
CSF-1 Receptor Signaling in Myeloid Cells

E. Richard Stanley and Violeta Chitu

Department of Developmental and Molecular Biology, Albert Einstein College of Medicine,
Bronx, New York 10461

Correspondence: richard.stanley@einstein.yu.edu

The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimu-
lating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and
in innate immunity by regulating the development of most tissue macrophages and osteo-
clasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain
microglia. It also regulates the differentiation of neural progenitorcells and controls functions
of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue
expression pattern, it plays a central role in neoplastic, inflammatory, and neurological
diseases. In this review we summarize the evolution, structure, and regulation of expression
of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the
mechanism of ligand binding to and activation of the receptor. We further describe the
pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis
downstream from the CSF-1R.

T
he glycoprotein, colony-stimulating factor-1

(CSF-1), also known as macrophage-CSF
(M-CSF), was the first of the CSFs to be purified

(Stanley and Heard 1977) and was shown to

stimulate the formation of colonies of macro-
phages (Stanley et al. 1978). This led to the

identification (Guilbert and Stanley 1980) and

purification (Yeung et al. 1987) of the CSF-1
receptor (CSF-1R) and the demonstration that

it possessed intrinsic tyrosine kinase activity

(Yeung et al. 1987). It was subsequently shown
to be identical to the c-fms proto-oncoprotein

(Sherr et al. 1985) previously studied by Sherr

and colleagues (Rettenmier et al. 1985). The
c-fms cDNA was cloned and shown to encode

a typical class III receptor tyrosine kinase (RTK)

(Coussens et al. 1986).

The CSF-1R plays a central role in many

diseases. Dominant inactivating mutations in
the CSF-1R lead to adult-onset leukoencephal-

opathy with axonal spheroids and pigmented

glia (Rademakers et al. 2011; Nicholson et al.
2013). Inappropriate expression of the CSF-1R

contributes to the development of leukemias

and lymphomas, and autocrine and paracrine
regulation of the CSF-1R enhances the progres-

sion and metastasis of solid tumors (reviewed

in Pollard 2009; Chitu and Stanley 2014). In ad-
dition, regulation through the CSF-1R con-

tributes to chronic inflammatory diseases (re-

viewed in Chitu and Stanley 2006; Chitu et al.
2012). This review focuses on the CSF-1R reg-

ulation and signaling in cells of the myeloid

lineage.
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THE CSF-1R AND LIGANDS

The CSF-1R and Its Oncogenic Derivatives

The CSF-1R belongs to the platelet-derived
growth factor (PDGF) family. Similar to other

familymembers, it possesses a highly glycosylat-

ed extracellular region comprised of five im-
munoglobulin domains (D1–D5, 498 amino

acids), a transmembrane domain (21 amino ac-

ids), and an intracellular domain comprised of a
juxtamembrane domain (JMD) (36 amino ac-

ids) and an intracellular tyrosine kinase domain

(398 amino acids) that is interrupted by a kinase
insert domain (73 aminoacids) (Fig. 1A) (Cous-

sens et al. 1986; Rothwell and Rohrschneider

1987; Hampe et al. 1989).
Comparison of the sequences of cat c-fms

and a v-fms retroviral oncogene derived from it

revealed that a carboxy-terminal truncation, to-
gether with two point mutations (L301S and

A374S) in the extracellular D4 domain, subse-

quently shown to contain the dimerization in-
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Figure 1. Structure of the CSF-1R and regulation of Csf1r gene expression. (A) Structures of CSF-1R and
oncogenic derivatives. (Left) The c-fms proto-oncogene, (middle) the v-fms oncogene, encoded by the Susan
McDonough strain of feline sarcomavirus (SM-FeSV), and (right) the CSF-1R–RBL6 oncogenic fusion protein.
Ovals D1–D5 represent the five extracellular Ig-like domains of CSF-1R. The ligand-binding domains are gray.
The blue dots in D4 represent the ionic pairs that have been implicated in receptor homotypic contacts. The
intracellular domain is shown as the juxtamembrane domain (JMD, orange), kinase N lobe (ATP, dark blue),
kinase insert (KI, green), kinase C lobe (Kin, light blue), activation loop (AL, purple), and carboxy-terminal tail
(black). All amino acid substitutions in v-fms are shown as annotated red dots and the carboxy-terminal amino
acid sequence that is unrelated to c-fms is red (Woolford et al. 1988). (B) Evolution of closely related type III RTK
genes by gene and genome duplications (based on data from Braasch et al. 2006). (C) (Top) Exon-intron
structure ofmouseCsf1r gene and (bottom) expanded promoter structure and transcription factor (TF) binding
sites (based on data from Bonifer and Hume 2008; Ovchinnikov et al. 2010). (D) Regulation of Csf1r expression
in hematopoiesis (based on data fromBonifer andHume 2008). The silenced state levels for each parameter were
measured in T cells and fibroblasts that do not express the CSF-1R. Mo, monocyte; Mf, macrophage.
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terface (Elegheert et al. 2011;Ma et al. 2012), are

critical changes required for the full transform-
ing activity of the oncogene (Fig. 1A) (Woolford

et al. 1988). Another oncogenic derivative is

the product of a t(3;5)(p21;q33) translocation,
RBM6-CSF-1R, a constitutively activated CSF-

1R fusion protein comprised of the amino-ter-

minal 36 amino acids of RNA-binding motif 6
(RBM6), joined to the carboxy-terminal 399

amino acids of the CSF-1R, which leads to an

acute megakaryoblastic leukemia (Fig. 1A).

CSF-1R Expression

The CSF-1R is expressed at low levels on hema-

topoietic stem cells (HSCs) (Sarrazin et al. 2009;

Mossadegh-Kelleret al. 2013), at higher levels on
monocytes and tissue macrophages (Guilbert

and Stanley 1980; Byrne et al. 1981), osteoclasts,

myeloid dendritic cells (MacDonald et al. 2005),
microglia (Nandi et al. 2012), and Paneth cells

(Huynh et al. 2009) and controls the develop-

ment of these cell types. It is also expressed on
oocytes and preimplantation embryos, decidual

and trophoblastic cells (reviewed in Pollard and

Stanley 1996), neural progenitor cells and other
neuronal cells (Wang et al. 1999a; Nandi et al.

