
CSP Gaps and Reductions in the Lasserre Hierarchy

Madhur Tulsiani∗

November 22, 2008

Abstract

We study integrality gaps for SDP relaxations of constraint satisfaction problems, in the
hierarchy of SDPs defined by Lasserre. Schoenebeck [25] recently showed the first integrality
gaps for these problems, showing that for MAX k-XOR, the ratio of the SDP optimum to the
integer optimum may be as large as 2 even after Ω(n) rounds of the Lasserre hierarchy.

We show that for the general MAX k-CSP problem over binary domain, the ratio of SDP
optimum to the value achieved by the optimal assignment, can be as large as 2k/2k − ε even
after Ω(n) rounds of the Lasserre hierarchy. For alphabet size q which is a prime, we give a lower
bound of qk/q(q − 1)k − ε for Ω(n) rounds. The method of proof also gives optimal integrality
gaps for a predicate chosen at random.

We also explore how to translate gaps for CSP into integrality gaps for other problems using
reductions, and establish SDP gaps for Maximum Independent Set, Approximate Graph Coloring,
Chromatic Number and Minimum Vertex Cover. For Independent Set and Chromatic Number,
we show integrality gaps of n/2O(

√
log n log log n) even after 2Ω(

√
log n log log n) rounds. In case of

Approximate Graph Coloring, for every constant l, we construct graphs with chromatic number
Ω(2l/2/l2), which admit a vector l-coloring for the SDP obtained by Ω(n) rounds. For Vertex
Cover, we show an integrality gap of 1.36 for Ω(nδ) rounds, for a small constant δ.

The results for CSPs provide the first examples of Ω(n) round integrality gaps matching
hardness results known only under the Unique Games Conjecture. This and some additional
properties of the integrality gap instance, allow for gaps for in case of Independent Set and
Chromatic Number which are stronger than the NP-hardness results known even under the
Unique Games Conjecture.

Keywords: semidefinite programming, integrality gaps, constraint satisfaction

∗Computer Science Division, U.C. Berkeley. madhurt@cs.berkeley.edu. Work partly done while visiting Microsoft
Research India and Tsinghua University. This material is based upon work supported by the National Science
Foundation under grants CCF-0515231 and CCF-0729137 and by the US-Israel Binational Science Foundation grant
2006060.

Electronic Colloquium on Computational Complexity, Report No. 104 (2008)

ISSN 1433-8092

1 Introduction

Semidefinite Programming (SDP) hierarchies, such as the ones defined by Lovász and Schrijver
[23] and Lasserre [21] provide a nice way to formalize the following question: what is the best
approximation that can be achieved for a problem using “stronger and stronger” semidefnite pro-
grams? Since SDPs are known to provide some of the best known approximation algorithms for
many optimization problems, this is a natural question to consider.

Starting from a basic integer program for the combinatorial problem, in which variables take values
only 0 and 1, these hierarchies define a sequence of SDP relaxations (known as “rounds” or “levels”
of the hierarchy) for the problem, which are increasingly more constrained. A program obtained
by by r rounds can be solved in nO(r) time and hence algorithms obtained by a constant number
of rounds run in polynomial time. Also, on a starting integer program with n variables, the SDP
obtained by n rounds of the hierarchy gives the true optimum of the combinatorial problem (but
may take exponential time to solve).

Most currently known SDP based algorithms can be derived by a constant number of rounds of
the Lasserre hierarchy (which is the stronger of the two - see [22] for a comparison). It was also
shown by Chlamtac and Singh [9], that for some problems, such as Hypergraph Indpendent Set, the
approximation quality improves as one considers more and more rounds of the Lasserre hierarchy.

It is then of interest to quantify the tradeoff between approximation achieved by the SDP and
the number of rounds of the hierarchy. The quality of approximation (for say, a maximization
problem) achieved by the SDP is measured by the the ratio of SDP optimum to the optimum of the
original combinatorial problem, which is known as the integrality gap 1 of the SDP. Lower bounds
showing that the integrality gap remains large after many rounds of the hierarchy can be viewed
as unconditional lower bounds in a strong computational model, which captures most known SDP
algorithms.

Problems studied

Taking the analogy of the computational model a bit further, we study if integrality gaps for one
problem can be used to show an integrality gap for another problem using reductions (see proof
overview for the structure of reductions for integrality gaps). We remark that reductions between
integrality gaps were considered before, for example by [1] and [25] - we merely show how to do
somewhat more complicated ones. We use the arguments from known reductions in hardness of
approximation literature, which usually start from the hardness of a constraint satisfaction problem
and use it to conclude the hardness of another problem. To this end, we study the following
problems:

1. MAX k-CSP: This is the problem of finding an assignment to binary variables x1, . . . , xn to
satisfy the maximum number of constraints in a given set C1, . . . , Cm. Each constraint is a
boolean function of at most k of the variables and is said to be satisfied when it attains value
1. When the domain of the variables is is allowed to be of size q, we denote the problem by
MAX k-CSPq.

Charikar, Makarychev and Makarychev [7] give an SDP based algorithm for this problem which
provably satisfies a ck/qk fraction of the constraints satisfied by the optimal assignment, for a

1Unfortunately, there are different conventions regarding the definition of the integrality gap (ratio of SDP optimum
to integer optimum and vice-versa). In this paper, we always define integrality gap so that it is a number bigger than
1. Hence, the larger the gap, the farther the SDP is from the true optimum.

1

constant c > 0.44. It was shown by Arora, Alekhnovich and Tourlakis [1] that the integrality
gap for the MAX k-SAT problem, which is a special case of MAX k-CSP, remains 2k/(2k − 1)
even after Ω(n) rounds of the Lovász-Schrijver hierarchy. Schoenebeck [25] recently showed a
gap of factor 2 for MAX k-XOR for Ω(n) and also strengthened the MAX k-SAT results for Ω(n)
rounds of Lasserre.

2. Maximum Independent Set: This is the problem of finding the largest set of vertices in a
graph, not containing any edges. The best known approximation algorithm by Boppana and

Haldórsson [5] achieves an approximation ratio of O
(

n
(log n)2

)

. Also, Feige [13] showed that the

integrality gap for the Lovász ϑ-function, which is an SDP relaxation equivalent to 1 round of
Lasserre, is at least n/2c

√
log n for some constant c.

3. Approximate Graph Coloring: This is the problem of coloring a graph (with different colors for
adjacent vertices) with minimum number of colors, when the graph is known to be colorable
with a small constant number of colors. The best known algorithm, due to Chlamtac [8] colors
a 3-colorable graph with at most n0.2072 colors.

4. Chromatic Number: This is the general problem of finding the minimum number of colors for
coloring a graph when no guarantee as the one above is given. For this problem, Feige, Langberg
and Schechtman [15] show that a gap can be as large as n/polylog(n) for an SDP relaxation
which is weaker than 1 round of Lasserre.

5. Minimum Vertex Cover: In this problem, it is required to find the smallest possible subset of
vertices in a graph, which touches every edge. Integrality gap of a factor 7/6 for Ω(n) rounds
of the Lovász-Schrijver SDP hierarchy were shown by Schonebeck, Trevisan and Tulsiani [26],
and later strengthened to the Lasserre hierarchy by Schoenebeck. An integrality gap of factor
2 − ε was also shown by for Ω(

√

log n/log log n) rounds of the Lovász-Schrijver hierarchy by
Georgiou et. al. [16].

Our Results

We prove strong integrality gaps for MAX k-CSP and develop techniques to carry out PCP based
reductions between SDPs, to obtain gaps for the other problems above. We present a summary
of the known NP-hardness results and the integrality gap results we obtain, in the table below.
UG-hardness denotes the hardness assuming the Unique Games Conjecture. For Approximate Graph

Coloring the hardness mentions the tradeoff for a graph known to be l-colorable.

NP-hardness UG-hardness Integrality Gap No. of Rounds

MAX k-CSP 2k

2
√

2k
[11] 2k

k+o(k) [2] 2k

2k Ω(n)

MAX k-CSPq (for prime q) qk

q(q−1)k [2] qk

q(q−1)k Ω(n)

Maximum Independent Set n

2(log n)3/4+ε [19] n
2c1

√
log n log log n

2c2
√

log n log log n

Approximate Graph Coloring l vs. 2
1
25

log2 l [18] l vs. 2l/2

4l2
Ω(n)

Chromatic Number n

2(log n)3/4+ε [19] n
2c1

√
log n log log n

2c2
√

log n log log n

Minimum Vertex Cover 1.36 [10] 2 - ε [20] 1.36 Ω(nδ)

Remark 1.1 It was pointed out by Luca Trevisan that for Maximum Independent Set and Chromatic

Number the integrality gap can be shown to be at most n/t after t rounds. Hence, the number of
rounds in the above results for these problems is optimal up to a polynomial.

2

Organization of the paper

We present in section 3 an overview of the main ideas in the proofs. Sections 4, 5, 6 and 7 contain
the gaps for CSPs, Independent Set, Graph Coloring and Vertex Cover respectively. The integrality
gaps for graph problems only use the results from section 4, and may be read only knowing the
statement of Corollary 4.8. The gaps for Graph Coloring and Vertex Cover are independent of each
other, but depend on the gaps for Independent Set.

2 Preliminaries and notation

2.1 Constraint Satisfaction Problems

For an instance of Φ MAX k-CSPq, we denote the variables by {x1, . . . , xn}, their domain {0, . . . , q−
1} by [q] and the constraints by C1, . . . , Cm. Each constraint is a function of the form Ci : [q]Ti →
{0, 1} depending only on the values of the variables in an ordered tuple2 Ti with |Ti| ≤ k. We
denote the number of constraints satisfied by the best assignment by OPT(Φ).

For a given set S ⊆ [n], we denote by [q]S the set of all mappings from the set S to [q]. In context of
variables, these mappings can be understood as partial assignments to a given subset of variables.
For α ∈ [q]S , we denote its projection to S′ ⊆ S as α(S′). Also, for α1 ∈ [q]S1 , α2 ∈ [q]S2 such that
α1(S1 ∩ S2) = α2(S1 ∩ S2), we denote by α1 ◦ α2 the assignment over S1 ∪ S2 defined by α1 and
α2. Hence, (α1 ◦α2)(j) equals α1(j) for j ∈ S1 and α2(j) for j ∈ S2 \S1. We only use the notation
α1 ◦ α2 when it is well defined for α1, α2, S1, S2.

We shall prove results for constraint satisfaction problems where every constraint is specified by
the same predicate P : [q]k → {0, 1}. We denote the set of inputs which the predicate accepts
(outputs 1 on) by P−1(1). To generate an instance of the problem each constraint is of the form of
P applied to a k-tuple of literals. For variable x over domain [q], we can generalize the notion of a
literal as x + a (computed modulo q) for a ∈ [q].

Definition 2.1 For a given P : [q]k → {0, 1}, an instance Φ of MAX k-CSP(P) is a set of con-
straints C1, . . . , Cm where each constraint Ci is over a k-tuple of variables Ti = {xi1 , . . . , xik} and
is of the form P (xi1 + ai1 , . . . , xik + aik) for some ai1 , . . . , aik ∈ [q].

Given a predicate P , we will consider a random instance Φ of the MAX k-CSP(P) problem. To
generate a random instance with m constraints, for every constraint Ci, we randomly select a k-tuple
of distinct variables Ti = {xi1 , . . . , xik} and ai1 , . . . , aik ∈ [q], and put Ci ≡ P (xi1+ai1 , . . . , xik +aik).
It is well known and used in various works on integrality gaps and proof complexity (e.g. [6], [1],
[26] and [25]), that random instances of CSPs are highly unsatisfiable and at the same time highly
expanding i.e. for every set of constraints which is not too large, most variables occur only in one
constraint. We capture the properties we need in the lemma below. A proof is provided in the
appendix for the sake of completeness.

Lemma 2.2 Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there exist β =
O(qk log q/ε2), η = Ω((1/β)5/δ) and N ∈ N, such that if n ≥ N and Φ is a random instance of
MAX k-CSP(P) with m = βn constraints, then with probability 1 − o(1)

1. OPT(Φ) ≤ |P−1(1)|
qk (1 + ε) · m.

2We will often ignore the order of the variables in Ti and also refer to Ti as a set of variables.

3

2. For all s ≤ ηn, every set of s constraints involves at least (k − 1 − δ)s variables.

The instances we will mostly be concerned with, are described by systems of equations over finite
fields. Let q be prime and A ∈ (Fq)

d×k be a matrix with rank(A) = d ≤ k. We define the predicate
PA : [q]k → {0, 1} such that

PA(x1, . . . , xk) = 1 ⇔ A · (x1 . . . xk)
T = 0

To generate a constraint Ci in an instance of MAX k-CSP(PA), we consider PA(xi1+ai1 , . . . , xik +aik)
which is 1 iff A · (xi1 . . . xik)T = b(i) for b(i) = −A · (ai1 . . . aik)T. We define the problem MAX k-

CSP(PA) below which is a special case of the MAX k-CSP(P) problem.

Definition 2.3 For a given A ∈ (Fq)
d×k, an instance Φ of MAX k-CSP(PA) is a set of con-

straints C1, . . . , Cm where each constraint Ci is over a k-tuple Ti = {xi1 , . . . , xik} and is of the
form A · (xi1 , . . . , xik)T = b(i) for some b(i) ∈ (Fq)

d.

2.2 Linear Codes

Recall that a linear code of distance 3 and length k over Fq is a subspace of (Fq)
k such that every

non-zero vector in the subspace has at least 3 non-zero coordinates. We shall prove our results for
predicates PA where A is a matrix whose rows form a basis for such a code. Such a matrix is called
the generator matrix of the code. To get the optimal bounds, we shall use Hamming codes which
have the largest dimension for the fixed distance 3. We refer to the code below as Hamming code

of length k.

Fact 2.4 Let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q − 1). Then there exists a linear code of length k
and distance 3 over Fq, with dimension k − r.

2.3 The Lasserre hierarchy

The Lasserre hierarchy gives a sequence of increasingly tight semidefinite programming relaxations
for a quadratic integer program for variables taking values 0 and 1. The semidefinite program
after t rounds of the hierarchy introduces a new variable for the product of every t variables in
the original program. Thus, if the original program had n variables and polynomial number of
constraints, the new program has size n(O(t)).

We first consider the program for Maximum Independent Set. Given a graph G = (V,E), the integer
program would have a variable Xi for each i ∈ V with Xi = 1 if i is in the independent set and 0
otherwise. To ensure that the solution is an independent set, we would enforce that XiXj = 0 for
all (i, j) ∈ E. To obtain the Lasserre relaxation, we first think of a an integer program which has a
variable XS for each S ⊆ V, |S| ≤ t where the intended solution in XS = 1 iff all vertices in S are in
the independent set. We can then add the constraint that the product XS1 ·XS2 must only depend
on S1 ∪ S2. For homogenization, we introduce an extra variable X∅ which is always supposed to
be 1. Replacing the integer variables XS by vectors US gives the semidefinite relaxation as below.
Note that the program for t rounds only has vectors for sets of size at most t. It can be shown
that for any set S with |S| ≤ t, the vectors US′ , S′ ⊆ S induce a probability distribution over valid
independent sets of the subgraph induced by S.

