
Soft Comput (2018) 22:783–795

https://doi.org/10.1007/s00500-016-2383-8

METHODOLOGIES AND APPLICATION

CS-PSO: chaotic particle swarm optimization algorithm

for solving combinatorial optimization problems

Xiaolong Xu1
· Hanzhong Rong1

· Marcello Trovati2 · Mark Liptrott2
·

Nik Bessis2

Published online: 3 October 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Combinatorial optimization problems are typi-

cally NP-hard, due to their intrinsic complexity. In this paper,

we propose a novel chaotic particle swarm optimization algo-

rithm (CS-PSO), which combines the chaos search method

with the particle swarm optimization algorithm (PSO) for

solving combinatorial optimization problems. In particular,

in the initialization phase, the priori knowledge of the com-

bination optimization problem is used to optimize the initial

particles. According to the properties of the combination

optimization problem, suitable classification algorithms are

implemented to group similar items into categories, thus

reducing the number of combinations. This enables a more

efficient enumeration of all combination schemes and opti-

mize the overall approach. On the other hand, in the chaos

perturbing phase, a brand-new set of rules is presented to

perturb the velocities and positions of particles to satisfy

the ideal global search capability and adaptability, effec-

tively avoiding the premature convergence problem found

Communicated by V. Loia.

B Marcello Trovati

marcello.trovati@edgehill.ac.uk

Xiaolong Xu

xuxl@njupt.edu.cn

Hanzhong Rong

1014041127@njupt.edu.cn

Mark Liptrott

mark.liptrott@edgehill.ac.uk

Nik Bessis

nik.bessis@edgehill.ac.uk

1 College of Computer Science, Nanjing University of Posts

and Telecommunications, Nanjing 210003, China

2 Department of Computing, Edge Hill University, Ormskirk,

Lancashire L39 4QP, UK

frequently in traditional PSO algorithm. In the above two

stages, we control the number of selected items in each cate-

gory to ensure the diversity of the final combination scheme.

The fitness function of CS-PSO introduces the concept of

the personalized constraints and general constrains to get

a personalized interface, which is used to solve a person-

alized combination optimization problem. As part of our

evaluation, we define a personalized dietary recommendation

system, called Friend, where CS-PSO is applied to address

a healthy diet combination optimization problem. Based on

Friend, we implemented a series of experiments to test the

performance of CS-PSO. The experimental results show that,

compared with the typical HLR-PSO, CS-PSO can recom-

mend dietary schemes more efficiently, while obtaining the

global optimum with fewer iterations, and have the better

global ergodicity.

Keywords Combinatorial optimization · Particle swarm

optimization · Chaos search · Personalization

recommendation

1 Introduction

Particle swarm optimization algorithm (PSO) is a heuristic

optimization technology, presented by Kennedy and Eber-

hart (1995), which mimics the swarm behavior of bird flocks

in performing their tasks, and to discover an optimal solu-

tion based on an objective function (Kennedy and Eberhart

1995; Eberhart and Kennedy 1995; Chang et al. 2014).

With fewer parameters, PSO algorithm can achieve a faster

convergence, while being simpler and easier to implement

(Xu et al. 2012). PSO has already been applied to many fields,

such as electric power systems, job scheduling of workshops,

wireless sensor networks, route planning, and robotics (Lei

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2383-8&domain=pdf
http://orcid.org/0000-0001-6607-422X

784 X. Xu et al.

2014; Kumari and Jha 2014; Yao et al. 2012; Liao et al.

2012; Lee and Kim 2013). However, the performance of PSO

still has space for improvement. For example, due to the fast

convergence of PSO, it is easy to fall into local optima in

solving multimodal optimization problems, potentially lead-

ing to the premature convergence of particle swarms. In the

initialization and updating phase, the stochastic strategy of

PSO generates a group of particles and finds the optimal solu-

tion through multiple iterations. During the iterations, the

positions and velocities of particles are randomly updated,

resulting in a low computational efficiency. There are mainly

two ways to improve performance of the PSO: the first adjusts

the parameters and procedure of PSO, such as dynamically

adjusting the search step length and optimizing the update

strategy of the particles (Chi et al. 2011; Zhao et al. 2014).

Another approach would be the combination with other intel-

ligent optimization algorithms, such as the genetic algorithm

(GA), and the simulated annealing algorithm (Sharma and

Singhal 2015; Nancharaiah and Mohan 2013). Most related

research Guo et al. (2014), Zhu et al. (2014), Sorkunlu et al.

(2013), Shi and Eberhart (1998), Elbedwehy et al. (2012)

about the improvement in PSO now mainly focuses on the

continuous optimization problems, while the combinator-

ial optimization problems (e.g., the combination of integer

programming and the 0/1 knapsack) do not attract enough

attentions, and the current research results are usually suit-

able to certain scenarios, which are not pervasive.

In order to solve combinatorial optimization problems

more efficiently, we propose a novel chaotic particle swarm

optimization algorithm (CS-PSO). The main contributions

of this paper are as follows. First of all, the chaos initial-

ization and the chaos perturbing of the chaos search method

are introduced into PSO in place of the random initialization

and the random perturbing. The ergodicity, regularity, and

randomness of the chaos search method can contribute to

address the PSO issues, including the local optimum and the

poor search efficiency. In the initialization phase, the priori

knowledge of the combination optimization problem is used

to optimize the initial particles. Furthermore, the quality of

the particles and the search efficiency of the algorithm are

improved. In the chaos perturbing phase, a brand-new set

of perturbing rules is presented to perturb the velocities and

positions of particles sufficiently to realize the ideal global

search capability and adaptability, effectively solving the pre-

mature problem of particles. Subsequently, we designed the

fitness function of CS-PSO, which utilizes the concept of the

personalized constraints and general constrains to produce

a personalized interface, which is used to solve a personal-

ized combination optimization problem. Finally, we built a

personalized dietary recommendation system, Friend, which

is based on CS-PSO to address a healthy diet combination

optimization problem. Friend is able to recommend more

reasonable dietary schemes, which proves that CS-PSO has

an enhanced performance compared to other improved PSO

algorithms, such as the typical PSO for generating healthy

lifestyle recommendations (HLR-PSO) (Pop et al. 2013).

