
Genome analysis

CscoreTool-M infers 3D sub-compartment probabilities
within cell population
Xiaobin Zheng 1,*, Joseph R. Tran 1, Yixian Zheng1

1Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States

*Corresponding author. Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA. E-mail: xzheng@carnegiescience.edu (X.Z.)

Associate Editor: Valentina Boeva

Abstract
Motivation: Computational inference of genome organization based on Hi-C sequencing has greatly aided the understanding of chromatin and
nuclear organization in three dimensions (3D). However, existing computational methods fail to address the cell population heterogeneity. Here
we describe a probabilistic-modeling-based method called CscoreTool-M that infers multiple 3D genome sub-compartments from Hi-C data.

Results: The compartment scores inferred using CscoreTool-M represents the probability of a genomic region locating in a specific sub-
compartment. Compared to published methods, CscoreTool-M is more accurate in inferring sub-compartments corresponding to both active and
repressed chromatin. The compartment scores calculated by CscoreTool-M also help to quantify the levels of heterogeneity in sub-compartment
localization within cell populations. By comparing proliferating cells and terminally differentiated non-proliferating cells, we show that the prolifer-
ating cells have higher genome organization heterogeneity, which is likely caused by cells at different cell-cycle stages. By analyzing 10 sub-
compartments, we found a sub-compartment containing chromatin potentially related to the early-G1 chromatin regions proximal to the nuclear
lamina in HCT116 cells, suggesting the method can deconvolve cell cycle stage-specific genome organization among asynchronously dividing
cells. Finally, we show that CscoreTool-M can identify sub-compartments that contain genes enriched in housekeeping or cell-type-specific
functions.

Availability and implementation: https://github.com/scoutzxb/CscoreTool-M.

1 Introduction

One important question in biology pertains to how DNA is
packaged and organized in the small nuclear space of eukar-
yotes so that gene expression can be temporally and spatially
regulated during organism development and homeostasis.
The nucleus is a complicated structure with many functional
subunits, such as the nuclear speckles, the nucleolus, and the
nuclear lamina. These units have been recognized as organiza-
tion hubs of the genome for specific functions. How these
hubs are organized with respect to one another and to the 3D
chromatin interactions remains, however, poorly understood.
As a result, it is unclear how the different genomic units work
together to regulate gene expression in the context of organ-
ism development and function.

The genomic sequences associated with the nuclear lamina,
speckles, and nucleoli have been mapped (Guelen et al. 2008;
Németh et al. 2010; Chen et al. 2018). The genes in the nu-
clear lamina-associated chromatin domains (LADs) are
largely silenced and the LADs are generally gene-poor with
overall repressive epigenetic features. Nuclear speckles are
enriched for transcribed genes that create a transcriptionally
active environment. Thus, chromatin associated with the
speckles show active epigenetic features. It remains unclear if
the actively transcribed house-keeping genes and cell-type spe-
cific genes are organized into the same or different speckles
and if the organization shows any cell type specificity.

Nucleoli are involved in transcribing ribosomal RNAs and ri-
bosome assembly. Although nucleoli are mostly found away
from the nuclear periphery, the nucleolus-associated chroma-
tin domains (NADs) largely overlap with LADs. In addition,
lamins, the major structural component of the nuclear lamina,
have been found to be associated with nucleolus (Martin et al.
2009; Sen Gupta 2017), but it is unclear whether this can fully
explain the overlap observed between NADs and LADs.
Moreover, how NADs and LADs are organized with respect
to one another and to the rest of the genome is poorly
understood.

Many efforts have been devoted to understanding nuclear
and genome organization. Among the numerous methods de-
veloped, the imaging approaches, such as fluorescence in situ
hybridization to visualize DNA, RNA, and immunostaining
to visualize proteins, allow simultaneous visualization of pro-
teins, DNA, and RNA transcripts in individual cells. Whereas
imaging approaches are important to understand the hetero-
geneity of nuclear and genome organization and transcrip-
tional activity in cells, they are limited to regions of the
nucleus where the probes are designed. Recent advances in
barcoding and iterative hybridization approaches have en-
abled imaging of thousands of genomic loci in the same cell
(Bintu et al. 2018; Takei et al. 2021), but the resolution is still
limited.

To overcome the limitations of imaging approaches, direct
DNA sequencing has been used to study genomic regions
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associated with specific nuclear substructures, transcription fac-
tors, or epigenetic modifications. The Chromatin Immuno
Precipitation followed by massive parallel sequencing (ChIP-seq)
(Mikkelsen et al. 2007) has been used extensively to understand
epigenetic modification and transcription factor interaction with
chromatin, but the method does not offer information on 3D
chromatin organization or sub-nuclear structures. Several meth-
ods, including DNA adenine methylase identification (DamID)
(Guelen et al. 2008), nucleolar sequencing (Németh et al. 2010),
Ascorbate Peroxidase (APEX)-based map of LADs (Tran et al.
2021), Tyramide-Signal Amplification (TSA)-seq (Chen et al.
2018), and chromatin pull down based TSA-seq (cTSA-seq)
(Tran et al. 2022) have been developed to map the genomic
regions associated with nuclear lamina, nucleolar, and nuclear
speckles. Finally, chromatin conformation capture based meth-
ods, including Hi-C (Lieberman-Aiden et al. 2009), were devel-
oped to identify interactions between different chromatin regions,
which allowed the reconstruction of the 3D chromatin interaction
and folding. However, more computational efforts are still needed
to fill in the gaps between the DNA-DNA interaction profile and
nuclear substructure-associated chromatin domains.

The A/B compartment concept was introduced in the first
Hi-C study. By applying principal component analysis to the
distance-normalized Hi-C interaction profile, Lieberman-
Aiden et al. discovered that the genome can be separated into
the two large compartments, namely the A- and B-compart-
ment (Lieberman-Aiden et al. 2009). Genomic regions in the
A-compartment have a higher chance to interact within the A-
compartment, while genomic regions in the B-compartment
have a higher chance of interactions with one another. By an-
alyzing epigenome, transcriptome, and LADs in A/B compart-
ments, it became clear that B compartments contain LADs
and additional heterochromatin regions, while the A compart-
ments were enriched for active euchromatin. We developed a
model-based method, CscoreTool, to provide A–B compart-
ment inference at higher resolution, better accuracy, and
lower computational cost (Zheng and Zheng 2018; Zheng
et al. 2018). These compartment studies suggest that the 3D
chromatin interactions mapped by Hi-C can be used to define
local chromatin compartments that share high interactions
within each compartment.

