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ABSTRACT

Network reliability is critical for large clouds and online

service providers like Microsoft. Our network is large, het-

erogeneous, complex and undergoes constant churns. In such

an environment even small issues triggered by device fail-

ures, buggy device software, configuration errors, unproven

management tools and unavoidable human errors can quickly

cause large outages. A promising way to minimize such

network outages is to proactively validate all network oper-

ations in a high-fidelity network emulator, before they are

carried out in production. To this end, we present Crystal-

Net , a cloud-scale, high-fidelity network emulator. It runs

real network device firmwares in a network of containers

and virtual machines, loaded with production configurations.

Network engineers can use the same management tools and

methods to interact with the emulated network as they do

with a production network. CrystalNet can handle heteroge-

neous device firmwares and can scale to emulate thousands

of network devices in a matter of minutes. To reduce resource

consumption, it carefully selects a boundary of emulations,

while ensuring correctness of propagation of network changes.

Microsoft’s network engineers use CrystalNet on a daily basis

to test planned network operations. Our experience shows

that CrystalNet enables operators to detect many issues that

could trigger significant outages.
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1 INTRODUCTION

CrystalNet is a high-fidelity, cloud-scale network emulator

in daily use at Microsoft. We built CrystalNet to help our

engineers in their quest to improve the overall reliability of

our networking infrastructure. A reliable and performant

networking fabric is critical to meet the availability SLAs we

promise to our customers.

It is notoriously challenging to run large networks like

ours in a reliable manner [11, 13, 15, 31]. Our network con-

sists of tens of thousands of devices, sourced from numerous

vendors, and deployed across the globe. These devices run

complex (and hence bug-prone) routing software, controlled

by complex (and hence bug-prone) configurations. Further-

more, churn is ever-present in our network: apart from oc-

casional hardware failures, upgrades, new deployments and

other changes are always ongoing.

The key problem is that in such a large and complex envi-

ronment, even small changes or failures can have unforeseen

and near-disastrous consequences [16]. Worse yet, there are

few tools at our disposal to proactively gauge the impact of

failures, bugs or planned changes in such networks.

Small hardware testbeds [1, 2] are used to unit-test or stress-

test new network devices before they are added to the network.

While useful, these cannot reveal problems that arise from

complex interactions in a large topology.

Network verification tools such as Batfish [13] ingest topol-

ogy and configuration files, and compute forwarding tables

by simulating the routing protocols. These forwarding tables

can be analyzed to answer a variety of reachability questions.

However, Batfish cannot account for bugs in routing soft-

ware. Nor can it account for subtle interoperability issues

that result from slight differences in different vendor’s im-

plementation of the same routing protocol. In other words,

Batfish is not “bug compatible” with production network. In

our network nearly 36% of the problems are caused by such

software errors (Table 1). Note that there is no way to make

Batfish bug compatible – often, the bugs are unknown to the

device vendors themselves until they manifest under certain

conditions. Also, Batfish presents a very different workflow

to the operators of the network. This means it is not suit-

able for preventing human errors, which are responsible for a

non-negligible 6% of the outages in our network.

⋆: co-primary authors
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What we needed was a large scale, high-fidelity network

emulator that would allow us to accurately validate any planned

changes, or gauge the impact of various failure scenarios.

Small-scale network emulators such as MiniNet [18] or GNS3 [3]

are useful, but have many deficiencies (see §10), and do not

scale to the level required to emulate large public cloud net-

works.

To address this gap, we built CrystalNet , a highly scalable,

and high-fidelity network emulator. High fidelity means that

the emulator accurately mimics the behavior of the production

network, especially in the control plane. Further, it allows the

operators to use the exact same tools and workflows that they

would on a production network.

We do not claim full fidelity - that requires creating a com-

plete replica of the production network, which is infeasible.

Thus, it is not our goal to faithfully emulate the network data-

plane (latency, link bandwidth, traffic volume etc.). Our focus

is on the control plane.

To accurately mimic the control plane, CrystalNet runs

real network device firmwares in virtualized sandboxes (e.g.,

containers and virtual machines). Such VMs or containers are

available from most major router vendors. We inter-connect

the device sandboxes with virtual links to mimic the real topol-

ogy. It loads real configurations into the emulated devices,

and injects real routing states into the emulated network.

Operators can interact (i.e. change, upgrade, or monitor)

with the emulated network using the same tools and scripts

they use to interact with the production network. They can

inject packets in the emulated network and monitor their paths.

CrystalNet can even be extended to include real hardware in

the emulated network.

Our network engineers use CrystalNet on a daily basis.

They have caught several errors in their upgrade plans which

would have been impossible to catch without an emulator like

CrystalNet . We report some of their experiences in §7.

CrystalNet is scalable and cost-effective. To emulate a

network of 5,000 devices, we need just a few minutes and

500 VMs (4 cores, 8GB RAM). Such VMs retail for USD

0.20/hour each, so the total cost of emulating such a large

network with CrystalNet is USD 100/hour. This is miniscule

compared to the cost of a network outage.

Three key features allow CrystalNet to scalably emulate

large, heterogeneous networks, which are also our major con-

tributions in this paper. First, CrystalNet is designed to run

from ground-up in public cloud. If necessary, CrystalNet can

even simultaneously use multiple public and private clouds.

This allows CrystalNet to scale to levels well beyond those

possible with MiniNet and GNS3. Since VM failures are

likely to happen in any large-scale deployment, CrystalNet

allows saving and restoring emulation state, and quick incre-

mental changes to the emulation.

Second, CrystalNet can accommodate a diverse range of

router software images from our vendors. The router images

are either standalone VMs or in form of Docker containers.

To accommodate and manage them uniformly, we mock-up

physical network with homogeneous containers and run het-

erogeneous device sandboxes on top of the containers’ net-

work namespace. CrystalNet also allows our engineers to

access the routers in a standard manner via Telnet or SSH.

CrystalNet can also include on-premise hardware devices in

the emulated network in a transparent manner. This requires

careful traversal of NATs and firewalls in the path.

Third, CrystalNet accurately mock-up external networks

transparently to emulated networks. An emulated network

has to have a boundary, beyond which there are no emulated

devices. Apart from resource constraints (one cannot emulate

the whole Internet), the fact is that we cannot obtain the con-

figurations and device firmware from devices that are outside

our administrative control (e.g., our upstream ISP). We use

lightweight passive agent that mimics the announcements

emulated devices would receive from beyond the boundary.

Since the agents do not respond to dynamics in the emulated

network, we ensure the correctness of the results by identify-

ing and searching for a safe boundary (§5). Computing the

right boundary can also save resources: indeed, it can cut the

cost of emulation by 94-96% while maintaining high fidelity

(§8.4).

Before describing CrystalNet in more details, we first dis-

cuss the outages in our network over the last two years.

2 MOTIVATION

Table 1 shows a summary of O(100) network incidents in our

network and their root causes for the past two years. The

categories are broad, and somewhat loosely defined; what

matters are the details of individual scenarios, as below.

Software bugs This category includes incidents caused by

issues in device firmware, and bugs in our own network man-

agement tools; although, most incidents are due to bugs in

device firmware.