The rest of the paper is organized as follows: Sect. 2

presents the related works, Sect. 3 discusses CS-PSO in

detail, and Sect. 4 describes the prototype personalized

dietary recommendation system called Friend applied with

CS-PSO. Experiments and performance analysis are pre-

sented in Sect. 5, and finally, Sect. 6 concludes the paper

by summarizing the main contributions of this paper and

commenting on future directions of our work.

2 Related work

PSO is a bio-inspired optimization meta-heuristic, which is

inspired by the foraging behavior exhibited by birds, which

is based on the assumption that a flock of birds are randomly

distributed in an area with only one piece of food, as shown in

Fig. 1a. The dot on the tree represents the available food, and

its position is unknown to each bird, although they know their

distance from it. Furthermore, the nearest bird to the food can

notify other birds to fly to it. The food is assumed to be the

optimal value, as shown in Fig. 1b, where each bird is seen

as a particle, and the distance between a bird and the food is

a value of the objective function. Therefore, the birds flock

foraging process can be defined as a function optimization

process. In Fig. 1b, X i is the closest particle to the goal, and it

is set as the current global optimal particle. Its distance from

goal is Nbesti , which is the global optimal value (Kennedy

and Eberhart 1995; Eberhart and Kennedy 1995). The main

idea of PSO (Pop et al. 2013) is that in a set of particles, each

particle is defined with a position and a velocity, searching

for the global optimum of an NP-hard problem. The particles

iteratively update their positions according to their individual

local optimal position and the global optimal position visited

so far. The new position of a particle (e.g., particle i) is

defined as:

X i (t + 1) = X i (t) + Vi (t + 1), (1)

where t is the current (temporal) status, t + 1 is the status

post-updating, X i (t) is the current position of the particle,

and Vi (t + 1) is the new velocity of the particle. Note that

time difference �t = (t + 1) − t is indeed a time unit.

The velocity of particle i is defined as:

Vi (t +1) = wVi (t)+c1r1

(

X
p
i − X i (t)

)

+c2r2(Xg− X i (t)),

(2)

where Vi (t) is the current velocity of the particle, X
p
i is the

best position so far visited by the particle (i.e., the local best

123

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization... 785

Fig. 1 Simulation of bird flocks foraging

position), Xg is the global best position so far visited by a

particle at the swarm level, and w, c1, and c2 are constants

that weight the importance of each component of the velocity.

Finally, r1 and r2 are the random values within [0, 1].

There is much research focusing on the improvement in

the performance of the original PSO. In Wen et al. (2013), the

authors propose a new modified particle swarm optimization

algorithm based on sub-particle circular orbit and zero-value

inertial weight (MDPSO). MDPSO utilizes the trigonometric

function based on nonlinear dynamic learning factors and on

a prediction method of population premature convergence,

which can achieve a better balance between the local explor-

ing ability and the global converging ability of particles (Wen

et al. 2013). However, MDPSO is mainly suitable for solv-

ing the composition optimization problem of Web service,

and it is not, therefore, universal. In Gao et al. (2005), the

authors propose a general particle swarm optimization model

(GPSO), which can be naturally extended to solve discrete

and combinatorial optimization problems. GPSO uses the

genetic updating operator, further improving the quality of

solution and the stability of convergence, and significantly

saving the computational cost (Gao et al. 2005). However,

the genetic updating operator brings randomness into GPSO,

which cannot guarantee the diversity of the final solution.

In Guo et al. (2011), the authors propose a hybrid particle

swarm optimization algorithm with the Fiduccia-Mattheyses

algorithm (FM), inspired by GA, utilizing the regeneration

mechanism of particle’s position of discrete particle swarm

optimization (DPSO). In particular, it is based on genetic

operations to update the position of the particle defined as

two-point crossover and random two-point exchange muta-

tion operators to avoid generating infeasible solutions. To

improve the ability of local exploration, FM is applied to

update its position. A mutation strategy is also built into

the proposed algorithm to achieve better diversity and break

away from local optima (Guo et al. 2011). However, similar

to Wen et al. (2013), the algorithm is not universal and cannot

solve the multi-objective optimization problems. In Ibrahim

et al. (2012), the authors propose a novel multistate parti-

cle swarm optimization algorithm (MSPSO) to solve discrete

combinatorial optimization problems, which is different from

the binary particle swarm optimization algorithm (BinPSO).

In MSPSO, each dimension variable of each particle can

attain various states, and it has been applied to two bench-

mark instances of the traveling salesman problem (TSP). The

experimental results show that MSPSO outperforms BinPSO

in solving the discrete combinatorial optimization problem

(Ibrahim et al. 2012). However, MSPSO utilizes the concept

of multistate, leading to the exponentially growing require-

ments of storage space and computation time. Therefore,

the efficiency is affected when MSPSO is applied to solv-

ing high-dimensional combinatorial optimization problems.

In Gao and Xiei (2004), the authors attempt to apply chaos

search method to PSO, while using its ergodicity, regular-

ity, and randomness to search the current global best particle

in the chaotic way, replacing a stochastic selected individ-

ual from the current “population.” The performance of PSO

is improved with the chaos search method, which motivates

our work. The evolution process is quickened, and the abili-

ties to seek the global optimum, the convergence speed, and

accuracy are all improved (Gao and Xiei 2004). In Wang and

Wu (2011) and Yang et al. (2015), improved PSO algorithms

with the chaos search method are presented and applied to

the optimization of logistics distribution route and vehicle

routing problem with specific time windows, respectively.

