
CSIRO at 2019 TREC Precision Medicine Track

Maciej Rybinski
CSIRO Data61

Marsfield, NSW, Australia
maciek.rybinski@csiro.au

Sarvnaz Karimi
CSIRO Data61

Marsfield, NSW, Australia
sarvnaz.karimi@csiro.au

Cecile Paris
CSIRO Data61

Marsfield, NSW, Australia
cecile.paris@csiro.au

ABSTRACT
TREC Precision Medicine track focuses on search tasks tai-
lored for oncologists. Given a cancer patient, the proposed
systems must find clinical trials that match the patient, as
well as the relevant information from biomedical literature
(PubMed abstracts 2019 baseline). In our experiments, we
compare BM25 and Divergence from Randomness (DFR) base-
lines and report results obtained with multiple learning-to-
rank models. Some of our submitted runs score in top ten
runs reported by the organisers.

1. INTRODUCTION
Precision Medicine is the development of treatment plans

that take into account the patients’ unique genetic markup,
environmental influences, and lifestyle choices, as well as
other biomarker information for an individual’s prevention,
diagnosis, and treatment strategies [4].

The TREC Precision Medicine (PM) track [8, 9], a special-
isation of the TREC Clinical Decision Support track [10, 7,
11], aims to tackle the challenge of including cancer genetic
information in designing treatment strategies. It aims to pro-
vide the medical staff clinical decision support for cancer
patients. The task is its third year and requires participants
to develop search systems that retrieve relevant biomedi-
cal literature and clinical trials for decision support, given
a query with the patient’s genetic mutations, disease, and
demographic attributes.

In this report, we outline our CSIROmed team submis-
sion for the 2019 PM track, discuss the experimental setup
and present our results. We also report on runs that cor-
rected our submission errors, which led to improvements
over our submitted runs. Overall, we show benefit in apply-
ing learning-to-rank using some of the conventional meth-
ods that do not rely on large amount of training data. In
none of our runs any hand-crafted rules is applied.

2. DOCUMENTS AND TOPICS
In TREC Precision Medicine 2019, two datasets are used:

(1) biomedical literature of approximately 29.1 million PubMed
journal abstracts (a December 2018 MEDLINE snapshot);
and, (2) May 2019 snapshot of ClinicalTrials.gov comprising
of 306, 238 clinical trials.

Forty topics in a semi-structured format are provided. Each
topic contains disease (a cancer type, gene(s) or genetic mu-
tation(s) specific to the patient and related to their condi-
tion, and demographic attributes of the patient. That is, each
topic is representative of one patient, as created by precision

< t o p i c number="9" >
<disease >
g a s t r o i n t e s t i n a l stromal tumor
</disease >
<gene>
KIT ( exon 9 502 _503 d u p l i c a t i o n )
</gene>
<demographic>58−year−old male</demographic>
</topic >

Figure 1: A TREC 2019 precision medicine topic (Topic 9).

oncologists at the University of Texas MD Anderson Can-
cer Center. For example, the case of a 58 y/o male with
gastrointestinal stromal tumor with KIT gene exon 9502_503
duplication is shown in Figure 1.

3. RETRIEVAL SYSTEM
We use the same document parsing and indexing approach

that we developed previously as part of our participation in
Clinical Decision Support track 2016 [2, 3] (A2A system),
Precision Medicine 2017 and 2018 [5, 6]. For indexing and
processing of the documents (stemming, stopword elimina-
tion), we use the standard mechanisms of Apache Solr 6.6.2.
This year we simplify query formulation process in all runs,
using a concatenation of gene and disease fields.

In both sub-tasks, scientific abstracts and clinical trials, we
report two baselines obtained with distinct retrieval models,
BM25 and a divergence from randomness model—specifically
InL2 or Inverse Document Frequency model with Laplace
after-effect and normalisation 2—which we refer to as DFR,
in order to compare their performance directly. All other ex-
perimental runs are focused on experimenting with different
versions of our learning-to-rank approach. In case of clini-
cal trials sub-task we also apply strict matching of patient’s
demographic attributes on all non-baseline runs.