To reveal more detailed 3D chromatin compartments, Rao
et al. used high-resolution Hi-C and Gaussian Hidden Markov
Model-based clustering method to generate six sub-
compartments and their further analyses linked some of these
sub-compartments to the LADs, NADs, and speckle-associated
chromatin (Rao et al. 2014). Although the algorithm used by
Rao et al. represents an important progress in identifying the
sub-compartments of the genome, there are several limitations.
For example, the method arbitrarily separates the genome into
“even” and “odd” chromosomes and clusters them separately.
The compartments inferred from the even and odd chromo-
somes may not match each other. In addition, the method does
not take into consideration the heterogeneity of genome interac-
tions in individual cells known to exist even within a given cell
type. Another recent method, called SNIPER (Xiong and Ma
2019), used a neural network to “impute” low-depth dataset
and inferred sub-compartments. However, this method is super-
vised and depends on Rao et al.’s results using the GM12878
dataset. Thus, SNIPER suffers the same limitations, and it could
not be used to infer more than six sub-compartments or be ap-
plied to other organisms without a training dataset. Recently,
Calder (Liu et al. 2021) and SCI (Ashoor et al. 2020) were

developed as new unsupervised methods to infer sub-
compartments from bulk Hi-C data, but these two methods still
do not consider the heterogeneity with cell population.

Here, we introduce CscoreTool-M, a model-based tool to
infer multiple sub-compartments of the genome. CscoreTool-
M extends the model used in CscoreTool to accommodate
more sub-compartments. The compartment scores (Cscores)
provided by this method are equal to the probability (or per-
centage) of cells within the population that a genomic region
is in certain sub-compartments. We show that CscoreTool-M
can reveal the heterogeneity of genomic sub-compartment
relations within the cell population, and it offers a great op-
portunity to define finer sub-compartment organizations of
the genome that are directly related to nuclear sub structures
and their functions.

2 Materials and methods
2.1 Modeling sub-compartments based on Hi-C

dataset obtained from cell populations
2.1.1. Modeling sub-compartments in population Hi-C data

We assume that there are totally M sub-compartments in the
nucleus, and the cell population can be heterogeneous, with
each genomic region i located to sub-compartment k at a
probability Pik; k ¼ 1; . . . ;M;

P
kPik ¼ 1.

Like Rao et al. our model is based on trans-interactions
(inter-chromosome interactions). Compared to cis-interactions
(intra-chromosome interactions), trans-interactions are not
affected by topological domains or other local constraints.
Thus, the interaction frequencies are mainly determined by
compartment structure.

The model is based on three hypotheses:

Hypothesis 1: For two different genomic loci, their nuclear

sub-compartment locations in cells are independent.

Hypothesis 2: Two genomic loci located at different nu-

clear sub-compartments in one cell do not have 3D interac-

tion in that cell.

Hypothesis 3: Two genomic loci located at the same sub-

compartment in one cell have a constant probability of

interaction.

Since we only use trans-interactions in the analysis, local
structures such as TADs would not violate our hypotheses.
However, one potential violation of hypothesis 1 is the Rabl
effect in the nucleus. The Rabl effect shows centromere-
centromere or telomere-telomere interactions among different
chromosomes (Imakaev et al. 2012; Nagano et al. 2017;
Stevens et al. 2017). These interactions would violate hypoth-
esis 1 and make the trans-interactions at the centromeres or
telomeres correlated. To account for the Rabl effect, we added
a modification in our model. Assume the Rabl effect can be
modeled by a term Rij, then based on hypothesis 1, the proba-
bility that two genomic loci i and j are in the same compart-
ment in a cell is:

fij ¼ Rij

X
k
PikPjk (1)

Besides the Rabl effect, these three hypotheses may still be
violated under various other conditions, and we will discuss
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the conditions when they are violated and the consequences in
Section 2.2.

Based on hypothesis 2 and 3, the total number of interac-
tions between two genomic loci should be in proportion to
the probability that they are in the same genomic sub-
compartment. Hi-C experiments are further affected by chro-
matin accessibility, genome mappability, ligation, and PCR
efficiency. All these complication factors are summarized as a
bias factor bi for each genomic locus (Imakaev et al. 2012),
and the total interacting fragments in the Hi-C library could
be modeled as:

Fij ¼ BiBjfij ¼ BiBjRij

X
k
PikPjk (2)

We further let Cik ¼ BiPik, and the equation becomes:

Fij ¼ Rij

X
k
CikCjk (3).

The observed Hi-C interaction reads between genomic loci
i and j, Nij, can be modeled as a Poisson distribution with pa-
rameter Fij, so we get the final likelihood function:

L ¼
X

ij
Nijln Rij

X
k
CikCjk

� �
� Rij

X
k
CikCjk

h i
(4)

We further model the Rabl effect by a simple two-
parameter function:

Rij ¼ 1þ arirj þ bðri þ rjÞrirj (5)

Here, ri corresponds to the relative location of genomic lo-
cus i on the chromosome. It ranges from –0.5 (centromere) to
0.5 (telomere). a is the second-order coefficient modeling how
strong the Rabl effect is, while b is the third-order coefficient
modeling the skew (whether the centromere or telomere side
has stronger interaction). This model is a simplified version of
the third-order power series of of Rij as a function of ri (x)
and rj (y):

f x; yð Þ ¼ 1þ a10xþ a01yþ a20x2 þ a11xyþ a02y2 þ a30x3

þ a21x2yþ a12xy2 þ a03y3 þ � � �

We then removed all the items that had only x or y because
those are not “interacting” items and the effects of these
single-variable items can be reflected in the “bias factor”.
This left only one second-order item: xy, and two third-order
items: x2y and xy2. The coefficients of x2y and xy2 are the
same because the function should be symmetric. Finally, we
got Equation (5) as a parametric form of the Rabl effect.