Examples of bugs in our own automation tools include an

unhandled exception that caused a tool to shut down a router

instead of a single BGP session.

Device software issues come in many forms. Some are out-

right bugs: for example, new router firmware from a vendor

erroneously stopped announcing certain IP prefixes. In an-

other case, ARP refreshing failed when peering configuration

was changed.

Another set of problems arise out of ambiguity, rather than

bugs. Different versions of the network devices from the

same vendor usually have slightly different configuration def-

initions. For instance, a vendor changed the format of ACLs

in the new release, but neglected to document the change

600



CrystalNet: Faithfully Emulating Large Production Networks SOSP ’17, Oct 2017, Shanghai, China

Root Cause Proportion Examples CrystalNet Coverage Verification Coverage

Software Bugs 36% bugs in routers, middleboxes, management tools X X

Config. Bugs 27% wrong ACL policies, traffic black holes, route leaking X X

Human Errors 6% mis-typing, unexpected design flaws X X

Hardware Failures 29% ASIC driver failures, silent packet drops, fiber cuts, power failures X X

Unidentified 2% transient failures X X

Table 1: Root causes of O(100) significant and customer-impacting incidents in our network (2015 - 2017).

Vendor-C

Aggregating 

P1 & P2 to P3

Always selecting R7 for P3 

IP Prefixes: P1 & P2

R2

P1/2: 

AS Path {1}

Vendor-A

Note: Router “RN” 
has AS number “N”

R1

R3 R4 R5

R6 R7

R8

Figure 1: Traffic load imbalance caused by vendor specific be-

haviors in IP aggregation.

clearly. As a result, the old configuration files were processed

incorrectly by switches running the new firmware.

Devices often exhibit vendor-dependent behavior in the

implementation of otherwise standard protocols/features, e.g.,

how to select BGP paths for aggregated IP prefixes, or how

to process routes after FIB is full, etc. Such corner cases are

often not well documented. For example, Figure 1 shows a

simplified version of a problem we saw in production. IP

prefixes P1 and P2 belong to router R1 with AS number “1”.

When higher layer routers R6 and R7 get the announcements

of these two prefixes, they want to aggregate them into a

single one (P3). However, R6 and R7 are from different

vendors, and they have different behaviors to select the AS

path of P3: R6 learns different paths for P1 and P2 from R2

(with AS path {2, 1}) and R3 (with AS path {3, 1}) and it

selects one of them and appends its own AS number before

announcing P3 to R8 ({6, 2, 1} in this example); R7 faces

a similar situation, but it does not select any paths and only

puts its AS number as the AS path in the announcement of

P3 to R8. As a result, R8 always prefers to send packets for

P3 to R7 because it thinks R7 has a lower cost, causing sever

traffic imbalance.

Sometimes, different system components that perform cor-

rectly in individual capacity, do not interact well, especially

after a change. For instance, a software load balancer owned

a /16 IP prefix. However, it was asked to release some IP

blocks in the prefix and give them to other load balancers. It

then broke the /16 IP prefixes into 256 × /24 IP blocks and

announced the blocks (about 100) that it held. However, a

router connected to the load balancer was short of FIB space

and dropped many of these announcements, causing traffic

black holes.

Note that these errors escaped the fairly rigorous unit test-

ing done by our vendors as well as our own pre-certification

checks. While more rigorous unit testing is always helpful,

it is impossible to cover the vast range of possible inputs

and conditions that occur in production environment. Full-

fledged integration testing would be impractically resource

intensive – unless one used a high fidelity emulator like Crys-

talNet . We do not claim that CrystalNet can uncover all bugs

– only that by letting operators test router firmwares, tools and

planned changes in a high-fidelity emulation would reduce

the possibility of such bugs impacting production networks.

We note once again that network verification systems [11–

13, 15, 23, 30] cannot account for the impact of such bugs,

since they rely on analyzing configurations, and assume ideal,

bug-free behavior from network components. One may think

that the systems can be updated to model the bugs – but many

of the bugs are “unknown” until they manifest themselves

in production networks.1 Moreover, such systems are even

less effective when the network has components like soft-

ware load balancers, whose behavior is “baked” into custom

software, rather than driven by configurations and governed

by standards. One can never fully and accurately model the

behavior of such components.

Configuration bugs: Network configurations are not just

for controlling behavior of routing protocols – their design

must also account for issues like forwarding table capacity,

CPU load of devices, IPv4 shortage and reuse, security and

access control, etc. Taken together, this makes our network

configuration policies quite complicated. As a result, 27%

of outages result from what can be termed as configuration

errors, such as missing or incorrect ACLs violate security,

overlapping IP assignments, incorrect AS number etc.

Our devices are initially configured automatically, using a

configuration generator similar to [9, 28]. Most of the inci-

dents in this category were triggered due to ad-hoc changes

to configurations during failure mitigation or planned updates.

By testing such changes with CrystalNet , the possibility of

such errors impacting production networks can be reduced.

1And they are typically fixed soon afterwards, so there is even less value in

modeling them.
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Human errors We define “human errors” as those manual

actions that clearly mismatch their intention, resulting in an

error of some kind. e.g. mistyping “deny 10.0.0.0/20” as

“deny 10.0.0.0/2”. Human errors surprisingly cause a non-

negligible portion (6%) of the incidents. One might argue that

this is due to carelessness and cannot be remedied. However,

after conversations with experienced operators, we found a

more important systematic reason is that operators do not

have a good environment to test their plans and practice their

operations with actual device command interfaces. Crystal-

Net can provide such an environment. Network verification

systems like Batfish present a different workflow than what

the operators would carry out in practice, and hence cannot

reduce the occurrence of such errors.

Summary The analysis of these incidents underscores the

fact that numerous different types of bugs and errors can

affect large, complex networks. Testing and planning with

a high-fidelity network emulator like CrystalNet can catch

many of these bugs and errors before they disrupt production

networks; while traditional network verification systems offer

much more limited succor.

3 CRYSTALNET DESIGN OVERVIEW

In this section, we describe the design goals, the overall ar-

chitecture and the programming interfaces of CrystalNet .

3.1 Design goals

The ultimate goal of CrystalNet is to provide high fidelity net-

work emulations to operators. To meet this goal, CrystalNet

has three key properties:

Ability to scale out using public clouds: Resources re-

quired for faithful emulation of large networks are well be-

yond the capacity of a single server, or even a small cluster

of servers. For example, a single Microsoft datacenter can

consist of thousands of routers. Emulating each router re-

quires non-trivial amounts of CPU, RAM etc. Even more

resources are needed if we consider middleboxes and inter-

datacenter scenarios. Computing resources at this scale are

only available from public cloud providers in form of VMs.

Thus, to ensure that there is no an upper limit on the scale

of emulated networks, CrystalNet must be able to run in a

distributed manner, over a large number of VMs in a public

cloud environment. Everything should easily scale out – e.g.

to double the emulated network size, the operators simply

need to allocate twice the computing resources.