2012; Luo et al. 2013), renal proximal tubule

epithelial cells, and colonic epithelial cells (re-
viewed in Chitu and Stanley 2014). The broad

pattern of expression of CSF-1R is consistent

with its pleiotropic actions in embryonic devel-
opment, adult physiology, innate immunity, in-

flammation, tissue repair, and in the tumor mi-

croenvironment (reviewed in Chitu and Stanley
2014).

The CSF-1R Ligands CSF-1 and IL-34

Theknownligands for theCSF-1RareCSF-1and

IL-34 (Lin et al. 2008). Both in vitro and when
expressed in vivo under the control of the CSF-1

promoter, the biological activities of homodi-

meric glycoprotein interleukin-34 (IL-34) re-
semble those of the secreted glycoprotein iso-

form of CSF-1 (Wei et al. 2010). Although

there are significant differences in their signaling
through the CSF-1R (Chihara et al. 2010), it is

primarily thedifferential expressionof IL-34and

CSF-1 (Wei et al. 2010; Greter et al. 2012; Nandi

et al. 2012;Wang et al. 2012) that results in their
differential spatiotemporal regulation through

the CSF-1R in vivo (Wei et al. 2010; Nandi

et al. 2012). The transmembrane and proteogly-
canCSF-1 isoformsact locally (Wiktor-Jedrzejc-

zaket al. 1991; Sundquist et al. 1995;VanNguyen

and Pollard 2002; Dai et al. 2004; Nandi et al.
2006). However, circulating CSF-1 (Stanley

1979; Janowska-Wieczorek et al. 1991) shows

humoral regulation (Cecchini et al. 1994;Pollard
andStanley1996;Dai et al. 2004). Incontrast, IL-

34 is not detectable in the circulation of healthy

individuals (Hwang et al. 2012; Tian et al. 2013)
and thus IL-34 actions are likely to be restricted

to the localmicroenvironments inwhich theyare

expressed.Through theirdifferent spatiotempo-
ral expression, the two ligands play complemen-

tary roles in regulating the development, main-

tenance, and activity of specific macrophage
populations,Langerhanscells,neuronalprogen-

itors (Wei et al. 2010; Greter et al. 2012; Nandi

et al. 2012;Wangetal. 2012), aswell asosteoclasts
(Dai et al. 2002) and Paneth cells (Huynh et al.

2009) and the regulation of cells of the female

reproductive tract (Wei et al. 2010). Because all
of the CSF-1 deficiency phenotypes are also

shared with CSF-1R-deficient mice (Dai et al.

2002), the CSF-1R appears to be the only recep-
tor for CSF-1, whereas IL-34 has recently been

showntoactviaanadditional receptor, receptor-

type protein tyrosine phosphatase-z (PTP-z)
(Nandi et al. 2013).

THE CSF-1R GENE—EVOLUTION,
STRUCTURE, AND REGULATION

CSF-1R Gene Evolution

The ancestral PDGF/VEGF-related RTKIII

family expanded substantially during vertebrate
evolution by gene and genome duplications

(Rousset et al. 1995; Gu and Gu 2003; Leveugle

et al. 2004; Braasch et al. 2006). In zebrafish,
kit and csf1r play critical roles in the develop-

ment of different neural crest–derived pigment

cell types—kit for melanocytes (Parichy et al.
1999) and csf1r for xanthophores (Parichy

et al. 2000; Parichy and Turner 2003)—and it
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is likely that the gene duplications were driven

by selection for pigment cell innovations im-
portant for speciation (Fig. 1B) (Braasch et al.

2006; Salzburger et al. 2006).

CSF-1R Gene Structure and Regulation
in Myeloid Cells

The Csf1r gene is located on human chromo-

some5(5q32)and in a syntenic regiononmouse

chromosome 18 (18D) (Le Beau et al. 1986;
Hoggan et al. 1988; Bonifer and Hume 2008),

juxtaposed head-to-tail as the 30 neighbor of the

PDGFR-b gene (Yarden et al. 1986; Roberts et al.
1988). Both Csf1r genes have 21 introns and 22

exons (Hampe et al. 1989; reviewed in Sherr

1990). The human intron 1 is ≏26 kb and tran-
scription is initiated upstream of exon 1 in tro-

phoblasts and immediately upstream of exon 2

in macrophages (Visvader and Verma 1989;
Roberts et al. 1992). Regulation of Csf1r expres-

sion has been most studied in mouse, in which

intron 1 is only 102 bp and trophoblast and
macrophage transcripts are, respectively, initiat-

ed 500 bp–300 bp and within 300 bp upstream

of the start codon in exon 2 (Sasmono et al.
2003). There are two separate promoter regions:

the trophoblast/osteoclast (T/OC) promoter

that drives expression in trophoblasts and oste-
oclasts and contains regulatory elements that

increase expression during macrophage differ-

entiation (Bonifer and Hume 2008; Ovchinni-
kov et al. 2010), and the more proximal macro-

phage Csf1r promoter (M) (Fig. 1C). Maximal

CSF-1R expression in differentiated mono-
cytes/macrophages requires a highly conserved

330 bp sequence enhancer element located in

the 30 end of intron 2, known as Fms-intronic
regulatory element (FIRE), which also has re-

verse promoter activity (Himes et al. 2001; Sas-

mono et al. 2003; Laslo et al. 2006; Sauter et al.
2013). FIRE encodes an antisense CSF-1R tran-

script that may contribute to its ability to over-

come repression by uncharacterized repressive
elements within intron 2 (Bonifer and Hume

2008; Sauter et al. 2013). None of the Csf1r pro-

moters has a TATA box, and transcription initi-
ates at multiple sites for each. For macrophage

expression, it is hypothesized that two TATA-as-

sociated factors,Ewingsarcoma(EWS)andFUS/
TLS, which bind a loose repeat of CAG or CAA
immediately adjacent to the dominant start site

cluster, substitute for TATA-binding protein

(Krysinska et al. 2007; Bonifer and Hume
2008). Transcription factors regulatingCsf1r ex-

pression thatbind siteswithin theT/OC,M, and

FIRE regulatory regions are shown in Figure 1C.
CSF-1R expression is low on HSC (Sarrazin

et al. 2009), increases by ≏10-fold on macro-

phage progenitors (colony-forming unit-mac-
rophage, CFU-M) and is further increased grad-

ually as CFU-M differentiate (monoblast !

