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Abstract

Background: Current protocols yield crystals for <30% of known proteins, indicating that

automatically identifying crystallizable proteins may improve high-throughput structural genomics

efforts. We introduce CRYSTALP2, a kernel-based method that predicts the propensity of a given

protein sequence to produce diffraction-quality crystals. This method utilizes the composition and

collocation of amino acids, isoelectric point, and hydrophobicity, as estimated from the primary

sequence, to generate predictions. CRYSTALP2 extends its predecessor, CRYSTALP, by enabling

predictions for sequences of unrestricted size and provides improved prediction quality.

Results: A significant majority of the collocations used by CRYSTALP2 include residues with high

conformational entropy, or low entropy and high potential to mediate crystal contacts; notably,

such residues are utilized by surface entropy reduction methods. We show that the collocations

provide complementary information to the hydrophobicity and isoelectric point. Tests on four

datasets show that CRYSTALP2 outperforms several existing sequence-based predictors

(CRYSTALP, OB-score, and SECRET). CRYSTALP2's accuracy, MCC, and AROC range between

69.3 and 77.5%, 0.39 and 0.55, and 0.72 and 0.79, respectively. Our predictions are similar in quality

and are complementary to the predictions of the most recent ParCrys and XtalPred methods. Our

results also suggest that, as work in protein crystallization continues (thereby enlarging the

population of proteins with known crystallization propensities), the prediction quality of the

CRYSTALP2 method should increase. The prediction model and the datasets used in this

contribution can be downloaded from http://biomine.ece.ualberta.ca/CRYSTALP2/

CRYSTALP2.html.

Conclusion: CRYSTALP2 provides relatively accurate crystallization propensity predictions for a

given protein chain that either outperform or complement the existing approaches. The proposed

method can be used to support current efforts towards improving the success rate in obtaining

diffraction-quality crystals.
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Background
Structural genomics is a word-wide initiative aimed at
producing a comprehensive mapping of the protein struc-
ture space [1]. The resulting knowledge of the tertiary
structure of proteins will be vitally important for under-
standing and manipulating the biochemical and cellular
functions of a given protein. This is an important step in
rational drug design [2] and provides valuable insights
into important diseases [3]. There are several different
ways to obtain the structure including X-ray diffraction,
electron microscopy, and NMR. Although a majority of
protein structures are obtained using the first method, the
two latter approaches play a strong complementary role
for some protein types, such as membrane proteins [4-6].
One of the main challenges the structural genomics initi-
ative faces it that only about 2–10% of protein targets pur-
sued yield high-resolution protein structures [7]. Several
strategies have been proposed to improve the success rate,
including obtaining one representative structure per pro-
tein family and working with multiple orthologues [8-
11]. One of the most important bottlenecks in acquiring
the structures is obtaining diffraction-quality crystals [12-
14]. At the same time, crystallization is characterized by a
significant rate of attrition and is among the most com-
plex and least understood problems in structural biology
[10]. Current protocols yield crystals for approximately
30% of the input proteins and well-diffracting crystals for
an even smaller fraction [10]. This motivated the develop-
ment of models that can be used to either support or
directly predict protein crystallization [15]. For instance,
the isoelectric point (pI) calculated from a primary
sequence was used in a method that suggests optimal pH
ranges for crystallization screening [16,17]. Several other
investigations suggest that features derived from protein
sequences can be used for predicting crystallization pro-
pensity [18,19]. To this end, a few in-silico methods that
predict crystallization propensity using the primary
sequence as the input have recently been developed. They
include SECRET [20], OB-Score [21], CRYSTALP [22], and
most recently ParCrys [23]. SECRET and CRYSTALP accept
only sequences between 46 and 200 amino acids (AAs) in
length. Although OB-score does not impose a limit on
sequence size, it considers only two predictive features (pI
and hydrophobicity), which limits the quality of its pre-
dictions. The ParCrys method extends OB-score by using
a kernel-based classification algorithm and adding the
composition vector of several amino acids (including Ser,
Cys, Gly, Phe, Tyr, and Met) to the set of predictive fea-
tures. All of these methods are built using black-box clas-
sification models, which are inductively learned from a set
of protein chains, all annotated as crystallizable and non-
crystallizable. By contrast, the XtalPred method [24] is a
white-box approach that combines probabilities of suc-
cessful crystallization calculated from several protein fea-
tures. This method, which was developed based on

experiences at the Joint Center for Structural Genomics,
strives to mimic the work performed by structural biolo-
gists. XtalPred compares nine biochemical and biophysi-
cal features of an input protein with probability
distributions estimated from data from the TargetDB data-
base http://targetdb.pdb.org/[25]. These features include
protein length, molecular mass, Gravy and instability
indices, extinction coefficient, isoelectric point, content of
Cys, Met, Trp, Tyr, and Phe residues, insertions in the
alignment compared to homologues in a non-redundant
database of protein sequences, predicted secondary struc-
ture, predicted disordered, low-complexity and coiled-coil
regions, and predicted transmembrane helices and signal
peptides. The individual probabilities are combined into
a single crystallization score which is used to assign one of
five crystallization classes: optimal, suboptimal, average,
difficult, and very difficult. The XtalPred provides a good
benchmark for comparison since it uses a sophisticated
sequence analysis (including several predictions) and
models the routine "manual" work of structural biolo-
gists.

In the current article, we extend the CRYSTALP method to
improve the quality of the predictions and to remove the
sequence size restriction. When compared with CRYS-
TALP, the proposed CRYSTALP2 method uses new predic-
tive features that are based on the collocation of amino
acids in the sequence [22,26-29], includes information
about pI and hydrophobicity, and applies a kernel-based
classifier. Our goal is to provide a relatively simple
method, i.e., we do not use sophisticated sequence analy-
sis. We expect that our method will thus be complemen-
tary to current methods including XtalPred and ParCrys.
We also note that many studies have shown that
sequence-based prediction approaches, which may
address a variety of structural and functional properties of
proteins, provide useful information and insights for both
basic research and drug design and hence are widely wel-
comed by the scientific community [30-34].

Methods
Our methodology consists of two steps: (1) the protein
sequence is converted into a fixed size feature vector, and
(2) the feature values are entered into the classification
model to predict the protein class (crystallizable/noncrys-
tallizable). We followed the same design procedure as in
[20,22] and our evaluation follows [20,22,23].