We can infer a, b, and Cik by maximizing the likelihood
function in Equation (4) with constraints Cik � 0 for all i and
k, and then Bi and Pik can be solved by

Bi ¼
X

k
Cik (6)

and

Pik ¼ Cik=Bi (7).

2.1.2. Optimization algorithm

The original optimization problem is non-convex and difficult
to solve. However, note that when a, b, and all the other Cjk

are all fixed, the part of Equation (4), i.e. relevant to Ci can be
written as:

Li ¼
X

j
Nijln

X
k
CikCjk

� �
�
X

k
CikCjk

h i
¼
X

j
Nijln

X
k
CikCjk

� �
�
X

k
Cik

X
j
RijCjk

� �
(8)

We can get the gradient and Hessian:

Gk ¼ @Li=@Cik ¼
X

j
NijCjk

� X
m

CimCjm

� �
�
X

j
RijCjk

" #

(9)

Hkl ¼ @2Li=@Cik@Cil ¼ �
X

j
NijCjkCjl

� X
m

CimCjm

� �2
" #

(10)

Note that –H is a positive-definite matrix, which means
that –Li is a convex function of Ci. Since the constraints Cik �
0 are also convex, this is a convex optimization problem that
can be solved by standard algorithms such as the interior
point method. Specifically, we used the primal-dual interior
point method with Newton search (Boyd and Vandenberghe
2004) to solve it. By fixing all the Cj on other chromosomes,
all the Ci on one chromosome can be optimized in parallel.

To optimize a and b, we have the gradients:

Ga ¼ @L=@a

¼
X

ij
Nijrirj=½1þ arirj þ bðri þ rjÞrirj� � rirj

X
k
CikCjk

n o
(11)

Gb ¼ @L=@b

¼
X

ij

�
Nijrirjðri þ rjÞ=½1þ arirj þ bðri þ rjÞrirj�

� rirj

X
k
CikCjk

�
(12)

and the Hessian matrix:

Haa ¼ @2L=@a2

¼ �
X

ij
NijðrirjÞ2=½1þ arirj þ bðri þ rjÞrirj�2
n o

(13)

Hbb ¼ @2L=@b2

¼ �
X

ij
Nij½rirjðri þ rjÞ�2=½1þ arirj þ bðri þ rjÞrirj�2
n o

(14)

Hab ¼ @2L=@a@b

¼ �
X

ij
NijðrirjÞ2ðri þ rjÞ=½1þ arirj þ bðri þ rjÞrirj�2
n o

(15)

Since –H is a positive-definite matrix, –L is also a convex
function for the vector (a, b) when all the Ci are fixed, and the
optimization problem can be solved by Newton method.
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Finally, the whole algorithm works by sequentially opti-
mize Ci on each chromosome, and then optimize a and b. By
iterating this procedure, each time the likelihood function will
only increase so the algorithm will finally converge to a local
maximum. But since the likelihood function is not overall
convex, a global maximum is not guaranteed. When the num-
ber of sub-compartments M is large, the likelihood landscape
is quite complicated, and the algorithm often converges to a
local maximum. In this case, we use multiple random starting
points and compare the final likelihood value to select the
best one.

2.1.3. Excluded regions and region groups

The existing genome assemblies are not perfect, and the real ge-
nome may be different among cell lines. Some of the regions
have been identified to have abnormal results in genome se-
quencing experiments and are “blacklisted” (Amemiya et al.
2019). We also excluded these blacklisted regions from our
analysis. All blacklisted regions will have all their “Ci”s set to 0.

Moreover, there are genome translocations which make
trans-interactions cis, and resulted in much more interactions
than expected because genomic regions in the same chromo-
some interact at much higher frequency. These regions will
form a separate compartment in the result because of the high
interaction frequency and are easy to identify from normal
compartments. The users can also refer to other software or
data sources for genomic translocations. When such a translo-
cation compartment is identified, a “blacklisted region
group” can be made, and in the algorithm, any pairs of
regions within a blacklisted group would not be used in the
analysis, which means in the Equation (4), only those region
pairs not within the same excluded group will be used.

2.2 Additional conditions when the model

hypotheses can be violated and the consequences

We have introduced the three hypotheses for the model
above. We outline them here and discuss them one by one.

Hypothesis 1: For two different genomic loci i and j, their
nuclear sub-compartment locations in individual cells are
independent.

It is easy to imagine that if the two genomic loci are close to
each other, like in the same topological-associated domains,
the hypothesis will not be satisfied. Therefore, this hypothesis
will not hold for all pairs of genomic loci. However, if we
only consider trans-interactions, the locations of two genomic
loci on different chromosomes should be mostly independent.

One possibility we do need to consider is that if the cell
population is structurally heterogeneous, i.e. it is a mixture of
two or more different cell populations, which could be either
different cell types or different cell states, then the indepen-
dency hypothesis may be violated.

Consider there are two different cell populations, then
Equation (3) becomes

Fij ¼ Rij

X
k
CikCjk þ R0ij

X
k
C0ikC0jk (16).

In this case, the Equation (3) still maintains its form if the
Rabl effects are similar. Only the interpretation of the Cik val-
ues needs to be changed, which means Equations (6) and (7)
may not hold. This means we will need a more careful inter-
pretation of the Cscores when dealing with a mixed cell popu-
lation. On the positive side, this means our method can
identify structural heterogeneity in the cell population.

Hypothesis 2: Genomic loci located at different nuclear
sub-compartments in one cell do not have 3D interaction in
that cell.

In the model, the nuclear sub-compartments correspond to
physical locations within the nucleus. Therefore, the fre-
quency of interactions between genomic loci in different sub-
compartments should be very low. Only when the two loci
are located at the boundary of two neighboring sub-
compartments, they should have a low chance of interacting
with each other. However, when the interaction frequency is
low compared to intra-compartment interactions, this will
cause only minor effects.

Hypothesis 3: Genomic loci located at the same sub-
compartment in one cell have a constant probability of
interaction.