However, these results all simply adopt the chaos search

method, not further improving the mechanism of chaos ini-

tialization and chaos perturbing or providing the personalized

interface. Therefore, the diversity of the final solution cannot

be guaranteed, and the search efficiency is still unsatisfactory

(Wang and Wu 2011; Yang et al. 2015). In Sfrent and Florin

Pop (2015), the authors introduce a simulation infrastructure

123

786 X. Xu et al.

for building/analyzing different types of scenarios, which

allows the extraction of scheduling metrics for three differ-

ent algorithms, namely the asymptotically optimal one, FCFS

and a traditional GA-based algorithm. These are combined

them into a single hybrid algorithm, addressing asymptotic

scheduling for a variety of tasks related to big data processing

platforms. A distributed and efficient method for optimizing

task assignment is introduced in Iordache et al. (2006), which

utilizes a combination of genetic algorithms and lookup ser-

vices. In Bessis et al. (2012), an algorithm based on a variety

of e-infrastructure nodes exchanging simple messages with

linking nodes is discussed, with the aim to improve the energy

efficiency of the network performance.

3 Chaotic particle swarm optimization algorithm

3.1 Basic idea

The current PSO algorithms designed for solving combina-

torial optimization problem generally exhibit the following

issues:

– Most PSO algorithms are only suitable for one particular

scenario, and they are not universal.

– Most PSO algorithms are not based on multi-objective, or

do not provide a personalized interface. So, they cannot

effectively solve discrete, multi-objective, and personal-

ized combinatorial optimization problems.

– With the increasing of the particle dimension, the require-

ments of storage space and computation time will grow

exponentially, which will lower the efficiency when

solving the high-dimensional combinatorial optimization

problem.

The CS-PSO proposed here adopts the chaos search method

(Lorenz 2005). The chaos initialization and the perturbation

of the chaos search method are used instead of the random

initialization and the random perturbing. In the initialization

phase, CS-PSO optimizes the initial particles according to the

characteristics of combination optimization problems. Via

item classification, similar items are grouped into the same

category, thus reducing the number of combinations. There-

fore, it is possible to enumerate all combination schemes and

improve the search efficiency. In the chaos perturbing phase,

a new set of perturbing rules is designed to perturb velocities

and positions of particles sufficiently, so that CS-PSO has

good global search capability and adaptability, and the pre-

mature convergence problem of particles is also effectively

solved. In the above two phases, CS-PSO controls the num-

ber of selected items in each category to ensure the diversity

of the final combination scheme. The fitness function of CS-

PSO utilizes the concept of the personalized constraints and

general constrains to get a personalized interface, which can

be used to solve the corresponding personalized combinato-

rial optimization problem.

3.2 Chaos search method

Definition 1 (Chaos search) Chaos search is the random

movement with pseudorandomness, ergodicity, and regular-

ity, which is determined by a deterministic equation (Lorenz

2005).

Through the chaos iteration, a set of random sequences with

the ergodicity and the pseudorandomness are generated. Usu-

ally, the logistic mapping equation (Dong et al. 2013) is used

to generate pseudorandom sequences:

Z : αn+1 = μαn(1 − αn), n = 0, 1, 2, . . . (3)

where Z is a chaotic variable, corresponding to αn , and

μ is the control parameter. If μ = 4, the logistic map

will show entirely chaotic dynamics, and the trajectory of

chaotic variable are dense over the whole search space. We

assume that the initial value of Z , namely α0, is not equal

to 0, 1.25, 0.5, 0.75, 1, otherwise it would be eventually

periodic.

3.3 Model of combinatorial optimization problem

Definition 2 (Combinatorial optimization) Combinatorial

optimization refers to the process of optimizing an object

via the combination of a finite set of components.

A typical case of combinatorial optimization is the “quality–

cost” model of manufactured products, where a specific

product consists of m components, and each of them can

be chosen from a variety of options. The parameters of each

optional component include a weight representing its quality

and the index of cost, with the constraint that the total expen-

diture of the product does not exceed the available budget.

There are a variety of examples where combinatorial opti-

mization plays a crucial role. These include, for example, the

assembling of the different parts of a car, such as an engine,

chassis, tires, transmission, and electrical equipment, while

optimizing quality versus cost. The “quality–cost” model of

combinatorial optimization problem is defined as

max

m
∑

i=1

ni
∑

j=1

wi, j xi, j

such that

m
∑

i=1

ni
∑

j=1

ci, j xi, j ≤ O (4)

ni
∑

j=1

xi, j , ∀ i ∈ {1, 2, . . . , m}

123

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization... 787

where

– i is the index of category,

– j is the index of item,

– m is the total number of categories,

– ni is the total number of items in the i-th category,

– wi, j is the weight of the j-th item in the i-th category,

– ci, j is the cost of the j-th item in i-th category.

– O is the object cost, which means the manufacturing cost

shall not exceed the object cost and the quality of the

product shall be the optimal; xi, j ∈ {0, 1},∀i is the map-

ping value of the item.

Note that if the j-th item in the i-th category is selected, then

xi, j = 1, otherwise xi, j = 0.
∑ni

j=1
xi, j = 1 implies that

only one item is selected from each category.

3.4 Chaos initialization

Chaos initialization refers to the process of a chaotic variable

of the logistic map, which randomly identifies a value as its

initial value of particle.

The parameters of chaos initialization are as follows:

1. All items are divided into m categories, which are defined

as vectors, Bi , for i = 0, 1, . . . , m − 1, for category i .