Datasets

The design of the proposed method is based on a dataset
of 418 proteins (hereafter D418) that includes 192 non-
crystallizable and 226 crystallizable chains, which was
introduced in [20]. Following the approach taken to
design and test SECRET [20] and CRYSTALP [22], the
design is based on tenfold cross-validation of the D418

http://targetdb.pdb.org/


BMC Structural Biology 2009, 9:50 http://www.biomedcentral.com/1472-6807/9/50

Page 3 of 14

(page number not for citation purposes)

dataset. We compare our out-of-sample predictions on
D418 with SECRET and CRYSTALP. We also employ three
datasets that were recently introduced in [23] and a new
test dataset introduced in this contribution to compare
CRYSTALP2 with CRYSTALP, SECRET, OB-Score, ParCrys
and XtalPred. These four datasets are drawn from the Tar-
getDB [25] and PepcDB http://pepcdb.pdb.org/ databases
by applying procedures established in [23]. We use the
FEAT dataset (composed of 1456 sequences, 728 crystal-
lizable and 728 non-crystallizable) as the training dataset,
while the TEST and TEST-RL datasets, composed of 144
(72 crystallizable and 72 non-crystallizable) and 86 (43
crystallizable and 43 non-crystallizable) sequences,
respectively, are used as out-of-sample test sets. The
sequences in the test datasets were made nonredundant
(using CD-HIT [35] in the case of D418 and using AMPS
[36] in the case of TEST and TEST-RL) to avoid any bias
towards similar proteins and to assure independence
between training and test data. The D418 and TEST-RL
datasets include chains varying between 46 and 200 resi-
dues in length, while the FEAT and TEST dataset include
chains of unrestricted length (minimum 42 and maxi-
mum 1169 residues). This experimental design is consist-
ent with that in [23]. We also introduce a new test dataset
of 2000 proteins (hereafter TEST-NEW), which is used to
assess the quality of predictions for recently considered
targets; we note that the FEAT, TEST and REST-RL datasets
are based on proteins deposited before April 2007. This
dataset simulates a large scale application of the proposed
method, and was also developed following the procedure
in [23]. The crystallizable proteins were extracted from
sequences deposited in TargetDB. We selected the last
1000 depositions as of December 31, 2008 that are anno-
tated as having "Diffraction-quality Crystals", and are not
annotated with "In PDB" in the "Status" field. The result-
ing set includes proteins deposited between July 2006 and
December 2008. The non-crystallizable sequences, which
correspond to the actual construct sequences used, were
extracted from the trial sequences stored in PepcDB.
Sequences that are annotated as "work stopped" in the
"Status" field and "Cloned" but not including an indicator
of crystallization (e.g. "Crystals") in the "Status History"
field were included in the set. Among these targets we
removed DNA sequences, sequences which were anno-
tated as "test target" and sequences for which "stopDe-
tails" included "duplicate target found". As in the case of
crystallizable chains, the remaining chains were filtered to
select the last 1000 depositions as of December 31, 2008.
The selected 2000 sequences were also processed to
remove the N-terminal hexaHis tag (MGHHHHHHSH)
and LEHHHHHH tag at the C-terminus, which are intro-
duced to ease the purification; the same was done in [23].
Finally, we removed duplicate sequences and, as a result,
the selected 2000 protein chains are nonredundant. Our

results on this dataset are compared with the predictions
of the ParCrys and XtalPred methods.

Feature generation

The Composition vector was previously used to predict crys-
tallization propensity [20,22,23]. Given 20 AAs (A, C,...,
W, Y), ordered lexicographically, denoted as AA1, AA2,...,
AA19, and AA20, and the number of occurrences of AAi in
the sequence (denoted ni), the composition vector is
defined as

where k is the length of the sequence.

The amino-acid collocation vector was first used in [22] and
it is defined as the number of occurrences of two or more
amino acids that are separated by gaps, i.e., amino acids
of any type. CRYSTALP [22] employed a collocation vec-
tor for two amino acids (collocated dipeptides) that are
separated by up to four gaps, i.e., AAiAAj, AAi-AAj, AAi--
AAj, AAi---AAj, and AAi---AAj, where AAiAAj is a dipeptide,
AAi-AAj is the same dipeptide separated by one amino acid
of any type (denoted by -), etc. This yields 5*400 = 2000
collocation features. For CRYSTALP2 we also consider col-
located tripeptides, which include 8000 tripeptides
AAiAAjAAk, and 24000 tripeptides with single gaps,
AAiAAj-AAk, AAi-AAjAAk, and AAi-AAj-AAk. In contrast to
CRYSTALP, the number of occurrences for all collocated
di- and tripeptides are normalized by the sequence length
to allow predictions for sequences of unrestricted size. We
note that local neighborhood information in the protein
chain was also utilized in a recent method for design of
crystallizable protein variants [37].

We also used pI and hydrophobicity as features. pI was
used in OB-score [21], ParCrys [23] and XtalPred [24],
and is strongly related to the efficiency of crystallization
screening [16,17]. The pI values were computed using the
ExPASy server [38] based on pK values of amino acids
described in [39]. Sequence-based hydrophobicity was
also used in [21,23]. As in [23], the hydrophobicity was
calculated as the sum of Goldmann-Engleman-Steiz
(GES) hydrophobicity values [40] for all residues, divided
by the sequence length. The total number of features com-
puted is 34,022.

Feature selection

Since the initial feature set is relatively large, a feature
selection method was used to reduce the number of fea-
tures and to identify the most useful ones. We employed
the correlation-based feature subset selection method
(CFSS) [41], previously used to design CRYSTALP [22].

http://pepcdb.pdb.org/
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CFSS evaluates the value of a subset of features by consid-
ering the individual predictive capability of each feature
along with the degree of redundancy between the features.
The search strategy employed in feature selection was best
first search. This search method explores the space of
attribute subsets by using greedy hill-climbing with back-
tracking. Feature selection was performed using 10-fold-
cross validation on the D418 dataset to avoid overfitting,
and features that were deemed significant by CFSS in at
least 1 fold were selected. Due to the large dimensionality
of the initial feature set, feature selection was performed
in two steps. First, we selected the best performing features
from the composition and collocated dipeptides features
(these were used in CRYSTALP), tripeptides, and collo-
cated tripeptides. This resulted in the selection of 1103
features, i.e., 2 features from the composition vector, 94
from the collocated dipeptides, 250 from the tripeptides,
757 from the collocated tripeptides, pI, and hydrophobic-
ity. These features were merged together and the feature
selection was repeated. This resulted in a final set of 88
features, which are summarized in Table 1. We observe
that only 15 of the selected features were also used by
CRYSTALP; this is due to the normalization of the feature
values and inclusion of new features in the proposed
CRYSTALP2.