Ability to transparently mock up physical networks: A

switch OS assumes it runs on top of a physical switch that

has multiple network interfaces and connects to neighboring

devices. Management tools assume each network device can

be visited via an IP address with Telnet or SSH. CrystalNet

S1 S2

VM A

VM B VM C

Jumpbox VM

Tools by

Operators

Management 

overlay

Virtual links

Orchestrator

ControlPrepare

Topology &

Configuration files &

Routes from boundary L1

T1 T2

L2

T3 T4

Monitor

Clouds

Production

external

B1

Figure 2: CrystalNet architecture. This shows an emulated

Clos topology of eight switches running on three VMs.

must create virtual network interfaces, virtual links and vir-

tual management networks that are transparent to switch OS

and management tools, so that the latter can work without

modifications.

Ability to transparently mock up external networks: An

emulated network always has a boundary – we cannot emulate

the whole Internet. This is not just a resource issue; the

key problem is that operators cannot obtain OS images or

configurations of devices outside their management domain.

CrystalNet must accept the fact that boundary exists, and

ensure high fidelity even though devices outside the boundary

are not emulated.

In addition, we also desire properties such as failure re-

silience and cost efficiency. Next, we describe how the design

of CrystalNet achieves these goals.

3.2 Architecture

Figure 2 shows the high-level architecture of CrystalNet . The

orchestrator is the “brain” of CrystalNet . It reads the infor-

mation of production networks, provisions VMs (e.g., VM

A) on clouds, starts device virtualization sandboxes (e.g., T1)

in the VMs, creates virtual interfaces inside the sandboxes,

builds overlay networks among the sandboxes, and introduces

some external device sandboxes (e.g., B1) to emulate exter-

nal networks. With aggressive batching and parallelism, the

orchestrator runs on a single commodity server and easily

handles O(1000) VMs.

CrystalNet is easy to scale-out. The overlay network en-

sures that that emulation can run on top of any VM clusters

(with sufficient resources) without any modifications.

The emulated network in CrystalNet is transparent. Each

device’s network namespace has the same Ethernet interfaces

as in the real hardware; the interfaces are connected to remote

ends via virtual links which transfer Ethernet packets just like

real physical links; and the topology of the overlay network

is identical with the real network it emulates (§4). Therefore,

the device firmware cannot distinguish whether it is running

inside a sandbox or on a real device. In addition, CrystalNet

creates a management overlay network which connects all
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devices and jumpbox VMs. Management tools can run inside

the jumpboxes and visit the devices in the same way as in

production.

The emulation boundary of CrystalNet is transparent. The

external devices for emulating external networks provide the

same routing information as in real networks. Also, as dis-

cussed in §5, the boundary is carefully selected, so that the

state of the emulated network is identical to real networks

even if the emulated network is under churn.

The emulated network is highly available, because VMs

are independently set up – a VM does not need to know the

setup of any other VMs. Thus, the orchestrator can easily

detect and restart a failed VM.

CrystalNet achieves the cost efficiency by putting multiple

devices on each VM, and picking the right devices to emulate

rather than blindly emulate the entire network (§5.2).

3.3 CrystalNet APIs

The orchestrator exposes an API that operators use to config-

ure, create, and delete emulations, and also to run various tests

and observe network state for validation. The API, shown

in Table 2, is inspired by the validation workflows which

network operators desired to run.

Figure 3 illustrates the typical workflow of a network con-

figuration update. First, Prepare is called to take a snapshot

of the production environment, spawn VMs and feed those as

the input into Mockup. Prepare includes functionality to

get the necessary topology information, device configurations,

and boundary route announcements (see §5), and VM plan-

ning based on topology. Mockup creates the virtual network

topology (§4) and the emulation boundary (§5), and starts the

emulated device software.

After Mockup, CrystalNet is ready for testing the update

steps. At each step, operators can choose to apply signifi-

cant changes like booting a new device OS or updating the

whole configuration with Reload, or use existing tools for

incremental changes via the management plane (§4).

Next, the operators can pull the emulation state (e.g. rout-

ing tables at each device) using monitoring APIs, as well as

their own tools, to check whether the changes they made had

the intended effect. CrystalNet also supports packet-level

telemetry [32] for this purpose. Operators specify the packets

to be injected and CrystalNet injects them with a pre-defined

signature. All emulated devices capture all seen packets, filter

and dump traces based on the signature. These traces can be

used for analyzing network behavior.

With the ability to obtain routing tables, packet traces and

the ability to login to emulated devices and check device

status (see Table 2), operators using CrystalNet can validate

an emulated network using their preferred methodologies2,

2Designing automated testing methodologies using CrystalNet is an impor-

tant, but orthogonal research topic.

Provision Control Monitor
Expected 

outcome?

Reload(original)

One Validation Step

Yes

No

Next Step

Fix Bugs

Figure 3: A typical network update validation workflow. Crys-

talNet APIs cover the parts in blue and bold. Rest of the work-

flow is operator-specific.

API Description

Provision functions

Prepare Gather information for Mockup, spawn VMs.

Mockup Create the emulation based on Prepare output.

Clear Clean up everything on VMs.

Destroy Erase all Prepare output, including the VMs.

Control functions

Reload Reboot devices with specified software

versions and configurations.

Connect Connect two interfaces.

Disconnect Disconnect two interfaces.

InjectPackets Inject packets with a specified header from

a specified device & port, at given frequency

in given amount of time.

Monitor functions

PullStates Pull common states from the device software,

e.g., FIB, RIB, CPU and memory usage, etc.

PullConfig Back up the current configurations for rollback.

PullPackets Pull the packet traces to local, and

(optional) compute packet paths and counters

(optional) clean traces after pulling.

Management plane: complementary to Control and Monitor

IP Access Enable existing tools to send commands or pull

outputs. This is not a typical API – see §4.2.

Table 2: Selected CrystalNet APIs.

e.g. injecting test traffic, verifying routing tables with reactive

data plane verification tools [22], etc. If the results are as

expected, operator can move onto the next step. Otherwise,

operators revert current update with Reload, fix the bugs

and try again. This process repeats until all update steps are

validated. In the end, Destroy is called to release VMs.

CrystalNet also offers several helper APIs such as List

all emulated devices, Login to a device, etc. We omit the

details.

The key part of CrystalNet is to Mockup a high-fidelity

environment that supports this unified API set and is cost-

effective. We discuss it in the next two sections.

603



SOSP ’17, Oct 2017, Shanghai, China H. Liu et al.

4 MOCK UP PHYSICAL NETWORKS

4.1 Heterogeneous network devices

CrystalNet supports various OSes and software running on

network devices. We focus on switches in our datacenter

and WAN networks, which include three of the largest switch

vendors (referred as CTNR-A , VM-B and VM-A ), and an

open source switch OS (CTNR-B ). CrystalNet is designed to

run transparently with these heterogeneous software systems,

be extensible to other device software, and provide unified

APIs (§3.3) for users.

CrystalNet chooses containers as the basic format for iso-

lating devices. Containers isolate the runtime library with less

overhead than VM, run well inside VMs on clouds, and, more

importantly, isolate virtual interfaces of multiple devices to

avoid naming conflicts. We use Docker engine to manage

containers. We address challenges of running heterogeneous

software, as explained below.