2. The total number of items in category i is defined as

Ni , for i = 0, 1, . . . , m − 1, which implies that Bi =

(xi,0, xi,1, . . . , xi,Ni −1).

3. According to the above points, the position of parti-

cle i can be obtained, which is defined as a vector

X i = (B0, B1, . . . , Bm−1) . The dimension of particle

i is
∑m−1

i=0
Ni .

Suppose that only one item is selected from each cate-

gory. Therefore, m random values are sequentially generated

within the interval [0, 1], and each of them is mapped onto

an item of each category. Via these m random values, the

position of the first particle can be obtained. Take category

B0 as an example, so that the chaos initialization process is

as follows:

1. Suppose there are N0 items in B0, the chaos search space

[0, 1] is divided into N0 subspaces.

2. The random function is used to generate a random num-

ber between 0 and 1, described as k0,0, which is assigned

to the chaotic variable as the initial value of the B0 cate-

gory.

3. The parameter k0,0 is subsequently assessed to identify

which subspace it belongs to. Supposing that k0,0 belongs

to the μ-th subspace, x0,μ = 1, and others variables of

B0 are all initialized to 0. It means that the μ-th item is

selected in B0 = (0, 0, . . . , 1, . . . , 0).

By repeating the above procedure m times, m random values

k0,0, k0,1, . . . , k0,m−1 are generated sequentially, and each

random value is mapped to a corresponding item of each cat-

egory. The initializations of other categories B1, . . . , Bm−1

can be completed in the same way. B0, B1, . . . , Bm−1 are

combined together to get vector X i . Supposing that there are

n particles, the n × m initialization chaotic variables matrix

K can be defined as:

K =

⎛

⎜

⎝

k0,0 . . . k0,m−1

...
...

...

kn−1,0 . . . kn−1,m−1

⎞

⎟

⎠

In the initialization phase, the velocity Vi and the local best

position Pi of particle i are all equal to X i , that is:

X i = Vi = Pi (i = 0, 1, . . . , n − 1) (5)

3.5 Chaos perturbing

Definition 3 (Chaos perturbation) In the updating process

of particles, their velocities and positions will be perturbed

sufficiently and the search space will be traversed as sufficient

as possible.

Definition 4 (Fitness value) Fitness value is a value obtained

through a fitness function, which is a quantitative indicator

and used to evaluate the advantage and disadvantage of indi-

vidual.

Take particle i as an example. The parameters of chaos

perturbing are as follows:

1. The local best fitness value is defined as fi (i =

0, 1, . . . , n − 1).

2. The global best fitness value is defined as F .

3. The local best position is defined as Pi (i = 0, 1, . . . ,

n − 1).

4. The global best position is defined as G.

Subsequently, the positions of n particles are obtained, and

their fitness value is initialized to 0. In particular, a higher

value of the fitness value will have a positive impact on the

position of particles. During the updating process of fi and

Pi (i = 0, 1, . . . , n − 1), F and G can be obtained.

We define two velocity vectors V
p
i and V

g
i , where V

p
i =

X
p
i − X i , V

g
i = X

g
i − X i . Consequently, the new velocity of

the particle i is updated with

Vi (t + 1) = wVi (t) + c1r1V
p
i + c2r2V

g
i (6)

123

788 X. Xu et al.

The subtraction between two positions, for an example

between X
p
i and X i , is defined as

X
p
i − X i = (v

p
i,0, v

p
i,1, . . . , v

p
i, j , . . .) (7)

v
p
i, j =

{

Rand(1) if x
p
i, j = xi, j ;

0 otherwise.

where Rand(1) is used to randomly generate either 0 or 1.

According to the chaos initialization, we know that just one

item or a few items are selected in every category. In fact,

most of the variables are equal to 0. As a consequence, the

updating rule of velocity is redefined as

v
p
i, j =

{

vi, j (t) if vi, j (t) = v
p
i, j = v

g
i, j

−1 otherwise.

The addition between a position X i (t) and a velocity

Vi (t + 1) is also redefined as:

X i (t + 1) = X i (t) + Vi (t + 1)

= (xi,0(t + 1), xi,1(t + 1), . . . , xi, j (t + 1)) (8)

v
p
i, j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xi, j if vi, j (t) = 1

C(xi, j) if vi, j (t + 1) = 0

J (x
p
i, j) if vi, j (t + 1) = −1 and vi, j (t) �= v

g
i, j = v

p
i, j

J (x
g
i, j) if vi, j (t + 1) = −1 and vi, j (t) = v

p
i, j �= v

g
i, j

J (x
p
i, j) if vi, j (t + 1) = −1 and vi, j (t) = v

p
i, j �= v

g
i, j

C(xi, j) if vi, j (t + 1) = −1 and vi, j (t) �= v
p
i, j �= v

g
i, j

where

– i is the number of particle,

– j is the index of position X i (t),

– xi, j is the variable with index j from the i-th current

position,

– x
p
i, j is the variable with j from the i-th local best position,

– x
g
i, j is the variable with j from the global best position,

– C(xi, j) is a perturbing function of xi, j with j from the

position of particle i , and finally,

– J (x
p
i, j) and J (x

g
i, j) are simple assessments based on the

process initialization.

The detailed perturbing process of the function is defined as

follows:

1. First, according to the parameter j , we can determine

the associated item of the corresponding category xi, j .

In particular, the assertion

“If j ≥

h−1
∑

i=0

Ni and j <

h
∑

i=0

Ni ”

implies that xi, j is associated with the chaotic variable

ki,h .

2. The logistic map is used to iterate ki,h once and generate

a new chaotic variable ki,h .