Classifier

The SECRET and ParCrys methods employ kernel-based
classifiers as their prediction models. SECRET uses Sup-
port Vector Machines with Gaussian kernels, while
ParCrys employs the Parzen window density estimator.
We use another kernel-based technique, the normalized
Gaussian radial basis function (RBF) network, which is a
neural network with a hidden layer based on the non-lin-
ear Gaussian kernel function. In contrast to classical RBF
networks [42], the normalized RBF (NRBF) networks have
been shown to improve generalization, which leads to
better performance on unseen test data [43]. We utilized
the NRBF implementation in WEKA [44], in which the
RBF functions are computed using the k-means clustering

algorithm, i.e., symmetric multivariate Gaussians are fit-
ted to the data for each k-means generated cluster, and the
classification is based on logistic regression. This classifier
requires the number of clusters, the width of the Gaussian
kernel, and the ridge value for the logistic regression to be
specified as training parameters. The number of clusters
equals 2, which is the number of classes (prediction out-
comes) in our problem. The other two parameters were
selected based on a grid search using tenfold cross-valida-
tion tests on the D418 dataset. The best classification
accuracy was obtained for a ridge value of 140 and kernel
width 2.0. We note that each prediction generated by
CRYSTALP2 is associated with a confidence score, defined
as the difference between the probabilities of the two out-
comes. The NRBF network generates a probability that a
given input chain is predicted as crystallizable and as non-
crystallizable. CRYSTALP2 predicts that a diffraction-qual-
ity crystal can be obtained when the confidence for this
class is greater than that for the non-crystallizable class.

Results and discussion
Comparison with competing methods

The CRYSTALP2 method was compared with SECRET,
CRYSTALP, OB-Score, ParCrys, and XtalPred methods
using two tests: the cross validation test on the D418 data-
set, and a test in which the model was trained on the FEAT
dataset and tested on the TEST, TEST-RL and TEST-NEW
datasets. These tests mimic the testing procedures in
[22,23]. We report the accuracy, Matthews's correlation
coefficient (MCC), and area under the ROC curve (AROC)
in Table 2. The ROC curve represents the relationship
between the true positive (TP) and false positive (FP)
rates; it is generated by establishing a threshold on the
confidence scores from the predictors and then varying
the threshold values. This allows the analyst to compare
prediction qualities under different TP or FP rates, which
is important when the analyst must consider different
costs for Type I and Type II errors (i.e. is it more costly to
wrongly abandon a crystallization attempt or to proceed
with the attempt when it cannot succeed?) Results on the

Table 1: Selected set of features.

Composition Collocated dipeptides Collocated tripeptides Other

features L, Y DL, ES, GL, HH, IR, LF, LS, PP, QG, QM, RI, 
SS, SV, WC, WM, WV, WW, YI, YT, C-A, D-
L, H-G, H-H, H-R, I-R, L-E, Q-L, R-S, T-K, T-
S, T-T, D--M, F--S, H--C, H--H, K--W, L--N, 
S--L, T--G, W--W, Y--N, E---Q, E---S, F---T, 
G---H, L---D, L---L, Q---C, R---D, V---Y, Y---I, 
C----E, C----H, C----S, E----F, E----Q, G----R, I-
---E, L----L, M----V, M----Y, S----H, V----T, W--
--H, W----M

EFV, IVV, TKV, F-TK, K-TV, M-DS, P-PE, Q-QQ, 
R-PS, DP-V, LR-F, MG-S, SA-D, VT-G, YV-E, F-E-F, 
K-I-R, N-P-G, S-T-S

pI, average hydropho-bicity

# features 2 65 19 2

The underscored features in the "Collocated dipeptides" column indicate features that were also used in CRYSTALP.
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D418, TEST and TEST-RL datasets for the SECRET method
were taken from [20] and [23]; the results for CRYSTALP,
ParCrys, and OB-Score were taken from [22] and [23], and
the XtalPred predictions were computed using the web
server at http://ffas.burnham.org/XtalPred[45]. The tar-
gets for which XtalPred generated optimal, suboptimal
and average outputs were assumed to be crystallizable,
while the remaining two classes (difficult and very diffi-
cult) were assumed to correspond to non-crystallizable
chains. This assignment results in the best prediction
quality. The results corresponding to other assignments
are provided in the ROC curves, i.e. each point in the ROC
curves of XtalPred that are shown in Figure 1 corresponds
to one of potential assignments. ParCrys-W refers to pre-
dictions obtained by training the ParCrys method on a
different dataset having an uneven number of crystalliza-
ble and non-crystallizable chains [23]. The TEST dataset
includes sequences of unrestricted size, and thus only
results for ParCrys, OB-score, and CRYSTALP2 are

reported. The results on the TEST-NEW dataset for ParCrys
and XtalPred were computed using web servers at http://
www.compbio.dundee.ac.uk/xtal/cgi-bin/input.pl and
http://ffas.burnham.org/XtalPred, respectively.

Table 2 shows that CRYSTALP2 provides an improvement
over CRYSTALP. While both methods show the same
quality on the D412 dataset, CRYSTALP performs rela-
tively poorly on the TEST-RL dataset. This is likely due to
the input features not being normalized in this method;
the TEST-RL set has a different distribution of protein
chain sizes than the D418 set. We observe that
CRYSTALP2 obtains MCC = 0.4 on this test set, which is
similar to the result of OB-Score and worse only than the
results of ParCrys and XtalPred. At the same time, the pro-
posed method outperforms all competing methods except
XtalPred on the TEST set, which is larger than the TEST-RL
dataset and contains chains of unrestricted size. The tests
on the largest TEST-NEW dataset indicate that the three
top performing methods, ParCrys, XtalPred and
CRYSTALP2, provide similar performance with accuracy
of about 70%, and MCC and AROC around 0.4 and 0.75,
respectively.

The ROC curves in Figure 1 were generated for the three
best performing methods (CRYSTALP2, ParCrys, and Xtal-
Pred) on the TEST, TEST-RL and TEST-NEW datasets to
facilitate a more detailed comparison. We observe that for
the TEST dataset CRYSTALP2 outperforms ParCrys for low
and mid-range values of FP rate (when a relatively low
number of chains is incorrectly classified as crystalliza-
ble), while ParCrys generates slightly higher TP rates for
FP rate > 0.6. CRYSTALP2 would thus be more appropri-
ate than ParCrys when the cost of incorrectly classifying a
chain as crystallizable is significant. XtalPred is shown to
generally outperform both ParCrys and CRYSTALP2 on
this dataset. In the case of the TEST-RL dataset ParCrys and
XtalPred are shown to provide favorable prediction qual-
ity when compared with CRYSTALP2. Finally, the ROC
curves on the largest TEST-NEW dataset show that the
three methods are characterized by similar performance
across the entire range of the FP and TP rates. Overall,
although XtalPred seems to provide good performance on
all three datasets, we observe that there is no clear cut win-
ner and that all three methods provide relatively compa-
rable prediction quality.