Similarly, we can write down a relaxation for the MAX k-CSPq problem. Note that an integer
solution to the problem will be given by a single mapping α0 ∈ [q][n], which is an assignment to

4

Lasserre SDP for Maximum Independent Set

maximize
∑

i∈V

∥

∥U{i}
∥

∥

2

subject to
〈

U{i},U{j}
〉

= 0 ∀ (i, j) ∈ E

〈US1
,US2

〉 = 〈US3
,US4

〉 ∀ S1 ∪ S2 = S3 ∪ S4

〈US1
,US2

〉 ∈ [0, 1] ∀S1, S2

‖U∅‖ = 1

all the variables. Using this, we can define 0/1 variables X(S,α) for each S ⊆ [n] such that |S| ≤ t

and α ∈ [q]S . The intended solution is X(S,α) = 1 if α0(S) = α and 0 otherwise. As before, we
introduce X(∅,∅) which is intended to be 1. Replacing them by vectors gives the SDP relaxation.
Note that we denote the vectors corresponding to a set of variables and a partial assignment by V
and a vector for a set (as above) by U to avoid confusion.

Lasserre SDP for MAX k-CSPq

maximize
m
∑

i=1

∑

α∈[q]Ti

Ci(α)
∥

∥V(Ti,α)

∥

∥

2

subject to
〈

V(S1,α1),V(S2,α2)

〉

= 0 ∀ α1(S1 ∩ S2) 6= α2(S1 ∩ S2)
〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S3,α3),V(S4,α4)

〉

∀ S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4
∑

j∈[q]

∥

∥V({i},j)

∥

∥

2
= 1 ∀i ∈ [n]

〈

V(S1,α1),V(S2,α2)

〉

≥ 0 ∀S1, S2, α1, α2
∥

∥V(∅,∅)
∥

∥ = 1

For any set S with |S| ≤ t, the vectors V(S,α) induce a probability distribution over [q]S such that

the assignment α ∈ [q]S appears with probability
∥

∥V(S,α)

∥

∥

2
. The constraints can be understood

by thinking of valid solution as coming from a distribution of assignments for all the variable and
of
〈

V(S1,α1),V(S2,α2)

〉

as the probability of the event that variables in S1 get value according to α1

and those in S2 according to α2. The last two constraints simply state the fact that a probability
must be positive and the probability of the event which does not restrict any variable to anything
must be 1.

The first constraint says that the probability of a variable simultaneously getting two different
values must be 0. The second one says that if we calculate the probability that all variables in
(S1 ∪S2) (= S3 ∪S4) get values according to α1 ◦α2 (= α3 ◦α4) in two different ways, it must still
be the same. In the third constraint, V({i},j) denotes the map which assigns value to j to variable
xi. The constraint can be understood as saying that the variable xi must take exactly one value.
This constraint is sometimes also written as

∑

i∈[q] V({i},j) = V(∅,∅), which is equivalent as can be

seen by noting that
∥

∥

∥

∑

i∈[q] V({i},j) − V(∅,∅)
∥

∥

∥

2
=
∑

j∈[q]

∥

∥V({i},j)
∥

∥

2
− 1.

For a graph G, we denote the optimum of the independent set SDP by FRAC(G), and for the CSP
instance Φ we denote it by FRAC(Φ). The integrality gap of both the SDPs is then given by (SDP
optimum)/(integer optimum). Note that according to our convention, the integrality gap is always
at least 1.

5

3 Overview of proofs

3.1 CSP Gaps

For proving integrality gaps for CSPs, our starting point is the result by Schoenebeck [25]. Even
though the result is stated as an integrality gap for MAX-k-XOR, it is useful to view the argument
as having the following two parts:

1. Given a system of equations over F2 with no “small contradictions”, it shows how to construct
vectors V(S,α) (satisfying consistency conditions), such that for every set S of variables with
|S| ≤ t,

∥

∥V(S,α)

∥

∥ > 0 if and only if α satisfies all equations involving variables from S.

2. If one considers a random instance Φ of a CSP, with every constraint being a linear equation
on at most k variables (MAX k-XOR), then the system obtained by combining them has no
“small contradictions”.

It can be shown that the first step implies FRAC(Φ) = m (m is the number of constraints) even
after t rounds. On the other hand, in a system of equations with each chosen randomly, only about
half are satisfiable by any assignment. Hence, one gets an integrality gap of factor 2, for t rounds.
Here t depends on the size of “small contradictions” for step 2 and can be chosen to be Ω(n).

We note that every constraint does not have to be a single equation for second step to work. In
particular, we consider each constraint to be the form A · (x1, . . . , xk)

T = b for some A ∈ (F2)
d×k,

which is the same for all constraints and b ∈ F
d
2. The constraint is said to be satisfied only when

all these d equations are satisfied. Now, if A is full rank, then one can show that in a random CSP
instance Φ, only about 1/2d fraction of the constraints are satisfiable by any assignment.

Note that all equations obtained by combining all the ones in the constraints are no longer in-
dependent (the ones in each constraint are correlated because of a fixed choice of A). However,
one can still show that if A satisfies some extra properties, like any linear combination of the d
equations given by A involves at least 3 variables (i.e. A is the generator matrix of a distance 3
code over F2), then the conclusion in the second step can still be made. Step 1 still allows us to
conclude that FRAC(Φ) = m, thereby obtaining an integrality gap of factor 2d. Optimizing over d
gives the claimed results for MAX k-CSP. We also generalize the first step, to work for equations
over arbitraty prime fields Fq, to obtain a gap for MAX k-CSPq.

3.2 Reductions

Consider a reduction from a constraint satisfaction problem, to another problem, say Maximum

Independent Set for concreteness. Starting from a CSP instance Φ, this reduction creates a graph
GΦ and one needs to argue the following two things:

• Completeness: If Φ has an assignment satisfying many constraints, then GΦ has a large
independent set.

• Soundness: If Φ has no good assignment, then GΦ has no large independent sets.

If Φ is an integrality gap instance for an SDP, then Φ has no good assignment but has a good SDP
solution. Showing that GΦ is an integrality gap instance, amounts to making the following two
claims simultaneously:

6

• Vector Completeness: Since Φ has a good SDP solution, so does GΦ.

• Soundness: Since Φ has no good assignment, GΦ has no large independent sets.

Notice that if we are using a known NP-hardness reduction, then the soundness condition is already
available. Showing an integrality gap reduces to generalizing “completeness” to “vector complete-
ness”. We do this by giving various transformation, that transform an SDP solution for Φ, into
one for the problem we are reducing to.

3.2.1 Maximum Independent Set

The transformations for independent set are conceptually the simplest and form a basis for our
other results as well. We consider the FGLSS graph GΦ obtained from Φ, which has vertices of the
form (Ci, α), where Ci is a constraint and αi is a partial assignment to variables in Ci. Vertices
corresponding to contradicting assignments are connected.

Since Φ has an SDP solution for t rounds of Lasserre (say for a large t), we have vectors V(S,α)

where S is a set of at most t variables and α is a partial assignment to those variables. We need
to produce vectors US where S is a set of vertices in the FGLSS graph. However, a set of vertices
is simply a set of constraints and partial assignments to all the variables involved. Let S′ be the
set of all variables in all the constraints in S and let α′ be the joint partial assignment defined
by all vertices in S (assuming for now, that no partial assignments in S contradict). We take
US = V(S′,α′).

The reduction (by [3]) proceeds by taking products of the graph GΦ to get Gr
Φ and randomly

sampling a certain vertex-induced subgraph. It turns out to be sufficient however, to create an
SDP solution for Gr

Φ. Each vertex in Gr
Φ is an r-tuple of vertices in GΦ with an edge between two

r-tuples if vertices in any of the r coordinates are adjacent in GΦ. A set S of vertices in Gr
Φ is a set

of r-tuples and we consider sets S1, . . . ,Sr where Sj projection of S to the jth coordinate. For Gr
Φ,

we simply take US = US1 ⊗ . . . ⊗ USr . This corresponds to the intuition that every independent
set in Gr

Φ corresponds to picking one independent set in each copy of GΦ.

3.2.2 Approximate Graph Coloring and Chromatic Number

To obtain a gap for Approximate Graph Coloring, we modify the FGLSS reduction slightly. The
gap for Chromatic Number is derived from this by taking graph products and tensoring vectors as
before. The modified reduction below is in the spirit of randomized PCPs of Feige and Killian [14].

Consider an instance Φ when the constraints are known to be of the type A · (x1, . . . , xk)
T = b

and consider GΦ as before. Supposing that we had an assignment satisfying all constraints, this
would give a large independent set. For the the graph to be l colorable, we need l independent
sets covering the graph. Let l be the nullity of the matrix A and consider the vectors w1, . . . , wl

such that A ·wl = 0. If α is a partial assignment to variables (x1, . . . , xk) which satisfies the above
constraint, then so is α + wj for 1 ≤ j ≤ l. 3

The problem is this does not give us an independent set. If x1, . . . , xn was an assignment, and we
looked at the restriction of this assignment to every constraint and added wj to every restriction,
this does not give a consistent assignment to x1, . . . , xn. However, this is an independent set if we

3A reader familiar with [14] may recognize this as an attempt to get a zero-knowledge protocol for showing that
Φ is satisfiable. However, we do not argue the soundness of this protocol - we simply enforce it in the choice of Φ.

7

slightly modify the FGLSS graph. Every constraint Ci is on an ordered tuple Ti of vertices. For
assignment α1 to Tii and α2 to Ti2 , we connect them only if α1, α2 differ on a variable in the same
coordinate in Ti1 , Ti2 . One can then verify that the transformation above then takes us from one
independent set to another. Changing the graph may affect the soundness, but it is possible to
choose Φ so that the resulting graph still has no large independent sets.

Using this intuition, we now need to produce a vector every vertex and every color (and sets of
vertices and sets of colors). For a vertex (Ci, α) in GΦ, we take the vectors corresponding to the l
colors as V(Ti,α+w1), . . . ,V(Ti,α+wl).

3.2.3 Minimum Vertex Cover

For Minimum Vertex Cover, we use the reduction by Dinur and Safra [10], which is a little complicated
to describe. However, an interesting point comes up in analyzing a (small) step which is not
“local”, as opposed to all the steps in the previous reductions. The step is a simple Chernoff
bound in the completeness part, showing how large independent sets intersect certain other sets
of vertices in a graph. Generalizing this to “vector-completeness” seems to require analyzing the
“local distributions” defined by the vectors, and combining the bounds globally using properties
of the SDP solution. Another component of the proof is a transformation of vectors for long-code
based reductions.

4 Gaps for k-CSPs

4.1 Lasserre vectors for linear equations

We first state a generalization of Schoenebeck’s result [25] that we shall need. As mentioned before,
it is more convenient to view it as constructing vectors for a system of linear equations. We show
that if the width-t bounded resolution (defined below) of the system of equations cannot derive
a contradiction then there exists vectors for sets of size up to t/2 which satisfy all consistency
constraints in the Lasserre relaxation. Also these vectors “satisfy” all the equations in the sense
that if we think of

∥

∥V(S,α)

∥

∥

2
as the probability that the variables in set S get the assignment α,

then for any set S, the only assignments having non-zero probability are the ones which satisfy all
the equations involving variables from S.

We write a linear equation in variables {x1, . . . , xn} as ω · x = r where ω is a vector of coefficients

and x is the vector containing all variables. We also denote by
−→
0 the coefficient vector with all

coefficients equal to 0. For a system Λ of linear equations over Fq, we formally define resolution as
below

Definition 4.1 Let Λ be a system of linear equations over a prime field Fq. Then Res(Λ, t) is
defined as the set of all equations involving at most t variables, each of which can be derived by a
linear combination of at most two equations from Λ.

Also, for a set S ⊆ [n], let AS denote the set of all partial assignments to variables in S, which
satisfy all equations in Λ involving only variables from S. We then have the following theorem

Theorem 4.2 Let q be a prime. Suppose Λ is a system of linear equations in Fq such that (
−→
0 ·x =

r) ∈ Λ ⇔ r = 0 and Res(Λ, 2t) = Λ. Then there are vectors V(S,α), for all S with |S| < t and for

all α ∈ [q]S, such that

8

1.
〈

V(S1,α1),V(S2,α2)

〉

≥ 0 for all S1, S2, α1, α2.

2.
〈

V(S1,α1),V(S2,α2)

〉

= 0 if α1(S1 ∩ S2) 6= α2(S1 ∩ S2).

3. If αi ∈ [q]Si , 1 ≤ i ≤ 4 are such that α1 ◦ α2 and α3 ◦ α4 are both defined and equal, then

〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S3,α3),V(S4,α4)

〉

4. V(S,α) = 0 for α /∈ AS and
∑

α∈AS

∥

∥V(S,α)

∥

∥

2
= 1

Note that the theorem is stated in terms of a system Λ, which is closed under the applications of
the operator Res(·, 2t). Our proof of the theorem essentially follows Schoenebeck’s proof except for
one modification, which allows the generalization to the q-ary case. We defer the details to the
appendix.

4.2 Deriving the gaps for MAX k-CSPq

We will prove an integrality gap for general instances of MAX k-CSP(PA). Specializing these
to Hamming codes will then give the claimed results for MAX k-CSPq. Let A ∈ (Fq)

d×k be a
matrix with linearly independent rows. Recall that an instance of MAX k-CSP(PA) is specified by
constraints C1, . . . , Cm where each constraint Ci is a system of linear equations over Fq of the form
A · (xi1 . . . xik)T = b(i). We first show that if an instance Φ of MAX k-CSP(PA) has good expansion,
then FRAC(Φ) = m even after large number of rounds. The integrality gap will then follow as an
easy consequence.

Theorem 4.3 Let A ∈ (Fq)
d×k be the generator matrix of a distance 3 code. Let Φ be an instance

of MAX k-CSP(PA) with m = βn constraints such that for s ≤ ηn, every set of s constraints
contains at least (k− 1− δ)s variables for δ ≤ 1/4. Then, FRAC(Φ) = m for the SDP relaxation of

MAX k-CSP(PA) obtained by (η3

8β2)n rounds of the Lasserre hierarchy.

Proof: We take Λ0 to the set of all linear equations appearing in Φ, and take Λ to be closure of of

it under Res(·, t) for t = (η3

4β2)n. It will follow easily from Theorem 4.2 that FRAC(Φ) = m once we

establish that Λ satisfies the necessary conditions to apply the theorem i.e. (
−→
0 ·x = r) ∈ Λ ⇔ r = 0.

Expansion based arguments have often been used in previous works in proof complexity. For
example, [25] used the argument due to Ben-Sasson and Wigderson [4]. We will show that even
when the equations are not independent as in [4] and [25] (equations for every constraint come
from A), the property that A has distance 3 shall turn out to be sufficient for (a modification of)
the argument.

Let us assume that (
−→
0 · x = r0) ∈ Λ for some r0 6= 0. We shall show that any derivation of this

must have an intermediate equation involving too many variables, thus deriving a contradiction.
Consider a minimal derivation tree of (

−→
0 · x = r0) for r0 6= 0. By definition of Res(·, t), this will be

a binary tree with the equation (
−→
0 · x = r0) at the root and equations in Λ0 at the leaves.

Let (ω · x = r) be any intermediate equation in the tree. We denote the node by (ω, r). We denote
by ν(ω, r) the number of constraints of Φ used in deriving (ω, r). It is immediate that if (ω3, r3)
can be derived from (ω1, r1) and (ω2, r3), then ν(ω3, r3) ≤ ν(ω1, r1) + ν(ω2, r2). We first observe

that ν(
−→
0 , r0) must be large.