Our re-ranking (learning-to-rank) approach is based on
features designed to model query-document matches inde-
pendently for disease and gene topic fields. For this purpose
we use features based on similarity of word2vec centroids of
respective query fields and phrases of the documents, which
are re-scored. For the disease topic field the procedure is
as follows. Contents of disease field are matched against
phrases extracted from the document via a sliding window
of varying size. Best match for each window size becomes a
feature for our model. Goodness of a match is calculated as



Figure 2: Per query comparison of our best run for ab-
stracts versus the TREC best and median (P@10). Lines
between the datapoints do not represent any results.

cosine similarity between tf-idf weighted word-embeddings-
based centroid representations of the field contents and ex-
tracted phrases. We use the sliding window sizes between
1–5; we use 30-dimensional skip-gram vectors trained on a
2018 MEDLINE snapshot and IDF data calculated on the
same corpus. Apart from the 5 ’best-match’ features we use
exact match for disease name (boolean), length of the dis-
ease topic field and length of the document.

Gene-related query-document matches are modeled in a
similar fashion, so a top match is also extracted using IDF-
weighted centroids and sliding windows of varying length.
The feature extraction for gene information is designed for
topic fields, which contain any number of gene mentions
and some additional information (gene mentions and other
information is parsed from the topic field contents). The fea-
tures are calculated for specific gene names mentioned in the
topic and topic parts in general (including the names). Parts
of the gene field are fragments separated with a comma.

Gene-related features are: top matches for each window
size (1–3) across all gene mentions, together with top match
found across all window sizes (1–5), across all field parts. If
the gene information is missing (for example, if the field is
only ’high mutational burden’), we use the top-3 matches
obtained for the field parts (in case of our example, the
phrase ’high mutational burden’).

Our models are trained directly on TREC PM 2017/2018
relevance judgements. For model selection we use random-
ized test and validation sets of three topics each and av-
eraged the results over 100 of these randomized selections
while re-training the models on the remaining topics. In
the experiments, we use either ExtraTrees (a Random Forest
variant) or XGBoost binary classifiers. In both cases, we treat
their probabilistic outputs as relevance scores.

Our learning to rank approach follows a typical two-step
setting. That is, we use our base ranker (see BM25 base-
lines) and re-rank a top portion of its results (50/100 top
candidate documents). In our submitted runs we only re-
ported the re-scored documents, which eventually resulted
in poor inferred NDCG scores of these runs.

4. SUBMITTED RUNS
We submitted nine automatic runs for the two tasks, five

runs on clinical trials and four runs on medical literature.
Details of these runs are described in Table 1. We used equal
weights for disease and gene terms.

Figure 3: Per query comparison of our best run for clini-
cal trials versus the TREC best and median (P@10). Lines
between the datapoints do not represent any results.

Figure 4: Number of relevant and partially relevant doc-
uments per query as listed in relevance judgements. Top
bars are for abstracts and bottom is clinical trials.

5. RESULTS
An overview of our results is shown in Tables 2 and 3. The

top row shows TREC Median results on 63 runs submitted
by different teams for the scientific literature sub-task as re-
ported in the TREC Overview [9]. A corresponding TREC
Median results for clinical abstracts were calculated over 53
runs submitted by the participants. We also list the results of
the team that had highest scores compared to other teams,
submitted by JULIE Lab [1]. Their best run for the abstract
retrieval is called jlpmcommon2 and uses a learning-to-rank
approach designed based on LETOR.

Clinical trial runs were different. There was no one run
that achieved highest score for all three metrics. However,
JULIE lab still scored highest in two of its runs for infNDCG
and R-Prec, which indicates their underlying method is ef-
fective, with differences in the query processing methods for
abstracts and clinical trials.