A unified layer for connections and tools. CrystalNet

APIs must work for all devices we want to emulate. However,

the heterogeneous device software is packed into different

blackbox images by vendors. It is daunting, sometimes infea-

sible, to re-implement the APIs for each device and ensure

consistent behavior. Another engineering challenge is that

most containerized switch OS must boot with interfaces al-

ready present, while virtual interfaces can only be put into a

container after the Docker container boots.3

To address this, we design a unified layer of Physical Net-

work, or PhyNet containers (Figure 4), whose runtime bi-

naries are decoupled from the devices being tested. This

layer of containers hold all the virtual interfaces and are con-

nected as the target topology. We place common tools, like

Tcpdump, packet injection and pulling scripts, in PhyNet con-

tainers. Most CrystalNet APIs are then implemented for these

PhyNet containers, instead of being re-implemented for each

device.4 Later, we boot the actual device software with the

corresponding network namespace. Thus, the device software

runs without any code changes – just like in the real life, they

start with the physical interfaces already existing. Even if the

software reboots or crashes, the virtual interfaces and links

remain. The overhead of running PhyNet containers, which

exists only to hold network namespaces, is negligible.

VM-based devices. While some vendors offer containerized

images, others, like VM-B and VM-A , offer only VM images

of their switch software. We cannot run VM-based device

image directly on clouds, because public clouds cannot attach

hundreds of virtual interfaces to a VM. In addition, we need

3These containers are originally designed for deployment on real hardware

and in host network namespace, while CrystalNet runs them in non-host,

isolated namespaces.
4Only PullConfig and PullStates are notably different across de-

vices. This is unavoidable.

S1’ S2’

VM A

VM B

L1’

T1’ T2’

L1

T1 T2

T3’ T4’
T3 T4

L2’
L2

VM C

S1 S2 S’ PhyNet container

LT S

Heterogenous devices

Share network 
namespace

Figure 4: PhyNet containers in CrystalNet decouple the inter-

faces’ management and facility tools from the device software.

to connect these VM-based devices with other containers, and

maintain the PhyNet container layer.

Our solution is to pack the VM images, a KVM hypervisor

binary, and a script that spawns the device VM, into a con-

tainer image. In other words, we run the device VM inside a

container on the cloud VMs. This requires nested VM feature

on clouds. This feature is available on Microsoft Azure, as

well as some other public clouds. In absence of this feature,

CrystalNet can provision bare-metal servers for VM-based

devices instead.

Real hardware. Finally, CrystalNet also allows operators

to connect real hardware into the emulated topology. For

example, CrystalNet can mock up a full network with one

or more devices replaced by the real hardware. This allows

us to test the hardware behavior in a much more realistic

environment than the traditional stand-alone testing. Each

real hardware switch is connected to a “fanout” switch. The

“fanout” switch tunnels each port to a virtual interface on a

server. These virtual interfaces are managed by a PhyNet con-

tainer and are bridged with virtual links (see § 4.2) connecting

the CrystalNet overlay.

By introducing PhyNet containers, CrystalNet is able to

treat devices identically, regardless of whether they run in

containers, VMs or as true physical devices, from the man-

agement viewpoint.

4.2 Network links

There are two types of virtual links in CrystalNet , one for the

data plane and the other for the management plane.

Data plane. The virtual data plane links should be seen as

Ethernet links by the devices and should be isolated from one

another. Furthermore, the virtual links must be able to go

through underlying networks, including the cloud provider’s

network, and the Internet. The ability to travel over Internet in

a seamless manner is necessary to allow the emulation to span

multiple public clouds, and to allow cloud-based emulations

to connect to one or more physical devices.

We choose VXLAN over other tunneling protocols (e.g.,

GRE) because it meets our goal best – it emulates an Ethernet

link, and the outer header (UDP) allows us to connect across
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Eth0

Bridge_N

et1_X

VXLAN_N

Remote: 

(IPB, PortB, N)

Device X
et0

Bridge_M

et0_X

Device Y
et0

et0_Y

et1

Eth0

Bridge_N

et0_Z

VXLAN_N

Device Z
et0

Remote: 

(IPA, PortA, N)

VM A VM B

veth pair Linux bridge VXLAN interface Physical interface

NAT
(if needed)

Figure 5: The design of virtual data links. Device X ’s et0 is

connected to Y ’s et0. X ’s et1 is connected to Z ’s et0. N is a

VXLAN ID. The devices shown are PhyNet containers.

any IP network, including the wide area Internet. We can even

cross NATs and load balancers, since most of them support

UDP.5

As shown in Figure 5, each device interface is a member

of a veth pair [18], with the other side plugged into a bridge.

Each bridge also has a VXLAN tunnel interface (if the remote

device is on another VM), or another local veth interface.

This is transparent to the device containers. We isolate each

virtual link by assigning a unique VXLAN ID to each link.

Orchestrator ensures that there is no ID collision on the same

VM.

Management plane. Through the years, operators have de-

veloped tools based on direct IP access to devices through the

management plane which is an out-of-band channel just for

management. CrystalNet provisions this management plane

automatically (Figure 6). Operators can run their manage-

ment tools without any modifications, perform incremental

configuration changes with the tools, and pull device state,

just like in production environments.

CrystalNet deploys a Linux jumpbox6, and connects all

emulated devices together. However, one cannot simply con-

nect all management interfaces in a full L2 mesh - this would

cause the notorious L2 storm in such an overlay. Instead, we

build a tree structure – each VM sets up a bridge and connects

to the Linux jumpbox via VXLAN tunnels. All emulated

devices connect to the bridge of the local VM. Other jump-

boxes, like a Windows-based jumpbox, connect to the Linux

jumpbox via VPN. Finally, the Linux jumpbox runs a DNS

server for the management IPs of the devices.

5 MOCK UP EMULATION BOUNDARY

Any emulated or simulated network must have a boundary

– for example, when we simulate one or more of our data

centers, we stop at the point where they connect to the wide

area Internet. Going beyond this boundary is infeasible, not

just because we lack resources, but also because we cannot

obtain configuration or other information for the devices that

5We use standard UDP hole punching techniques [14].
6Use of jumpboxes is common in production networks.
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Figure 6: The architecture of management plane. Physical

interfaces are omitted for brevity.

are not under our control. However, the routing messages

from external networks, and the reactions of external devices

to the dynamics inside the emulated network, are essential to

ensure the correctness of the emulation.

The key to solving this dilemma is based on the observa-

tion that most production networks do not blindly flood or

accept route updates. Upon dynamics in a particular location,

there are policies or protocols limiting the range of impact. If

we find the stopping boundary of the impact, we can safely

assume that the network outside the boundary remains static

during the period when operators validate the network in-

side the boundary. In the rest of the section, we discuss this

concept in more details.