9

Claim 4.4 ν(
−→
0 , r0) ≥ ηn

Proof: let ν(
−→
0 , r0) = s. Then, the derivation for (

−→
0 , r0) involves a linear combination of

equations from s constraints. Since every constraint comes from a distance 3 code, every linear
combination of equations within a constraint must involve at least 3 variables. Hence, the linear
combination requied to derive (

−→
0 , r0) must include at least 3 variables from each from each of the

s constraints. However, to derive
−→
0 each of these variables must occur an even number of times

and hence the s contraints can involve at most ks − 3s/2 variables in total. Since every set of up
to ηn constraints is highly expanding, this is only possible when s ≥ ηn.

In the spirit of [4], we show that ν(ω, r) decreases slowly as we proceed from the root to the
intermediate nodes. This will allow us to find a node which requires many, but fewer than ηn
constraints to derive. Since for less than ηn constraints we can use expansion, we will be able to
argue that this node has an equation involving many variables.

Claim 4.5 For all j ≤ log3/2(ηn), there is a node (ωj , rj) in the tree such that

(

1

3

)j

ν(
−→
0 , r0) ≤ ν(ωj, rj) ≤

(

2

3

)j

ν(
−→
0 , r0)

Proof: For j = 0, we can take ω0 =
−→
0 . It suffices to show that given (ωj, rj) one can find a

node (ωj+1, rj+1) such that ν(ωj, rj)/3 ≤ ν((ωj+1, rj+1)) ≤ 2ν(ωj, rj)/3. Let (ω
(1)
j , r

(1)
j), (ω

(2)
j , r

(2)
j)

be the two children of (ωj, rj). Since ν(ω
(1)
j , r

(1)
j) + ν(ω

(2)
j , r

(2)
j) ≤ ν(ωj, rj), at least one of them,

say (ω
(1)
j , r

(1)
j), must require more than ν(ωj, rj)/3 constraints to derive it.

If ν(ω
(1)
j , r

(1)
j) ≤ 2ν(ωj , rj)/3 then we are done. Else at least one of the children of (ω

(1)
j , r

(1)
j)

must require more than ν(ωj, rj)/3 constraints for its derivation and we can continue the argument
on this node. Since we always go down one level in the tree and find a node requiring at least
2ν(ωj , rj)/3 constraints, we must stop at some node as the leaves require only one constraint. We
take the node we stop at to be (ωj+1, rj+1).

Choosing j = dlog3/2(s/ηn)e, and using ηn ≤ s ≤ βn gives

(η3/β2)n ≤ (ηn)3/s2 ≤ ν(ωj, rj) ≤ ηn

Consider the number of variables in ωj. Each one of the constraints used in deriving it, contributes
at least 3 variable occurrences. Also, since ν(ωj, rj) ≤ ηn, all the constraints must contain at least
(k−1− δ)ν(ωj , rj) variables in total, which gives that at most (1+ δ)ν(ωj , rj) variables occuring in
more than one constraint. Out of all the variable occurrences in ωj, the ones that can cancel out are
the ones occurring in more than one constraint. Hence, ωj must have at least (3−2(1+ δ))ν(ωj , rj)

variables. For δ ≤ 1/4, this is greater than (η3

4β2)n which is a contradiction.

Hence, Λ cannot contain an equation of the form
−→
0 · x = r0 for r0 6= 0. Since Λ is closed under

Res(·, (η3

4β2)n) by definition, we can apply Theorem 4.2 to get vectors for all sets of size upto (η3

8β2)n.
The vectors also satisfy all the required consistency conditions. Finally, we note that

m
∑

i=1

∑

α∈[q]Ti

Ci(α)
∥

∥V(Ti,α)

∥

∥

2
=

m
∑

i=1

∑

α∈ATi

∥

∥V(Ti,α)

∥

∥

2
=

m
∑

i=1

1 = m

which shows that FRAC(Φ) = m.

10

Since random instances are both unsatisfiable and expanding, it is now easy to derive the integrality
gap for MAX k-CSP(PA).

Theorem 4.6 Let A ∈ (Fq)
d×k be the generator matrix of a distance 3 code and let ζ > 0 be given.

Then there is a constant c = c(q, k, ζ) such that for large enough n, the integrality gap for the
Lasserre SDP relaxation of MAX k-CSP(PA) on n variables obtained by cn rounds is at least qd− ζ.

Proof: We take ε = ζ · 1
qd , δ = 1/4 and consider a random instance Φ with m = βn constraints as

in Lemma 2.2, such that the Φ satisfies both the properties in the conclusion of the lemma. Then,

by Theorem 4.3 FRAC(Φ) = m even after (η3

8β2)n rounds of the Lasserre hierarchy. On the other

hand, by Lemma 2.2, OPT(Φ) ≤
|P−1

A (1)|
qk (1 + ε) ·m = 1

qd (1 + ε) ·m. Hence, the integrality gap is at

least qd/(1 + ε) ≥ 1/qd − ζ.

We now derive near optimal integrality gaps for Ω(n) rounds of the Lasserre relaxation of the
binary and q-ary MAX k-CSP problems. Note that the integrality gap becomes larger with the
dimension of the code. Thus, to optimize the gap, we consider Hamming codes which have the
largest dimension for a given length.

Corollary 4.7 Let k ≥ 3, q be a prime number and let ζ > 0 be given. Then there exists c =
c(k, q, ζ) > 0 such that the for sufficiently large n, the integrality gap for the Lasserre relaxation of

the MAX k-CSP problem on n variables with domain size q is at least
qk

kq(q − 1) − q(q − 2)
− ζ after

cn rounds.

Proof: Let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q − 1). We take A to be the generator matrix of
the Hamming code of length k. Note that the above implies that qr − q ≤ (k − 1)q(q − 1) which
gives qr ≤ kq(q − 1) − q(q − 2).

Consider a random instance of MAX k-CSP(PA). By Theorem 4.6, there exists a c and instances
on n variables such that the integrality gap after cn rounds for MAX k-CSP(PA) is at least qd − ζ =

qk/qr−ζ. Finally, using that qr ≤ kq(q−1)−q(q−2) gives the gap is at least
qk

kq(q − 1) − q(q − 2)
−ζ

as claimed.

Note that in case of q = 2, the generator matrix of the binary Hamming code, simply produces the
predicate considered by Samorodnitsky and Trevisan [24]. We also state the following more precise
version of the gap for binary k-CSPs. The constants are arbitrary, but we shall need the nature of
the tradeoffs between k, β and c to get the gaps for Independent Set and Chromatic Number.

Corollary 4.8 Let a number k and ε > 0 be given and let A be the generator matrix for the
Hamming code of length k. Then there exist β = O(2k/ε2) and c = Ω((1/β)80) such that if Φ is
a random instance of MAX k-CSP(PA) on n � 1/c variables and m = βn constraints, then with
probability 1 − o(1)

1. OPT(Φ) ≤ 2k
2k (1 + ε) · m

2. For the SDP given by cn rounds of the Lasserre hierarchy, FRAC(Φ) = m.

Proof: Invoking Lemma 2.2 with δ = 1/5 gives β = O(2k/ε2) and η = O((1/β)25). Theorem
4.3 gives FRAC(Φ) = m after cn rounds, for c = Ω(η3/β2) = Ω((1/β)80). The dimension d for a
Hamming code is k − 2dlog(k+1)e ≥ k − log(2k). Hence OPT(Φ) ≤ 2k

2k (1 + ε)m.

11

4.3 Implications for Random Predicates

We now derive integrality gaps for MAX k-CSP(P) where P : [q]k → {0, 1} is chosen at random by
selecting each input to be in P−1(1) independently with probability p. We denote this distribution
over q-ary predicates with k inputs as Q(p, q, k). For any predicate P , a random assignment satisfies
|P−1(1)|/qk fraction of constraints in MAX k-CSP(P) and hence the largest integrality gap one can
have is qk/|P−1(1)|. We will show that for almost every random predicate P , the integrality gap
for MAX k-CSP(P) is at least qk/|P−1(1)| − ζ even after Ω(n) rounds of the Lasserre hierarchy.

The result will follow quite easily using a theorem of H̊astad [17] which basically says that a random
predicate “contains a copy of” PA where A is the generator matrix of the Hamming code over Fq.
We first define what it means for a predicate to contain a copy of another.

Definition 4.9 We say that a predicate P1 contains a predicate equivalent to P2 if there exists a
permutation π : [k] → [k] of the inputs and b1, . . . , bk ∈ [q], such that

P2(xπ(1) + b1, . . . , xπ(k) + bk) = 1 =⇒ P1(x1, . . . , xk) = 1

We can now state the theorem of H̊astad referred to above. H̊astad actually states the result only
for random boolean predicates but it is easy to verify that the same proof can be extended to q-ary
predicates.

Theorem 4.10 (H̊astad [17]) Let q be a prime and let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q− 1).
Let A be the generator matrix of the Hamming code over Fq with length k. Then there is a value
c of the form c = kq−r(1 − o(1)), such that, with probability 1 − o(1), a random predicate chosen
according to Q(p, q, k) with p ≥ k−c contains a predicate equivalent to PA.

Using this theorem, we can now prove optimal integrality gap for almost every predicate in the
distribution Q(p, q, k) with the appropriate value of p.

Theorem 4.11 Let a prime q and ζ > 0 and k ≥ 3 be given and let (qr−1 − 1)/(q − 1) < k ≤
(qr − 1)/(q − 1) for some r. Then there exist constants c = kq−r(1 − o(1)) and c′ = c′(q, k, ζ) such
that if P is a random predicate chosen according to Q(p, q, k) with p ≥ k−c, then with probability
1−o(1) over the choice of P , the integrality gap for MAX k-CSP(P) after c′n rounds of the Lasserre
hierarchy is at least qk/|P−1(1)| − ζ.

Proof: Using Theorem 4.10 we know that with probability 1 − o(1), a random P contains a
predicate equivalent to PA, where A is the generator matrix of the Hamming code over Fq with
length k. For the rest of the proof, we fix such a P . For this P there exists a permutation π and
literals b1, . . . , bk such that PA(xπ(1) + b1, . . . , xπ(k) + bk) = 1 =⇒ P (x1, . . . , xk) = 1.

With every instance Φ of MAX k-CSP(P), we now associate an instance ΦA of MAX k-CSP(PA).
For every constraint Ci ≡ P (xi1 +ai1, . . . , xik +aik) in Φ, we add a constraint C ′

i to ΦA of the form

C′
i ≡ PA(xiπ(1)

+ aiπ(1)
+ b1, . . . , xiπ(k)

+ aiπ(k)
+ bk)

Thus, if the constraint C ′
i is satisfied by an assignment, then so is Ci. Also, if Φ is distributed

as a random instance of MAX k-CSP(P), then ΦA is distributed as a random instance of MAX

k-CSP(PA) with the same number of constraints.

Let ε = ζ · |P−1(1)|/qk and δ = 1/4. We consider a random instance Φ of MAX k-CSP(P) with
m = βn constraints as in Lemma 2.2. By Lemma 2.2 we will have with probability 1− o(1) over Φ
that

12

• OPT(Φ) ≤
|P−1(1)|

qk
(1 + ε) · m, and

• Every set of s ≤ ηn constraints in ΦA contains at least (k − 1 − δ)s variables.

By Theorem 4.3, we have FRAC(ΦA) = m for the SDP obtained by t = (η3

8β2)n rounds of the

Lasserre hierarchy. Hence, there exist vectors V(S,α) for all S ⊆ [n], |S| ≤ t and α ∈ [q]S satisfying
all the consistency constraints and such that

∑

α∈[q]Ti

C ′
i(α)

∥

∥V(Ti,α)

∥

∥

2
= 1 ∀1 ≤ i ≤ m

However, the same vectors also show that FRAC(Φ) = m after t rounds, since

m
∑

i=1

∑

α∈[q]Ti

Ci(α)
∥

∥V(Ti,α)

∥

∥

2
≥

m
∑

i=1

∑

α∈[q]Ti

C ′
i(α)

∥

∥V(Ti,α)

∥

∥

2
=

m
∑

i=1

1 = m

Hence, the integrality gap for MAX k-CSP(P) after (η3

8β2)n rounds of the Lasserre hierarchy is at

least FRAC(Φ)/OPT(Φ) ≥
qk

|P−1(1)|(1 + ε)
≥

qk

|P−1(1)|
− ζ.

5 Integrality Gap for Maximum Independent Set

To obtain the integrality gaps for Maximum Independent Set we use the reductions by Feige et. al.
[12] and by Bellare, Goldreich and Sudan [3]. However, before getting to the proof of the integrality
gap, we describe how to transform vectors for a general FGLSS reduction. This transformation
shall be useful for our other results as well.

5.1 Vectors for products of the FGLSS graph

Let Φ be an instance of MAX k-CSP with constraints C1, . . . , Cm on tuples T1, . . . , Tm and the
domain of variables as {0, 1}. Assume that each constraint has exactly l satisfying assignments.
We describe below the reduction by [3] from Φ to an independent set problem.

1. Given Φ, create the FGLSS graph GΦ = (VΦ, EΦ) with a vertex for every constraint Ci

and every partial assignment to variables in the corresponding tuple Ti which satisfies the
constraint Ci. Two vertices (Ci1 , α1), (Ci2 , α2) are connected if α1 and α2 assign different
values to some variable. Formally

VΦ = {(Ci, α) | α ∈ {0, 1}Ti , Ci(α) = 1}

EΦ = {{(Ci1 , α1), (Ci2 , α2)} | α1(Ti1 ∩ Ti2) 6= α2(Ti1 ∩ Ti2)}

2. Construct the product graph Gr
Φ = (V r

Φ, E′) with vertices of Gr
Φ being r-tuples of vertices in

GΦ. Two vertices {(Ci1 , α1), . . . , (Cir , αr)} and {(Ci′1
, α′

1), . . . , (Ci′r , α
′
r)} are connected if for

some j, {(Cij , αj), (Ci′j
, α′

j)} ∈ EΦ.

13

Note that if Φ had m constraints, then Gr
Φ has lr ·mr vertices, with there being mr disjoint cliques

of lr vertices, corresponding to every r-tuple of constraints. We denote the clique corresponding to
constraints Ci1 , . . . , Cir as C(i1, . . . , ir). Formally,

C(i1, . . . , ir) =
{

{(Ci1 , α1), . . . , (Cir , αr)} | ∧r
j=1 Cij(αj) = 1

}

The largest independent set in Gr
Φ can have at most mr vertices. We claim that a good SDP

solution for Φ can be transformed into a good solution for the independent set SDP on Gr
Φ.

Lemma 5.1 Let Φ be an instance of MAX k-CSP as above with m constraints. If FRAC(Φ) =
m after t rounds of the Lasserre hierarchy, then FRAC(Gr

Φ) ≥ mr for the independent set SDP
obtained after t/k rounds. Moreover, the contribution to the SDP value from vertices in each clique
C(i1, . . . , ir) is 1.