promonocyte ! monocyte ! macrophage)
(Fig. 1D) (Tushinski et al. 1982; Bartelmez and

Stanley 1985; Bartelmez et al. 1989). Low, HSC-

equivalent levels of expression of Csf1r mRNA
are found on common myeloid (CMP) and

common lymphoid (CLP) progenitor cells

(Tagoh et al. 2002, 2004). During CMP differ-
entiation to macrophages, up-regulation of the

CSF-1R occurs in two stages. The first stage in-

volves transcription factor assembly (PU.1,
Runx1, and C/EBP binding) and chromatin re-

modeling at the macrophage promoter (Walsh

et al. 2002; Krysinska et al. 2007). The second
stage involves factor assembly and chromatin

remodeling at FIRE (Laslo et al. 2006). This

two-step mechanism ensures that high levels of
CSF-1R are only expressed in the more differen-

tiated cells that respond to CSF-1 alone and not

inmultipotent cells that express lower levels and
require synergistic growth factors, such as IL-3

or SCF (Bartelmez et al. 1989; Williams et al.

1992). In contrast, during B lymphocyte de-
velopment from CLP, PAX5 acts as a repressor,

silencing the Csf1r gene by binding directly to

a site overlapping the main Csf1r transcription-
al start sites recognized by EWS and Fus/TLS
(Fig. 1D) (Tagoh et al. 2006; Bonifer and Hume

2008).

STRUCTURE OF CSF-1R AND LIGANDS

CSF-1 and IL-34

The CSF-1R is the only RTK activated by two
ligands of unrelated sequence, CSF-1 and IL-34.

CSF-1 differs from IL-34 in that, owing to alter-
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native splicing and differential proteolysis of a

longer precursor in the secretory vesicle, it is
expressed in three functionally separable iso-

forms: a secreted glycoprotein, a secreted chon-

droitin sulfate proteoglycan, and a membrane-
spanning, cell-surface glycoprotein (Rettenmier

et al. 1987; Price et al. 1992; Suzu et al. 1992; Dai

et al. 2004; Nandi et al. 2006). All three isoforms
are dimeric and contain the same amino-termi-

nal 150 amino acids of CSF-1 required for bio-

logical activity, but have distinct, yet overlapping
activities (Dai et al. 2004; Nandi et al. 2006;

Chitu and Stanley 2014) determined by the re-

maining carboxy-terminal sequence. In con-
trast, IL-34 is synthesized as a secreted glycopro-

tein possessing one biologically active isoform

of lower activity in which the codon encoding
Glu81 has been spliced out (Lin et al. 2008; Wei

et al. 2010).

Despite sharing low sequence similarity, the
biologically active regions of IL-34 and CSF-1

have similar four helical bundle (cytokine) folds

(Fig. 2A). Both are head-to-head dimers, IL-
34 noncovalently associated, whereas CSF-1 is
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Figure 2. Structure of CSF-1, IL-34, and CSF-1R ligand–receptor complexes. (A) Topological diagrams of
monomeric (left) and ribbon representations of dimeric CSF-1 (top) and IL-34 (bottom) (based on data from
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linked through interchain disulfide bonds (Pan-

dit et al. 1992; Liu et al. 2012; Ma et al. 2012).
The N-linked oligosaccharides are critical for

the stability of IL-34, but not of CSF-1 (Liu

et al. 2012).

CSF-1/CSF-1R AND IL-34/CSF-1R COMPLEX
STRUCTURES

Studies of the interaction of 125I-CSF-1 with

macrophages, together with cross-linking stud-
ies showed the existence of a single class of high-

affinity binding sites through which all of the

biological effects of CSF-1 weremediated (Guil-
bert and Stanley 1980, 1986; Morgan and Stan-

ley 1984;Guilbert et al. 1986). Cell-based studies

indicated that the unliganded CSF-1R may
undergo rapid dimer-monomer transitions (Li

and Stanley 1991), that the CSF-1-binding site

was contained in CSF-1R domains D1–D3
(Wang et al. 1993), and that D4 was involved

in ligand-induced oligomerization (Carlberg

and Rohrschneider 1994). Structural studies,
using a combination of electron microscopy

and small-angle X-ray scattering, provided evi-

dence for CSF-1R predimerization (Elegheert
et al. 2011). Binding of CSF-1 to the CSF-1R is

exclusively via the D2 and D3 domains, the D4

domainsmediating CSF-1R homotypic interac-
tions, via a broad interaction interface, whereas

the D1 and D5 domains point away from the

complex (Fig. 2B) (Chen et al. 2008; Elegheert
et al. 2011; Ma et al. 2012; Felix et al. 2013). D4

shares a dimerization domain sequence finger-

print that has been identified in other closely
related RTK III receptors, Kit and PDGFR (Yu-

zawa et al. 2007; Yang et al. 2008), and the pres-

ence of domains D4 and D5 in the CSF-1:CSF-
1RD1–D5 significantly decreases the Kd of inter-

action (Chenetal. 2008;Elegheert et al. 2011;Ma

et al. 2012) owing to CSF-1R homotypic in-
teractions. However, the Kd for the CSF-1:CSF-

1RD1–D5 interaction at 37˚C (≏20 nM, human

andmouse [Elegheert et al. 2011])was still high-
er than the dissociation constants reported for

the binding of mouse (0.4 nM [Guilbert and

Stanley 1986]) or human (0.1 nM [Roussel
et al. 1988]) CSF-1 to their cognate receptors

on cells, suggesting a significant contribution

of the transmembrane domain and spatial con-

finement of the membrane to affinity (Fig. 2C).
Consistent with the cross-competition of

CSF-1 and IL-34 for binding to the CSF-1R

(Chihara et al. 2010; Wei et al. 2010), both li-
gands bind to a concave surface formed by the