5.1 Static emulation boundary

In CrystalNet , we define an emulated device as a device

running actual device firmware and configurations from pro-

duction. For example, in Figure 7a, T1-4 and L1-4 are all

emulated devices. Furthermore, we call T1-4 internal de-

vices since their neighbors are all emulated devices, and

L1-4 boundary devices since they have neighbors outside

the boundary. We call the external devices that are directly

connected to boundary devices as speaker devices. Other

external devices are excluded from emulation. For instance,

in Figure 7a, S1-2 are speaker devices and are connected to

emulated devices, while T5-6 and L5-6 are not emulated.

In CrystalNet , speaker devices do not run the actual device

firmware or configurations from production. Instead, they run

simple software and perform just two functions. First, they

keep the link(s) and the routing session(s) alive with boundary

devices, so that the existence of the boundary is transparent

to emulated devices. Second, they are fully programmable

for sending out arbitrary routing messages.

Static speaker devices In CrystalNet , we design speaker

devices to be static, i.e., the speaker devices do not react to

any routing messages from boundary devices. Instead, during

Prepare, CrystalNet installs the routing messages to be

sent by each boundary device. After Mockup, the speaker

devices announce these messages. By making the speaker
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(a) A unsafe static boundary to emulate T1-4 and L1-4.
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(b) A safe static boundary to emulate T1-4 and L1-4.
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(c) A safe static boundary to emulate L1-4 but not T1-4.

Figure 7: Examples of unsafe and safe static boundaries based

on the devices need to be emulated in a BGP datacenter net-

work.

devices static, we avoid any assumptions on the behavior of

external devices.

An alternative is to design a dynamic boundary with a

network simulator which runs a canonical implementation

of routing protocols. This simulator can compute how each

speaker device should react in real time. However, we did not

choose this option for two reasons. First, we typically do not

have access to external devices’ policies or configurations,

so that we cannot fully simulate them. Second, the canon-

ical routing protocol implementation is likely to have bugs

of its own, which may affect the correctness of the overall

emulation.

Safe static boundary The use of static speaker devices raises

a concern: is the emulation still correct when operators apply

changes on the emulated devices? In other words, in the

real network, will the devices represented by speaker devices

react to the changes, and become inconsistent with our static

design?

This concern is valid. For example, in Figure 7a, on a

datacenter network which uses Border Gateway Protocol

(BGP), we run T1-4 and L1-4 as emulated devices and S1-2

as speaker devices. If T4 gets a new IP prefix (10.1.0.0/16),

the announcements of this prefix will stop at S1-2 in emula-

tion. However, in real networks, S1-2 would propagate this

prefix to L1-2! Given this potential inconsistency, we call the

boundary in Figure 7a unsafe.

We define a safe static boundary as a collection of boundary

devices that can guarantee the consistency between the emu-

lation and the real network, even when the topology and/or

configurations of emulated devices change. For example, Fig-

ure 7b has a safe boundary: S1 and S2. Announcements of

the new IP prefix can reach L1-2 and T1-2, since S1 and S2

are emulated devices this time. We now prove the safeness

of S1-2 as a boundary under arbitrary route and/or topology

updates on T1-4 and L1-4.

5.2 Identifying and searching safe static

boundaries

During Prepare, CrystalNet takes “must-have devices”,

the devices required by operators to emulate, as input. It

then finds a safe static boundary inside which all must-have

devices are emulated. In this section, we present sufficient

conditions to judge the safeness of a given boundary on vari-

ous networks, and a heuristic for finding a safe static boundary

inside datacenter networks running BGP.

BGP networks. BGP is not only the de facto routing proto-

col between autonomous systems (ASes) in the Internet, but

also widely used inside datacenter networks [4, 5, 27]. As

a variant of distance vector protocols, BGP lets each router

report which IP prefixes it can reach to its neighbors. In the

emulation, a change on configurations or topology can trig-

ger changes on IP prefixes reachability from certain devices.

Such changes propagate among the emulated devices. We

state the following lemma:

LEMMA 5.1. In an emulated BGP network, a boundary is

safe if and only if no route update originated in an emulated

device passes through the boundary more than once.

It is straightforward to prove Lemma 5.1, since speaker

devices do not need to react if all route updates originated in

emulated devices stay within the emulated network, or exit

without coming back to the emulated network. Lemma 5.1

applies to all distance vector routing protocols.

Nonetheless, it is hard to apply Lemma 5.1 directly because

checking all potential route update paths for all IP prefixes
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may not be feasible. Hence, we state a stronger version of the

lemma, which can be implemented efficiently:

PROPOSITION 5.2. If the boundary devices of an emulated

BGP network are within a single AS and all of the speaker

devices are in different ASes, the boundary is safe.

PROOF. If all boundary devices are within a single AS, no

route updates can exit the boundary and return again because,

to avoid routing loops, BGP does not allow sending route

updates back to the same AS. According to Lemma 5.1, the

proof completes. �

Note that route updates can return if the devices represented

by the speakers (or external) devices arbitrarily modify or

remove elements from AS paths, but such cases are rare. In

practical production networks, the modifications on AS paths

are mostly just repeating individual ASes for multiple times

to change the AS path length. In this case, route updates will

not return because there will be a loop otherwise.

Proposition 5.2 provides a sufficient condition for checking

whether a boundary is safe in BGP network, and so as to

search a small safe boundary. For example, the boundary in

Figure 7b is safe because S1 and S2 are in a single AS. In

addition, we state a even stronger proposition:

PROPOSITION 5.3. If the boundary devices of an emulated

BGP network are in ASes that have no reachability to each

other via external networks, the boundary is safe.

PROOF. After a route update is sent out from a boundary

device (β) to a speaker device, the route update will never

reach any other boundary devices because other boundary

devices are either in the same AS as β , or have no connectivity

to β . According to Lemma 5.1, the proof completes. �

For instance, assuming operators only want to emulate L1-

4 but not T1-4, Figure 7c presents a safe boundary. This is due

to boundary devices S1-2, L1-2, L3-4 are in three different

ASes that have no reachability to each other without passing

the emulated network zone. For example, when link S1-L1

fails, L1 will send withdraw messages for the routes it learns

from S1 to T1 and T2, but T1 or T2 will not send the withdraw

messages to L2 because L1 and L2 are both in AS200. S1-2

or L3-4 are not affected either, since they are not reachable

from T1 or T2. Similar situations happen in T3-4 and L5-6.

Searching safe static boundary in datacenters running

BGP. Given a set of input devices, searching for an opti-

mal boundary which satisfies Proposition 5.2 or 5.3 is still

difficult in a general network. However, for a Clos-like data-

center network like [4, 5], we derive a useful heuristic based

on its special properties: (i) The whole network topology is

layered; (ii) Valley routing [9] is now allowed; and (iii) The

border switches connected to wide area network (WAN) are

on the highest layer and usually share a single AS number.