This finding of similar performance prompted an investi-
gation into the complementarity of the top three predic-
tion methods. We compared predictions of CRYSTALP2
with the predictions of XtalPred and ParCrys by grouping
them into four categories: 1) predictions that were correct
for both CRYSTALP2 and XtalPred (or ParCrys); 2) predic-
tions that were correct for CRYSTALP2 and incorrect for
XtalPred (or ParCrys); 3) predictions that were incorrect

Table 2: Comparison of prediction quality measured via 

accuracy, MCC and AROC between the proposed and five 

competing methods.

Dataset Method Accuracy MCC AROC6

D4181 SECRET 70.0 0.34 N/A

CRYSTALP 77.5 0.55 N/A

CRYSTALP2 77.5 0.55 N/A

TEST-RL2 CRYSTALP 46.5 -0.07 N/A

SECRET 58.1 0.16 0.58

ParCrys-W 67.4 0.38 0.84

OB-Score 69.8 0.40 0.71

ParCrys 79.1 0.58 0.84

XtalPred4 76.7 0.54 0.82

CRYSTALP2 69.8 0.40 0.72

TEST2 OB-Score 64.6 0.32 0.68

ParCrys-W 68.0 0.37 0.75

ParCrys 71.5 0.45 0.75

XtalPred4 79.2 0.58 0.83

CRYSTALP2 75.7 0.52 0.79

TEST-NEW ParCrys3 70.6 0.43 0.75

XtalPred4 70.0 0.40 0.76

CRYSTALP25 69.3 0.39 0.74

The AROC values for ParCrys, OB-Score and SECRET were taken 
from [23].
1 Results based on tenfold cross-validation test on the D418 dataset
2 Results based on training the classification model on FEAT dataset 
and testing on TEST-RL or TEST datasets, respectively
3 Results based the ParCrys server at http://
www.compbio.dundee.ac.uk/xtal/cgi-bin/input.pl
4 Results based the XtalPred server at http://ffas.burnham.org/
XtalPred-cgi/xtal.pl
5 Results based on training the classification model on FEAT dataset 
and testing on TEST-NEW datasets, respectively
6 N/A means that the corresponding results was not reported and 
cannot be duplicated or computed

http://www.compbio.dundee.ac.uk/xtal/cgi-bin/input.pl
http://www.compbio.dundee.ac.uk/xtal/cgi-bin/input.pl
http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://ffas.burnham.org/XtalPred
http://www.compbio.dundee.ac.uk/xtal/cgi-bin/input.pl
http://www.compbio.dundee.ac.uk/xtal/cgi-bin/input.pl
http://ffas.burnham.org/XtalPred
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ROC curves for ParCrys, XtalPred, and CRYSTALP2 on the TEST-NEW (top panel), TEST (middle panel) and TEST-RL (bot-tom panel) datasetsFigure 1
ROC curves for ParCrys, XtalPred, and CRYSTALP2 on the TEST-NEW (top panel), TEST (middle panel) and 
TEST-RL (bottom panel) datasets.
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for CRYSTALP2 and correct for XtalPred (or ParCrys); and
4) predictions that were incorrect for both CRYSTALP2
and XtalPred (or ParCrys). The results are shown in Table
3; we note that we could not duplicate the results of
ParCrys in [23] by using the web server and thus we could
not include a comparison with this method on the TEST
and TEST-RL datasets in Table 3. The scores from catego-
ries (1) and (4) show overlapping results, while the sec-
ond and third categories represent the number of
complementary predictions. The results indicate that
CRYSTALP2 is complementary to both XtalPred and
ParCrys. For example, results on the TEST-NEW dataset
show that CRYSTALP2 provides correct predictions for
about 14.8% and 12.8% of the input protein chains that
XtalPred and ParCrys, respectively, predict incorrectly. At
the same time, XtalPred and ParCrys provide correct pre-
dictions for 15.5% and 14.2% of chains from the TEST-
NEW dataset, respectively, for which CRYSTALP2 makes
mistakes. Overall, the predictions of CRYSTALP2, and
XtalPred and ParCrys overlap for only 69.8% and 73% of
the input chains, respectively. To further investigate the
complementarity we implemented a majority vote based
meta-classifier that takes predictions from CRYSTALP2,
XtalPred and ParCrys for a chain, and outputs the classifi-
cation that at least 2 out of 3 methods agree on. A meta-
classifier will improve on the individual base classifiers if
and only if the base classifiers are complementary. Our
meta-classifier obtains an accuracy equal to 73.4% and
MCC equal 0.48 on the TEST-NEW dataset. When com-
pared with the best accuracy on this dataset obtained by
ParCrys, the majority vote predictor reduces the error rate
by (73.4 - 70.6)/(100 - 70.6) = 2.8/29.4 = 9.5%. We thus
conclude the proposed CRYSTALP2 method, ParCrys and
XtalPred are complementary to each other, provide com-
parable prediction quality, and outperform the other
three methods. We emphasize that complementarity
between CRYSTALP2 and XtalPred suggests that the com-
putational black-box methods, such as CRYSTALP2, pro-

vide useful support for the "manual" work of structural
biologists as modelled in XtalPred.

Discussion of the proposed sequence representation

The 88 features selected for CRYSTALP2 include elements
of the composition and collocation vector, which are
computed directly from the sequence, and pI and hydro-
phobicity, which are derived from the sequence by con-
sidering specific physicochemical properties of the amino
acid chains. We note that the two latter features were used
in several past studies [16,17,21,23], while the former set
of 86 features is introduced in this work as an extension of
work done in [22]. We investigate whether these two
sources of data, i.e., sequence and physicochemical prop-
erties of the sequence, provide complementary or redun-
dant information in the context of predicting
crystallization propensity.