This hypothesis is the most likely to be violated since it is
very likely DNA sequences in different nuclear sub-
compartments will have different organization and structures,
and thus different physical properties and within-
compartment interaction frequencies. For example, highly
active genomic regions likely have higher trans-interaction
frequency than condensed heterochromatin. Therefore, our
hypothesis has a limitation of over-simplification, and we
need to consider the consequences when this hypothesis is vio-
lated. Assume for each sub-compartment k, the interaction
frequency has a modifier Sk, then we have:

Fij ¼ BiBjfij ¼ BiBjRij

X
k
SkPikPjk (17)

Let Cik ¼ BiPik

ffiffiffiffiffi
Sk

p
, then we still have Fij ¼ Rij

P
k CikCjk.

This means the Equation (3) still holds in its original form,
only the interpretation of Cik changes. When the interaction is
stronger in one sub-compartment, it will cause globally higher
Cik values in that sub-compartment, while weaker interac-
tions will cause lower Cik values. This will skew the prediction
of Pik to globally higher/lower probability. The relative
higher/lower probabilities of sub-compartment localization
between regions should still hold.

2.3 Simulated Hi-C data generation

As discussed above, the likelihood function (Equation 4) is
complicated and non-convex. Though we can try multiple
random starting points, it is uncertain whether the algorithm
is robust enough to converge close to the correct optimum
values or other sub-optimal local minima. To test the robust-
ness of the method, we performed the following simulation
tests.

The first simulation was performed according to our gener-
ative model with given model parameters. For each trans pair
of genomic regions i and j, the Rabl effect Rij is first calculated
using Equation (5). Then the expected number of interactions
between the two regions can be calculated with Equation (2).
Finally, the number of observed interactions is generated with
Poisson distribution using the expected number of interac-
tions as the parameter. If interactions exist, then the interac-
tions will be output into the simulated Hi-C dataset. After
iterating all the trans pairs, a full Hi-C dataset is simulated.
Then CscoreTool-M is run on the simulated Hi-C dataset to
infer compartment scores.

For low-depth dataset simulation, a full Hi-C dataset is first
simulated, then a low-depth dataset is generated by down-
sampling the full dataset to the lower depth.
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For simulation using randomized model parameters, we
started from the sub-compartment annotations by Rao et al.’s
original Gaussian-HMM annotations. We randomly gener-
ated Cscores with different noise levels (NL): For each geno-
mic window, the “annotated” compartment (A1, A2, B1, B2,
B3, B4) would take a score of random number from uniform
distribution U(1-NL, 1), the other compartments take scores
of random numbers from U(0, NL). Note that we also take
the B4 compartment into consideration here as it is within
Rao’s annotation, so even though only a small number of ge-
nomic regions are annotated as B4, all genomic windows will
have B4 scores. Then we normalized the Cscores and simu-
lated inter-chromosomal Hi-C dataset to the same depth as
the 0.01� GM12878 dataset (about 9M trans reads). We did
the simulation for different noise levels from 0.05 to 0.5.

For mixed dataset simulation, two Hi-C datasets are first
simulated independently according to the two sets of parame-
ters. Then the high-depth dataset between the two was down-
sampled to match the depth of the lower one. Finally, the two
Hi-C datasets were merged to become one mixed dataset.

2.4. AIC calculation

We use the AIC (Akaike Information Criterion) analysis for
model selection. AIC is a method for model selection based on
the likelihood value and number of parameters and lower
AIC values indicate a better model. AIC is calculated with the
equation:

AIC ¼ 2k� 2lnL

Here, k is the number of parameters calculated by
k¼nMþ2, where M is the number of sub-compartments, and
n is the number of non-empty genomic windows. L is the esti-
mated maximum value of the likelihood function.

2.5. Lamin-B1 cTSA-seq and data processing

cTSA-seq was performed and Illumina sequencing libraries
were built as in (Tran et al. 2022). Both cTSA-seq reads and
input reads were sequenced with Nextseq 500 Illumina se-
quencer. Reads were mapped to human genome hg19 using
bowtie2 with default parameters. Then for each 100 kb (or
10 kb) genomic window, the number of reads falling into the
window was counted, and a relative enrichment was calcu-
lated by dividing the number of cTSA-seq reads with the num-
ber of input reads. Lamin-B1 cTSA-seq result of GM12878
cell line is available in the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) and can be accessed with accession number
GSE224282.

3 Results
3.1 Validation on simulated data

To test whether CscoreTool-M can infer the correct sub-
compartments, we first performed a simulation test using the
GM12878 cell Hi-C data (Rao et al. 2014) as a template. The
purpose of this simulation is to test whether the optimization al-
gorithm can correctly estimate the original parameters when all
the hypotheses fit. We first ran CscoreTool-M on the GM12878
cell Hi-C data to estimate compartment scores for five sub-
compartments at 100 kb resolution using the trans interactions
(Mod1 to Mod5 on Fig. 1A). Then we simulated Hi-C trans
interactions at the same depth as the original dataset (1� data-
set) using the GM12878 compartment scores as model

parameters. We next applied our algorithm on the simulated
dataset to infer compartment scores (Sim1 to Sim5 on Fig. 1A).

The chromosomal view of the inferred compartment scores
shows high consistency with the model parameters (Fig. 1A).
To quantify the divergence between the inferred compartment
scores and the model parameters, we calculated the genome-
wide correlation coefficients and high correlations are ob-
served for all sub-compartments (Fig. 1B, left panels).

To further test the performance of our method at lower
read depth, we generated 0.1� and 0.01� datasets by ran-
domly selecting 10% and 1% from the original dataset, re-
spectively, and calculated the correlation coefficients. The
correlations are weaker on low-depth datasets (Fig. 1B, mid
and right panels), but they are still higher than 0.9 even on
the 0.01� dataset.

We also performed simulation analysis on randomized
model parameters using the sub-compartment annotations by
Rao et al.’s original Gaussian-HMM as template and ran-
domized to different noise levels. We simulated the Hi-C data,
calculated the compartment scores for five compartments and
calculated the correlation coefficient with the simulated com-
partment scores of A1, A2, B1, B2, and B3. We did the analy-
ses for different noise levels from 0.05 to 0.5 and the
correlation coefficients between each inferred compartment
scores and its corresponding simulated scores are shown in
Supplementary Fig. S1. We found that the correlation coeffi-
cients become lower when the noise is higher, but all the
results are still highly consistent with the simulated scores.

