2, and p the density 
ch aracteristic of some value 1 in the bundle end. 
No claim is made that this is exactly the relationship 
between entropy and density. However, the pro
posed expression does lead to an increase in entropy 
with a decrease in density, corresponding to the 
increase of entropy that must occur as a path is 
traversed from p= Pc at 1d2 at the normal crystal, 
out tluough the increasingly disordered bundle end 
to p= pz at (ll + 12) /2. From the proposed empirical 
function we see that 

(A- IO) 

Assume further that the heat content as a function 
of density in the bundle ends is of the form 0 2(P/ Po) + 
0 3 (Po/ p) . Then 

H - H z= t:lH(p) C2(Pl - P)+ 0 3 PO(~ _ 1:.) . (A- H) 
Po pz P 

The constants O2 and 0 3 are in erg cm- 3 • This 
function is proposed with the express intent of 
causing a maximum to exist in t:lH(p) as one goes 
from 1! /2, where P= Pc and H = H c, out through the 
bundle end to (l1 + 12)/2, where p= pz and H = H z. 
(Both O2 and 0 3 must have positive values to give 
this maximum.) This maximum, whose magnitude 
is related to 03 and r (see below) , may be considered 
to result from noncumulative volume strain (repul
sions or abnormal separations, of the ch ain segments) 
in the bundle end. The ma:ximum in t:lH(p) in 

turn contributes to a maximum in !:IF(p) whose 
height depends on 0 3 (or r ). This maximum in the 
free energy must exist in the surface region in order to 
cause phase separation. (There is a small maximum 
in !::..F(p) even if 0 3= 0.) No assertion is made that 
eq (A- H) is an accurate representation of the heat 
content as a function of density in the bundle end; 
it is merely an empirical function meeting cer tain 
boundary conditions and other physical require
ments of the problem at hand. 

4-cco.rdingly, the free energy F - F z in the boundary 
reglOn IS 

('1 1) - T01 po - - - . 
P PI 

(A- I2) 

Applying the conditions F z- Fc= !::..h:£(Tm- T) /Tm, 
and F z- Fc= O at Tm , one finds G't=(!:lhr/PoTm) 
(Pcp t!t:lp z) and 0 2= pg(0 3+ TmO] )/pcPz, where !::..p= 
Pc- Pz· This gives 

[ lIp IJ !:lhrpcP z 
F - F z= P00 3 - +---- - +---

Pc PI PcPZ P T m(t:lp ) 

The expression for vVe may be written 

(A- l4) 

Assuming that the density falls off linearly with 1 in 
the density gradient region, dl /dp = - ld/ (t:lp) , where 
la is the length of the gradient region at one of the 
bundle ends. Carrying out the integration and ex-

panding In (Pc/ pz) as (!::..p / Pz) - ~(t:lp / p Z)2+ ~(!:lp / PZ)3- . .. , 

the result is 

(A- I5) 

Both of the terms in the brackets make positive 
contributions to W e, since 03 is positive. In ar
riving at (A- I 5) it. was assumed that terms in
volving (!:lp/p)4 could be neglected. 

The behavior of W s may now be examined. 
Assuming that u(p) falls off linearly from u at Pc to 
zero at pz as 

one gets 

( P- PI) u(p) = u t;p , 

w _ lau. 
s- 2 

(A- 16) 

(A- 17) 
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Combining (A- I5) and (A- 17) according to (A- 9) 
we get 

(A- IS) 

A term [ld(tlj)/2](I - pc/Pz) has been omitted from eq 
(A-IS) since it is too small to be of any consequence 
in this case. In otber in tances, however, the term 
involving (tlj) could be larger. 

The nature of the various thermodynamic func
tions in the end surface region are shown schemati
cally in figure lOb as a function of the distance 
traversed out through the bundle end. These were 
converted from O"(p) , tlH(p) and !:lS(p) by assuming 
p is a linear function of l. 

For 03= 0, which corresponds to a monotonic in
crease of heat content in the bundle ends, it is seen 
that 0".=ld(tlh,)(tlp)/6pz. This comes to roughly 9 
erg cm- 2 for the particular example relating to poly
ethylene cited in section 2.2. However, it i clear 
on physical ground that the heat content must 
posses at least a flat maximum in the boundary 
region corresponding to a nonzero value of 03• Con
sideration of this leads to a larger and more realistic 
minin1Um value of 0" •. 

I n a system where each molecule is forced to 
participate in the crystal and liquid (or supercooled 
liquid) phases, as is the case at the end of a bundle
like nucleus or crystal in a polymer, we consid er it 
highly probable that the heat content at some 
point in the surface phase must be even bigher than 
it is in the liquid . Tbis effect may be taken to be a 
result of tbe volume strain that must occur in such 
situations. (The above remarks refer to nuclei of 
substantial size, . say with a radius of 50 A or more, 
where densLty differences bc tween the liquid and 
crystaJ will beco me effective . The volume stra ill 
effect would tend to be unimportant if only three 01' 

four ehains were in vol ved . . The model is i n any case 
not val id for such small mdii. ) 

Consider now the value of 03 that will lead to a 
maximum in MI (p) between ld 2 and (l1 + l2)/2. It is 
easily shown that 0 3 must be larger than (tlh,) 
p;PcIPo(tlp)2 in order that this maximum exist.32 

Therefore we may write 

(tlhr) PTPc +r 
PO(tlp )2 

(A- I9) 

where r ~ o. H ence, from (A- IS) and (A-I9), one 
gets 

(A-20) 

The quantity r is in erg cm-3 . The case r = o 
corresponds to that where tbere is no maximmn in 
M-I(p) . This in turn corresponds to the smallest 
maximum in tlF(p) , and thercIore the smallest 
value of IT., that is physically realistic according to 
the model. Actu al value of IT . would almost 
certainly invol ve r> o. 

"The maximum in LlI1(p) occurs at p~ax=PIP,/1 1 + (Llh,)p,P o/pOC3(Llp)1. Sin ce 
p~n ~ pf, the condi tion no ted follows. 
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The particular model treated above docs not lead 
to a large temperature dependence of IT., though the 
term (tlp) 2 will fall with lowering temperature. 
However, there are a munber of reasons for expecting 
IT . to depend omewhat more on temperature in the 
more general case. For example, the residual term 
involving (tl] ) that practically cancelled in eq (A-IS) 
may be larger if other assumptions concerning 
tlF(p), IT(p), and dl/clp are used. 
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