3. Subsequently, the subspace ki,h is assessed to understand

which subspace it belongs to. Suppose that ki,h belongs to

the p-th subspace, xi,p = 1 and the others variables of the

category Bh are equal to 0. If j −
∑s

i=0
Ni = p(s ≤ m),

then xi, j (t + 1) = 1. Otherwise, xi, j (t + 1) = 0 , and

Bh = (0, 0, . . . , 1, . . . , 0).

In order to ensure the suitability of the final solution, the fol-

lowing rules are assumed (without loss of generality, consider

the variable J (x
p
i, j)):

1. If x
p
i, j = 1, then xi, j (t + 1) = 1 and other variables of

the corresponding category are assigned to 0.

2. If x
p
i, j = 0, and xi, j = 0, then the only action carried out

is to assign 0 to xi, j (t + 1).

3. If x
p
i, j = 0, and xi, j = 1, then xi, j (t + 1) = C(xi, j).

3.6 Design of the fitness function

The fitness function is used to evaluate the performance of a

combination scheme under certain constraints. Therefore, the

properties of the fitness function will directly affect the com-

binatorial optimization results. More specifically, most com-

binatorial optimization problems are multi-constraints based.

In this article, we use both personalized constraints and

general constraints, where the former are used to design the

fitness function, and the latter are used as its constraints. We

also combine the satisfaction of personalized constraints into

the score model, and the average of scores is identified with

the fitness value. The bigger the fitness value is, the higher the

degree of satisfaction of personalized constraint will be, and

the better the position of particle is considered to be. Suppose

a combinatorial optimization problem with constraints A, B,

and C , and both A and B are the personalized constraints,

the C is a piece of general constraint. The fitness value is

calculated as

F =
S(A) + S(B)

2
, (9)

if constraint C is satisfied, where S(A) is the score of A,

and S(B) is B. The algorithm can be applied to different

scenarios, with different constraints and fitness functions.

3.7 Pseudocodes of CS-PSO

Algorithm 1 shows the pseudocodes of CS-PSO. In partic-

ular, N is the number of particle, M is the total number of

categories, N [] is the number of items of each category, K is

123

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization... 789

the matrix of chaotic variable, S is the personalized con-

straints, and C is the general constraints.

Algorithm 1 The CS-PSO Algorithm

1: Input: N ; M; N []; K ; S; C

2: Output: G

3: BestF = 100

4: for i = 0 to N − 1 do

5: //chaos initialization

6: X [i] = V [i] = P[i] = Initialize(K [i])

7: //calculate the fitness value

8: F[i] = ComputerFitness(X [i], S, C])

9: end for

10: //obtain the index of the global best particle

11: index = Get_Global_Best(F[i])

12: Fg = F[index]

13: G = X [index]

14: while Fg! = Best_F) and (Iterations! = MaxCount) do

15: for i = 0 to N − 1 do

16: //update speed of each particle

17: V [i] = UpdateSpeed(X [i], V [i], P[i], G)

18: //update position of each particle

19: X [i] = UpdatePos(X [i], P[i], G, V [i], K [i])

20: F[i] = ComputerFitness(X [i], S, C])

21: end for

22: index = Get_Global_Best(F[i])

23: Fg = F[index]

24: G = X [index]

25: end while

26: return G

4 A CS-PSO application: a healthy diet scheme

As a case study, we will consider a healthy diet scheme, which

includes a balance of nutrients and an appropriate variety

of different types of food. Clearly, this can be viewed as a

typical combinatorial optimization problem. The main nutri-

ents include water, protein, carbohydrate, lipids, dietary fiber,

vitamins, and minerals. The main categories of food include

staple food, vegetables, fruits, eggs, seafood, milk. In order

to ensure the diversity of diet and satisfy users, the healthy

diet scheme would better recommend a food item of each

category that users prefer.

CS-PSO can be utilized in this context, and it involves the

following elements:

1. For m types of food items category, every category is

defined as a vector Bi , for i = 0, . . . , m − 1.

2. The total number of food items in each category is defined

as Ni , for i = 0, . . . , m − 1.

3. The vector of the diet particle is defined as X i =

(B0, . . . , Bm−1) and Bi = (xi,0, . . . , xi,Ni −1), and the

dimension of a particle is
∑m−1

i=0
Ni

The chaos initialization and the chaos perturbing are the same

as the above, while the fitness function needs to be redesigned

and further developed. We consider three constraints, namely

calories, nutrients, and costs. User’s preferences are assumed

to be a general constraint, which has to be satisfied prior to the

initialization of the process. On the other hand, the constraints

of calories, nutrients, costs are used as the personalized con-

straints. The fitness function is defined as:

F =
(Sc + Sn + Sp)

3
(10)

Sc or Sn =

{

100(R/S) if R < S

100(1 − (R − S)/S) if R ≥ S.

Sp =

{

100 if R < S

100(1 − (R − S)/S) if R ≥ S.

where Sc, Sn and Sp are the scores of the above four con-

straints, R is the recommended value corresponding to each

constraint, and S is the standard value corresponding to each

constraint. Figure 2a shows the score model of the constraint

of calorie intake. If the calorie of recommended food is equal

to S, then the score value is 100, otherwise the score value

is less than 100. The bigger the distance from the S, the less

the score value will be. Figure 2b shows that the score model

of the constraint of nutrient intake is similar with the former.

Figure 2c shows the score model of the constraint of cost. If

the cost of recommended food is less than or equal to S, then

the score is 100, otherwise the score is less than 100. The

workflow of the diet recommendation system with CS-PSO

includes the following steps, as shown in Fig. 3:

Step 1 The chaos initialization generates n diet particles.

Based on the user’s preferences, a food item of each

category is initialized as the position of diet particle.

Step 2 According to the user’s basic background, including

height, weight, gender, age, and activity level, the

amount of required calories and nutrients are calcu-

lated. And the constraint of cost can be provided by

user. These values are used as the standard values

corresponding to each constraint.