Proof: We first define an independent set solution for t/k rounds on GΦ and then show how to
extend it to Gr

Φ. Consider a set S of h ≤ t/k vertices in GΦ. It is specified by h constraints and
partial assignments {(Ci1 , α1), . . . , (Cih , αh)}. Define US as

US =

{

0 ∃j1, j2 ≤ h s.t. αj1(Tij1
∩ Tij2

) 6= αj2(Tij1
∩ Tij2

)

V(∪jTij
,α1◦...◦αh) otherwise

We now consider a set S of vertices in Gr
Φ. It is a set of r-tuples of vertices in GΦ. Let Sj denote

the set of vertices of GΦ which occur in the jth coordinate of the r-tuples in S. Define the vector
US as

US = US1 ⊗ . . . ⊗ USr

Let U∅ denote the vector for the empty set of vertices in Gr
Φ. We take U∅ = U∅ ⊗ . . . ⊗ U∅. The

vectors US are defined for all sets S with at most t/k vertices. We now show that they satisfy all
Lasserre constraints.

Claim 5.2 The vectors US satisfy all conditions of the (t/k)-round independent set SDP on Gr
Φ.

Proof: Since all vectors US are tensors of valid Lasserre vectors for the SDP for Φ, all inner
products are between 0 and 1. We only need to verify that the vectors corresponding to two vertices

connected by an edge are orthogonal, and that
〈

US1
,US2

〉

depends only on S1 ∪ S2.

• Consider two vertices {(Ci1 , α1), . . . , (Cir , αr)} and {(Ci′1
, α′

1), . . . , (Ci′r , α
′
r)} connected by an

edge. The corresponding vectors are V(Ti1
,α1) ⊗ . . .⊗V(Tir ,αr) and V(Ti′

1
,α′

1) ⊗ . . .⊗V(Ti′r ,α′
r).

The fact that there is an edge between the vertices means that for some j ≤ r, αj(Tij ∩Ti′j
) 6=

α′
j(Tij ∩ Ti′j

). Hence

〈

V(Tij
,αj),V(Ti′

j
,α′

j)

〉

= 0 since the vectors V(·,·) form a valid Lasserre

solution. This gives

〈

V(Ti1
,α1) ⊗ . . . ⊗ V(Tir ,αr),V(Ti′

1
,α′

1)
⊗ . . . ⊗ V(Ti′r ,α′

r)

〉

=

r
∏

j=1

〈

V(Tij
,αj),V(Ti′

j
,α′

j)

〉

= 0

14

• Next, consider sets S1,S2,S3,S4 such that S1 ∪ S2 = S3 ∪ S4. For 1 ≤ u ≤ 4, let S
(u)
j

denote the union of elements in the jth coordinate of the r-tuples in Su. S1 ∪ S2 = S3 ∪ S4

means that in particular S
(1)
j ∪ S

(2)
j = S

(3)
j ∪ S

(4)
j for all 1 ≤ j ≤ r. For a fixed j, let

S
(1)
j ∪ S

(2)
j = S

(3)
j ∪ S

(4)
j = {(Ci1 , α1), . . . , (Cih , αh)}. If the set contains two contradicting

partial assignments, then either one of U
(j)
S1

and U
(j)
S2

is 0, or they are equal to Lasserre

vectors corresponding to contradicting partial assignments. In either case
〈

U
(j)
S1

,U
(j)
S2

〉

= 0

and similarily
〈

U
(j)
S3

,U
(j)
S4

〉

= 0. If there are no contradicting partial assignments, then

the tuples in S
(j)
1 ∪ S

(j)
2 can be extended to a unique partial assignment α1 ◦ . . . ◦ αh over

∪h
j=1Tjj . Since the set of all tuples, and hence the assignment, is same for S

(j)
3 ∪ S

(j)
4 , and

the corresponding CSP vectors are consistent, we get
〈

U
(j)
S1

,U
(j)
S2

〉

=
〈

U
(j)
S3

,U
(j)
S4

〉

for all j,

which implies
〈

US1
,US2

〉

=
〈

US3
,US4

〉

.

We show that the value for all the vertices in any clique C(i1, . . . , ir) is 1. Letting α1, . . . , αr range
over all satisfying assignments to Ci1, . . . , Cij , the contribution of vertices in this clique to the SDP
objective value is

∑

α1,...,αr

r
∏

j=1

〈

V(Tij
,αj),V(∅,∅)

〉

=
r
∏

j=1

〈

∑

αj

V(Tij
,αj),V(∅,∅)

〉

=
r
∏

j=1

(1) = 1

where
〈

∑

αj
V(Tij

,αj),V(∅,∅)
〉

= 1 since the contribution of the constraint Cij to the SDP for MAX

k-CSP is 1.

5.2 Obtaining the Integrality Gap

We can now prove the following integrality gap for Maximum Independent Set.

Theorem 5.3 There exist constants c1, c2 > 0 and graphs on N vertices for arbitraily large N ,
such that the integrality gap for the SDP for independent set obtained by 2c2

√
log N log log N rounds of

the Lasserre hierarchy, is at least
N

2c1
√

log N log log N
.

Proof: Our integrality gap instance will be a subgraph of Gr
Φ for appropriate choices of Φ and

r. We construct the graph G = (V,E) by randomly picking M cliques of the form C(i1, . . . , ir),
and taking G to be the subgraph induced by the vertices in these clique. An easy Chernoff bound
shows that if only a small fraction of constraints in Φ were satisfiable, then the size of the largest
independent set in G is small.

Claim 5.4 Let s = OPT(Φ)/m. Then for M ≥ 100nr
sr , with probability 1 − o(1), all independent

sets in G have size at most 2srM .

Proof: It is easy to see that any independent set in GΦ can be extended to an assignment to the
variables x1, . . . , xn and has size equal to the number of constraints in Φ satisfied by the assignment.
Hence, the size of the largest independent set in GΦ is at most s ·m. Also, an independent set in Gr

Φ

15

is a set of r-tuples of vertices in GΦ such that if we consider the set of vertices in the jth coordinate
for any j, they form an independent set in GΦ. Hence, any independent set in Gr

Φ has size at
most (s ·m)r. Also, note that since an independent set of Gr

Φ can be extended to an assignment to
x1, . . . , xn in each of the r coordinatess, there are at most 2nr different independent sets.

Any independent set in the sampled graph G also extends to an assignment to x1, . . . , xn in each
coordinate and can be thought of as the intersection of an independent set I of Gr

Φ with the sampled
blocks. Fix any independent set I of Gr

Φ. We sample M out of the mr blocks in GΦ and each block
has at most one vertex belonging to I (because each block is a clique). Hence, by Chernoff bounds,
the probability that more than 2sr ·M vertices in G belong to I is at most exp(−sr ·M/50). Taking
a union bound over all choices of I, we get that with probability at least 1− exp(−sr ·M/50 + nr),
all independent set of G have size at most 2sr · M . Choosing M ≥ 100nr/sr ensures that the
probability is 1 − o(1).

We now make the choices for all the parameters involved. For a large n, let k = δ log n for some
small constant δ, and let r = log n/(log log n). Consider an instance Φ of MAX k-CSP as given by
Corollary 4.8. By chosing ε = 1/2, we can get that k/2k ≤ s ≤ 3k/2k. Also, since the constraints
are based on the Hamming code, the number of satisfying assignments to each constraint is at most
l ≤ 2k. We pick M = 100nr · (2kr/kr).

By the previous claim, the size of the maximum independent set in G is at most 2Msr (w.h.p. over
the choice of G). We take the SDP solution to be the same as constructed for Gr

Φ. By Lemma 5.1,
the contribution of the vectors in each clique to the SDP value is 1. Hence, the value of the SDP
solution for G is M , which gives an integrality gap of (1/2sr) ≥ (1/2) · (2k/3k)r . On the other
hand, the number of vertices in G is

N = M · lr ≤ (100nr · 2kr/kr) · (2k)r = O(nr · 2(k+1)r)

With our choice of parameters, the integrality gap is at least
N

2c1
√

log N log log N
for some constant c1.

To verify the number of rounds, note that Corollary 4.8 gives β = O(2k) = O(nδ) and c =
Ω((1/nδ)80). Hence, we have SDP solutions for cn = Ω(n1−80δ) rounds for Φ and consequently for
Ω(n1−80δ/k) rounds for the independent set SDP on G. For δ < 1/80, this is at least 2c2

√
log N log log N

for some constant c2.

6 Gaps for Graph Coloring

In this section, we show that SDPs in the Lasserre hierarchy fail to approximate the chromatic
number of a graph. Gaps for chromatic number are syntactically different from the usual integrality
gaps for SDPs because the value of the chromatic number is not a linear function of the inner
products of vectors in an SDP. Instead for any l, one can write down an SDP for which a feasible
solution gives a vector l-coloring of the graph. We show graphs for which an l-coloring remains
feasible even after many rounds of the Lasserre hierarchy, even though the actual chromatic number
of the graph is much larger than l.

We show that for any constant l, there are graphs with chromatic number at least 2l/2

4l2
which

admit a vector l-coloring even after Ω(n) rounds of the Lasserre hierarchy. For Chromatic Number,
we show that the ratio of the chormatic number of the graph and the number of colors in the
vector coloring obtained by 2Ω(

√
log n log log n) rounds of the Lasserre hierarchy can be as high as

n
2O(

√
log n log log n)

. We write the Lasserre SDP for l-coloring as a constraint satisfaction problem, with

16

the additional restriction that all the constraints which say colors of two adjacent vertices must
be different, are satisfied. This formulation is equivalent to the one considered by Chlamtac [8]. 4

To avoid confusion with the SDP for MAX k-CSP we denote the sets of vertices here by S, partial
assignments by γ and vectors for coloring by V(S,γ).

t-round Lasserre SDP for l-coloring of graph G = (V, E)

Minimize l s.t. there exist vectors V(S,γ) for all |S| ≤ t, γ ∈ [l]S satisfying

〈

V({u1},γ),V({u2},γ)

〉

= 0 ∀(u1, u2) ∈ E, γ ∈ [l]
〈

V(S1,γ1),V(S2,γ2)

〉

= 0 ∀ γ1(S1 ∩ S2) 6= γ2(S1 ∩ S2)
〈

V(S1,γ1),V(S2,γ2)

〉

=
〈

V(S3,γ3),V(S4,γ4)

〉

∀ S1 ∪ S2 = S3 ∪ S4, γ1 ◦ γ2 = γ3 ◦ γ4
∑

j∈[l]

∥

∥V({u},j)

∥

∥

2
= 1 ∀u ∈ V

〈

V(S1,γ1),V(S2,γ2)

〉

≥ 0 ∀S1,S2, γ1, γ2
∥

∥V(∅,∅)
∥

∥ = 1

The reduction we describe in this section is a slightly modified version of the reduction for inde-
pendent set and is specifically designed to work for problems of the type MAX k-CSP(PA), where
the constraints being linear equations in F2. It is inspired by what could be a “zero-knowledge
protocol” for such predicates, in the sense of Feige and Killian [14]. Here, we describe the reduction
without going through the protocol, at the cost of defining the following additional (and somewhat
unnatural) solution concept for a CSP instance.

Definition 6.1 Let Φ be an instance of MAX k-CSP with constraints C1, . . . , Cm on ordered k-tuples
T1, . . . , Tm of variables. For a constraint Ci on variables (xi1 , . . . , xik), we say that the constraint
k-satisfied by assignments Π1, . . . ,Πk if Ci(Π1(xi1), . . . ,Πk(xik)) = 1. We denote by OPTk(Φ), the
maximum number of constraints in Φ that are k-satisfied by any assignments Π1, . . . ,Πk.

Note that the above definition crucially uses the fact that the constraint is defined on an ordered
tuple of variables as we read the value of the first variable from Π1, the second from Π2 and so on.
By slightly strengthening the notion of unsatisfiability for a random CSP instance in Lemma 2.2,
we can strengthen Corollary 4.8 as below.

Corollary 6.2 Let a number k and ε > 0 be given and let A be the generator matrix for the
Hamming code of length k. Then there exist β = O(k2k/ε2) and c = Ω((1/β)80) such that if Φ is
a random instance of MAX k-CSP(PA) on n � 1/c variables and m = βn constraints, then with
probability 1 − o(1)

1. OPTk(Φ) ≤ 2k
2k (1 + ε) · m

2. For the SDP given by cn rounds of the Lasserre hierarchy, FRAC(Φ) = m.

4In fact, the SDPs in Lasserre hierarchy are fairly independent of the representation used. It is easy to switch
between different SDPs for a problem, by losing at most a constant factor in the number of rounds.

17

6.1 Gaps for Approximate Graph Coloring

We reduce from a CSP instance Φ as in Corollary 6.2. For an instance Φ of MAX k-CSP(PA),
consider the vectors w ∈ {0, 1}k such that A · wT = 0 over F2. If A is the generator matrix of
the Hamming code of length k, there are 2dlog(k+1)e such vectors. We shall show that the graph
produced by our reduction has a vector coloring with l = 2dlog(k+1)e colors, where we shall identify
the domain [l] of the coloring CSP with the vectors w1, . . . , wl satisfying A · wT

j = 0.

We now give the reduction from Φ as above, to Approximate Graph Coloring. Similar to the case of
independent set, we create the FGLSS graph with a vertex for every constraint and every satisfying
partial assignment to the variables in that constraint. However, we have fewer edges: we connect
two vertices (Ci1 , α1) and (Ci2 , α2) iff α1 and α2 disagree on a variable that occurs at the same
position in the ordered tuples Ti1 and Ti2 . Formally, we create the graph GΦ = (VΦ, EΦ) such that

VΦ = {(Ci, α) | α ∈ {0, 1}Ti , Ci(α) = 1}

EΦ = {{(Ci1 , α1), (Ci2 , α2)} | ∃1 ≤ j ≤ k. [Ti1,j = Ti2,j] ∧ [α1(Ti1,j) 6= α2(Ti2,j)]}

where Ti,j is used to denote the variable in the jth position in the ordered tuple corresponding to
the ith constraint. To show that GΦ has large chromatic number, we claim that all independent
sets in GΦ are small.

Claim 6.3 The size of the maximum independent set in GΦ is OPTk(Φ).

Proof: Let I be an independent set in Φ. Hence I is a set of pairs of the form (Ci, α), where
Ci is a constraint and α is a partial assignment giving values for variables in Ti. Since all vertices
corresponding to a single constraint are connected, I can include at most one vertex corresponding
to one constraint.

Consider the values given to all the variables x1, . . . , xk by all the partial assignments in I, when the
variable is present in the jth position in the tuple. Since all the partial assignments to constraints
must be consistent in the values at the jth position, these values can be extended to a unique
assignment, say Πj = (a1, . . . , an) to the variables x1, . . . , xn. Similarly, we can define assignments
Π1, . . . ,Πk for each of the k positions.

Hence, the independent set corresponds to picking at most one of the satisfying assignments for
every constraint, with the jth variable in the tuple set according to Πj. This gives that the size of
the largest independent set is at most OPTk(Φ).

Lemma 6.4 Let Φ be an instance of MAX k-CSP(PA), with m constraints such that each constraint
has exactly l satisfying assignments. If FRAC(Φ) = m after t rounds of the Lasserre hierarchy, then
there is a feasible solution to the SDP for l-coloring of GΦ obtained by t/2k rounds of the Lasserre
hierarchy.

Proof: We now define the vectors V(S,γ) for a set S ⊆ VΦ, |S| ≤ t/k and γ ∈ [l]S . Let
(S, γ) = ({(Ci1 , α1), . . . , (Cih , αh)}, γ) Recall that the domain [l] is identified with the vectors
w1, . . . , wl ∈ {0, 1}k which satisfy A ·wT

j = 0 for 1 ≤ j ≤ l. Hence the partial assignment γ assigns

a vector in F
k
2 to each vertex (Cij , αj). We use the vectors given by γ to modify the assignments

to each Cij . This can be viewed as the zero-knowledge step of randomizing over all the satisfying
assignments to each constraint. Formally, we change αj to αj + γ((Cij , αj)) where γ((Cij , αj)) is
the vector in F

k
2 (the “color”) assigned by γ to the vertex (Cij , αj) and the ‘+’ is over F2. Let

[αj , γ] denote this assignment to Tij which is shifted by γ.