Table 4 compares the quality of predictions when using
three feature subsets: 1) pI and hydrophobicity; 2) com-
position and collocation-based features; 3) all 88 features.
The experiments on the TEST-NEW, TEST, and TEST-RL
datasets show that the usage of the combined set of 88 fea-
tures results in superior predictions. The accuracy of
CRYSTALP2 is improved by between 12.5% and 7.4%,
depending on the dataset used, when compared to results
obtained using only the 86 collocation-based features.
Similarly, CRYSTALP2 predictions are improved by 0.5%
to 9.7% when compared to predictions that utilize only
the pI and hydrophobicity features. The improvements in
AROC range between 0.06 and 0.1, and between 0.03 and
0.13 when comparing CRYSTALP2 with predictions based
solely on the collocation-based features and on pI and
hydrophobicity, respectively. We further explore the
above differences in prediction quality using the ROC
curves obtained for the three sets of features on the TEST-
NEW, TEST and the TEST-RL datasets, see Figure 2. The
curves show that the predictions that use 86 sequence-

Table 3: Comparison of predictions generated by CRYSTALP2, XtalPred and ParCrys on the TEST, TEST-RL and TEST-NEW 

datasets.

XtalPred ParCrys

TEST dataset TEST-RL dataset TEST-NEW dataset TEST-NEW dataset

CRYSTALP
2

correct 
prediction

incorrect 
prediction

correct 
prediction

incorrect 
prediction

correct 
prediction

incorrect 
prediction

correct 
prediction

incorrect 
prediction

correct 
prediction

91 18 49 11 1091 295 1130 256

incorrect 
prediction

23 12 17 9 310 304 283 331

The table provides a breakdown of the predictions into those that were correct for both CRYSTALP2 and XtalPred (or ParCrys), correct for 
CRYSTALP2 and incorrect for XtalPred (or ParCrys), incorrect for CRYSTALP2 and correct for XtalPred (or ParCrys), and incorrect for both 
CRYSTALP2 and XtalPred (or ParCrys).
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ROC curves for CRYSTALP2, the predictions based on the 86 composition and collocation features, and a method that uses only pI and hydrophobicity featuresFigure 2
ROC curves for CRYSTALP2, the predictions based on the 86 composition and collocation features, and a 
method that uses only pI and hydrophobicity features. Top panel shows results on the TEST-NEW dataset, middle 
panel on the TEST dataset and bottom panel on the TEST-RL dataset.
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based features are characterized by better or comparable
quality for low FP rates of up to about 0.55, 0.5, and 0.2
for the TEST, TEST-RL, and TEST-NEW datasets, respec-
tively. The resulting higher TP rates for such low FP rates
correspond to predictions in which a low number of
sequences are incorrectly predicted as able to crystallize,
while a higher number of chains are correctly predicted as
crystallizable. In contrast, the usage of the two physico-
chemical properties to perform predictions results in
higher TP rates for high values of FP rates. Based on these
observations, we conclude that the two sources of data
provide complementary information. We also observe
that the combination of all 88 features results in ROC
curves that work well for the entire range of the FP rates.

In the following we investigate individual features used by
CRYSTALP2. We show that the features based on the col-
location of residues involve amino acids types that are
also utilized in the crystallization enhancing mutagenesis.
We then discuss the association of the individual features
with the prediction outcomes.

The surface entropy reduction approach, i.e. point-muta-
tion-based replacement of solvent-exposed residues hav-
ing high conformational entropy (e.g. Glu (E), Gln (Q),
and Lys (K)), with residues having lower conformational
entropy and higher potential to mediate crystal contacts
(such as Ala (A), Tyr (Y), Thr (T), Ser (S), and His (H))
provides a viable strategy to minimize the loss of confor-
mational entropy upon crystallization and renders crystal-
lization thermodynamically favorable [46,47,37]. The
sites for mutagenesis are usually chosen considering their
proximity in the sequence [37,47,48], which conceptually
resembles our collocation vector approach. At the same
time, the ParCrys and XtalPred methods use the composi-
tion of several AA types without considering their proxim-

ity. The eight AA types involved in surface entropy
reduction are likely to be indicative of proteins with low/
high crystallization propensity, and they occur in 73% of
the features used by CRYSTALP2. Since the combined
abundance of these AAs in protein chains is about 41%,
their higher occurrence rate in our feature set demon-
strates that CRYSTALP2 implicitly applies information
about conformational entropy. We note that ParCrys uses
the composition of Ser (S), Gly (G), Cys (C), Phe (F), Tyr
(Y), and Met (M) AAs. Only two of these AA types are
associated with the residues that are suggested in crystalli-
zation enhancing mutagenesis, which further supports
our claim of complementarity between CRYSTALP2 and
ParCrys. Similarly, XtalPred analyzes the composition of
Cys (C), Met (M), Trp (W), Tyr (Y), and Phe (F) AAs, and
again among these amino acid types only Y appears in the
context of the mutagenesis.

Since CRYSTALP2 uses a nonlinear, black-box model to
represent the relation between all input features taken
together and the prediction outcomes, it is not possible to
directly use this model to determine the associations of
individual features with a specific outcome. Instead, we
computed the biserial correlation coefficients between
individual features and the annotation of the correspond-
ing protein chains (crystallizable vs. noncrystallizable) to
quantify the strength of the associations. Overall, we
observe that 75 features used by CRYSTALP2 are charac-
terized by weak absolute correlation coefficient values
(<0.1). While individually these features little useful
information, the classification model exploits these indi-
vidually weak correlations by combining information
from multiple features. The remaining 13 features having
higher coefficient values include (the correlation coeffi-
cients are shown in brackets) L-E (0.28), SS (0.25), L
(0.20), T-S (0.16), GL (0.15), R-S (0.14), I----E (0.14), L--

Table 4: Comparison of prediction quality measured via accuracy, MCC and AROC between the proposed method that uses the set of 

88 features (including composition, collocation, pI and hydrophobicity), a method that uses the 86 composition and collocation 

features, and a method that uses only pI and hydrophobicity features.

Dataset Method (# features) Accuracy MCC AROC

TEST-RL only pI and hydrophobicity (2 features) 67.4 0.38 0.63

only composition and collocation (86 features) 62.8 0.26 0.66

CRYSTALP2 (88 features) 69.8 0.40 0.72

TEST only pI and hydrophobicity (2 features) 66.0 0.37 0.66

only composition and collocation (86 features) 63.2 0.26 0.69

CRYSTALP2 (88 features) 75.7 0.52 0.79

TEST-NEW only pI and hydrophobicity (2 features) 68.8 0.41 0.71

only composition and collocation (86 features) 61.9 0.24 0.66

CRYSTALP2 (88 features) 69.3 0.39 0.74

Results are based on training the classification model on FEAT dataset and testing on TEST-RL, TEST, and TEST-NEW datasets, respectively.
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-L (0.14), F--S (0.12), E----F (0.11), S----H (0.11), S-T-S
(0.11) and pI (0.3). We observe that the above colloca-
tions include AA types which are complementary to the
AA types utilized by XtalPred (C, F, M, W, and Y; only one
AA type, F, is in common). The same is true when we con-
sider ParCrys, which uses the composition of C, F, G, M,
S, and Y (only F, G, and S, are in common).