Step 3 The fitness values of all diet particles are calcu-

lated and assessed. According to the analysis of the

above three constraints, calculate the score of each

constraint, and then the fitness value equal with the

average of three scores. The greater the fitness value,

the better the diet particle. Therefore, the global opti-

mal particle position and the corresponding fitness

value can be obtained.

Step 4 The fitness value of the global best particle is assessed

to evaluate whether it is optimal. If so, then end

the process. Otherwise, assess whether it reaches the

maximum number of iterations. If it does, then go to

the end of the process. Otherwise, go to Step 5.

Step 5 The chaos perturbing component is used to update

diet particles, and then, go to Step 3.

123

790 X. Xu et al.

Fig. 2 Score model of personalized constraints

Fig. 3 Workflow of the diet recommendation system with CS-PSO

4.1 Prototype of the system

In this section, we will introduce a personalized dietary rec-

ommendation system, called Friend, where CS-PSO is used

to address the healthy diet combination optimization prob-

lem. The system provides the interface for users to input their

personal physiological data, which is used to calculate their

body mass indexes (BMI), their personal standard values of

calories, and standard values of nutrients. The calculation of

BMI is:

Table 1 BMI for Asian adults

Figure Standard Related disease risk

Thinness <18.5 Risk of developing problems such

as nutritional deficiency and osteo-

porosis

Regular 18.5–22.9 Low risk (healthy range)

Overweight ≥23 Moderate risk of developing heart

Obesity 23–24.9 Disease, high blood pressure, stroke

Obesity—class I 25–29.9 Diabetes

Obesity—class II ≥30 High risk of developing heart disease

Obesity—class III ≥40 High blood pressure, stroke, diabetes

BMI =
w

h2
(11)

where w is the weight of a person and h is the height of a

person. Table 1 shows the BMI for Asian adults

As shown in Fig. 4, Friend is composed of the following

classes:

– MainActivity is the main interface of Friend for

users to input their personal physiological data,

– StandardInfo and DBManager select the appropri-

ate personalized standard values of calories and nutrients

from the database,

– RecommActivity is an activity, which receives the

personalized data from the interface of MainActivity, and

the recommended diet scheme will show in this activity,

– BF_PSO is a class, which is mainly used for the initial-

ization of the diet particles,

– Agent is a class, which is mainly used for updating of

the diet particles,

– Finally, FoodInfo and DBManager are responsible

for selecting the recommended diet from the database.

CS-PSO is achieved via RecommActivity, BF_PSO,

Agent, and FoodInfo, which interact with each other to

provide the scheme of diet recommendation.

123

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization... 791

Fig. 4 Classes of Friend

Fig. 5 User interfaces of Friend

Figure 5 shows the user interfaces of Friend. Consider

breakfast for example, as shown in Fig. 5a. Friend requires

users to input their personalized information, including age,

gender, activity level, weight, height, and budget on food

and food preference. After providing the above information,

users need to click the recommendation button, and it will

generate the scheme of diet recommendation as shown in

Fig. 5b, c.

123

792 X. Xu et al.

Table 2 Schemes of diet recommendation with HLR-PSO

Scheme Food items Amount of food Calories (Kcal)

1 Watermelon 250.0 g 35

Yoghurt (brand A) 100.0 g 63

Pure milk (brand A) 460 ml 258

Yoghurt (brand B) 200.0 g 184

2 Sweet potato 300.0 g 267

Cucumber 130.0 g 18

Orange 182.0 g 61

Grapefruit 139.0 g 44

Strawberry 500.0 g 150

3 Dumpling 100 g 250

Watermelon 250.0 g 35

Orange 200.0 g 70

Grape 500.0 g 185

Table 3 Schemes of diet recommendation with CS-PSO

Scheme Food items Amount of food Calories (Kcal)

1 Noodle 100 g 284

Peach 200.0 g 83

Milk (brand B) 250.0 ml 173

2 Dumpling 100 g 253

Cherry 500.0 g 200

Yoghurt (brand B) 100.0 ml 87

3 Chinese style baked roll 80 g 234

Grape 500.0 g 185

Milk (brand C) 200.0 ml 173

Table 4 Iteration times of HLR-PSO

HLR-PSO Times Times Times Times Times Average

1–5 34 17 12 13 26 15.1

6–10 16 12 23 9 10

11–15 22 12 10 16 10

16–20 11 10 18 9 12

5 Experiments and performance analysis

HLR-PSO is a typical PSO for generating healthy lifestyle

recommendations and has good performance. Therefore, we

applied HLR-PSO and then CS-PSO to Friend to compare

their performances in the following three aspects: the diver-

sity of the recommended food items, the times of iteration for

finding the global best value, and the ergodicity of algorithm.

5.1 Diversity

Tables 2 and 3 show the schemes of diet recommendation

with HLR-PSO and CS-PSO, respectively.