18

With this interpretation, we define the vectors as 0 if these shifted partial assignments contradict,
and otherwise as the Lasserre vectors corresponding to the assignment defined collectively by all
the shifted assignments. For all |S| ≤ t/k and γ ∈ [l]S , we define

V(S,γ) =

{

0 ∃j1, j2. [αj1 , γ](Tij1
∩ Tij2

) 6= [αj2 , γ](Tij1
∩ Tij2

)

V(∪Tij
,[α1,γ]◦...◦[αh,γ]) otherwise

We now need to verify that the vectors satisfy all the SDP conditions.

• For an edge {(Ci1 , α1), (Ci2 , α2)}, we must have that
〈

V({(Ci1
,α1)},γ),V({(Ci2

,α2)},γ)

〉

= 0.

Note that if (Ci1 , α1) and (Ci2 , α2) have an edge, then for some j, Ti1 and Ti2 have the same
variable in the jth position and α1, α2 disagree on that variable. Then [α1, γ] and [α2, γ],
which are equal to α1 + w and α2 + w for some w in the null space of A, would also disagree
on that variable. Hence, by validity of the Lasserre solution for the CSP

〈

V({(Ci1
,α1)},γ),V({(Ci2

,α2)},γ)

〉

=
〈

V((Ti1
,[α1,γ]),V(Ti2

,[α2,γ])

〉

= 0

• We next verify that
〈

V(S1,γ1),V(S2,γ2)

〉

= 0 whenever γ1, γ2 disagree on S1 ∩ S2. The dis-
agreement means that there is some vertex (Cij , αj) ∈ S1 ∩ S2 such that γ1((Cij , αj)) 6=
γ2((Cij , αj)). If Tij is the tuple of variables corresponding to Cij , then [αj , γ1](Tij) 6=

[αj , γ2](Tij). Assuming neither of V(S1,γ1) and V(S2,γ2) is zero, we must have that V(S1,γ1) =

V(S′
1,α′

1) and V(S2,γ2) = V(S′
2,α′

2) for some S′
1, S

′
2 ⊆ [n] and partial assignments α′

1, α
′
2. Also,

we have that Tij ⊆ S1 ∩ S2 and α′
1(Tij) = [αj , γ1](Tij) 6= [αj , γ2](Tij) = α′

2(Tij). This gives
〈

V(S′
1,α′

1)
,V(S′

2,α′
2)

〉

= 0.

• We also need to show that
〈

V(S1,γ1),V(S2,γ2)

〉

=
〈

V(S3,γ3),V(S4,γ4)

〉

whenever S1∪S2 = S3∪S4

and γ1 ◦ γ2 = γ3 ◦ γ4. For convenience, we only show this when all sets have size at most
t/2k by showing that

〈

V(S1,γ1),V(S2,γ2)

〉

=
〈

V(S1∪S2,γ1◦γ2),V(∅,∅)
〉

. Again, assuming neither

of these vectors are zero, let V(S1,γ1) = V(S′
1,α′

1)
and V(S2,γ2) = V(S′

2,α′
2).

If α′
1 and α′

2 contradict (note that this may happen even when γ1 ◦ γ2 is defined) then there
must be some vertices (Ci1 , α1) ∈ S1 and (Ci2 , α2) ∈ S2 such that Ci1 and Ci2 involve a
common variable, on which the shifted assignments [α1, γ1] and [α2, γ2] disagree. But then
both these vertices will also be present in S1 ∪ S2 and the assignments shifted according to
γ1 ◦ γ2 will also disagree. Hence, V(S1∪S2,γ1◦γ2) = 0 which satisfies the condition in this case.

If not, we must have that V(S1∪S2,γ1◦γ2) = V(S′
3,α′

3)
. Since the vectors V(·,·) for a valid CSP

solution, it will be sufficient to show that S′
3 = S′

1∪S′
2 and α′

3 = α′
1 ◦α′

2. Since S′
3 contains all

the variables involved in constraints present either in S1 or S2, it must include all variables
in S′

1 ∪ S′
2. Finally, for any (Cij , αj) ∈ S1 ∪ S2, α′

3(Tij) = [αj , γ1 ◦ γ2](Tij) = (α′
1 ◦ α′

2)(Tij),
which proves the required condition.

• Finally, we need to verify that for every vertex (Ci, α) of GΦ,
∑

j∈[l]

∥

∥V({(Ci,α)},j)
∥

∥

2
= 1.

Note that V({(Ci,α)},j) = V(Ti,α+wj) where wj is a vector on F2 such that A · wT
j = 0. If the

constraint Ci is of the form A · x = bi and if α is a satisfying assignment, then as j ranges
from 1 to l, (α + wj) ranges over all the satisfying assignments to the constraint Ci. Hence,
we have that

∑

j∈[l]

∥

∥V({(Ci,α)},j)
∥

∥

2
=
∑

j∈[l]

∥

∥

∥
V(Ti,α+wj)

∥

∥

∥

2
=

∑

α∈{0,1}Ti

Ci(α)
∥

∥V(Ti,α)

∥

∥

2
= 1

19

where the last equality used the fact that FRAC(Φ) = m and hence the contribution to the
SDP value, from assignments of each constraint, is 1.

This now gives the claimed gap for Approximate Graph Coloring.

Theorem 6.5 For every constant l there is a c = c(l) and an infinite family of graphs G = (V,E)

with chromatic number Ω
(

2l/2

l2

)

, and such that G has a vector coloring with l colors for the SDP

obtained by c · |V | rounds of the Lasserre hierarchy.

Proof: For any l, there is a k such that l/2 ≤ 2dlog(k+1)e ≤ l. For this k, consider an instance Φ of
MAX k-CSP with n variables and m = βn constraints as given by Corollary 6.2, choosing ε = 1/2.
We take our graph G to be GΦ as defined above. Claim 6.3 shows that the largest independent set
has size at most OPTk(Φ), which is at most (3l/2k+1) · m by Corollary 6.2. Since the number of
vertices in G (say N) is at least k · m, its chromatic number is Ω(2k/l2) = Ω(2l/2/l2).

On the other hand, we have SDP solutions for Φ for c′n rounds (with c′ = c′(k)) with FRAC(Φ) = m.
By Lemma 6.4 G has a vector coloring 2dlog(k+1)e colors for the SDP obtained by c′n/k = cN rounds
of Lasserre, where c depends only on k (which depends only on l).

6.2 Gaps for Chromatic Number

We now modify the graph and the SDP solution constructed in the previous section to get strong
gaps for Chromatic Number. As in the case of independent sets, we define the product graph Gr

Φ =
(V r

Φ , E′) for GΦ defined above. Two vertices {(Ci1 , α1), . . . , (Cir , αr)} and {(Ci′1
, α′

1), . . . , (Ci′r , α
′
r)}

in V r
Φ are connected if for some j, {(Cij , αj), (Ci′j

, α′
j)} ∈ EΦ. Note that the edge set EΦ is slightly

different than it was in the case of independent set. C(i1, . . . , ir) is defined as before

C(i1, . . . , ir) = {{(Ci1 , α1), . . . , (Cir , αr)} | ∧r
j=1 Cij(αj) = 1}

We argue that if GΦ has a vector coloring with l colors, then GΦ has a vector coloring with lr

colors. We think of the lr colors as r-tuples of values in [l]. Hence, a partial assignment assigns to
each vertex a tuple in [l]r.

Claim 6.6 If there is a feasible solution for the l-coloring SDP for GΦ obtained by t rounds of the
Lasserre hierarchy, then there is also a feasible solution for the SDP for lr-coloring the graph Gr

Φ

obtained by t rounds.

Proof: We define the vector V(S,γ) for all S ⊆ V r
Φ, |S| ≤ t and γ ∈ ([l]r)S . Each vertex v ∈ S

is of the form {((Ci1 , α1), . . . , (Cir , αr))}. For a such vertex v, let [v]j denote the element in jth
coordinate of v i.e. (Cij , αj). Also, γ(v) is an r-tuple (l1, . . . , lr) and we denote the jth coordinate

lj by [γ(v)]j . Given a pair (S, γ), we break it into different projection sets Pj for each 1 ≤ j ≤ r

Pj = {([v]j , [γ(v)]j) | v ∈ S}

Each element in Pj corresponds to a vertex in GΦ (given by [v]j) and a color in [l] for the vertex
(given by [γ(v)]j). Note that there can be two different elements ((Ci, α), lj) and ((Ci, α), l′j) which

20

assign different colors to the same vertex. If this is the case for any set Pj, we take V(S,γ) = 0.
Otherwise, for each set Pj , we can define the set Sj of vertices of GΦ that are contained in Pj and
also a partial assignment γj ∈ [l]Sj , since every vertex of Sj gets a unique color by assumption. In
this case, we define V(S,γ) by tensoring assignment vectors in each coordinate. Formally,

V(S,γ) =

{

0 ∃1 ≤ j ≤ r & ((Ci, α), lj), ((Ci, α), l′j) ∈ Pj s.t. lj 6= l′j
V(S1,γ1) ⊗ . . . ⊗ V(Sr ,γr) otherwise

It is easy to verify that the vectors satisfy all the required SDP conditions.

• Let u1 = {(Ci1 , α1), . . . , (Cir , αr)} and u2 = {(Ci1 , α1), . . . , (Cir , αr)} be two adjacent vertices,
and let γ ∈ [l]r be any color (l1, . . . , lr). Then, by adjacency, we must have that for some
j ≤ r, {(Cij , αj), (Ci′j

, α′
j)} ∈ EΦ. Hence,

〈

V({u1},γ),V({u2},γ)

〉

=
r
∏

j=1

〈

V({(Cij
,αj)},lj),V({(Ci′

j
,α′

j)},lj)

〉

= 0

• Similarly, if (S1, γ1) and (S2, γ2) have a contradiction, or S1∪S2 = S3∪S4 and γ1◦γ2 = γ3◦γ4,
then these conditions will also hold in each of the coordinatewise projections. Hence, the SDP
conditions will be satisfied in these cases.

• To verify that for each u ∈ V ,
∑

j∈[l]r

∥

∥V({u},j)
∥

∥

2
= 1 we again note that

∑

l1,...,lr

∥

∥

∥
V({(Ci1

,α1),...,(Cir ,αr)},(l1,...,lr))

∥

∥

∥

2
=
∑

l1,...,lr

r
∏

j=1

〈

V({(Cij
,αj)},lj),V({(Cij

,αj)},lj)
〉

=
r
∏

j=1

∑

lj

∥

∥

∥
V({(Cij

,αj)},lj)
∥

∥

∥

2
= 1

We now prove the integrality gap for Chromatic Number by similar arguments as in Theorem 5.3.

Theorem 6.7 There exist constants c1, c2, c3 > 0 and graphs G on N vertices, for arbitrarily large
N such that

1. The chromatic number of G is Ω
(

N
2c1

√
log N log log N

)

.

2. The SDP for coloring G obtained by Ω
(

2c2
√

log N log log N
)

rounds of the Lasserre hierarchy

admits a vector coloring with O
(

2c3
√

log N log log N
)

colors.

Proof: We construct the graph G by sampling M cliques of the form C(i1, . . . , ir) from Gr
Φ, and

considering the subgraph induces by their vertices. The size of the independent sets is small w.h.p.
over the choice of G.

Claim 6.8 Let s = OPTk(Φ)/m. Then for M ≥ 100nr
sr , with probability 1 − o(1), all independent

sets in G have size at most 2srM .

21

Proof: By Chernoff bound arguments identical to those in Claim 5.4.

We again choose k = δ log n for some small constant δ, and let r = log n/(log log n) for a large n.
Applying Corollary 6.2 with ε = 1/2 gives an instance Φ of MAX k-CSP(PA) with k/2k ≤ s ≤ 3k/2k.
(Note that here s = OPTk(Φ)/m). The number of assignments to each constraint is exactly
l = 2dlog(k+1)e ≤ 2k. We again pick M = 100nr · (2kr/kr).

With high probability over the choice of G, the size of the maximum independent set in G is at
most 2Msr. The number of vertices in G is

N = M · lr ≤ (100nr · 2kr/kr) · (2k)r = O(nr · 2(k+1)r)

and hence the chromatic number of G is at least (lr/2sr), which is
N

2c1
√

log N log log N
for some constant

c1, with our parameters.

We can again take the Lasserre vectors corresponding to sets of vectors in G, to be the same as the
vectors for the corresponding sets in Gr

Φ. By Claim 6.6 the number of colors in the vector coloring is

lr, which is at most 2c2
√

log N log log N for some constant c2. Also, the number of rounds is Ω
(

n
k·β80

)

,

which is Ω
(

2c3
√

log N log log N
)

for c3 > 0, if δ (in choosing k = δ log n) is small enough.

7 Integrality Gaps for Vertex Cover

In this section, we prove an intergrality gap of 1.36 for Minimum Vertex Cover using the reduction
by Dinur and Safra [10]. One can start with an integer program for Minimum Vertex Cover and
obtain the Lasserre SDP for Vertex Cover by introducing vector variables for every set of t vertices
in the graph. Equivalently (and this is the form we will be using), one can simply work with the
t-round SDP for Maximum Independent Set and modify the objective.

We collect the relation between SDP solutions for Maximum Independent Set and Minimum Vertex

Cover, together with some other (known) characterizations of the independent set solution which
we shall need, in the lemma below. Proof of the lemma is deferred to the appendix.

Lemma 7.1 Let the vectors US for |S| ≤ t form a solution to the t-round Lasserre SDP for
Maximum Independent Set on a weighted graph G = (V,E), with SDP value FRAC(G). Then there
exist vectors V(S,α) for all |S| ≤ t/2, α ∈ {0, 1}S , determined by the vectors US, such that

1. U∅ = V(∅,∅) and US = V(S,1S)∀S, where 1S is the partial assignment which assigns 1 to all
elements in S.

2. The vectors V(S,α) satisfy all conditions of the SDP for constraint satisfaction problems.

3. For any S, the vectors {V(S,α) | α ∈ {0, 1}S} induce a probability distribution over {0, 1}S .

The events measurable in this probability space correspond to all α′ ∈ {0, 1}S′
for all S′ ⊆ S,

and P[α′] =
∥

∥V(S′,α′)

∥

∥

2
.

4. The vectors V(S,0S) form a solution to the t-round SDP for Minimum Vertex Cover with objec-
tive value

∑

v∈V w(v) − FRAC(G), where w(v) denotes the weight of vertex v and 0S denotes
the all-zero assignment.

22

Through the remaining part of this section, we shall only consider the independent set SDP on
all the graphs in the reduction. We will show that the value of the fractional independent set
is large for all intermediate graphs obtained in the reduction. On the other hand, it willll be
possible to conclude directly from the correctness of the Dinur-Safra proof that the size of the
actual independent set in these graphs is small. Comparing the corresponding values for vertex
cover will give us the required integrality gap.