CSF-1R D2 and D3 domains (Fig. 2B) (Chen

et al. 2008; Elegheert et al. 2011; Liu et al. 2012;
Ma et al. 2012; Felix et al. 2013). Despite their

similarities, the IL-34:CSF-1R complex differs

from the CSF-1:CSF-1R complex because: (1)
there is a ≏20˚ rotation difference of their D3

domains when their D2 domains are superim-

posed, resulting in an elongated pose that differs
from the kinked configuration of the CSF-

1R:CSF-1 complex; (2) CSF-1 is clamped deep-

er by the CSF-1RD2-D3 junction than IL-34, so
that overlapping, yet different CSF-1R segments

are used by each ligand; (3) to compensate for

loss of some D2 interactions, IL-34 adopts ami-
no-terminal and carboxy-terminal extensions

to contact D3 (Liu et al. 2012; Ma et al. 2012);

and (4) the apparent rigidity of the IL-34 struc-
ture (Liu et al. 2012; Ma et al. 2012) differs from

the more plastic CSF-1 structure, which under-

goes local structural rearrangements for recep-
tor binding (Chen et al. 2008).

Studies ofmouse IL-34:CSF-1R interactions

indicate that the interactions of IL-34 with D2
and D3 are not functionally equivalent. Muta-

tion of individual hydrophilic residues involved

in IL-34 interactions with CSF-1R D2 failed to
affect IL-34 biological activity, whereas muta-

tions of residues interacting with D3 substan-

tially reduced IL-34 activity suggesting that
charge interactions with D2 may capture IL-34

for subsequent interaction with D3 (Liu et al.

2012). Despite the differences between the IL-
34:CSF-1R and CSF-1:CSF-1R complexes, the

distance between the two D3-D4 junctions im-

portant for critical homotypic D4 interactions
(Elegheert et al. 2011; Felix et al. 2013) is equiv-

alent (62 Å and 60 Å, respectively) (Ma et al.

2012).

CSF-1R Kinase Structure and Activation

The structure of the inactive human CSF-1R

kinase domain is two-lobed, similar to those

E.R. Stanley and V. Chitu
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of cKIT and FLT3 RTK IIIs (Schubert et al.

2007; Walter et al. 2007). The N lobe comprises
a five-stranded, antiparallel b sheet (b1–b5)

and a single a helix (aC), and is joined to

the carboxy-terminal lobe by the kinase insert
domain and a hinge region. The C lobe has

seven a helices and two b strands. ATP bind-

ing, in a deep cleft between the N and C lobes,
involves the N lobe and hinge regions, which

also provide some catalytic residues. The C

lobe mediates substrate binding and catalysis.
In its inactive conformation, the CSF-1R ki-

nase domain activation loop (AL) is folded

back onto the ATP-binding cleft, with the sole
AL tyrosine 809 acting as a pseudosubstrate,

blocking substrate binding. Also, Asp-796 of

the invariant DFG motif, necessary for Mg2þ

coordination of ATP, is in a “DFG-out” confor-

mation, owing to its displacement from the

active site. The activation of CSF-1R therefore
requires flipping of the DFG motif to a “DFG-

in” conformation and reorganization of the

AL. Interestingly, in other receptor kinases,
this can involve phosphorylation of the AL ty-

rosine, but the data do not support a role for

AL tyrosine phosphorylation in the early acti-
vation of the CSF-1R (Yu et al. 2012), or of

cKIT (DiNitto et al. 2010). In the inactive

CSF-1R kinase, the JMD (Q542-K574, between
the transmembrane domain and the N lobe),

mediates a critical autoinhibitory mechanism

by blocking aC, preventing the AL from adopt-
ing an active conformation and restricting in-

terlobe plasticity (Walter et al. 2007). Inhibi-

tion is relieved by phosphorylation of Tyr-561
(Tyr-559 in mouse). This tyrosine, the first res-

idue to be phosphorylated in response to li-

gand binding, acts as a switch that is off in
the absence of ligand and turned on by phos-

phorylation in response to ligand (Rohde et al.

2004; Yu et al. 2008; Xiong et al. 2011; Yu et al.
2012). Although the structure of the activated

CSF-1R kinase domain has not been reported,

the changes that take place on activation can be
visualized by superimposing the AL of activat-

ed cKITonto inactive CSF-1R structure (Schu-

bert et al. 2007; Chitu and Stanley 2014). A
schematic of ligand-induced CSF-1R activation

is shown in Figure 2C.

CSF-1R SIGNAL TRANSDUCTION
IN MYELOID CELLS

Early Events and Role of CSF-1R Tyrosine
Phosphorylation

As undifferentiated progenitor cells are rare,

CSF-1R signaling has been primarily studied

in macrophages (Yu et al. 2008), osteoclasts
(Faccio et al. 2007), or in transduced myeloid

progenitor cell lines that normally do not ex-

press the receptor (Bourette et al. 1995; Csar
et al. 2001). The approaches taken have been

proteomic (identifying and analyzing the func-

tion of proteins tyrosine phosphorylated or
activated in the response) (Yeung and Stanley

2003) and genetic (analysis of the effects of

CSF-1R mutations) (Yu et al. 2012). CSF-1R
signaling in all lineages has recently been re-

viewed in detail elsewhere (Chitu and Stanley

2014).

Kinetics of Early Responses
in Macrophages

Studies of CSF-1-induced changes in mouse

macrophages at 4˚C and 37˚C have permitted

early steps in this process to be resolved. Before
CSF-1 addition, CSF-1Rs are clustered, or are

undergoing a rapid dimer-monomer transition

(Li and Stanley 1991). CSF-1 binding initially
leads to rapid dimerization, a first wave of tyro-

sine phosphorylation of the CSF-1R, and for-

mation of CSF-1R complexes with Grb2/Sos
and with SFK, Cbl, the regulatory subunit of

PI-3 kinase (PI3K) (p85), Grb2, and other sig-

naling molecules, many of which become tyro-
sine phosphorylated (Baccarini et al. 1991; Li

and Stanley 1991; Li et al. 1991; Kanagasun-

daram et al. 1996;Wang et al. 1996, 1999b; Hus-
son et al. 1997). The tyrosine phosphorylated

proteins, representing 0.02%of the total cellular

protein, are mainly in the membrane fraction
(Yeung et al. 1998). The CSF-1R/Sos/Grb2
complexes aremore transient than those involv-

ing the CSF-1R, Cbl, Shc, p85, and Grb2 (Wang
et al. 1999b). Sos/Grb2 dissociates from the