The theoretical analysis (see Section 2.2) suggested that
CscoreTool-M can be used to deconvolve mixed cell popula-
tion. To test this, we simulated two Hi-C datasets using model
parameters for GM12878 (Mod1-1 to Mod1-5) and IMR90
Hi-C data (Mod2-1 to Mod2-5) (Fig. 1C). We then mixed
these two datasets and applied our algorithm to infer 10 sub-
compartments (Sim1 to Sim10 on Fig. 1C). We found five
sub-compartments (Sim1 to Sim5) resembled the GM12878
model well (Mod1-1 to Mod1-5), while the other five com-
partments (Sim6 to Sim10) have a similar profile to the
IMR90 model (Mod2-1 to Mod2-5). This result shows that
our algorithm can infer cell-type specific sub-compartments in
mixed cell types.

3.2 Comparisons with the published multi-

compartment analyses

To further test the performance of our CscoreTool-M, we com-
pared our results with the published multi-compartments in-
ferred by Rao et al. (2014). Rao et al. inferred 6 sub-
compartments as A1–A2 and B1–B4 in GM12878 cells. A1 and
A2 are both enriched for active chromatin features such as
H3K4me3, H3K27Ac, H3K36me3 and DNAse I hypersensitiv-
ity. A1 has higher enrichment of active markers than A2 and A1
overlaps with nuclear speckle domains (Chen et al. 2018). B1 to
B4 all contain repressed chromatin domains and are depleted of
active epigenetic markers. B1 is enriched with H3K27me3 which
is regulated by the Polycomb Repressive Complexes. B2 and B3
are both enriched for LADs (determined by the lamin-A/C ChIP-
seq), with B2 further enriched of NADs while B3 is not. This
suggested that B2 represents NADs while B3 represents LADs.
B4 only covers a very small proportion of the genome on chr19.
Thus, we excluded B4 and only compared our 5 sub-
compartments inferred by CscoreTool-M with the five compart-
ments inferred by Rao et al.
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We use the same notation as in Rao et al. (RaoA1, RaoA2,
RaoB1, RaoB2, and RaoB3) for our five sub-compartments
but add “C5” before the compartment names (C5A1, C5A2,
C5B1, C5B2, and C5B3) to indicate our CscoreTool-M mod-
eled five sub-compartments. Figure 2A and B shows our five

sub-compartment plots based on CscoreTool-M and color-
coded bar-tracks for the compartments assigned by Rao et al.
In general, our compartment scores show peaks at Rao’s
assigned compartments, indicating that our compartment in-
ference is largely consistent with the compartments indicated

Figure 1. Simulation test using GM12878 cell and IMR90 cell Hi-C datasets. (A) Genome browser view of compartment scores on simulated data (sim1-

sim5) compared to the model values (mod1-mod5). Compartment scores on Y axes range from 0 to 1. (B) Contour plots showing the compartment scores

calculated on full (1�), low (0.1�), and ultralow (0.01�) depth simulated datasets compared to the model values. R: Pearson correlation coefficient. All X

and Y axes compartment score values range from 0 to 1. (C) Genome browser view of compartment scores on simulated mixed dataset compared to the

model values. R: Pearson correlation coefficient. All Y axes range from 0 to 1.
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by Rao. It is noteworthy that there are also regions showing
inconsistencies. Figure 2A and B shows that two regions on
chr10 and chr12 have C5B1 sub-compartment scores peaks,

while Rao et al. predicted these regions to be in A1. To further
investigate which sub-compartments these regions should be
in, we looked at gene expression and epigenetics features

Figure 2. Comparisons of compartments modeled by CscoreTool-M against Rao’s sub compartments in GM12878 cells. (A,B) Genome browser view of

chromosome 10 (A) and 12 (B) showing the compartment scores tracks by CscoreTool-M and compartments (indicated by different colored blocks) by

Rao et al. Example regions in black rectangles showing discrepancies between CscoreTool-M and Rao et al. are expanded and shown at the right panels.

All Y axes plot for compartment scores range from 0 to 1. (C) Enrichment of H3K27Ac and H3K27me3 peaks in regions agreed or disagreed inferred by

CscoreTool-M or Rao et al. H3K27Ac and H3K27me3 data are from UCSC genome browser ENCODE tracks. (D) Genome-wide correlation coefficients

between CsocreTool-M, Rao’s Gaussion-HMM, SNIER, SCI-inferred compartment scores and SON-TSA-seq, H3K27me3 ChIP-seq, Lamin-B1 cTSA-seq

enrichment signals at 100-kb resolution. The best scores for each method are highlighted. (E) Genome-wide correlation coefficients between CsocreTool-

M, Calder-inferred scores and SON-TSA-seq, H3K27me3 ChIP-seq, Lamin-B1 cTSA-seq enrichment signals at 10-kb resolution. The best scores for each

method are highlighted.
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along these regions. Our C5B1 peaks show a depletion of
H3K27Ac and reduced gene expression, but enriched for
H3K27me3, which are typical B1 features instead of A1.

To further analyse whether the difference in A and B sub-
compartment assignment by Rao and by our CscoreTool-M
also happens on other chromosomes, we assigned the five
compartments based on the highest compartment score at
each genomic region across the genome and compared these
to the compartments assigned by Rao et al. (Supplementary
Fig. S2). While the overall correspondence in A and B sub-
compartments is good, there are some clear differences. For
example, we found that a total of 45.1M genomic regions are
assigned as A1 by Rao but are assigned as C5B1 by
CscoreTool-M (Supplementary Fig. S2). We further looked at
the enrichment of H3K27Ac peaks and H3K27me3 peaks on
these regions (Fig. 2C) and found that the H3K27Ac enrich-
ment (1.2) is just marginally higher than the global average
(1.0), while much lower than the enrichment of H3K27Ac
peaks on A1 regions assigned commonly by Rao and
CscoreTool-M. In contrast, the H3K27me3 peaks showed
much higher enrichment (2.02) than that found on A1 regions
assigned commonly by Rao and CscoreTool-M (0.71), and
also higher than the global average (1.0). We made a similar
observation in regions assigned as A2 by Rao and C5B1 by
CscoreTool-M. The C5B1 regions show lower H3K27Ac and
higher H3K27me3 than the corresponding RaoA2 regions
and also than global average (Fig. 2C). These results show
that the CscoreTool-M-assigned C5B1 regions have B1 fea-
tures instead of A1/A2 features. Thus, the CscoreTool-M can
better predict sub-compartments in these regions.