7.1 The starting graphs for the Dinur-Safra reduction

We first describe the graphs required for the reduction by Dinur and Safra [10]. They require few
key properties of the graph which they use to argue the soundness of the reduction i.e. the graphs
produces by the reduction have no large independent set. In fact, graphs of the form Gr

Φ as defined
in section 5 turn out to satisfy all the required conditions. Also, we already have vector solutions
for the independent set SDP on these graphs. We only need to argue that these vectors can be
transformed appropriately through the steps of the reduction. Dinur and Safra define the notion
of “co-partite” graphs as below.

Definition 7.2 We say that a graph G = (M × L,E) is (m, l) co-partite, if it is composed of
m = |M | disjoint cliques, each of size l = |L|. The edges that go between the cliques may be
arbitrary. Formally, for all i ∈ M and j1 6= j2 ∈ L, we require that {(i, j1), (i, j2)} ∈ E.

Let Φ be any CSP instance with m constraints and each constraint having exactly l satisfying
assignments. Then it is easy to see that the FGLSS graph GΦ is (m, l) co-partite. Also, the graph
Gr

Φ is (mr, lr) co-partite. The reduction in [10] also requires an (m, l) co-partite graphs such that
for some fixed constants ε0, h > 0 every subset of vertices I ⊆ M × L with |I| ≥ ε0m, contains
a clique of size h. It also follows from their argument (proof of Theorem 2.1 in [10]) 5 that if
OPT(Φ) ≤ s · m for some s < 1, then Gr

Φ satisfies this property for an appropriate r.

Theorem 7.3 ([10]) Let Φ be a CSP instance with m constraints, each having l satisfying assign-
ments, and such that any assignment satisfies at most s < 1 fraction of the constraints. Also, let
ε0, h > 0 be given. Then there exists an r = O(log(h/ε)) such that any set of vertices in Gr

Φ, which
does not contain an h-clique, has size at most ε0 · m

r.

7.2 The graphs with block-assignments

The next step of the reduction, which is crucial for the soundness, transforms a graph G = (V,E)
which is (m0, l0) co-partite into a new graph GB which is (m1, l1) co-partite and has some additional
properties required for the soundness.

We consider the set of blocks of d vertices in V , i.e. the set

B =

(

V

d

)

= {B ⊆ V | |B| = d}

Also, for each block B, let LB denote all “large” partial assignments to vertices in B. Formally,
LB = {α ∈ {0, 1}B | |α| ≥ dT}, where dT = d/2l0 and |α| is the number of 1s in the image of α.

5The result in [10] is actually stated not for the graph G
r
Φ, but for a graph G

′ obtained by converting the CSP Φ
to a two-player game and considering the graph obtained by parallel repetition. However, the graph G

′ defined in
their paper is a spanning subgraph of G

r
Φ, and hence if a subset of vertices contains an h-clique in G

′, then it also
contains one in G

r
Φ.

23

The vertex set of the graph GB is taken to be set of all pairs of the form (B,α), where α ∈ LB . To
define the edges, we consider a pair of blocks whose symmetric difference is just a pair of vertices
(v1, v2) such that (v1, v2) ∈ E. We connect two partial assignments corresponding to such a pair of
blocks, if they form an “obvious contradiction” i.e. they disagree on the intersection or they assign
1 to both the vertices in the symmetric difference. It is important for the soundness analysis in
[10] that for any such pair of blocks (B1, B2), any α1 ∈ LB1 is not connected to at most two partial
assignments in B2 (and vice-versa). We also add edges between all partial assignments within a
block. Thus, we define

VB = {(B,α) | B ∈ B, α ∈ LB}

E
(1)
B =

⋃

B̂∈(V
d−1)

(v1,v2)∈E

{

(B̂ ∪ {v1}, α1), (B̂ ∪ {v2}, α2) | α1(B̂) 6= α2(B̂) or α1(v1) = α2(v2) = 1
}

EB = E
(1)
B ∪

(

⋃

B

{(B,α1), (B,α2) | α1 6= α2, α1, α2 ∈ LB}

)

Note that GB is also (m1, l1) co-partite with m1 = |B| and l1 = |LB | (which is the same for all B).
We now show that if G has a good SDP solution, then so does GB.

Lemma 7.4 Let G = (V,E) be an (m0, l0) co-partite graph such that for the independent set
SDP obtained by t rounds of the Lasserre hierarchy, FRAC(G) = m0. For given ε > 0 and dT >
2/ε1, let GB be constructed as above. Then, for the independent set SDP obtained by t/d rounds,
FRAC(GB) ≥ (1 − ε1)|B|.

Proof: Since G admits a solution for t rounds of the Lasserre SDP, we also have vectors V(S,α)

for all |S| ≤ t, α ∈ {0, 1}S as described in Lemma 7.1. We now use these vectors to define the vector
solution for the SDP on GB. Each vertex of GB is of the form (B,α) where B ∈ B and α ∈ LB .
Consider a set S of i ≤ t/d vertices, S = {(B1, α1), . . . , (Bi, αi)}. As in the Section 5, we let the
vector corresponding to this set be 0 if any two assignments in the set contradict and equal to the
vector for the partial assignment jointly defined by α1, . . . , αi otherwise.

US =

{

0 ∃j1, j2 s.t. αj1(Bj1 ∩ Bj2) 6= αj2(Bj1 ∩ Bj2)
V(∪jBj ,α1◦...◦αi) otherwise

If (B1, α1) and (B2, α2) have an edge between them because α1 and α2 contradict, then we must have
〈

U{(B1,α1)},U{(B2 ,α2)}
〉

=
〈

V(B1,α1),V(B2,α2)

〉

= 0 since CSP vectors corresponding to contradict-

ing partial assignments must be orthogonal. For an edge between (B̂ ∪{v1}, α1) and (B̂ ∪{v2}, α2)
where (v1, v2) ∈ E, α1(v1) = α2(v2) = 1 and α1(B̂) = α2(B̂) = α (say), we have

〈

U{(B̂∪{v1},α1)},U{(B̂∪{v2},α2)}

〉

=
〈

V(B̂,α),V({v1,v2},(1,1))

〉

=
〈

V(B̂,α), 0
〉

= 0

because in the independent solution on graph G
∥

∥V({v1,v2},(1,1))

∥

∥

2
=
〈

V({v1},1),V({v2},1)
〉

= 0

The proof that the vectors defined above satisfy the other SDP conditions is identical to that in
Claim 5.2 and we omit the details.

The interesting part of the argument will be to show that the value of the independent set SDP for
GB will be large. In the completeness part of the Dinur-Safra reduction, one needs to say that if G

24

has a large independent set then so does GB, and it follows very easily using a Chernoff bound on
how different blocks intersect the large independent set of G. We need to make the same conclusion
about the SDP value and the argument is no longer applicable. However, it is possible to get the
conclusion by looking at the “local distributions” defined by the vector V(B,α) as mentioned in
Lemma 7.1. We then combine the bounds obtained in each block globally using properties of the
vector solution.

For each block B, let DB denote the distribution over {0, 1}B defined by the vectors V(B,α) for all

α ∈ {0, 1}B . For each block, we define a random variable ZB determined by the event α ∈ {0, 1}B

with value ZB = |α|. One can then convert the statement about the SDP value to a statement
about the local distributions, by noting that

FRAC(GB) =
∑

B∈B

∑

α∈LB

∥

∥V(B,α)

∥

∥

2
=
∑

B∈B

1 −
∑

α/∈LB

∥

∥V(B,α)

∥

∥

2

 = |B| −
∑

B∈B
PDB

[ZB < dT]

The problem thus reduces to showing that
∑

B∈B PDB
[ZB < dT] ≤ ε1|B|. By a second moment

analysis on every local distribution, we have

PDB
[ZB < dT] ≤ PDB

[|ZB − 2dT| > dT] ≤
EDB

[

(ZB − 2dT)2
]

d2
T

(1)

The following claim provides the necessary estimates to bound the sum of probabilities.

Claim 7.5

∑

B∈B
EDB

[ZB] = 2dT · |B| and
∑

B∈B
EDB

[Z2
B] ≤ (4d2

T
+ 2dT) · |B|

Proof: For all blocks B and v ∈ B, define the random variable Xv,B which is 1 if a random
α chosen according to DB assigns 1 to the vertex v and 0 otherwise. By using the fact that the
distribution is defined by the vectors V(B,α), we get that for v ∈ B

EDB
[Xv,B] = PDB

[α(v) = 1] =
∥

∥V({v},1)
∥

∥

2
=
∥

∥U{v}
∥

∥

2

where U{v} denotes the vector for vertex v in the solution for graph G. Similarly,

EDB
[Xv1,BXv2,B] = PDB

[α({v1, v2}) = (1, 1)] =
∥

∥V({v1,v2},(1,1))

∥

∥

2
=
〈

U{v1},U{v2}
〉

With the above relations, and using the facts that each vertex appears in exactly d/m0l0 fraction
of the blocks and FRAC(G) = m0, we can compute the sum of expectations of ZB as

∑

B∈B
EDB

[ZB] =
∑

B∈B
EDB

[

∑

v∈B

Xv,B

]

=
∑

B∈B

∑

v∈B

∥

∥U{v}
∥

∥

2
=

d

m0l0
|B|

(

∑

v∈V

∥

∥U{v}
∥

∥

2

)

=
d

m0l0
|B| · m0 = 2dT · |B|

Similarly, for the expectations of the squares, we get

∑

B∈B
EDB

[Z2
B] =

∑

B∈B

∑

v1,v2∈B

EDB
[Xv1,BXv2,B] =

∑

B∈B

∑

v1,v2∈B

〈

U{v1},U{v2}
〉

25

Again, each pair (v1, v2) such that v1 6= v2 appears in less than (d2/m2
0l

2
0) fraction of the blocks,

and a pair such that v1 = v2 appears in d/m0l0 fraction. Hence,

∑

B∈B
EDB

[Z2
B] ≤ |B|

(

d2

m2
0l

2
0

)

∑

v1,v2

〈

U{v1},U{v2}
〉

+ |B|

(

d

m0l0

)

∑

v

∥

∥U{v}
∥

∥

2

= |B|

(

d2

m2
0l

2
0

)

∥

∥

∥

∥

∥

∑

v

U{v}

∥

∥

∥

∥

∥

2

+ |B| · 2dT

Finally, to calculate the first term, we shall need the fact that G is (m0, l0) co-partite. Let V =
M0×L0. We write each v as (i, j) for i ∈ M0, j ∈ L0. Using the fact that all vectors within a single
clique are orthogonal, we get

∥

∥

∥

∥

∥

∥

∑

(i,j)∈M0×L0

U{(i,j)}

∥

∥

∥

∥

∥

∥

2

≤ m0 ·
∑

i∈M0

∥

∥

∥

∥

∥

∥

∑

j∈L0

U{(i,j)}

∥

∥

∥

∥

∥

∥

2

= m0 ·
∑

i∈M0

∑

j∈L0

∥

∥U{(i,j)}
∥

∥

2
= m2

0.

Using this bound we get that
∑

B∈B EDB
[Z2

B] ≤ (4d2
T

+ 2dT)|B|, which proves the claim.

Using equation (1) and the previous claim, we get that

∑

B∈B
PDB

[ZB < dT] ≤
1

d2
T

∑

B∈B
(EDB

[Z2
B] − 2dTEDB

[ZB] + 4d2
T) ≤

2

dT

|B|

Hence, for d > 2/ε1, the SDP value is at least (1 − ε1)|B|.

7.3 The long-code step

The next step of the reduction defines a weighted graph starting from an (m1, l1) co-partite graph.
Let G = (V,E) be the given graph and V = M1 × L1. We then define the graph GLC which has
a vertex for every i ∈ M1 and every J ⊆ L1. Also, the graph is weighted with each vertex (i, J)
having a weight w(i, J) depending on |J |.

VLC = {(i, J) | i ∈ M1, J ⊆ L1}

ELC = {{(i1, J1), (i2, J2)} | ∀j1 ∈ J1, j2 ∈ J2. {(i1, j1), (i2, j2)} ∈ E}

w(i, J) =
1

m1
p|J |(1 − p)|L1\J |

Lemma 7.6 Let G = (V,E) be an (m1, l1) co-partite graph such that independent set SDP for
t-rounds on G has value at least FRAC(G). Let GLC be defined as above. Then there is a solution

to the t/2-round SDP for independent set on GLC with value at least p · FRAC(G)
m1

.

Proof: Let us denote the vectors in G by US and those in GLC by US . We define the vectors
US for each S = {(i1, J1), . . . , (ir, Jr)} for r ≤ t as

US =
∑

j1∈J1,...,jr∈Jr

U{(i1,j1),...,(ir ,jr)}

We now need to verify that they satisfy all the SDP conditions and the SDP value is as claimed.

26

• We first check that vectors for adjacent vertices are orthogonal. Let {(i1, J1), (i2, J2)} be an
edge in GLC . Then

〈

U{(i1,J1)},U{(i2,J2)}
〉

=
∑

j1∈J1,j2∈J2

〈

U{(i1,j1)},U{(i2,j2)}
〉

= 0

since all pairs {(i1, j1), (i2, j2)} form edges in G.

• For convenience, we shall only verify
〈

US1,US2

〉

=
〈

US1∪S2 ,U∅
〉

for all S1,S2 with at most
t/2 elements. This will prove that vectors US with |S| ≤ t/2 satisfy the SDP conditions.
First, we observe that using the orthogonality of vectors in G corresponding to (i, j1) and
(i, j2) for j1 6= j2,

U{(i,J1),(i,J2)} =
∑

j1∈J1,j2∈J2

U{(i,j1),(i,j2)} =
∑

j∈J1∩J2

U{(i,j)} = U{(i,J1∩J2)} (2)

By inducting this argument, it is always possible to assume without loss of generality that
for a set S = {(i1, J1), . . . , (ir, Jr)}, the elements i1, . . . , ir are all distinct. We need the above
fact and a little more notation to verify the required condition. For S = {(i1, J1), . . . , (ir, Jr)},
let

F(S) = {(i1, j1), . . . , (ir, jr) | j1 ∈ J1, . . . , jr ∈ Jr}

with this notation,
〈

US1 ,US2

〉

=
∑

T1∈F(S1)
T2∈F(S2)

〈UT1 ,UT2〉

Also, 〈UT1 ,UT2〉 6= 0 if and only if ∀(i, j1) ∈ T1, (i, j2) ∈ T2, we have j1 = j2 (again using
orthogonality of vectors for vertices in a single clique in G). However, this means that
T1 ∪ T2 ∈ F(S1 ∪ S2). Also, since all is in S1,S2 are distinct as observed using (2), every
element T ∈ F(S1 ∪ S2) corresponds to a unique pair T1 ∈ F(S1), T2 ∈ F(S2). This gives

〈

US1 ,US2

〉

=
∑

T1∈F(S1)
T2∈F(S2)

〈UT1 ,UT2〉 =
∑

T∈F(S1∪S2)

〈UT ,U∅〉 =
〈

US1∪S2,U∅
〉

• From the above condition, it follows that for all S,
∥

∥US
∥

∥

2
=
〈

US ,U∅
〉

≤
∥

∥US
∥

∥, using
∥

∥U∅
∥

∥ = 1. Since the length of all vectors is at most 1, and all inner products are positive in
G, all inner products for the vector solution above are between 0 and 1.