CSF-1R, which undergoes a second wave of ty-
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rosine phosphorylation with serine phosphory-

lation, which is temporally associated with the
Cbl-dependent CSF-1R ubiquitination and Cbl

ubiquitination (Baccarini et al. 1991; Li and

Stanley 1991; Wang et al. 1996, 1999b; Lee
et al. 1999). There follows internalization of

the CSF-1/CSF-1R complex, its entry into mul-

tivesicular bodies, and thence into the lysosom-
al system, in which both ligand (Guilbert and

Stanley 1986) and receptor (Lee et al. 1999) are

degraded. In contrast, the ubiquitinated Cbl
ubiquitin ligase is not degraded, but recovered

in deubiquitinated form in the cytosol 3–

10 min after stimulation (Wang et al. 1996,
1999b; Lee et al. 1999) (reviewed in Yeung and

Stanley 2003). Tyrosine phosphorylation and

ubiquitination of the cell-surface CSF-1R di-
mers are stoichiometric (Li and Stanley 1991;

Li et al. 1991; Wang et al. 1999b), although

ubiquitination may be asymmetric and restrict-
ed to only one monomer of the ubiquitinated

CSF-1R dimer (Xiong et al. 2011). Signaling

may also occur from internalized receptors
(Huynh et al. 2012). Many of the proteins in

complexes with the rapidly tyrosine phosphor-

ylated cellular proteins are cytoskeletal proteins
(Yeung et al. 1998; Yeung and Stanley 2003) and

the short-term responses include extensive cy-

toskeletal remodeling (Boocock et al. 1989; Pix-
ley et al. 2001; Chitu et al. 2005; Sampaio et al.

2011; Pixley 2012). Increased protein synthesis

is detected as early as 15 min following CSF-1R
stimulation and plateaus at 2 h (Tushinski and

Stanley 1983).

Later responses include increased motility
and chemotaxis (Pixley et al. 2001; Chitu et al.

2005; Sampaio et al. 2011; Pixley 2012), altered

gene expression leading to the entry of cells into
S phase at ≏12 h (Tushinski and Stanley 1985),

duringwhich time cell-surfaceCSF-1R levels are

down-regulated, but cell-surface CSF-1Rs are
turning over rapidly and presumably signaling

(Guilbert and Stanley 1986; Yu et al. 2012; re-

viewed in Sherr 1991; Yeung and Stanley 2003).
The expression of CD11b (Yu et al. 2008) and

of chemokines, cytokines, and cell-surface

markers of M2 polarization state, are also in-
creased (Fleetwood et al. 2007; Foucher et al.

2013).

Role of Individual CSF-1R Intracellular
Domain Phosphotyrosines in Regulation
of Macrophage Functions

The functions of the eight tyrosines known to be

phosphorylated in the activated mouse CSF-1R

proto-oncoprotein/oncoprotein have been in-
vestigated in macrophages by their mutation to

phenylalanine (to establish/investigate necessi-
ty) or by adding them back to a receptor back-
bone in which all eight tyrosines are mutated

to phenylalanine (to establish/investigate suffi-
ciency) (Fig. 3A). Add-back of AL Tyr-807,
JMD Tyr-559, and JMD Tyr-544 is sufficient

to restore full in vitro CSF-1R kinase activity

(Yu et al. 2012). ALTyr-807 alone confers con-
stitutive activation of CSF-1R-regulated prolif-

eration. JMD Tyr-559 is the first tyrosine phos-

phorylated in response to ligand (Yu et al. 2008;
Xiong et al. 2011). Tyr-559 keeps CSF-1R kinase

“off” in the absence of ligand and its phosphor-

ylation relieves this autoinhibition, so that Tyr-
559 controls CSF-1R responsiveness to ligand

(Rohde et al. 2004; Takeshita et al. 2007; Yu

et al. 2012). JMD Tyr-544, phosphorylated in
the oncogenic receptor (Joos et al. 1996), is re-

quired for full kinase activation (Yu et al. 2008).

Add-back of all three tyrosines fully restores
CSF-1-regulated CSF-1R kinase activation,

bulk cellular protein tyrosine phosphorylation,

and the proliferative response (Yu et al. 2012).
Tyr-559 is both necessary and sufficient for the

recruitment of SFK that, in turn, associate

with and activate c-Cbl. Cbl activation leads to
CSF-1R multiubiquitination, conformational

changes, increased phosphorylation, and inter-

nalization of receptor–ligand complexes (Bac-
carini et al. 1991; Rohde et al. 2004; Xiong et al.

2011). Tyr-721 is necessary and sufficient on the

YEF.Y544,559,807AB background, for mediat-
ing macrophage chemotaxis to CSF-1 through

the PI3K pathway (Sampaio et al. 2011). Muta-

tions of KI tyrosines 706 or 721, or carboxy-
terminal Tyr-974, alter morphological respons-

es (Yu et al. 2008). AL Tyr-807 is required for

multipotent progenitor cell differentiation to
macrophages, which KI tyrosines 697, 706,

and 721 augment (Rohrschneider et al. 1997),

although Tyr-706 negatively regulates expres-

E.R. Stanley and V. Chitu

8 Cite this article as Cold Spring Harb Perspect Biol 2014;6:a021857

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


sion of CD11b in macrophages (Yu et al. 2008).
Phosphorylation of individual CSF-1R tyro-

sines creates docking sites for several signaling

molecules (Fig. 3B) (reviewed in Pixley and
Stanley 2004).