Table 5 Iteration times of CS-PSO

HLR-PSO Times Times Times Times Times Average

1–5 3 4 6 4 4 4.1

6–10 4 5 6 2 4

11–15 3 2 4 5 4

16–20 4 4 4 5 5

Fig. 6 Comparison of iteration times

Table 6 Index of each category with HLR-PSO

HLR-PSO 1 2 3 4 5 6 7 8 9 10

Staple 31 30 31 30 30 30 30 30 21 15

Fruits 20 30 20 30 30 30 30 30 28 28

Milk 30 25 30 25 25 25 25 25 30 29

11 12 13 14 15 16 17 18 19 20

Milk 29 30 25 29 30 30 30 25 30 29

Staple 32 31 30 32 31 22 22 30 31 32

Fruits 28 20 30 28 20 28 28 30 20 28

Table 7 Index of each category with CS-PSO

CS-PSO 1 2 3 4 5 6 7 8 9 10

Staple 4 2 23 1 2 7 4 14 14 30

Fruits 26 29 15 29 29 4 26 19 21 30

Milk 6 9 25 29 9 27 10 24 26 25

11 12 13 14 15 16 17 18 19 20

Staple 16 25 31 5 32 24 7 4 2 24

Fruits 7 28 20 1 28 12 4 26 7 12

Milk 27 19 30 16 29 30 27 6 30 30

As shown in Tables 2 and 3, the schemes of diet rec-

ommendation with CS-PSO are more reasonable than the

schemes of diet recommendation with HLR-PSO. Scheme 1,

recommended with HLR-PSO, includes three types of dairy

123

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization... 793

Fig. 7 Mapping graphs

123

794 X. Xu et al.

products, and both scheme 2 and scheme 3 include three types

of fruits, respectively, which are all not appropriate accord-

ing to the standards of a healthy diet. However, scheme 2

includes three types of food, such as fruit and milk, and both

scheme 1 and scheme 3 include three types of food, includ-

ing cereal, fruit, and milk, respectively. As a consequence,

CS-PSO can ensure the diversity of food, while HLR-PSO

cannot. The reason is that CS-PSO adopts the prior knowl-

edge of breakfast and food preferences of users.

5.2 Iteration times

Using HLR-PSO and CS-PSO run 20 times, respectively, we

record the times of iteration when find the global best value.

The results are shown in Tables 4 and 5.

The comparison between two algorithms about the times

of iteration is shown in Fig. 6. In Fig. 6, the times of iteration

of CS-PSO are far less than HLR-PSO.

5.3 Ergodicity

We chose three categories of food, including staple food,

fruits, and milk. The index of staple food is between 0 and

32, fruits are between 0 and 30, and milk is between 0 and

30. HLR-PSO and CS-PSO run 20 times, respectively, and

we recorded the index of each category. The experimental

results are shown in Tables 6 and 7.

As shown in Fig. 7, the schemes traversed by HLR-PSO

algorithm fall into six categories: schemes 15, 28, 29 and

21, 28, 30 appear once; schemes 22, 28, 30 appear twice;

schemes 30, 30, 25 appear 8 times; schemes 31, 20, 30 appear

5 times; schemes 32, 28, 29 appear 3 times, and these schemes

mainly concentrate on the latter three types. With the analysis

of Fig. 7 and Table 7, the schemes traversed by CS-PSO

algorithm fall into 16 types: the schemes of 2, 29, 9 and 4,

26, 6 and 7, 4, 27 and 24, 12, 30 appear twice; other schemes

all appear only once. The high frequency schemes in Table 6

appear only once in Table 7, in the 10th, 13th, and 15th values,

respectively. We can conclude that the traversal results by

HLR-PSO are relatively more concentrated, and the traversal

results are relatively fewer than CS-PSO. To sum up, CS-PSO

has the better ergodicity than HLR-PSO.

6 Conclusion

Combinatorial optimization problem is a type of NP-hard

problem. The traditional combinatorial optimization algo-

rithms cannot guarantee the diversity of the final scheme,

solve the multi-objective optimization problems effectively,

or satisfy the search efficiency, etc. In order to successfully

address such problems and further improve the performance

of PSO, we have introduced a novel approach in solving

combinatorial optimization problems, namely CS-PSO. Fur-

thermore, we have discussed its use as part of the diet

recommendation system Friend. The experimental results

show that CS-PSO has the better diversity, ergodicity, and

efficiency than HLR-PSO. In addition, CS-PSO can not only

be used in diet recommendation, but also be used in product

design, exercise programming, travel planning, etc. How-

ever, CS-PSO only considers the combination of the overall

scheme, without considering the logical structure of combi-

nation.

In future research, we are aiming to integrate the auto-

mated construction mechanism of logical structure with com-

binatorial optimization problems. In particular, this approach

will further enhance the performance and accuracy of the

method discussed in this article, which is already supported

by initial evaluations.

Acknowledgements This work was supported jointly sponsored by the

National Natural Science Foundation of China under Grant 61472192

and 61472193.