To verify the SDP value, we simply need to use the fact that all vectors within a single clique in G
are orthogonal. Hence the SDP value is equal to

1

m1

∑

i∈M1,J⊆L1

p|J |(1 − p)|L1\J | ∥
∥U{(i,J)}

∥

∥

2
=

1

m1

∑

i∈M1,J⊆L1

p|J |(1 − p)|L1\J |
∑

j∈J

∥

∥U{(i,j)}
∥

∥

2

=
1

m1

∑

i∈M1,j∈L1

p ·
∥

∥U{(i,j)}
∥

∥

2
=

p

m1
· FRAC(G)

27

7.4 Putting things together

For an (m0, l0) co-partite graph G, let DS(G, ε1, dT) denote the graph obtained by staring from G
and performing the block assignments step and long-code step, where the reduction has parameters

dT and ε1 for the block assignments step. Let pmax = 3−
√

5
2 . The soundness analysis of the

Dinur-Safra reduction can be summarized in the following theorem (stated in a way adapted to our
application).

Theorem 7.7 ([10]) For given ε1 > 0, p ∈ (1/3, pmax), there exist constants ε0, h, d′
T

such that if
G is an m0, l0 co-partite graph such that every set of ε0 · m0 vertices in G contains an h-clique,
then the weight of the maximum independent set in DS(G, ε1, dT) for any dT ≥ d′

T
is at most

4p3 − 3p4 + ε1.

Using the above theorem and the previous discussion, we can now prove an integrality gap for
Minimum Vertex Cover.

Theorem 7.8 For any given ε > 0, there exists δ = δ(ε) > 0 and an infinite family of graphs such
that for graphs in the family, with N vertices, the integrality gap for the SDP relaxation for Minimum

Vertex Cover obtained by Ω(N δ) rounds of the Lasserre hierarchy, remains at least 1.3606 − ε.

Proof: Let p ∈ (1/3, pmax) be such that 1−4p3+3p4

1−p = 1.3606 and ε1 = ε/10. Let ε0, h be as

given by Theorem 7.7 and let dT = max(d′
T
, 2/ε1). For large enough n, let Φ be an instance of a

constraint satisfaction problem as given by Corollary 4.8 (by using ε = 1/2 to invoke the corollary)
for k = 3. This is simply an instance of MAX 3-XOR on n variables with m = O(n) constraints in
which s < 2/3 fraction of the constraints are satisfiable and FRAC(Φ) = m even after Ω(n) rounds.

By Theorem 7.3, there exists an r = O(log(h/ε0)), such that Gr
Φ, which is an (m0, l0) co-partite

graph for m0 = mr and l0 = 4r, has no h-clique-free subset with ε0m0 vertices. Then the weight of
the maximum independent set in DS(Gr

Φ, ε1, dT) is at most 4p3 − 3p4 + ε1, and hence the weight of
the minimum vertex cover is at least 1 − 4p3 + 3p4 − ε1.

On the other hand, by lemmata 5.1, 7.4 and 7.6, FRAC(DS(Gr
Φ, ε1, dT)) ≥ p(1 − ε1) for the in-

dependent set SDP obtained by Ω(n/l0dT) rounds. Hence the gap for Minimum Vertex Coveris at

least 1−4p3+3p4−ε1
p−ε1

≥ 1.3606− ε. It remains to express the number of rounds in terms of the number
of vertices in DS(Gr

Φ, ε1, dT). However, note that at all parameters in the reduction are constants
and the size of the graph grows by a polynomial factor at each step of the reduction. Hence, the
number of rounds equals Ω(n) = Ω(N δ) for constant δ depending on p and ε, where N denotes
|DS(Gr

Φ, ε1, dT)|.

Acknowledgements

I thank Per Austrin, Grant Schoenebeck and Luca Trevisan for helpful discussions. I am also
grateful to Grant Schoenebeck for providing a preprint of [25] and to Johan H̊astad for providing a
full version of [17]. Part of this work was done while visiting Microsoft Research India and Tsinghua
University, and I thank them both for their kind hospitality.

28

References

[1] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonapproximability
results in the Lovasz-Schrijver hierarchy. In Proceedings of the 37th ACM Symposium on Theory
of Computing, pages 294–303, 2005.

[2] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise inde-
pendence. In Proceedings of the 23rd IEEE Conference on Computational Complexity, pages
249–258, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[3] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP’s and non-approximability – towards
tight results. SIAM Journal on Computing, 27(3):804–915, 1998. Preliminary version in Proc.
of FOCS’95.

[4] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: Resolution made simple. Journal
of the ACM, 48(2), 2001.

[5] R. Boppana and M.M. Halldórsson. Approximating maximum independent set by excluding
subgraphs. Bit, 32:180–196, 1992.

[6] Josh Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi.
Rank bounds and integrality gaps for cutting planes procedures. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer Science, pages 318–327, 2003.

[7] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
maximum constraint satisfaction problems. In Proceedings of the 18th ACM-SIAM Symposium
on Discrete Algorithms, pages 62–68, 2007.

[8] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite programming
relaxations. In FOCS, pages 691–701, 2007.

[9] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher levels
of sdp hierarchies. In APPROX-RANDOM, pages 49–62, 2008.

[10] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex-cover. Annals
of Mathematics, 162(1):439–486, 2005.

[11] Lars Engebretsen and Jonas Holmerin. More efficient queries in PCPs for NP and improved ap-
proximation hardness of maximum CSP. In Proceedings of the 22th Symposium on Theoretical
Aspects of Computer Science, pages 194–205, 2005.

[12] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete. In Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science, pages 2–12, 1991.

[13] Uriel Feige. Randomized graph products, chromatic numbers, and the lovász vartheta-funktion.
Combinatorica, 17(1):79–90, 1997.

[14] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of Computer
and System Sciences, 57(2):187–199, 1998.

[15] Uriel Feige, Michael Langberg, and Gideon Schechtman. Graphs with tiny vector chromatic
numbers and huge chromatic numbers. SIAM J. Comput., 33(6):1338–1368, 2004.

29

[16] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis. Integrality gaps
of 2 - o(1) for vertex cover SDPs in the Lovász-Schrijver hierarchy. In Proceedings of the 48th
IEEE Symposium on Foundations of Computer Science, pages 702–712, 2007.

[17] Johan H̊astad. On the approximation resistance of a random predicate. In APPROX-
RANDOM, pages 149–163, 2007.

[18] Subhash Khot. Improved inaproximability results for maxclique, chromatic number and ap-
proximate graph coloring. In FOCS, pages 600–609, 2001.

[19] Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In ICALP (1), pages 226–237, 2006.

[20] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2 − ε.
In Proceedings of the 18th IEEE Conference on Computational Complexity, 2003.

[21] Jean B. Lasserre. An explicit exact sdp relaxation for nonlinear 0-1 programs. In ipco01, pages
293–303, London, UK, 2001. Springer-Verlag.

[22] M. Laurent, Mathematisch Centrum (smc, The Dutch Foundation, and Monique Laurent. A
comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0-1 program-
ming. Mathematics of Operations Research, 28:470–496, 2003.

[23] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM
J. on Optimization, 1(12):166–190, 1991.

[24] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and PCPs.
In Proceedings of the 38th ACM Symposium on Theory of Computing, pages 11–20, 2006.

[25] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-csps. In Proceedings of
the 49th IEEE Symposium on Foundations of Computer Science, 2008.

[26] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower bound for
Lovász-Schrijver SDP relaxations of vertex cover. In Proceedings of the 22nd IEEE Conference
on Computational Complexity, 2007.

A Proofs from Section 2

Lemma A.1 Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there exist β = O(qk/ε2),
η = Ω((1/β)5/δ) and N ∈ N, such that if n ≥ N and Φ is a random instance of MAX k-CSP(P)
with m = βn constraints, then with probability 1 − o(1)

1. OPT(Φ) ≤ |P−1(1)|
qk (1 + ε) · m.

2. For all s ≤ ηn, every set of s constraints involves at least (k − 1 − δ)s variables.

Proof: Let α ∈ [q]n be any fixed assignment. For a fixed α, the events that a constraint
Ci is satisfied are independent and happen with probability |P−1(1)|/qk each. Hence, the prob-

ability over the choice of Φ that α satisfies more than |P−1(1)|
qk (1 + ε) · βn constraints is at most

30

exp(−ε2βn|P−1(1)|/3qk) by Chernoff bounds. By a union bound, the probability that any as-

signment satisfies more than |P−1(1)|
qk (1 + ε) · βn constraints is at most qn · exp

(

− ε2βn|P−1(1)|
3qk

)

=

exp
(

n ln q − ε2βn|P−1(1)|
3qk

)

which is o(1) for β = 6qk ln q
ε2

.

For showing the next property, we consider the probability that a set of s constraints contains at
most cs variables, where c = k − 1 − δ. This is upper bounded by

(

n

cs

)

·

(
(

cs
k

)

s

)

· s!

(

βn

s

)

·

(

n

k

)−s

Here
(n
cs

)

is the number of ways of choosing the cs variables involved,
((cs

k)
s

)

is the number of ways

of picking s tuples out of all possible k-tuples on cs variables and s!
(βn

s

)

is the number of ways of
selecting the s constraints. The number

(

n
k

)s
is simply the number of ways of picking s of these

k-tuples in an unconstrained way. Using (a
b)

b ≤
(

a
b

)

≤ (a·e
b)b, s! ≤ ss and collecting terms, we can

bound this expression by

(s

n

)δs (

e2k+1−δk1+δβ
)s

≤
(s

n

)δs
(β5)s =

(

sβ5/δ

n

)δs

We need to show that the probability that a set of s constraints contains less than cs variables for
any s ≤ ηn is o(1). Thus, we sum this probability over all s ≤ ηn to get

ηn
∑

s=1

(

sβ5/δ

n

)δs

=
ln2 n
∑

s=1

(

sβ5/δ

n

)δs

+

ηn
∑

s=ln2 n+1

(

sβ5/δ

n

)δs

≤ O

(

β5

nδ
ln2 n

)

+ O

(

(

η · β5/δ
)δ ln2 n

)

The first term is o(1) and is small for large n. The second term is also o(1) for η = 1/(100β5/δ).

Fact A.2 Let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q − 1). Then there exists a linear code of length
k and distance 3 over Fq, with dimension k − r.

Proof: Let l = (qr − 1)/(q − 1). We can first construct a code of length equal to l and dimension
l − r by specifying the r × l check matrix (a matrix whose rows span the space orthogonal to the
code). The requirement that the code must have distance 3 means that no two columns of the
check matrix should be linearly dependent. We can choose (for example) all non-zero vectors in
(Fq)

r having their first nonzero element as 1 to get a matrix with r rows having this property. It
is easy to check that there are l = (qr − 1)/(q − 1) such columns. To reduce the code length, we
delete the last l−k columns of the matrix to get the check matrix of a code with length k, distance
3 and dimension k − r.

B Proof of Theorem 4.2

Recall that for a system Λ of linear equations, Res(Λ, t) was defined as the system of equations,
each having at most t variables and obtained by combining at most 2 equations in Λ. We shall
also require some additional notation for the proof. For a linear equation ω · x = r, we denote by

31

Supp(ω) the set of non-zero coordinates in ω and by ΩS the set of all coefficient vectors ω such
that Supp(ω) ⊆ S. ΛS denotes all equations (ω · x = r) ∈ Λ such that ω ∈ ΩS.

Suppose ∃r1 6= r2 such that (ω · x = r1) ∈ Λ and (ω · x = r2) ∈ Λ with |Supp(w)| < t. Then,

(
−→
0 · x = r1 − r2) ∈ Res(Λ, 2t). Conversely, if we know that (

−→
0 · x = r) /∈ Res(Λ, 2t) for any r 6= 0,

then we can assume that for any ω ∈ Ω, there is at most one value of r such that (ω, r) ∈ Λ. We
will abuse notation to write ω ∈ Λ when some such r exists and is guaranteed to be unique. Also,
for ω such that (ω · x = r) ∈ Λ we define the function λ(ω), which specifies what the value of ω · x
should be for any satisfying assignment (or partial assignment) according to Λ. We take λ(ω) = r
if there exists a unique r such that (ω · x = r) ∈ Λ and undefined otherwise.

Theorem B.1 Let q be a prime. Suppose Λ is a system of linear equations in Fq such that (
−→
0 ·x =

r) ∈ Λ ⇔ r = 0 and Res(Λ, 2t) = Λ. Then there are vectors V(S,α), for all S with |S| < t and for

all α ∈ [q]S, such that

1.
〈

V(S1,α1),V(S2,α2)

〉

≥ 0 for all S1, S2, α1, α2.

2.
〈

V(S1,α1),V(S2,α2)

〉

= 0 if α1(S1 ∩ S2) 6= α2(S1 ∩ S2).

3. If αi ∈ [q]Si , 1 ≤ i ≤ 4 are such that α1 ◦ α2 and α3 ◦ α4 are both defined and equal, then

〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S3,α3),V(S4,α4)

〉

4. V(S,α) = 0 for α /∈ AS and
∑

α∈AS

∥

∥V(S,α)

∥

∥

2
= 1

Proof Idea: The idea of the proof is to “encode” the partial assignments in the vectors in such
a way so that it is easy to enforce consistency according to the given system of constraints. Since
the constraints are in the form of linear equations, it is easiest to specify the value of all the linear
forms ω · x.

In the binary case, one can think that in the vector V(S,α) we have a coordinate for each ω in which
we specify E(−1)ω·x, where the expectation is over all x which agree with the assignment α. This
specifies all the Fourier coefficients of the function which is 1 iff x is consistent with α, and hence
“encodes” α. When Supp(ω) 6⊆ S, this expectation vanishes and hence one only needs to bother
about ω in the set Ω = ∪|S|<tΩS . Furthermore, because of the nature of dependencies by linear
constraints, the value of (ω1 − ω2) · x is either completely determined by Λ (when (ω1 − ω2) ∈ Λ)
or is completely undetermined and hence ω1 · x and ω2 · x are independent of each other. We thus
partition Ω into various equivalence classes based on the set of equations Λ such that all linear
forms within a class are completely determined by fixing the value of any one of them. The vectors
we construct will have one coordinate corresponding to each of these classes which will enforce the
dependencies due to Λ automatically.

Finally, to generalize this to q-ary equations, the natural analogue would be to consider the powers
of the roots of unity i.e. expressions of the form exp(2πi(ω·x)

q). However, this is not an option, since
the coordinates of the vectors are not allowed to be complex. It is easy to check though that the
proof in the binary case requires only one property of the coordinates that if two vectors disagree
on the value in one coordinate (i.e. the product is -1), then the disagreements and agreements are
balanced over all the coordinates and hence the inner product of the vectors is zero.

In the q-ary case, it can be proved that if the difference in the value of ω · x in some coordinate
according to two vectors is ∆ ∈ [q],∆ 6= 0, then over all the coordinates, all values of ∆ (including

32

0) occur equally often. We then choose each “coordinate” to be a small q − 1 dimensional vector
such that the product of the vectors at a coordinate is −1/(q − 1) if ∆ 6= 0 and 1 if ∆ = 0. This,
combined with the balance property, still gives the orthogonality of the vectors which correspond
to inconsistent assignments, and suffices for our purposes. The details are given in the proof below.

Proof of Theorem B.1: Let Ω = ∪|S|<tΩS. For ω1, ω2 ∈ Ω, we say ω1 ∼ ω2 if (ω1 − ω2) ∈ Λ.
Since this is an equivalence relation, this partitions Ω into equivalence classes C1, . . . , CN . We write
C(ω) to denote the class containing ω. Next, we choose a representative (say the lexicographically
first element) for each class. We use [C] to denote the representative for the class C.