Downstream Signaling Pathways in the
Macrophage Lineage

Survival

Low CSF-1 concentrations stimulate macro-

phage survival that is associated with inhibition

of total protein degradation (Tushinski et al.
1982; Tushinski and Stanley 1983). The PI3K/
Akt pathway has a central role in CSF-1-medi-

ated macrophage survival (Fig. 3C) (Kelley et al.
1999; Murray et al. 2000; Golden and Insogna

2004; Chang et al. 2009). In macrophages, Akt

can be activated directly through the CSF-1R
pTyr721/PI3K pathway (Lee and States 2000;

Sampaio et al. 2011) and indirectly by cer-

amide-1-phosphate (C1P) (Gómez-Muñoz et
al. 2004, 2005, 2010; Steinbrecher et al. 2004),

or the Gab2/PI3K pathway (Lee and States
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Figure 3. CSF-1R signaling in macrophage survival and proliferation. (A) Biological functions regulated by
individual CSF-1R tyrosine residues. (B) Protein interactions and signaling events triggered by individual CSF-
1R phosphotyrosine residues (based on data from Pixley and Stanley 2004). (C) CSF-1R signaling for macro-
phage survival. (D) Pathways mediating CSF-1R proliferative responses in macrophages. Arrows indicate acti-
vation; black line-capped arrows, inhibition; gray line-capped arrows, late-phase inhibition; round-capped
arrows, increased expression or concentration; diamond-capped arrows, dissociation; dotted arrows, partial
contribution; gold spheres, phosphotyrosines; and silver spheres, serine/threonine phosphorylation. Numbered
gold spheres indicate the mouse CSF-1R tyrosine residues required for activation of specific pathways. Those
without numbers indicate that the CSF-1R phosphotyrosyl residue triggering the response is not known.
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2000; Lee et al. 2011; Yu et al. 2012), which is

counterbalanced by a CSF-1R pTyr559/Lyn/
SHIP-1 pathway (Baran et al. 2003).

PI3K-independentpathwaysofCSF-1R-me-

diated survival involve phospholipase C (PLC)
(Xu et al. 1993) and Fms-interacting protein

(FIMP) (Mancini et al. 2004). PI3K and PLC

independently enhance survival by controlling
glucose uptake (Chang et al. 2009). CSF-1R-reg-

ulated PKC-dependent serine phosphorylation

translocates FIMP from the nucleus, where it
inhibits CSF-1R-mediated signaling, to the cy-

tosol, thereby enhancing macrophage survival

and differentiation (Fig. 3C) (Mancini et al.
2004).

Proliferation

Macrophage proliferation is associated with a

CSF-1 dose-dependent increase in protein syn-

thetic rate (Tushinski and Stanley 1983). CSF-
1R pTyr-807 signaling activates both the MEK

and PI3K pathways that independently con-

tribute to macrophage proliferation (Munuga-
lavadla et al. 2005; Yu et al. 2012). A CSF-1R

pTyr-559/SFK-dependent pathway also con-

tributes to macrophage proliferation (Takeshita

et al. 2007; Yu et al. 2012). In addition, CSF-1

increases C1P production and C1P stimulates
proliferation through activation of PI3K/Akt,
JNK, and ERK1/2 pathways (Fig. 3D) (Gangoiti
et al. 2008).

Multiple ERKs may be involved in the con-

trol of macrophage proliferation, as their in-

volvement has been inferred byMEK inhibition.
ERK5 is activated in a SFK-dependent manner

by CSF-1 and is necessary for optimal prolifer-

ation (Rovida et al. 2008). ERK1/2 phosphory-
lationmayact as a sensorofCSF-1concentration

(Rovida et al. 2002). Via activation of mem-

brane-associated PKC-1, the CSF-1R mediates
increases in the expression of dual specificity

phosphatase-1 (DUSP-1) that suppresses pro-

longed Erk1/2 activation, which would lead to
cell-cycle arrest (Valledor et al. 1999). In myelo-

blasts, increasedPKC-z activity regulates Erk1/2
activation and proliferation in a developmental
stage-specific manner (Lee 2011). Overexpres-

sion of PKC-z in myeloblasts increased the in-

tensity and duration of Erk1/2 phosphorylation
and the proliferative response to CSF-1 (Fig.

4B). In contrast, in macrophages, PKC-z acti-

vates a negative regulatory step upstream of
MEK (Fig. 3D) (Lee 2011).
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The transmembrane adaptor protein

DAP12 mediates CSF-1R proliferative signals
through a MAPK- and Akt-independent path-

way. The cytoplasmic domain of DAP12

contains immunoreceptor tyrosine-based acti-
vation motifs (ITAMs), which become phos-

phorylated in response to CSF-1R activation,

recruiting and activating the cytosolic tyrosine
kinase Syk, which activates the Pyk2 tyrosine

kinase that phosphorylates b-catenin, trigger-

ing its nuclear translocation and activation
of cell-cycle genes. The response is enhanced

by DAP12-independent CSF-1R inhibition of

b-catenin degradation (Otero et al. 2009).
DAP12 deficiency leads to impaired CSF-1R-

mediated proliferation and survival, but does

not affect differentiation (Nataf et al. 2005;
Otero et al. 2009).

Proline serine threonine phosphatase inter-

acting protein 2 (PSTPIP2) is a membrane–cy-
toskeletal adaptor highly expressed in myeloid

cells (Chitu and Stanley 2007, 2009). PSTPIP2

deficiency increases Erk1/2 phosphorylation
and CSF-1-induced myeloid precursor prolifer-

ation, whereas overexpression in macrophages

inhibits Erk1/2 phosphorylation and growth
(Chitu et al. 2009). PSTPIP2 interacts with

PEST-family tyrosine phosphatases PTPN12

(Chitu et al. 2012) and PTPN18 (Wu et al.
1998) and, as suggested by studieswith PSTPIP1

(Yang and Reinherz 2006), it is possible that

PSTPIP2 acts by recruiting PTP-PEST to signal-
ing complexes upstream of Erk1/2 (Fig. 3D).

Differentiation

CSF-1R activation directly induces monocytic

cell fate in HSCs through up-regulation of the
myeloid transcription factor PU.1 (Mossadegh-

Keller et al. 2013). It also instructs granulocyte/
macrophage progenitors (GMP) to differentiate
into macrophages (Rieger et al. 2009).

Studies with multipotent precursor cell

lines (Fig. 4A) indicate that CSF-1R Tyr-807
and Tyr-721 promote macrophage differentia-

tion via the PLC-g2 pathway (Bourette et al.

1997). Tyr-807 is also required for the tyrosine
phosphorylation of p46/52 Shc (Csar et al.