To further compare the performance between CscoreTool-M
and other published methods, including Rao’s original Gaussian
HMM, SNIPER, SCI, and Calder, we used three independent
protein-DNA-interaction datasets as benchmarks: SON TSA-seq
(of K562 cells) for approximation of A1 (Chen et al. 2018),
H3K27me3 ChIP-seq for B1 (Thurman et al. 2012), and lamin-
B1 cTSA-seq for B3 (this study). For CscoreTool-M, we used the
5-compartment scores; while for Gaussian-HMM, SNIPER,
Calder, and SCI, we used their compartment assignment, 1 for
the assigned compartment, and 0 for the others. We calculated
the correlation coefficients between the compartment scores gen-
erated from each of the sub-compartment analysis methods
(CscoreTool-M, Gaussian-HMM, SNIPER, SCI, or Calder) and
the enrichment scores generated from each protein-DNA interac-
tion dataset (SON TSA-seq, H3K27me3 ChIP-seq, and Lamin-
B1 cTSA-seq). We use these correlation coefficients as a fair
comparison as none of Cscoretool-M, Gaussion-HMM,
SNIPER, Calder, or SCI directly used this information based on
protein-DNA interaction/colocalization datasets. Note that as
most results previous are based on the hg19 genome, here the
comparisons are also on hg19.

Figure 2D lists the comparison results between CscoreTool-
M and Rao’s Gaussian-HMM, SNIPER, and SCI. We found
that in all three comparisons for A1, B1, and B3, the results of
CscoreTool-M showed the best performance. The comparison
against Calder was shown in Fig. 2E. Since Calder provided
10 kb-resolution results, we also applied CscoreTool-M at
10 kb resolution for comparison. In these comparisons,
CscoreTool-M also showed better performance than Calder.
Taken together, these results show that CscoreTool-M can
quantify the sub-compartment probabilities in cell population
and the performances are confirmed by other independent

measures; and that CscoreTool-M has the best performance
in sub-compartment inference among published methods.

We also tested the performance of our CscoreTool-M on
low-depth Hi-C sequencing data by randomly selecting 0.1�
and 0.01� of the reads from the Hi-C data for GM12878
cells to infer sub-compartments. We then calculated the corre-
lation coefficient on the sub-compartments. We found all the
correlation coefficients are higher than 0.9 (Supplementary
Fig. S3), indicating that the CscoreTool-M is robust in infer-
ring multiple genomic compartments using low-depth Hi-C
datasets. Comparison between biological replicates of
GM12878 Hi-C data also showed high correlation
(all> 0.97, Supplementary Fig. S4), further supporting the ro-
bustness of the method.

One important hyper-parameter of CscoreTool-M and other
sub-compartment inference tools is the number of sub-
compartments. We first compared 2- and 5-compartment results
to see how this hyper-parameter can determine the sub-
compartment results. We calculated the correlation coefficients
between 2- and 5-compartment scores (Supplementary Fig. S5).
A1 has the highest correlation with A compartment score, fol-
lowed by A2; B3 has the highest correlation with B compart-
ment score, followed by B2. Interestingly, B1 has mildly positive
correlation with A compartment score instead of B. It has been
reported that the B1 sub-compartment is located farther away
from the nuclear periphery than A2 (Robson et al. 2017), indi-
cating that when only considering 2-compartments, it is correct
to assign the B1 compartment as mostly A-like. However, with
5-sub-compartment analysis, it is possible to further separate the
B1 sub-compartment from the A-compartment and correctly
identify its polycomb-repressed features. This result shows that
with more sub-compartments, it is possible to identify more de-
tailed information of 3D genome organization.

Since CscoreTool-M uses maximum-likelihood inference, it
is natural to use the AIC (Akaike Information Criterion) for
model selection. AIC is a method for model selection based on
the likelihood value and number of parameters. The lower
AIC values indicate a better model. We applied AIC to two
datasets (0.1� and 0.01� data of GM12878) at 100 kb reso-
lution. For lower-depth dataset (0.01�), the AIC reached a
minimum at 6 compartments, indicating that 6 is the statisti-
cal optimal compartment number for this dataset
(Supplementary Fig. S6A), while for a higher-depth dataset
(0.1�), the AIC values decrease as the number of compart-
ments increase up to 15 compartments (Supplementary Fig.
S6B) indicating that more compartments continuously lead to
better fitting of the GM12878 Hi-C data at this depth. In this
case, the statistical optimal compartment number is at least
15. The users can perform a similar analysis to determine the
statistically optimal number of sub-compartments. However,
depending on the biological questions and when the sequenc-
ing depth is high, the analysis may not need to reach the opti-
mal minimum. In all the bulk-Hi-C datasets we use below, the
AIC analysis supports more than 15 sub-compartments, and
we used 5, 6, or 10 just because they are enough to support
our biological findings.

3.3 Inferring LAD and NAD heterogeneity within a

cell population

One feature of CscoreTool-M is that it explicitly models and
quantifies the heterogeneity within a cell population, which
should aid the study of variations of genome organization. It
is known that NADs often overlap with LADs, but the
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overlap only happens for some NADs. The NAD-only and
the overlapping NAD/LAD chromatin regions tend to have
different genomic features (Vertii et al. 2019; Bersaglieri et al.
2022). Since nucleoli are often not located at the nuclear pe-
riphery, the biological interpretation of the overlap between
NADs and LADs remains unclear. The localization of lamins
in nucleolus as reported by some studies (Martin et al. 2009;
Sen Gupta 2017) can contribute to the NAD/LAD overlap. In
addition, only a fraction of LADs may return to the nuclear
lamina after mitosis, and the ones not returning to the nuclear
lamina often relocate to peri-nucleolar regions (Kind et al.
2013). In this case, the overlapping LADs and NADs regions
can come from heterogeneity within the cell population, with
the same regions located at the nucleoli or nuclear periphery
in different cells within the population.