In order to examine the relationship of the collocated pep-
tides to crystallizability we divided the 13 features, exclud-
ing pI, into two subsets that can be expected to be
associated with either the crystallizable or non-crystalliza-
ble class. Given that E, Q, and K are high entropy residues
we considered collocations including these residues and
residues associated with them (i.e., L-E, I----E, E----F, L, GL,
and L---L), as associated with non-crystallizable chains.
Similarly, A, Y, T, S, and H, which have higher potential to
mediate crystal contacts were used to annotate the
remaining correlated collocations (i.e., SS, T-S, R-S, F--S, S-
---H, and S-T-S) as associated with crystallizable chains.
We aggregated (summed) the corresponding feature val-
ues for each subset and contrasted the resulting values
between the two outcomes, see Figure 3A. We also com-
pared these results to the graph representing the pI and
hydrophobicity, see Figure 3B. We observe that neither the
usage of the collocations nor the pI and hydrophobicity
yields a clear separation between the two classes of pro-
tein chains. At the same time, as expected, the chains with
high occurrence of the collocations associated with crys-
tallizable chains tend to lead to successful crystallizations
and vice versa; see the lower-right and upper-left corners
of Figure 3A, respectively. In contrast, Figure 3B shows
that although higher pI values are associated with a
smaller likelihood of crystallization, the hydrophobicity
does not show any clear trend.

Analysis of CRYSTALP2 predictions

We additionally examine the results obtained by
CRYSTALP2 in our second test (training on FEAT, testing
on the TEST-NEW, TEST and TEST-RL datasets). Two ques-
tions are of interest: 1) could the prediction quality
improve if the size of the FEAT dataset were increased
(more crystallization reports would become available)?
and 2) how does the proposed method performs for each
of the prediction outcomes.

Impact of the size of the training dataset

We select subsets of the FEAT dataset and re-train the
NRBF classifier (using the same parameters) on these
reduced datasets. The subsets are 10%, 20%, 30%,..., 90%
of the FEAT dataset, selected randomly without replace-
ment according to a uniform distribution. The prediction
quality, measured by the accuracy and MCC, obtained for
each subset of FEAT for the TEST-NEW, TEST-RL and TEST
datasets is presented in Figure 4.

In TEST-RL, the prediction quality varies more substan-
tially than for the TEST and TEST-NEW datasets. In spite
of the above, we can discern a general upward trend in
prediction quality for the three datasets. The trends for the
TEST and TEST-NEW datasets are clearer and we observe
that the prediction quality improves as more of the FEAT
dataset is included in training, and reaches its maximum
when the entire FEAT dataset is used. Most importantly,
we observe that the rate of improvement is relatively con-
stant, even when considering large fractions of the train-
ing dataset, i.e., 80, 90, and 100%. Interpolation of this
trend suggests that inclusion of additional data in the
training dataset could result in a further increase of the
prediction quality.

The linear regressions in Figure 4 show that the improve-
ments have larger magnitude for the TEST and TEST-NEW
datasets than for the TEST-RL dataset, which highlights
the difference between these datasets. We note that FEAT,
TEST-NEW and TEST include sequences of unrestricted
size, while TEST-RL only includes sequences between 46
and 200 residues in length. This difference in the distribu-
tion of the sequence sizes is a likely cause of the stronger
improvements in the case of the TEST and TEST-NEW
datasets.

Results for prediction of crystallizable and noncrystallizable proteins

We analyze the performance of the CRYSTALP2 method
separately for the prediction of the crystallizable and non-
crystallizable proteins. The prediction quality for each of
the two outcomes is measured using sensitivity = TP/(TP
+ FN) and specificity = TN/(TN + FP), see Table 5. We note
that these two measures are symmetric for two-class clas-
sifications, i.e., specificity of one class equals sensitivity of
the other class and vice versa. The results on the TEST-
NEW, TEST and TEST-RL are consistent and they show
that CRYSTALP2 provides higher sensitivity for the predic-
tion of the crystallizable proteins. This means that a
higher fraction of the actual (true) crystallizable chains is
correctly predicted when compared with the predictions
for the noncrystallizable chains. The number of noncrys-
tallizable chains that were predicted as crystallizable is
higher than the number of crystallizable chains that were
predicted as noncrystallizable, which indicates that the
proposed method is better in the context of confirming
that a given chain is suitable for crystallization when com-
pared with the task of confirming that the crystallization
fails.

Conclusion
We introduce a novel algorithm, CRYSTALP2, that pre-
dicts the propensity of a given protein chain to generate
diffraction-quality crystals via current structural biology
techniques. Our results indicate that hydrophobicity, iso-
electric point, and the frequency of certain collocated di-
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The scatter plots showing the relation between the selected input features for crystallizable (denoted by green markers) and noncrystallizable (red markers) protein chains from the FEAT datasetFigure 3
The scatter plots showing the relation between the selected input features for crystallizable (denoted by green 
markers) and noncrystallizable (red markers) protein chains from the FEAT dataset. Panel A shows relation 
between the summed values of the 6 collocations associated with crystallizable proteins (x-axis) and the 6 collocations associ-
ated with the noncrystallizable proteins (y-axis). Panel B shows relation between pI (x-axis) and hydrophobicity (y-axis).
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and tripeptides are important predictors of crystallization.
We show that the collocation features provide a comple-
mentary source of information when compared with the
hydrophobicity and isoelectric point. CRYSTALP2 associ-
ates AA collocations corresponding to clusters of residues
having low conformational entropy and high potential to
mediate crystal contacts with crystallizable proteins. Clus-
ters of residues having high conformational entropy are
associated with the non-crystallizable proteins. Such pat-
terns could serve as potential crystallization markers.

Test on several independent datasets show that
CRYSTALP2 outperforms several existing methods such as
SECRET, CRYSTALP and the OB-Score, and provides com-
parable and complementary results to the ParCrys and
XtalPred methods. The complementarity between
CRYSTALP2 and XtalPred suggests that the proposed
black-box method is a useful adjunct to the current man-
ual techniques of structural biologists, which are mod-
elled in XtalPred. Our results suggest that an increase of
the size of the training set, which would be caused by the

Prediction quality (y-axis) measured with accuracy and MCC (shown using markers) when training the CRYSTALP2 model on subsets of the FEAT training dataset (x-axis) and testing on the TEST-NEW, TEST and TEST-RL datasetsFigure 4
Prediction quality (y-axis) measured with accuracy and MCC (shown using markers) when training the 
CRYSTALP2 model on subsets of the FEAT training dataset (x-axis) and testing on the TEST-NEW, TEST and 
TEST-RL datasets. The solid and dashed lines show linear regression trends associated with the increasing size of the train-
ing dataset for the accuracy and MCC, respectively.