2001) and the tyrosine phosphorylation, activa-

tion, and membrane translocation of PKC-d

leading to increased expression of PKA-related
protein kinase (Pkare), all of which contribute

to monocytic differentiation (Junttila et al.

2003).
The Erk1/2 pathway has a central role

in CSF-1R-regulated myeloid differentiation.

CSF-1 induces early (peaking at ≏5 min) and
persistent (starting at 1 h) waves ofMEK/Erk1/
2 phosphorylation. However, only the late wave,

which is independent of Grb2/Sos assembly or
PI 3-kinase activity, is required for macrophage

differentiation (Gobert Gosse et al. 2005).

Mona, an adaptor protein that increases late
Erk1/2 phosphorylation (Bourgin et al. 2002)

and Gab3 are coinduced during monocytic dif-

ferentiation in a CSF-1R Tyr-807-dependent
manner (Fig. 4A). Mona interacts with Gab3

and with the CSF-1R pTyr-697 site. This site is

also important for Gab3 tyrosine phosphoryla-
tion, induction of Mona expression, and mac-

rophage differentiation (Bourgin et al. 2002).

Gab proteins interact with Shp2 and mediate
Erk1/2 activation downstream from growth fac-

tor receptors (Nishida et al. 1999; Meng et al.

2005; Lee et al. 2011). The Gab3/Mona com-
plex, but not Mona alone, enhances macro-

phage differentiation in cell cultures (Bourgin

et al. 2000; Wolf et al. 2002). However, as mac-
rophage development is normal in Gab3-defi-

cient mice (Seiffert et al. 2003) it appears that

CSF-1R/Mona/Gab3/Erk1/2 pathway is not
essential for steady-state macrophage develop-

ment in vivo.

CSF-1R also induces the expression/activa-
tion of several other regulators of multipotent

progenitor proliferation/differentiation (Fig.

4A). These include DUSP5, a negative-feedback
regulator of Erk1/2, which inhibits macrophage

differentiation and favors granulocytic differen-

tiation (Grasset et al. 2010), interferon-induc-
ible gene 204 (Ifi204), which suppresses prolif-

eration and favors differentiation (Dauffy et al.

2006), and the adaptor proteins suppressor of
cytokine signaling 1 (Socs1) and SKAP55-relat-

ed (SKAP55R). Socs1 associates with CSF-1R

pTyr-697 and pTyr721 binding sites to inhib-
it proliferation by an unknown mechanism

(Bourette et al. 2001). CSF-1 induces SKAP55R
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tyrosine phosphorylation and actin association.

SKAP55R overexpression decreases CSF-1R-in-
duced proliferation, but does not affect differ-

entiation (Bourette et al. 2005).

Studies with myeloblasts/monoblasts/pro-
monocytes (Fig. 4B) confirm the central role of

the Erk1/2 pathway in CSF-1-induced differen-

tiation (Wilson et al. 2005). In myeloblasts, a
CSF-1R pTyr-559/SFK pathway initiates the ac-

tivation of STAT3 (Marks et al. 1999) and Erk1/
2 and the inactivation of PP2A, which plays
a significant role in enhancing Erk1/2-me-

diated macrophage differentiation (McMahon

et al. 2001). In multipotent cells, via a SFK-in-
dependent pathway, Gab2 becomes tyrosine

phosphorylated, associating with signaling mo-

lecules, including Grb2, Shp2, and p85, to acti-
vate Erk1/2 and differentiation (Liu et al. 2001).
T-cell protein-tyrosine phosphatase (Tcptp)

dephosphorylates the activated CSF-1R, nega-
tively regulating differentiation by suppressing

both CSF-1R association with the Grb2/Gab2/
Shp2 complex and activation of Erk1/2 (Si-
moncic et al. 2006). Gab2 deficiency in mice

leads to a decreased frequency and proliferation

of CFU-M, which retain the capacity to dif-
ferentiate to macrophages (Lee et al. 2011).

Studies with Gab2 mutants unable to interact

with Shp2 or PI3K show that both interactions
are required for restoration of CFU-M frequen-

cy and proliferation. As constitutively active

Akt only rescues CFU-M size, but not frequen-
cy, the Gab2/PI3K/Akt axis predominantly

promotes the proliferation of committed mac-

rophage progenitors. Gab2 is required for Akt
activation only in monoblasts and regulates

Erk1/2 activity in a developmental stage-specif-

ic manner, increasing activation in monoblasts
and promonocytes and decreasing activation in

macrophages (Lee et al. 2011).

In primary human monocytes (Fig. 4C),
CSF-1 triggers a cyclic activation of the PI3K

and Erk1/2 pathways that is correlatedwith suc-
cessive rounds of CSF-1R Tyr-723 phosphory-
lation and dephosphorylation. Successive waves

of Akt activation, increasing in amplitude and

duration, are required for caspase activation,
which, via cleavage of nucleophosmin, enhanc-

es macrophage differentiation (Jacquel et al.

2009) toward a trophic, M2-like phenotype

(Guery et al. 2011). Erk1/2 was activated with
coordinated kinetics, but was not essential for

nucleophosmin cleavage, and its role remains to

be defined. In contrast, the SFKs, Hck, and, to
a lesser extent, Lyn, but not Fyn or Src, medi-

ated nucleophosmin cleavage downstream from

CSF-1R (Jacquel et al. 2009).

Chemotaxis

CSF-1 triggers a rapid membrane ruffling re-

sponse followed by cell spreading and polariza-

tion (Boocock et al. 1989; Webb et al. 1996;
Chitu et al. 2005), processes involving a dynam-

ic reorganization of the actin cytoskeleton (re-

viewed in Park et al. 2011; Pixley 2012) and focal
adhesions (Fig. 5) (Pixley et al. 2001; Sampaio

et al. 2011). CSF-1-stimulates a biphasic actin

polymerization response that initially peaks at
30 sec of stimulation and is followed by a lon-

ger-lasting wave, peaking at 5–6 min (Sampaio

et al. 2011; Ishihara et al. 2012). The small
GTPases, Cdc42, Rac, and Rho and their down-

stream effectors, Wiskott-Aldrich syndrome

protein (WASP) and WASP-family verprolin
homologous 2 (WAVE 2) actin nucleators, reg-

ulate actin polymerization andCSF-1R-induced

chemotaxis (Kheir et al. 2005; Ridley 2008;
Cammer et al. 2009; Dovas et al. 2009; Ishihara

et al. 2012).