Algorithm 1: FindSafeDCBoundary(G, D)

1 [Input] G: datacenter network topology

2 [Input] D: input devices by operators to be emulated

3 [Output] D′: all devices to be emulated

4 D′← ∅;

5 while D , ∅ do

6 d← D.pop();

7 D′.add(d);

8 if G.isHighestLayerDevice(d) then

9 continue;

10 upperDevices← G.allConnectedUpperLayerDevices(d);

11 foreach dev ∈ upperDevices do

12 if dev < D ∪ D′ then

13 D.add(dev)

14 return D′;

Our idea is to treat the topology as a multi-root tree with

border switches being the roots. Starting from each input

device, we add all its parents, grandparents and so on until

the border switches into the emulated device set. This is

essentially a BFS on a directional graph, which is constructed

by replacing the links in the topology with directional child-

to-parent edges. Algorithm 1 shows the BFS process. It is

easy to verify that the output emulated devices has a safe

boundary. We omit the formal proof due to lack of space.

OSPF networks. OSPF is a link state routing protocol and

is widely used in large scale networks as interior gateway

protocol (IGP). Unlike BGP, routers in OSPF report the state

(e.g., liveness, weights, etc.) of their neighboring links to a

database which is located in a designated router (DR) and a

backup designated router (BDR). A state change on a link

triggers routers attached to the link to report the new link

state to DR and BDR. To ensure that validating changes on

emulated devices does not require reactions from speaker

devices, we state the following:

PROPOSITION 5.4. If the links between boundary devices

and speaker devices remain unchanged in the emulated net-

work, and DR(s) and BDR(s) are emulated devices, the bound-

ary of an OSPF network is safe.

This is because there is nothing new for speaker devices to

report if their links remain unchanged; DR(s) and BDR(s)

will always react to changes, since they are always emulated.

According to Proposition 5.4, for a boundary of an OSPF

network to be safe, both ends of the links that may suffer

changes must be emulated devices. The same conclusion

applies on IS-IS protocol.

Software-defined networks (SDN). SDN usually runs dis-

tributed routing protocols like BGP or OSPF for the connec-

tivity between the centralized controller and network devices.
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Propositions 5.2, 5.3 and 5.4 can be used to validate the con-

trol network. For the data network, a boundary is safe if it

includes all devices whose states may impact the controller’s

decision. Analyzing the controller’s code may generate a

tighter condition. We leave it as future work.

6 IMPLEMENTATION

CrystalNet consists of over 10K lines of Python code and

includes a few libraries that interact with our internal services

and public cloud. We do not customize the switch firmware

images we receive from our vendors in any way. In this

section, we elaborate some important implementation details.

6.1 Prepare phase

Prepare API generates the input for Mockup. It consists

of generating the topology and configurations, and spawning

the VMs. The only input for Prepare is a list of device host

names that operators want to emulate. Then the orchestra-

tor interacts with internal network management services and

clouds to execute the following steps.

Generating topology and configurations. For all devices

in the input list, CrystalNet identifies the locations in the phys-

ical topology and computes a safe boundary. Then CrystalNet

pulls all related topology, device configurations and routing

states snapshots. All the information is then preprocessed

and rearranged in a format that Mockup can understand. The

preprocessing mainly includes adding a unified SSH creden-

tials into the configurations, parsing and reformatting routing

states, etc.

VM spawning. CrystalNet estimates the number of VMs

needed, and spawns them on-demand using cloud APIs. This

is key to scalability and reducing the cost. The VMs run a

pre-built Linux image that includes all necessary software

and supported device containers. Additional images may be

pulled during runtime using the Docker engine.

The number and type of VMs needed for the emulation

depend on factors. We do not want to spawn too many tiny

VMs - this increases the burden on the orchestrator, and can

also increase cost. At the same time, we do not want to

make each VM too large (and pack a lot of devices on the

same VM), since the kernel becomes less efficient in packet

forwarding when the virtual interfaces is too high. We have

also found that container-based devices typically require more

CPU, while VM-based devices require more memory. Finally,

CrystalNet requires nested VMs (§4.1) for emulating devices

VMs rather than containers. Azure supports this option for

only certain VM SKUs. Based on these considerations, we

typically build emulations out of 4-core 8 or 16GB VMs,

although we also use other SKUs under certain conditions.

6.2 Mockup phase

Mockup is the core part of CrystalNet . The time Mockup

takes determines the time and cost overhead of running Crys-

talNet . Following the design in §4.1, Mockup has two steps.

First, it sets up the PhyNet layer and the topology connections.

Second, it runs the device software. We aggressively batch

and parallelize various operations in the Mockup stage. See

§8 for performance numbers. Below are the implementation

lessons we learned and decisions we made.

Linux bridge or OVS (Open vSwitch)? Both Linux bridge

and OVS can forward packets and integrate VXLAN tunnel.

While CrystalNet supports both, we prefer the former, be-

cause we only need “dumb” packet forwarding on the virtual

links. The Linux bridge is much faster to setup, especially

when CrystalNet configures O(1000) tunnels per VM. For

efficiency, we also disable iptables filtering and Spanning

Tree Protocol on bridges.

Running different devices on different groups of VMs.

Containers on the same host share the same kernel, which can

cause problems. For example, we find that one switch vendor

tunes certain kernel settings related to packet checksumming,

which can cause collocated devices from other vendors to

malfunction. To avoid such problems, CrystalNet typically

does not instantiate devices from different vendors on the

same VM. In short, we create groups of VMs, with each

group dedicated to run devices from a particular vendor.

Health check and auto-recovery. VMs may fail or reboot

without warning. CrystalNet includes a health monitor and

repair daemon to recover from such failures. The daemon

periodically checks the device uptime, and verifies link sta-

tus by injecting and capturing packets from both ends. If a

problem is found, it alerts the user and clears and restarts the

failed VM using the APIs described earlier. Since VMs are

independent of one another, other VMs do not need to be

restarted or reconfigured.

BGP speaker at the boundary. Our production network

relies on BGP routing. Therefore, we surround the emulation

boundary with BGP speakers (§5) based on ExaBGP 3.4.17.

It can inject arbitrary announcements, dump the received

announcements for potential analysis, and does not reflect

announcements to other peers.

Integrating P4 ASIC emulator. While the images from the

three major vendors come with ASIC emulator [7], the open

source switch OS CTNR-B does not have one. Therefore, we

integrate it with the open source P4 behavior model, BMv2,

which acts the ASIC emulator and forwards packets.

7 REAL-LIFE EXPERIENCES

CrystalNet has been deployed in our production networks for

about 6 months. Operators and engineers use it to validate
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and de-risk new network designs, major network architecture

changes, network firmware/hardware upgrades and network

configuration updates. They also use it as a realistic test en-

vironment for developing network automation tools, and for

developing our in-house switch operating system. In this sec-

tion, we describe two cases that demonstrate the effectiveness

of CrystalNet in practice.

Case 1: Migrations to new regional backbones. Our cloud

platform allows users to allocate resources at desired locations

with a coarse geographical concept of region, e.g., east of US,

west of Europe. We have multiple data centers (DCs) inside

each single region and inter-DC/intra-region traffic used to be

carried by an inter-DC wide-area network (WAN). However,

as the demands for high capacity and low latency between

different DCs within the same region grew, the design was

upgraded to include new regional backbone networks that

connect DCs in the same region and bypass the WAN to

improve performance.