Table 5: Comparison of prediction quality measured with sensitivity and specificity for the prediction of the crystallizable and 

noncrystallizable proteins by the CRYSTALP2 method.

crystallizable proteins Noncrystallizable proteins

Dataset sensitivity specificity sensitivity specificity

TEST-RL 74.4 65.1 65.1 74.4

TEST 79.1 72.2 72.2 79.1

TEST-NEW 76.1 62.6 62.5 76.1

Results are based on training the classification model on FEAT dataset and testing on the TEST-RL, TEST, and TEST-NEW datasets, respectively.
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continuing protein crystallization efforts, may results in
an increase of the prediction quality of the CRYSTALP2.
We also show that the proposed method performs better
in predicting crystallizable proteins when compared with
predicting noncrystallizable proteins.

We note that our method and all competing approaches,
i.e., SECRET, CRYSTALP, OB-Score, XtalPred and ParCrys,
take into account only intra-molecular factors that are
encoded in the protein chain. They may not provide reli-
able predictions when inter-molecular factors such as pro-
tein-protein and/or protein-precipitant interactions,
buffer composition, precipitant diffusion method, gravity,
etc. must be considered. All of these sequence-based pre-
dictors are limited to predicting crystallization propensity
for non-redundant chains; they should not be used when
assessing crystallization of homologues. In the latter case
we recommend the use of the web server at http://
www.doe-mbi.ucla.edu/Services/SER[37]. Finally, our
predictions concern only soluble proteins, as only such
proteins were used to train and validate the prediction
methods. In spite of these limitations, methods such as
the proposed CRYSTALP2 should find useful applications.
For instance, a potential application area is the Structural
Genomics initiative where structures are sought for a pro-
tein that represents a given protein family rather than for
a particular protein chain [8-11].

Authors' contributions
LK contributed to the conception of the proposed method
and the design of the feature sets and the classifier, helped
in performing the tests, contributed to the evaluation and
interpretation of the results, and wrote the manuscript. AR
and SA contributed to the design of the feature sets and
the classifier, computed the features, helped in perform-
ing the tests, and contributed to the evaluation of the
results. SD helped in performing the tests and contributed
to the evaluation of the results and to the writing of the
manuscript. MM contributed to the experimental tests
and the evaluation of the results. SJ contributed to the
interpretation of the results and writing of the manuscript.
All authors have read and approved the final version of
the manuscript.

Acknowledgements
This research was supported in part by NSERC under the Discovery Grants 

program. The authors would like to thank Lukasz Slabinski for help with 

running the XtalPred server and Ian Overton for providing the TEST, TEST-

RL and FEAT datasets.

References
1. Chandonia JM, Brenner SE: The impact of structural genomics:

expectations and outcomes.  Science 2006, 311:347-351.
2. Norin M, Sundström M: Protein models in drug discovery.  Curr

Opin Drug Discov Devel 2001, 4:284-290.
3. Fernàndez-Busquets X, de Groot NS, Fernandez D, Ventura S:

Recent structural and computational insights into conforma-
tional diseases.  Curr Med Chem 2008, 15:1336-49.

4. Lacapère JJ, Pebay-Peyroula E, Neumann JM, Etchebest C: Deter-
mining membrane protein structures: still a challenge!
Trends Biochem Sci 2007, 32(6):259-70.

5. Schnell JR, Chou JJ: Structure and mechanism of the M2 proton
channel of influenza A virus.  Nature 2008, 451:591-595.

6. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV,
Chou JJ, Wucherpfennig KW: Regulation of T cell receptor acti-
vation by dynamic membrane binding of the CD3epsilon
cytoplasmic tyrosine-based motif.  Cell 2008, 135(4):702-713.

7. Service R: Structural genomics, round 2.  Science 2005,
307:1554-1558.

8. Brenner SE: Target selection for structural genomics.  Nat
Struct Biol 2000, 7:967-969.

9. Chandonia JM, Brenner SE: Implications of structural genomics
target selection strategies: Pfam whole genome, and ran-
dom approaches.  Proteins 5000, 58:166-179.

10. Hui R, Edwards A: High-throughput protein crystallization.  J
Struct Biol 2003, 142:154-61.

11. Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, Pav-
lova M, Semesi A, Northey J, Beasley S, Lan N, Das R, Gerstein M,
Arrowmith CH, Edwards AM: Strategies for structural pro-
teomics of prokaryotes: quantifying the advantages of study-
ing orthologous proteins and of using both NMR and x-ray
crystallography approaches.  Proteins 2003, 50:392-399.

12. Biertumpfel C, Basquin J, Suck D: Practical implementations for
improving the throughput in a manual crystallization setup.
J Appl Cryst 2005, 38:568-570.

13. Chayen NE: Turning protein crystallisation from an art into a
science.  Curr Opin Struct Biol 2004, 14:577-583.

14. Puesy M, Liu ZJ, Tempel W, Praissman J, Lin D, Wang BC, Gavira JA,
Ng JD: Life in the fast lane for protein crystallization and X-
ray crystallography.  Prog Biophys Mol Biol 2005, 88:359-386.

15. Rupp B, Wang JW: Predictive models for protein crystalliza-
tion.  Methods 2004, 34:391-408.

16. Kantardjieff KA, Rupp B: Protein isoelectric point as a predictor
for increased crystallization screening efficiency.  Bioinformat-
ics 2004, 20:2162-2168.

17. Kantardjieff KA, Jamshidian M, Rupp B: Distributions of pI vs pH
provide strong prior information for the design of crystalliza-
tion screening experiments.  Bioinformatics 2004, 20:2171-2174.

18. Canaves JM, Page R, Wilson IA, Stevens RC: Protein biophysical
properties that correlate with crystallisation success in
Thermotoga maritima: maximum clustering strategy for
structural genomics.  J Mol Biol 2004, 344:977-991.

19. Goh CS, Lan N, Douglas SM, Wu B, Echols N, Smith A, Milburn D,
Montelione GT, Zhao H, Gerstein M: Mining the structural
genomics pipeline: identification of protein properties that
affect high-throughput experimental analyses.  J Mol Biol 2004,
336:115-130.

20. Smialowski P, Schmidt T, Cox J, Kirschner A, Frishman D: Will my
protein crystallize? A sequence-based predictor.  Proteins
2006, 62:343-355.