We applied CscoreTool-M to infer LADs and NADs based
on the Hi-C dataset for the GM12878 cell population. One in-
teresting feature we noticed is that our compartment scores
show clear variations among Rao et al’s B2 chromatin regions.
Examples are shown for chr18 and chr19 (Fig. 3A and B), which
are known to localize preferentially to the nuclear periphery and
nuclear interior, respectively (Croft et al. 1999). On chr18,
about half of the chromosome was assigned as B2 by Rao et al.
(RaoB2), but based on Cscoretool-M these regions have similar
C5B2 and C5B3 scores. Although RaoB2 and RaoB3 are sug-
gested to represent NADs and LADs regions, respectively, our
analyses indicate that the RaoB2 chromatin regions on chr18 ex-
hibit cell-cell heterogeneity with about half of the cells having
nucleolar localization and the other half localizing at the nuclear
lamina. In contrast to chr18, CscoreTool-M found that the
RaoB2 regions on chr19 have high C5B2 scores and low C5B3
scores, suggesting that these regions are NADs but not LADs.
This correctly infers that the interiorly localized chr19 has lim-
ited LADs compared to that of chr18.

Since there is no NADs data on GM12878 or similar cell types,
we tested the performance of CscoreTool-M to quantify the het-
erogeneity of LADs and NADs on mouse embryonic stem cells
(mESC). We downloaded NAD-seq data from (Bizhanova et al.
2020), Lamin-B1 DamID data from (Peric-Hupkes et al. 2010),
and calculated NAD-seq and Lamin-B1 DamID enrichment sig-
nals on 100kb windows along the genome. We then applied
CscoreTool-M to mESC Hi-C data (Bonev et al. 2017), and cal-
culated the correlation coefficients with NAD-seq and Lamin-B1
DamID (Fig. 3C). We found that with six sub-compartments, one
of the sub-compartments, C6_6, has a very high correlation coef-
ficient (0.88) with NAD-seq, and only 0.567 with LaminB1
DamID. In contrast, another sub-compartment, C6_5, has a high
correlation coefficient (0.778) with LaminB1 DamID, while only
0.160 with NAD-seq. This result shows that CscoreTool-M can
successfully identify separate sub-compartments that correspond
to NADs and LADs, respectively. The high correlation coefficients
against NAD-seq and Lamin-B1 DamID signals further confirm
that the probabilities of locating in LADs or NADs inferred by
CscoreTool-M are highly consistent with the results from inde-
pendent measurements. Taken together, our method can infer the
heterogeneity of NADs and LADs localization and quantify the
different levels of heterogeneity among genomic regions within
the cell population.

3.4 Inferring the degree of compartment

heterogeneity in different cell types

Studies have revealed clear variations in 3D genome interac-
tions in individual cells belonging to the same cell type. These

variations can be purely stochastic or related to different cell
states, such as different cell-cycle or differentiation stages. On
the other hand, a given cell type, i.e. not proliferating and is
terminally differentiated should exhibit relatively low hetero-
geneity in genome organization. Our CscoreTool-M should
be able to infer the degree of 3D genome organizational heter-
ogeneities among different cell types and within a population
of cells belonging to the same cell type or lineage. To test this,
we applied CscoreTool-M to analyse the Hi-C dataset for the
isolated pure mature olfactory sensory neurons (OSN)
(Monahan et al. 2019). The result of the 5-compartment anal-
yses (Fig. 4A) shows sharper sub-compartment boundaries
and lower background scores than those of the five compart-
ments inferred based on the Hi-C datasets for GM12878 and
IMR90 cells (see Fig. 1C).

Figure 3. Inferring NADs and LADs in GM12878 cells. Genome browser

view of chromosome 18 (A) and 19 (B) showing the CscoreTool-M

compartment score tracks and the corresponding compartments by

inferred by Rao et al. Black rectangles indicate two examples of RaoB2

regions showing high C5B2 and C5B3 scores on chr18 (A) or two

examples of RaoB2 regions with high C5B2 and low C5B3 scores on

chr19 (B). All Y axes plotting compartment scores range from 0 to 1. (C)

Genome-wide correlation coefficients between CscoreTool-M inferred 6-

subcompartment scores and NAD-seq, Lamin-B1 DamID enrichment

signals at 100-kb resolution.
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To further quantify the degree of heterogeneity, we calcu-
lated the information content (IC) of sub-compartment scores
along the genome. IC is defined as I ¼

P
i½pilog2ðpi=0:2Þ� for

5 sub-compartments, is highest if the sub-compartment score
is 1 for one sub-compartment and 0 for the remaining com-
partments (no heterogeneity), while lowest (0) if it is the same
for all sub-compartments (no information). We found that IC
for the olfactory neuron Hi-C dataset is generally higher than
the GM12878 and IMR90 Hi-C datasets (Fig. 4B), confirm-
ing our visual inspection of the genomic tracks. Since the
olfactory sensory neurons were isolated from mice, we com-
pared the information content of the mouse olfactory neuron
Hi-C with a mouse ES cell (mESC) Hi-C dataset (Bonev et al.
2017). The olfactory neuron dataset still has significantly
higher IC (Fig. 4B). Thus, the difference is not due to the dif-
ferences of cells derived from mice or humans.

The above analysis suggests that cells that continue to pro-
liferate may result in increased genome organization heteroge-
neity, and that cell cycle and the related chromatin
conformation change is one major reason for heterogeneity.
To test this hypothesis further directly, we applied
CscoreTool-M to five cell-cycle-stage-sorted single-cell Hi-C
datasets (Nagano et al. 2017) corresponding to G1, early S,
mid S and late S/G2, respectively. We then applied 5-compart-
ment analysis to these cell-cycle-resolved datasets and calcu-
lated the IC in all four cell cycle stages. We found that the IC
values were higher than in the bulk mESC Hi-C data
(Fig. 4C). We also found that the IC values were lower in G1

than in early S, mid S, and late S/G2, consistent with the idea
that the G1 phase is the most heterogeneous with rapid chro-
matin interaction changes from the mitotic to interphase con-
formation. These results show that CscoreTool-M can be
used to infer and compare genomic organizational heteroge-
neity in different cell types, and that cell cycle is a major
reason for sub-compartment heterogeneity.