Making such major changes to an operational network is

fraught with peril. Operators must guarantee that there is no

noticeable disruption of existing traffic in the region during

or after the migration. Due to considerations such as hard-

ware capacity limitations, IPv4 address shortages, switch load

considerations and security, the routing configurations in the

routers that connect data centers to the backbone are already

quite complex, and even small mistakes in the migration plan

can result in large-scale outages.

CrystalNet de-risked this complex operation by allowing

the operators to intensively validate and refine their opera-

tional plans and software tools in a high-fidelity emulator.

Using CrystalNet , we emulated a network consisting of

all spine routers (from Vendor-A , container provided) in two

large data centers, all routers in the new regional backbones

and several core routers in legacy WAN (from Vendor-B , VM

provided). The boundary was proven to be safe. The config-

urations, operations plans and software tools are thoroughly

tested in this emulated environment. The emulated network

required just 150 VMs (the same spec as in Section 6.1).

During testing, operators discovered over 50 bugs in their

tools and scripts, some of them could have triggered customer-

impacting outages. Such outages can result in large financial

penalties for violating SLAs, and more importantly, lead

to loss of customer confidence. The final migration plan,

perfected on CrystalNet , did not trigger any incidents, when

carried out in production. There were not even any incidents

of casual human errors (e.g. typos etc.), which the operators

attributed to intensive practice sessions on the emulator.

Case 2: Switch OS developments. CrystalNet also helps

our engineers to build a validation pipeline for developing

a private version of switch OS CTNR-B . We emulate pro-

duction environments, replace some devices with CTNR-B ,

Network #Borders #Spines #Leaves #ToRs #Routes

L-DC O(10) O(100) O(1000) O(3000) O(20M)

M-DC O(10) O(10) O(100) O(400) O(1M)

S-DC O(1) O(1) O(10) O(100) O(50K)

Table 3: Datacenter networks used in evaluations. The last col-

umn is the total number of routing table entries in all switches.

and verify that there is no change in network behavior. We

can even plug in hardware devices running CTNR-B into

emulated networks for integration tests. Within two months,

CrystalNet has successfully found O(10) bugs which could

have caused catastrophic failures. For instance, failing to

update the default route when routes are learned from BGP,

failing to forward ARP packets to CPU due to incorrect trap

implementation, crashing after several BGP sessions flapped,

etc. None of these bugs was found by unit tests or testbed tests

in the legacy development pipeline, but they are easy to detect

in emulated production environments from CrystalNet .

8 EVALUATION

In this section, we evaluate the performance and cost of Crys-

talNet in emulating production datacenter networks.

8.1 Experiment setup

Networks. We showcase CrystalNet for three of our real

datacenter networks, as shown in Table 3. L-DC is one of

our largest datacenter networks, and M-DC and S-DC are

representative median and small size datacenter networks.

They all have Clos topology. BGP is used as the only routing

protocol. Borders, Spines, Leaves and ToRs are switches

on different layers, from the border of datacenter down to

connecting servers. ToRs run CTNR-B , while Border, Spine

and Leaf switches run CTNR-A . Both CTNR-A and CTNR-

B are packed into container images.

Configurations and routes. All switches run production

configurations, generated by our production network man-

agement services. All IP prefixes and routes are taken from

a snapshot of the corresponding production networks and

injected into emulated networks.

Compute resources. For this evaluation, CrystalNet spawns

VMs with 4-core and 8GB memory, as described in §6.1. We

use different number of VMs for different scales.

Performance metrics. Time is money, especially on clouds.

We measure the following time spent on VMs: (i) Network-

ready latency: the duration from the start of creating an

emulation to the moment when all virtual links are up; (ii)

Route-ready latency: the duration from Network-ready to

the moment when all routes are installed and stabilized in

all switches. After this, the emulated network is ready for
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operators to run tests on it. (iii) Mockup latency: the sum of

network-ready and route-ready latencies. (iv) Clear latency:

the time required for resetting the VMs to a clean state.

8.2 Speed of Mockup and Clear operations

CrystalNet mockup latency and monetary cost are low

for even the largest datacenter. Figure 8 shows the network-

ready, route-ready, and clear latencies of emulating the entire

S-DC , M-DC and L-DC . Each setup is repeated 10 times.

The median Mockup latency is less than 32 minutes in all

cases, and less than 50 minutes at 90th percentile. The clear

latency is less than 2 minutes. This is acceptable for vali-

dation that is performed on daily basis, e.g., daily rollout or

software daily build.

By comparing different VM cluster sizes, we see that

more computing resources can achieve lower Mockup la-

tency with smaller variance. However, for large networks,

e.g. L-DC /500 v.s. L-DC /1000, the major bottleneck is the

convergence speed of routing algorithms.

The largest datacenter, L-DC , requires 500 VMs, which

cost ∼100 USD per hour. For small networks like S-DC , the

cost is only ∼1 US dollars per hour.

Boot speed of vendor-provided software and routing con-

vergence are the major components of Mockup latency,

CrystalNet overhead is minimal. Figure 8 shows that the

network-ready latency is less than 2 minutes across all dat-

acenter scales and VM cluster sizes. It includes everything

described in §4, and only contributes < 5% of total Mockup

time.

Route-ready latency is the major component of the Mockup

latency. In this phase, all devices setup BGP sessions with

their peers and exchange routing information until the routes

allover the network converge. Note that route-ready latency

depends on network scale, number of routes, the routing pro-

tocol and the implementation of vendor-provided software

stack, which is not controlled by CrystalNet . Figure 9 shows

the instantaneous CPU usage of Mockup.7 In the beginning,

CPU utilization is high, for creating a large number of virtual

interfaces and links, and for initializing vendor-provided soft-

ware. After about 10 minutes, the CPU usage is minimal, but

the routes still need 5-20 minutes to converge.

8.3 Speed of recovery from local changes

Two-layer design allows CrystalNet to quickly reload in-

dividual devices. We compare the time for Reload an in-

dividual device with CrystalNet’s PhyNet-software-separate

design and a strawman everything-together design. In Crystal-

Net , the PhyNet layer remains even if device software reboots,

7Memory is not the bottleneck (details omitted).

so it need not re-create interfaces or links. Therefore, Crystal-

Net takes 3 seconds to reload one device8 while the strawman

takes at least 15 extra seconds for reconfiguring interfaces

and links. Some device software do not even support hot plug

interfaces (§4.1), and two layer design is thus required for

such devices.

CrystalNet recovers from VM failures quickly. We also

test the time spent on recovering from a failed (and rebooted)

VM – i.e. the time required to reset devices and links on that

VM. For all the networks we test, the recovery time varies

from 10 seconds to 50 seconds, depending on deployment

density. This does not include the time needed for the VM to

reboot. We are investigating a design where CrystalNet keeps

a small number of spare VMs in reserve to quickly swap out

failed VMs instead of waiting for failed VMs to reboot.

8.4 Importance of safe static boundaries

CrystalNet can find a small safe boundary for common

validation cases and reduce cost significantly In above ex-

periments, we always emulate the whole datacenter networks.

However, in practice, network operators usually update only

a small piece of the network each time. Thus, they only need

to validate the operations on that piece. Below we use L-DC

topology to demonstrate two most common operation cases.