21. Overton IM, Barton GJ: A normalised scale for structural
genomics target ranking: the OB-Score.  FEBS Lett 2006,
580:4005-4009.

22. Chen K, Kurgan L, Rahbari M: Prediction of protein crystalliza-
tion using collocation of amino acid pairs.  Biochem Biophys Res
Commun 2007, 355:764-769.

23. Overton IM, Padovani G, Girolami MA, Barton GJ: ParCrys: a
Parzen window density estimation approach to protein crys-
tallization propensity prediction.  Bioinformatics 2008,
24:901-907.

24. Slabinski L, Jaroszewski L, Rodrigues APC, Rychlewski L, Wilson IA,
Lesley SA, Godzik A: The challenge of protein structure deter-
mination – lessons from structural genomics.  Protein Science
2007, 16(11):2472-82.

25. Chen L, Oughtred R, Berman HM, Westbrook J: TargetDB: a tar-
get registration database for structural genomics projects.
Bioinformatics 2004, 20(16):2860-2.

26. Campbell K, Kurgan L: Sequence-only based prediction of β-
turn location and type using collocation of amino acid pairs.
Open Bioinf J 2008, 2:37-49.

27. Chen K, Kurgan L, Ruan J: Prediction of flexible/rigid regions in
proteins from sequences using collocated amino acid pairs.
BMC Struct Biol 2007, 7:25.

http://www.doe-mbi.ucla.edu/Services/SER
http://www.doe-mbi.ucla.edu/Services/SER
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16424331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16424331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11560059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18537613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18537613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18537613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17481903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17481903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18235503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18235503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19013279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19013279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19013279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15761136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11104002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12557182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12557182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12557182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15465318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15465318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15652250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15652250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15544807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15544807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15544807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14741208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14741208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14741208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16315316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16315316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16808918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16808918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17316561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17316561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17437643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17437643


Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Structural Biology 2009, 9:50 http://www.biomedcentral.com/1472-6807/9/50

Page 14 of 14

(page number not for citation purposes)

28. Chen K, Jiang Y, Du L, Kurgan L: Prediction of integral mem-
brane protein type by collocated hydrophobic amino acid
pairs.  Comput Chem 2009, 30(1):163-172.

29. Chen YZ, Tang YR, Sheng ZY, Zhang Z: Prediction of mucin-type
O-glycosylation sites in mammalian proteins using the com-
position of k-spaced amino acid pairs.  BMC Bioinformatics 2008,
9:101.

30. Chou KC, Shen HB: Recent progresses in protein subcellular
location prediction.  Anal Biochem 2007, 370:1-16.

31. Chou KC: Progress in protein structural class prediction and
its impact to bioinformatics and proteomics.  Cur Prot Pept Sci-
ence 2005, 6:423-436.

32. Chou KC: Structural bioinformatics and its impact to bio-
medical science.  Cur Med Chem 2004, 11:2105-2134.

33. Kurgan LA, Cios KJ, Zhang H, Zhang T, Chen K, Shen S, Ruan J:
Sequence-based methods for real value predictions of pro-
tein structure.  Cur Bioinformatics 2008, 3(3):183-196.

34. Yang ZR, Wang L, Young N, Chou KC: Pattern recognition meth-
ods for protein functional site prediction.  Cur Prot Pept Science
2005, 6:479-491.

35. Li W, Godzik A: Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences.  Bioinfor-
matics 2006, 22:1658-1659.

36. Barton GJ, Sternberg MJE: A strategy for the rapid multiple
alignment of protein sequences: confidence levels from ter-
tiary structure comparisons.  J Mol Biol 1987, 198:327-337.

37. Goldschmidt L, Cooper DR, Derewenda Z, Eisenberg D: Toward
rational protein crystallization: A Web server for the design
of crystallizable protein variants.  Protein Sci 2007, 16:1569-76.

38. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel
RD, Bairoch A: Protein identification and analysis tools on the
ExPASy server.  In The Proteomics Protocols Handbook Edited by:
Walker JM. Humana Press; 2005:571-607. 

39. Bjellqvist B, Basse B, Olsen E, Celis JE: Reference points for com-
parisons of two-dimensional maps of proteins from different
human cell types defined in a pH scale where isoelectric
points correlate with polypeptide compositions.  Electrophore-
sis 1994, 15:529-539.

40. Engelman DM, Steitz TA, Goldman A: Identifying nonpolar trans-
bilayer helices in amino acid sequences of membrane pro-
teins.  Ann Rev Biophys Biophys Chem 1986, 15:321-353.

41. Hall M: Correlation based feature selection for machine learning, Ph.D. dis-
sertation University of Waikato, Dept of Computer Science; 1999. 

42. Moody J, Darken Ch: Fast learning in networks of locally-tuned
processing units.  Neural Computation 1989, 1:281-294.

43. Bugmann G: Normalized Gaussian Radial Basis Function net-
works.  Neurocomputing 1998, 20:97-110.

44. Witten I, Frank E: Data Mining: Practical Machine Learning Tools and
Techniques second edition. Morgan Kaufmann, San Francisco; 2005. 

45. Slabinski L, Jaroszewski L, Rychlewski L, Wilson IA, Lesley SA, Godzik
A: XtalPred: a web server for prediction of protein crystalliz-
ability.  Bioinformatics 2007, 23(24):3403-5.

46. Cooper DR, Boczek T, Grelewska K, Pinkowska M, Sikorska M,
Zawadzki M, Derewenda Z: Protein crystallization by surface
entropy reduction: optimization of the SER strategy.  Acta
Crystallogr D Biol Crystallogr 2007, 63:636-45.

47. Derewenda Z: Rational protein crystallization by mutational
surface engineering.  Structure 2004, 12:529-35.

48. Wang W, Malcolm BA: Two-stage PCR protocol allowing intro-
duction of multiple mutations, deletions and insertions using
QuikChange Site-Directed Mutagenesis.  Biotechniques 1999,
26:680-2.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18282281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18282281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18282281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17698024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17698024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3430611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3430611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3430611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17656576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17656576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17656576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8055880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8055880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8055880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17921170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17921170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17452789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17452789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15062076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15062076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10343905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10343905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10343905
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Datasets
	Feature generation
	Feature selection
	Classifier

	Results and discussion
	Comparison with competing methods
	Discussion of the proposed sequence representation
	Analysis of CRYSTALP2 predictions
	Impact of the size of the training dataset
	Results for prediction of crystallizable and noncrystallizable proteins


	Conclusion
	Authors' contributions
	Acknowledgements
	References