The first wave of actin polymerization is ini-
tiated by the Cdc42- and CSF-1R pTyr-721/
PI3K p110d-dependent activation of WASP

(Papakonstanti et al. 2008; Cammer et al. 2009;
Sampaio et al. 2011; Mouchemore et al. 2013).

CSF-1R also induces SFK-dependent tyrosine

phosphorylation of WASP Tyr-291, which,
although not necessary for WASP activation

(Cammer et al. 2009), is necessary for macro-

phage chemotaxis to CSF-1 (Dovas et al. 2009).
PSTPIP2 is tyrosine phosphorylated within

30 sec and inhibits actin polymerization and

the ruffling response (Chitu et al. 2005). By
competing with other F-BAR family proteins

for phosphatidylinositol 4,5-bisphosphate

(PIP2)-rich membrane-binding sites and re-
cruiting PTPN12 to those sites, PSTPIP2 may

mediate the local dephosphorylation and par-
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tial inactivation of WASP (Cote et al. 2002; Tsu-
jita et al. 2013).

The second wave of actin polymerization

leading to membrane ruffling involves Rac1/
IRSp53 activation of the WAVE2/Abi complex

(Kheir et al. 2005; Abou-Kheir et al. 2008)

and is pTyr-721/PI3K independent (Sampaio et
al. 2011). CSF-1R-regulated membrane ruffling

also requires PLD2 lipase and Rac2 GEF activi-

ties (Mahankali et al. 2011a,b). Rac2 initially
increases, but subsequently inhibits PLD2 activ-

ity, by preventing PLD interaction with PIP2 at

the plasma membrane, thus leading to cell im-
mobilization (Peng et al. 2011). Although the

above studies in macrophage cell lines indicate

that Rac1 and Rac2 are required for chemotaxis
(Allen et al. 1998; Abou-Kheir et al. 2008), the

findings are in conflict with those in primary

macrophages, in which absence of Rac1, Rac2,
or both, did not affect CSF-1-induced chemo-

taxis (Wells et al. 2004; Wheeler et al. 2006). An

additional conflict relates to the mechanism of
Rac1 activation by CSF-1R. Although studies in

SHIP2/2 macrophages implicate Vav proteins

(Vedham et al. 2005), studies in single or triple-
deficient Vav1/2/32/2 primary macrophages

indicate that they are not required (Wells et al.

2005; Bhavsar et al. 2009). In contrast, the
PI3K/Akt pathway plays a central role in CSF-

1R-induced chemotaxis (Sampaio et al. 2011),

via phosphorylation of PKC-z and LIMK/Co-
filin (Zhang et al. 2009). Two adaptor proteins,

Lnk and STAP-2, suppress Akt activation and

inhibit CSF-1-induced macrophage migration
(Ikeda et al. 2007; Gueller et al. 2010). The

CSF-1R pTyr-721/PI3K pathway also regulates

cell adhesion by controlling paxillin phosphor-
ylation (Owen et al. 2007; Sampaio et al. 2011)

and PTP-f expression (Pixley et al. 2001; Sam-

paio et al. 2011).
During cell migration, the formation of ad-

hesion structures is locally disrupted by inhibi-
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tory proteins (e.g., PTP-f), and actomyosin-

dependent contractility is necessary for retract-
ing the trailing edge. S100A4 is a Ca2þ and

myosin IIA-binding protein that inhibits acto-

myosin assembly downstream from the CSF-1R
(Li et al. 2003, 2010). S100A4 deficiency leads to

a defective CSF-1 chemotactic response, owing

to reduced persistence and size of membrane
protrusions associated with persistent and

enhanced actomyosin-IIA assembly and hyper-

phosphorylation andmislocalization of paxillin
(Li et al. 2010). The small GTPase Rho is re-

quired for CSF-1-mediated macrophage che-

motaxis (Jones et al. 1998) and promotes tail
retraction by controlling myosin activity (Han-

ley et al. 2010). In macrophages stimulated with

CSF-1, Rho undergoes cycles of activation and
deactivation. Although the mechanism of acti-

vation is unclear, RhoAdeactivation ismediated

by the CSF-1R/PI3K p110d/p190RhoGAP axis
(Papakonstanti et al. 2007).

PERSPECTIVE

CSF-1R signaling promotes myeloid differ-

entiation, monocytic commitment, and the
survival, proliferation, and chemotaxis of mac-

rophages by regulating the tyrosine phosphor-

ylation, activation, or expression of multiple
proteins. Several of these proteins (e.g., Gab2,

PKC-z) regulate downstream signaling path-

ways in a developmental stage-specific manner.
Some conflicting results, in primary macro-

phages compared with macrophage cell lines,

may result from the utilization of different ef-
fector isoforms by the activated CSF-1R (Papa-

konstanti et al. 2007). Thus caution should be

taken in extrapolating results to different devel-
opmental stages, or types of macrophages. The

existence of a new CSF-1R ligand, IL-34, that

also interacts with PTP-z, which is coexpressed
with the CSF-1R in several cell types, including

HSC (Sarrazin et al. 2009; Himburg et al. 2012)

and neural progenitors (von Holst et al. 2006;
Nandi et al. 2013), may provide additional

mechanisms for fine-tuning CSF-1R signaling

in development, immunity, and disease. The
discovery that Epstein–Barr virus encodes

BamHI-A rightward frame-1 (BARF1), a secret-

ed hexameric protein that binds the CSF-1

dimer interface with picomolar affinity and
conformationally renders the cytokine unable

to interact with the CSF-1R (Strockbine et al.

1998; Elegheert et al. 2012; Shim et al. 2012),
explains how Epstein–Barr virus eludes the im-

mune response and offers a starting point for

therapeutic targeting of bothCSF-1 andBARF1.
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Gómez-Muñoz A, Kong JY, Salh B, Steinbrecher UP. 2004.
Ceramide-1-phosphate blocks apoptosis through inhibi-
tion of acid sphingomyelinase inmacrophages. J Lipid Res
45: 99–105.
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