Case-1 : Operators often want to make changes to a single

Pod [6], which includes a group of adjacent ToRs and Leaves.

As shown in Table 4, the final emulated network found by

Algorithm 1 has 4 Leaves and 16 ToRs, which are inside the

target Pod, plus additional 64 Spines and 4 Borders. The

overall number of emulated devices is 88, which is less than

2% of the whole network.

Case-2 : Operators often want to make changes to the Spine

layer of a datacenter network because these devices have

sophisticated configurations, like ACLs or route maps. In

L-DC , to emulate the whole Spine layer, the safe boundary

includes the entire Spine layer and Border layer. As shown in

Table 4, we need to emulate less than 3% of the devices.

In both cases, there are also hundreds of speaker devices

(not shown in Table 4). However, they are so lightweight

that a single VM can support at least 50 of them. Overall,

CrystalNet required just 20 VMs for the first case, and 30

for the second. The operators were able to perform all nec-

essary tasks and validations on the emulated network. Since

emulating the whole network requires upwards of 500 VMs,

we conclude that CrystalNet’s safe boundary identification

feature reduces the cost of running the emulation by over

90%.

8Stop the container, overwrite configuration files, and restart the container.
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Figure 8: The 10th , 50th and 90th percentile latencies to start/stop emulations with CrystalNet for different datacenter scales.
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Figure 9: CrystalNet VM CPU usage (95th percentile among

all VMs).

9 DISCUSSION

Dealing with non-determinism. CrystalNet does not con-

trol the order of routing announcements from speaker devices.

Case #Borders #Spines #Leaves #ToRs Proportion

One Pod 4 64 4 16 ≤ 2%

All Spines 12 112 0 0 ≤ 3%

Table 4: The emulation scales with safe boundaries in L-DC .

In most cases, routing protocols like BGP, OSPF are agnos-

tic to the timing and ordering of routing messages [17, 24].

However, when cross-validating the forwarding tables from

CrystalNet and production, we found some instances of a

non-deterministic BGP behavior. This behavior arises when

ECMP path selection is used along with IP prefix aggre-

gations. As shown in Figure 1, if R6 chooses path for P3

randomly or basing on timing, the routes for P3 on R6 and R8

will be non-deterministic. We are currently investigating this

issue further, since it is nearly impossible to precisely emulate

the exact timing and ordering of prefix announcements. In the

meantime, we have designed a FIB comparator that accounts

for such non-determinism.

Finding the smallest safe boundary for all routing proto-

cols. In §5.2, we provide sufficient conditions to judge

whether a given boundary design is safe for specific routing

protocols such as BGP, OSPF/IS-IS. These simple guidelines

work well in our datacenter networks and inter-datacenter

WAN networks. However, it is challenging to design a generic

algorithm that can find the smallest safe boundary for arbitrary

routing protocols, since the answer depends on not only the

routing protocol and network topology but also the specifics

of the changes to be made in the emulated network. We leave

this as future work.

Limitations of CrystalNet . Even though CrystalNet allows

us to plug in individual hardware devices into the emulated

network, it is not our intention to have real hardware make

up the majority of the emulated devices. CrystalNet is not
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suitable for catching ASIC problems. It is not suitable for

detailed testing of data-plane performance (e.g. bandwidth or

latency) – albeit probing packets could be sent for verifying

routes. CrystalNet is not intended to find bugs that arise from

slowly accumulating state (e.g. memory leaks) or timing

sensitive bugs (e.g., multi-thread racing). These must be

found using standard software verification techniques.

Furthermore, CrystalNet cannot efficiently answer ques-

tions such as “does there exist a scenario in which one or

more links could fail, resulting in excessive traffic through

switch X?”. Brute-force searching such scenarios will require

numerous emulations. It may be cheaper to answer such ques-

tions using logical verification tools such as Minesweeper [8]

– although one must be willing to accept reduced fidelity to

use such tools.

Testing methodologies. CrystalNet provides a high-fidelity

network emulation, and a basic infrastructure to pull state and

trace packets through emulated network. We leave it to op-

erators to design testing strategies using these basic hooks to

verify whatever it is that they wish to verify. We are actively

working to design efficient testing methodologies using Crys-

talNet , including the design of a domain-specific language to

specify properties of interest and automatic generation of test

cases to verify those properties.

Programmable data planes: CrystalNet is also useful to

debug and verify the logic in programmable and stateful data

plane such as P4 [10]. We are building a flexible debugging

and testing environment with CrystalNet for future networks

with programmable data planes.

10 RELATED WORK

Network emulations. EmuLab [2] and CloudLab [1] pro-

vide network emulation services in their own infrastructures.

They allow users to define network topologies and capacities

and run realistic applications over the emulated networks.

However, currently they do not support customized switch

firmware or have on-demand scalability since they are limited

by the size of their infrastructure. Flexplane [25] is a data

plane emulator which is used to test resource management

algorithms used in ASICs. It does not target control plane soft-

ware or configurations and cannot easily scale out on multiple

machines. Kang and Tao [20] proposed a framework which

leverages containers to stress test the control plane in SDN

context. Their focus is on the performance of SDN controllers,

while CrystalNet can be used in both SDN and traditional dis-

tributed networks for correctness. MiniNet [18] (multi-host

version) and MaxNet [29] are both container-based network

emulators which can run on distributed clusters. However,

they are not suitable for emulating large and heterogeneous

production networks, because they lack the three key features

of CrystalNet : first, they do not integrate with multiple public

clouds, private clusters and physical devices; second they do

not accommodate heterogeneous blackbox device firmwares

or provide transparent access to management software and

tools used to manage production network, and third, they do

not automatically identify safe emulation boundaries, which

is necessary to maintain high fidelity at low cost.

Configuration verification. There are multiple efforts [11–

13, 15, 23, 30] to use formal verification techniques to check

whether configurations in networks meet certain properties.

These systems assume an ideal model of device behavior to

compute forwarding tables from configuration files. In reality,

device behavior is far from ideal (§2). CrystalNet is a more

realistic way to compute FIBs. The FIBs can be verified

using the same verification techniques. Systems like [13]

are still useful to model the ideal system behavior and to

track provenance. These tools need fewer resources than

CrystalNet , so network engineers can use them as their first,

low-fidelity check before calling upon CrystalNet .

Data plane verification. Verifying rules in forwarding

tables of network devices [19, 21, 22, 26] is important to

systematically detect routing problems such as reachability

violations, blackholes and access control failures. As de-

scribed before, CrystalNet facilitates data plane verification

by providing forwarding tables from emulations rather than

real networks, so that problem can be detected proactively.

11 CONCLUSION

We developed CrystalNet , which provides high-fidelity em-

ulations of production environments to validate network op-

erations. CrystalNet offers a faithful network control plane,

on-demand scalability, uniform management over heteroge-

neous device software, and safe emulation boundaries. These

features are critical for constructing effective tests; and set

CrystalNet apart from alternatives like testbed experiments,

configuration verifications and small-scale network emula-

tors. CrystalNet is highly scalable, cost-effective, and in daily

use at Microsoft, where it has prevented numerous potential

incidences.
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