Compliance with ethical standards

Conflict of interest The authors declare that none of them has any

conflict of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

Bessis N, Sotiriadis S, Pop F, Cristea V (2012) Optimizing the

energy efficiency of message exchanging for service distribution

in interoperable infrastructures. In: 4th international conference

on intelligent networking and collaborative systems (INCoS), pp

105–112

Chang YC, Hsieh CH, Xu YX et al (2014) Introducing the concept of

velocity into bare bones particle swarm optimization. Presented

at the 2014 international conference of information science, elec-

tronics and electrical engineering, Sapporo, Japan, 26–28 April

Chen SY, Ren L, Xin FQ (2012) Reactive power optimization based

on particle swarm optimization and simulated annealing coopera-

tive algorithm. In: Proceedings of the 31st conference of Chinese

control conference, Hefei, China, 25–27 July

Chi YH, Sun FC, Wang WJ et al (2011) An improved particle swarm

optimization algorithm with search space zoomed factor and attrac-

tor. Chin J Comput 34(1):115–130

Dong N, Li HJ, Liu XD (2013) Chaotic particle swarm optimization

algorithm parametric identification of Bouc–Wen hysteresis model

for piezoelectric ceramic actuator. In: Proceedings of the 25th Chi-

nese control and decision conference, Guiyang, China, 25–27 May

Eberhart R, Kennedy J (1995) A new optimizer using particle swarm

theory. In: Proceedings of ISOMMHS, Nagoya, Japan, pp 39–43

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization... 795

Elbedwehy MN, Zawbaa HM, Ghali H et al (2012) Detection of heart

disease using binary particle swarm optimization. In: Proceedings

of the 2012 conference on computer science and information sys-

tems, Wroclaw, Poland, 9–12 Sept

Gao Y, Xiei SL (2004) Chaos particle swarm optimization algorithm. J

Comput Sci 31(8):13–15

Gao HB, Zhou C, Gao L (2005) General particle swarm optimization

model. Chin J Comput 28(12):1980–1987

Guo WZ, Chen GL, Peng SJ (2011) Hybrid particle swarm optimization

algorithm for VLSI circuit partitioning. J Softw 22(5):833–842

Guo T, Lan JL, Li YF (2014) Adaptive fractional-order darwinian par-

ticle swarm optimization algorithm. J Commun 35(4):130–140

Ibrahim I, Yusof ZM, Nawawi SW et al (2012) A Novel multi-state par-

ticle swarm optimization for discrete combinatorial optimization

problems. In: Proceedings of the 4th international conference on

computational intelligence, modelling and simulation, Kuantan,

Malaysia, 25–27 Sept

Iordache GV, Boboila MS, Pop F, Stratan C, Cristea V (2006) A

decentralized strategy for genetic scheduling in heterogeneous

environments. On the move to meaningful Internet systems 2006:

CoopIS, DOA, GADA, and ODBASE: OTM confederated inter-

national conferences, CoopIS, DOA, GADA, and ODBASE 2006,

Montpellier, France, October 29–November 3, 2006. Proceedings,

Part II, Springer Berlin, Heidelberg, pp 1234–1251

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Pro-

ceedings of ICNN, Perth, Australia, pp 1942–1948

Kumari N, Jha AN (2014) Frequency control of multi-area power sys-

tem network using PSO based LQR. In: Proceedings of the 6th

international conference power India Delhi, India, 5–7 Dec

Lee KB, Kim JH (2013) Multi objective particle swarm optimization

with preference-based sort and its application to path following

footstep optimization for humanoid robots. IEEE Trans Evolut

Comput 17(6):755–766

Lei KY (2014) A highly efficient particle swarm optimizer for super

high-dimensional complex functions optimization. In: Proceed-

ings of the 5th international conference software engineering and

service science, Beijing, China, 27–29 June

Liao YF, Yau DH, Chen CL (2012). Evolutionary algorithm to

traveling salesman problems. Comput Math Appl. 64(5):788–

797. Available: http://www.sciencedirect.com/science/article/pii/

S089812211101073X

Lorenz EN (2005) Designing chaotic models. J Atmos Sci 62(5):1574–

1587

Nancharaiah B, Mohan BC (2013) MANET link performance using ant

colony optimization and particle swarm optimization algorithms.

In: Proceedings of the 2013 international conference of communi-

cations and signal processing, Melmaruvathur, Tamil, 3–5 April

Pop CB, Chifu VR, Salomie I et al (2013) Particle swarm optimization-

based method for generating healthy lifestyle recommendations.

In: Proceedings of the international conference of intelligent com-

puter communication and processing, Cluj-Napoca, Romania, 5–7

Sept

Sfrent A, Florin Pop F (2015) Asymptotic scheduling for many task

computing in big data platforms. Inf Sci 319:71–91

Sharma J, Singhal RS (2015) Comparative research on genetic algo-

rithm, particle swarm optimization and hybrid GA-PSO. In:

Proceedings of the 2015 conference of computing for sustainable

global development, New Delhi, India, 11–13 March

Shi YH, Eberhart RA (1998) Modified particle swarm optimizer. In:

Proceedings of the IICOEC, Anchorage, AK, pp 69–73

Sorkunlu N, Sahin U, Sahin F (2013) Block matching with particle

swarm optimization for motion estimation. In: Proceedings of the

2013 international conference on systems, man, and cybernetics,

Manchester, England, 13–16 Oct

Wang TJ, Wu YC (2011) Study on optimization of logistics distribution

route based on chaotic PSO. Comput Eng Appl 47(29):218–221

Wen T, Sheng GJ, Guo Q et al (2013) Web service composition based on

modified particle swarm optimization. Chin J Comput 36(5):1031–

1046

Xu XB, Zhang KG, Li D et al (2012) New chaos-particle swarm opti-

mization algorithm. J Commun 33(1):24–30

Yang Q, Chen Q, Li ZZ (2015) A chaos particle swarm optimization

algorithm of vehicle routing problem with time windows. Comput

Technol Dev 25(8):119–122

Yao JJ, Li J, Wang LM et al (2012) Wireless sensor network localization

based on improved particle swarm optimization. In: Proceedings

of the 2012 international conference of computing, measurement,

control and sensor network, Taiyuan, China, 7–9 July

Zhao XC, Liu GL, Liu HQ (2014) Particle swarm optimization

algorithm based on non-uniform mutation and multiple states per-

turbation. Chin J Comput 37(9):2058–2070

Zhu XH, Li YG, Li N et al (2014) Improved PSO algorithm based

on swarm prematurely degree and nonlinear periodic oscillating

strategy. J Commun 35(2):182–189

123

http://www.sciencedirect.com/science/article/pii/S089812211101073X
http://www.sciencedirect.com/science/article/pii/S089812211101073X

	CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems
	Abstract
	1 Introduction
	2 Related work
	3 Chaotic particle swarm optimization algorithm
	3.1 Basic idea
	3.2 Chaos search method
	3.3 Model of combinatorial optimization problem
	3.4 Chaos initialization
	3.5 Chaos perturbing
	3.6 Design of the fitness function
	3.7 Pseudocodes of CS-PSO

	4 A CS-PSO application: a healthy diet scheme
	4.1 Prototype of the system

	5 Experiments and performance analysis
	5.1 Diversity
	5.2 Iteration times
	5.3 Ergodicity

	6 Conclusion
	Acknowledgements
	References