Learning-to-Rank. Our learning-to-rank runs based on Ex-
traTrees model seem to show encouraging results in terms
of P@10, resulting in above-median scores both for clinical
trials and scientific abstracts. Figures 2 and 3 present P@10



Method
Run Ranking Re-ranking Re-ranking model Demographic Filtering

Abstracts
bm25_6801 BM25 – – –
dfr_9464 DFR – – –
et_8435 BM25 Top 50 ExtraTrees –
xgb_5113 BM25 Top 50 XGBoost –

Clinical Trials
bm25_ct_25 BM25 – – –
DFRInL2_f DFR – – X
bm25_ct_f_61 BM25 – – X
rf1_f_100 BM25 Top 100 ExtraTrees X
rf2_f_50 BM25 Top 50 ExtraTrees X

Table 1: Configuration of the CSIROmed submitted runs.

Run infNDCG P@10 R-Prec

TREC Median 0.4559 0.5450 0.2806
TREC Top Run 0.5783 0.6525 0.3572

Submitted
bm25_6801 0.4553 0.5250 0.3029
dfr_9464 0.4531 0.5100 0.2948
et_8435 0.3239 0.5725 0.1856
xgb_5113 0.3111 0.5100 0.1796

Post-TREC
bm25_6801 0.4693 0.5300 0.3093
dfr_9464 0.4766 0.5350 0.3165
et_8435 0.4727 0.5825 0.3092
xgb_5113 0.4592 0.5150 0.3032

Table 2: Search over abstracts. TREC Median is averaged
over 40 topics.

per-query results in comparison with TREC median and best
results, for scientific abstracts and clinical trials respectively.
On this particular set of features the Random Forest variant
seems to be a better fit than XGBoost. In both subtasks the
baseline runs resulted in scores comparable to the median,
with slightly below-median P@10 for scientific abstracts.

Learning-to-rank does not work well for topics with low
precision at k, where we re-rank top-k documents–low num-
bers of relevant documents translates directly into poor per-
formance. Number of relevant documents per-topic is pre-
sented in Figure 4 to provide context.

Post-TREC Runs. After submissions, we discovered two
bugs in our our submitted runs: (1) with re-ranking, we
only included the re-ranked portion of the results in the re-
sults files, which negatively impacted the scores; and (2) top
documents from ranked results were chopped due to a bug
in the code that did not include rank zero.

We include corrected runs in the second half of Tables 2
and 3 as post-TREC. For both abstracts and clinical trials,
these runs lead to our best results in all three metrics. While
they do not beat the top runs reported in the overview re-
port, they would set our systems around third best on aver-
age for all three scores.

Run infNDCG P@10 R-Prec

TREC Median 0.5137 0.4658 0.3477
TREC Top Run 0.6451 0.5947 0.4820

Submitted
bm25_ct_25 0.4818 0.4632 0.3384
DFRInL2_f 0.4930 0.4684 0.3406
bm25_ct_f_61 0.4906 0.4658 0.3586
rf1_f_100 0.4450 0.4868 0.2880
rf2_f_50 0.3871 0.4921 0.2663

Post-TREC
bm25_ct_25 0.5620 0.5000 0.4190
DFRInL2_f 0.5842 0.5132 0.4320
bm25_ct_f_61 0.5787 0.5053 0.4305
rf1_f_100 0.5064 0.4868 0.3529
rf2_f_50 0.5226 0.5158 0.3496

Table 3: Search over clinical trials. TREC Median is aver-
aged over 40 topics.

6. SUMMARY
Learning-to-rank models were the main focus of our ex-

periments. We submitted runs for both abstracts and clinical
trials document sets. Our best approaches for both docu-
ment sets use ExtraTrees model for re-ranking top-50 doc-
uments, resulting in above-median infNDCG, P@10, and R-
Prec scores.
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