3.5 Inferring G1 genome organization in a

population of asynchronously dividing cells

In a given cell type, those cells that are proliferating can have dif-
ferent 3D genome interactions at different cell cycle stages,
thereby contributing to the variation in chromatin organization
among individual cells. Our simulation analysis suggests that the
CscoreTool-M can deconvolve genomic organizational hetero-
geneity if we analyse a larger number of sub-compartments. We
analyzed the Hi-C dataset obtained from the asynchronously di-
viding HCT116 cells (Rao et al. 2017) using 10 sub-
compartments (Fig. 5). Recently we have developed a chromatin
pull-down based Tyramide-Signal Amplification sequencing
(cTSA-seq) method to analyse LADs at different cell cycle stages
using the human HCT116 cell line (Tran et al. 2022). We found
that during early G1 the chromatin associated with the reform-
ing NL are the sub-telomeric regions (Fig. 5). Another study us-
ing a novel protein A-DamID approach described a similar,
albeit weaker telomeric enrichment (van Schaik et al. 2020).
Interestingly, one sub-compartment, HCT116 C10_7, predicted
by CscoreTool-M is very similar to the early G1 LADs mapped
by our cTSA-seq. The whole-genome comparison shows signifi-
cant correlation between the compartment score of HCT116
C10_7 and the early G1 cTSA-seq LADs mapping (R¼ 0.42,
P< 10�16). This result shows that the C10_7 sub-compartment
can capture the LADs pattern in the early G1 HCT116 cells.

3.6 Inferring cell-type specific functional sub-

compartments

One interesting feature of the olfactory neuron is that the
olfactory genes are clustered together in 3D (Monahan et al.
2019). To test whether our method can find this sub-
compartment of olfactory genes, we applied the CscoreTool-

Figure 4. Comparisons of the level of compartment heterogeneity among

different cell types. (A) Genome browser view of five compartments for

olfactory sensory neurons (OSN) on chr1 inferred by CscoreTool-M. All Y

axes plotting compartment scores range from 0 to 1. (B) Violin plot

showing the information content calculated for each 100-kb window along

the genome based on Hi-C datasets in four different cell types. (C) Violin

plot showing the information content calculated for each 100-kb window

along the genome based on single-cell Hi-C datasets in four cell-cycle

stages of mESC compared to bulk.

Figure 5. Inferring cell-cycle-related sub-compartments. Genome browser

view of 10 compartments inferred by CscoreTool-M for HCT116 cells on

chr1. Regions showing similarity between HCT116 C10_7 compartment

and the early-G1-specific LADs determined by cTSA-seq using sorted

early G1 HCT116 cells are highlighted in black boxes.
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M on the olfactory sensory neuron Hi-C dataset to model
10 sub-compartments. We found that one of the sub-
compartments, OSN C10_1, overlapped well with the olfac-
tory genes (Fig. 6), indicating that our method can identify
this functional gene cluster in one sub-compartment.

We reason that these functional gene clusters may also exist in
other cell types. We first examined the GM12878 dataset. We
performed 10-compartment analysis on the GM12878 dataset
and found that the GM12878 C10_1 and C10_2 sub-
compartments both have good correlations to the GM12878
C5A1 compartment but are enriched for genes with different
functions based on the Gene Ontology (GO) analyses. The
C10_1 sub-compartment is enriched for genes related to im-
mune function, which may be functionally important as the
GM12878 cells are derived from B-lymphocytes (Supplementary
Fig. S7A). In contrast, the C10_2 sub-compartment is enriched
for housekeeping genes with functions including translation and
transcription (Supplementary Fig. S7B). Interestingly, we found
that the C10_2 sub-compartment for the olfactory sensory neu-
rons is also enriched for housekeeping genes (Supplementary
Fig. S7C). Finally, we applied CscoreTool-M to infer 10 sub-
compartments in additional cell types with available Hi-C data-
sets to test if we can find 3D clustering of functionally related
genes in individual genomic compartments. By analyzing
mESCs, IMR90 fibroblasts, NHEK keratinocytes, and HCT116
colon cancer epithelial cells, we found a clear enrichment of
housekeeping genes in two sub-compartments of mESC
(Supplementary Fig. S8A and B), one in IMR90 (Supplementary
Fig. S8D) and one in HCT116 cells (Supplementary Fig. S8E).
GO analyses also revealed an enrichment of genes in the C10_3
compartment of mESC involved in embryonic development
(Supplementary Fig. S8C) and genes in the C10_2 compartment
of NHEK cells involved in keratinocyte differentiation and skin
development (Supplementary Fig. S8F). Thus, CscoreTool-M
can discover the 3D cluster of functionally related genes in differ-
ent cell types.

4 Conclusions

In this study, we report CscoreTool-M, a model-based
method to calculate sub-compartment scores from Hi-C data.
The compartment scores calculated by Cscoretool-M for a

given genomic region are directly proportional to the proba-
bility that the region is located at a specific sub-compartment.
By comparing with other sub-compartment inference based
on clustering method, we have shown that CscoreTool-M is
better at inferring sub-compartments corresponding to both
active and repressed chromatin. The compartment scores by
CscoreTool-M also help quantify the levels of heterogeneity
in sub-compartment localization within cell populations for
different genomic regions. By comparing proliferating and ter-
minally differentiated cells, we show that proliferating cells
have higher genome organization heterogeneity, which is
likely caused by different cell-cycle stages. By analyzing 10
sub-compartments, we found a sub-compartment potentially
related to early-G1 LADs in HCT116 cells, suggesting the
method can deconvolve sub-compartments from asynchro-
nously dividing cell populations. Finally, we show that sub-
compartments inferred by CscoreTool-M are often enriched
in housekeeping or cell-type-specific functions.

Supplementary data

Supplementary data is available at Bioinformatics online.
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