For constructing the vector V(S,α), we assign it a q − 1 dimensional “coordinate” corresponding to
each equivalence class of the above relation i.e. for each class we choose a q − 1 dimensional vector
and the final vector V(S,α) is the direct sum of all these vectors. Let e0, e1, . . . , eq−1 denote the q

maximally separated unit vectors in q − 1 dimensions such that 〈ei, ej〉 = − 1
q−1 if i 6= j and 1 if

i = j. Using V(S,α)(C) to denote the coordinate corresponsing to C, we define V(S,α) as:

V(S,α)(C) =

0 if α disagrees with some equation in ΛS

0 if C ∩ ΩS = ∅
1

|AS | · eω·α+λ([C(ω)]−ω) for any ω ∈ C ∩ ΩS

Here ω ·α is defined as
∑

i∈S ωiα(i) is the inner product of ω with the partial assignment α, which
can be computed since Supp(ω) ⊆ S. The expression ω · α + λ ([C(ω)] − ω) is computed modulo q.
To show that the vector is well defined, we first need to argue that the coordinate V(S,α)(C) does
not depend on which ω we choose from C ∩ ΩS .

Claim B.2 If α ∈ [q]S satisfies all equations in ΛS, then for any class C and ω1, ω2 ∈ C ∩ ΩS

ω1 · α + λ ([C] − ω1) = ω2 · α + λ ([C] − ω2)

Proof: Since ([C] − ω1), ([C] − ω2), (ω1 − ω2) ∈ Λ and each have support size at most 2t, it must

be the case that λ([C]−ω2)−λ([C]−ω1) = λ(ω1 −ω2) otherwise we can derive
−→
0 ·x = r for r 6= 0.

Also, since α is consistent with ΛS , it must satisfy (ω1−ω2) ·α = λ(ω1−ω2). The claim follows.

The next claim shows that the only way two vectors V(S1,α1) and V(S2,α2) can have non-zero inner

product is by having
〈

V(S1,α1)(C),V(S2,α2)(C)
〉

= 1
|AS1

||AS2
| for each coordinate C in which it is

non-zero. The theorem essentially follows from this claim using a simple counting argument.

Claim B.3 Let α1 ∈ [q]S1 and α2 ∈ [q]S2 be two partial assignments. If
〈

V(S1,α1)(C),V(S2 ,α2)(C)
〉

<
0 for some class C, then

〈

V(S1,α1),V(S2,α2)

〉

= 0.

Proof: For any class C′ with
〈

V(S1,α1)(C
′),V(S2,α2)(C

′)
〉

6= 0, we have some ω′
1 ∈ C′ ∩ ΩS1 and

ω′
2 ∈ C′ ∩ΩS2. We will work with the quantity λ ([C(ω′

1)] − ω′
1) + ω′

1 ·α1 − λ ([C(ω′
2)] − ω′

2)−ω′
2 ·α2

denoted by ∆(C′)., which is the difference of the indices of V(S1,α1)(C
′) and V(S2,α2)(C

′). It is easy
to see that

〈

V(S1,α1)(C
′),V(S2,α2)(C

′)
〉

=

1
|AS1

||AS2
| if ∆(C′) = 0

− 1
(q−1)|AS1

||AS2
| otherwise

33

For any r1, r2 we will give an injective map which maps a class Ci1 having ∆(Ci1) = r1 to a class Ci2

having ∆(Ci2) = r2. Hence over all the classes, all values of ∆(C′) must occur equally often. This
would imply the claim, since if

〈

V(S1,α1)(C
′),V(S2,α2)(C

′)
〉

6= 0 for N0 classes C′, then

〈

V(S1,α1),V(S2,α2)

〉

=
N0

q
·

1

|AS1 ||AS2 |
+

N0(q − 1)

q
·

(

−
1

(q − 1)|AS1 ||AS2 |

)

= 0

We now construct the above map using the class C. Let ω1 ∈ C ∩ ΩS1 and ω2 ∈ C ∩ ΩS2. If
〈

V(S1,α1)(C),V(S2,α2)(C)
〉

< 0, then we have that

λ (ω1 − ω2) + ω1 · α1 − ω2 · α2 = ∆(C) 6= 0

Here we used the fact that

λ ([C] − ω1) − λ ([C] − ω2) = λ(ω2 − ω1)

Let C′ be any class such that
〈

V(S1,α1)(C
′),V(S2,α2)(C

′)
〉

6= 0 Let ω′
1 ∈ C ∩ ΩS1 and ω′

2 ∈ C′ ∩ ΩS2 .
Then

λ
(

ω′
1 − ω′

2

)

+ ω′
1 · α1 − ω′

2 · α2 = ∆(C′)

where ∆(C′) may now also be 0. Thus, for all µ ∈ [q], we get that

µλ (ω2 − ω1) + λ
(

ω′
2 − ω′

1

)

+ (µω1 + ω′
1) · a1 − (µω2 + ω′

2) · a2 = µ∆(C) + ∆(C′) (3)

Since (ω2 − ω1) ∈ Λ and (ω′
2 − ω′

1) ∈ Λ and each involves at most t variables, we also have
(µω1 + ω′

1)− (µω2 + ω′
2) ∈ Λ. Hence, (µω1 + ω′

1) and (µω2 + ω′
2) must be in the same class, say C′′,

and we can write

µλ (ω2 − ω1) + λ
(

ω′
2 − ω′

1

)

= λ
(

(µω2 + ω′
2) − (µω1 + ω′

1)
)

= λ
(

[C′′] − (µω1 + ω′
1)
)

− λ
(

[C′′] − (µω2 + ω′
2)
)

Combining this with equation 3, we get that

∆(C′′) = µ∆(C) + ∆(C′)

Since ∆(C) 6= 0, for any r1, r2, choosing µ = (r2 − r1)/∆(C) gives a mapping in which the image
of a class C′ with ∆(C′) = r1 is the class C(C′′) with ∆(C′′) = r2. It is also easy to check that this
mapping is injective and hence the claim follows.

From the above claim, we get property (1) in the theorem, since if two vectors have non-zero inner
product, it must be positive in every coordinate. From the above claim it also follows that the
inner product is only non-zero for vectors corresponding to partial assignments which are “mutually
consistent” in the sense described below. The following also proves property (2) as stated in the
theorem.

Claim B.4 If
〈

V(S1,α1),V(S2,α2)

〉

6= 0, then α1 and α2 agree on all the variables in S1 ∩ S2.
Moreover, the assignment over S1 ∪ S2 defined by α1 and α2 satisfies all the equations in ΛS1∪S2 .

34

Proof: By Claim B.3, it suffices to show that when α1 and α2 disagree on some variable in
S1 ∩ S2 or when α1 ◦ α2 violates some equation in ΛS1∪S2, then there exists a class C such that
that

〈

V(S1,α1)(C),V(S2 ,α2)(C)
〉

< 0. Consider the case when for i ∈ S1 ∩ S2, α1(i) 6= α2(i). Let
ω be the vector which has coefficient 1 corresponding to xi and all has other coefficients as zero.
Then λ ([C(ω)] − ω) + ω · α1 − λ ([C(ω)] − ω) − ω · α2 = α1(i) − α2(i) 6= 0, which implies that
〈

V(S1,α1)(C(ω)),V(S2 ,α2)(C(ω))
〉

= 1
|AS1||AS2

|
〈

eω·α1+λ([C(ω)]−ω), eω·α2+λ([C(ω)]−ω)

〉

< 0.

Next, suppose that α1 and α2 agree on S1∩S2, but α1◦α2 violates some equation (ω·x = r) ∈ ΛS1∪S2

i.e. (α1 ◦ α2) · ω 6= r. Let ω1 be the vector which is the same as ω for all coordinates in S1 and
is zero otherwise. It is clear that ω1 ∈ ΩS1 and (ω1 − ω) ∈ ΩS2 . Also ω1 ∼ (ω1 − ω) as their
difference is ω which is in Λ. Let both of them be in the class C and consider λ ([C] − ω1) + α1 ·
ω1 − λ ([C] − (ω1 − ω)) − α2 · (ω1 − ω). This is equal to (α1 ◦ α2) · ω − λ (ω) which is non-zero by
assumption. Hence,

〈

V(S1,α1)(C),V(S2,α2)(C)
〉

< 0 and the claim follows.

Properties (2) and (3) will now follow from the claim below.

Claim B.5 If α1(S1 ∩ S2) = α2(S1 ∩ S2) and α1 ◦ α2 satisfies all equation in ΛS1∪S2 , then

〈

V(S1,α1),V(S,α2)

〉

=
1

|AS1∪S2 |

Proof: Let C be any class such that
〈

V(S1,α1)(C),V(S,α2)(C)
〉

6= 0. Then there exist some elements
ω1 ∈ C ∩ ΩS1 and ω2 ∈ C ∩ Ω2. Since α1 ◦ α2 satisfies all equations in ΛS1∪S2 , we must have that
λ (ω1 − ω2) = (α1 ◦ α2) · (ω1 − ω2) = α1 · ω1 − α2 · ω2. This gives that λ ([C] − ω1) − α1 · ω1 =
λ ([C] − ω2) − α2 · ω2 and hence

〈

V(S1,α1)(C),V(S,α2)(C)
〉

= 1
|AS1

||AS2
| . So to compute the inner

product, we only need to know how many classes intersect both ΩS1 and ΩS2.

Note that ΛS (as a set of linear combinations without the RHS) is a subgroup of ΩS under ad-
dition. For calculating the inner product

〈

V(S1,α1),V(S2,α2)

〉

, we consider the quotient group
ΩS1∪S2/ΛS1∪S2 with ΩS1/ΛS1∪S2 and ΩS2/ΛS1∪S2 being subgroups of it. ΩS1/ΛS1 (which is the same
as ΩS1/ΛS1∪S2) has one element for each class which has non-empty intersection with ΩS1 (similarly
for S2). Hence, the number of classes intersecting both ΩS1 and ΩS2 is equal to |ΩS1/ΛS1 ∩ ΩS2/ΛS2 |.

For A and B which are subgroups of a group G, we know that |A + B| = |A||B|/|A ∩ B|. Using
this gives

|ΩS1∪S2/ΛS1∪S2| = |ΩS1/ΛS1∪S2 + ΩS2/ΛS1∪S2| =
|ΩS1/ΛS1∪S2||ΩS2/ΛS1∪S2 |

|ΩS1/ΛS1∪S2 ∩ ΩS2/ΛS1∪S2|

Finally, noting that ΩS1/ΛS1∪S2 is the same as ΩS1/ΛS1 and |ΩS1/ΛS1 | = |AS1 | (similarly for S2),
we get that

|ΩS1/ΛS1 ∩ ΩS2/ΛS2 | =
|AS1 ||AS2 |

|AS1∪S2 |

Thus, we have

〈

V(S1,α1),V(S2,α2)

〉

= |ΩS1/ΛS1 ∩ ΩS2/ΛS2 | ·
1

|AS1 ||AS2 |
=

1

|AS1∪S2 |

which proves the claim.

35

To check property (3) we note that

〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S3,α3),V(S4,α4)

〉

= 0

by Claim B.4 when α1 ◦ α2 violates any constraint in ΛS1∪S2 . When it does not violate any
constraints, Claim B.5 applies and we have

〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S3,α3),V(S4,α4)

〉

=
1

|AS1∪S2 |

From Claims B.4 and B.5, it is also immediate that
∥

∥V(S,α)

∥

∥

2
= 1/|AS | if α ∈ AS and is 0 otherwise.

Hence,
∑

α∈AS

∥

∥V(S,α)

∥

∥

2
= 1 which proves property (4).

C Proof of Lemma 7.1

Lemma C.1 Let the vectors US for |S| ≤ t form a solution to the t-round Lasserre SDP for
Maximum Independent Set on a weighted graph G = (V,E), with SDP value FRAC(G). Then there
exist vectors V(S,α) for all |S| ≤ t/2, α ∈ {0, 1}S , determined by the vectors US, such that

1. U∅ = V(∅,∅) and US = V(S,1S)∀S, where 1S is the partial assignment which assigns 1 to all
elements in S.

2. The vectors V(S,α) satisfy all conditions of the SDP for constraint satisfaction problems.

3. For any S, the vectors {V(S,α) | α ∈ {0, 1}S} induce a probability distribution over {0, 1}S .

The events measurable in this probability space correspond to all α′ ∈ {0, 1}S′
for all S′ ⊆ S,

and P[α′] =
∥

∥V(S′,α′)

∥

∥

2
.

4. The vectors V(S,0S) form a solution to the t-round SDP for Minimum Vertex Cover with objec-
tive value

∑

v∈V w(v) − FRAC(G), where w(v) denotes the weight of vertex v and 0S denotes
the all-zero assignment.

Proof: We shall define the vectors for all sets of size upto t. However, for convenience, we shall
only prove the SDP conditions for vectors corresponding to sets of size at most t/2. For a pair
(S,α) where α ∈ {0, 1}S , we denote by α−1(0) the set {i ∈ S | α(i) = 0} and by α−1(1), the set
S \ α−1(0). We define the vectors V(S,α) using inclusion-exclusion, as

V(S,α) =
∑

T⊆α−1(0)

(−1)|T |UT∪α−1(1)

Also, we define V(∅,∅) = U∅.

• Property (1) is then immediate from the definition of the vectors. We also note that for any
i ∈ α−1(0), we can write

V(S,α) = V(S\{i},α(S\{i})) − V(S,α′)

where α′ ∈ {0, 1}S is such that α′(j) = α(j) ∀j 6= i and α′(i) = 1.

36

• We now show that the vectors satisfy the SDP conditions. For all S1, S2 such that |S1∪S2| ≤ t,
we will show that

〈

V(S1,α1),V(S2,α2)

〉

=

{

0 when α1(S1 ∩ S2) 6= α2(S1 ∩ S2)
〈

V(S1∪S2,α1◦α2),V(∅,∅)
〉

otherwise

It is easy to check that this will show that all SDP conditions are satisfied for sets of size at
most t/2. We will proceed by induction on the total number of “zeroes” in the assignments
α1 and α2 i.e. on |α−1

1 (0)| + |α−1
2 (0)|. The base case is when α1 = 1S1 and α2 = 1S2 . Then,

the product on the left is simply equal to 〈US1 ,US2〉, which is equal to ‖US1∪S2‖
2 since the

vectors US form a valid solution to the independent set SDP.

For the induction step, first consider the case when α1 and α2 disagree on some i ∈ S1 ∩ S2.
Say α1(i) = 0 and α2(i) = 1. Then we can rewrite the inner product as

〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S1\{i},α1(S1\{i})) −V(S1,α′
1),V(S2,α2)

〉

=
〈

V(S1\{i},α1(S1\{i})),V(S2,α2)

〉

−
〈

V(S1,α′
1)

,V(S2,α2)

〉

where, as before, α′
1 is equal to α1 for all j 6= i and has α′

1(i) = 1. By the induction hypothesis,

the terms on the right are either both equal to 0 or both equal
〈

V(S1∪S2,α′
1◦α2),V(∅,∅)

〉

depending on whether α′
1 and α2 disagree or not. In either case, their difference is 0.

Next, we consider
〈

V(S1,α1),V(S2,α2)

〉

when α1 ◦ α2 is well defined. For all i ∈ S1 ∩ S2 such
that α1(i) = α2(i) = 0, we can always write V(S2,α2) = V(S2\{i},α2(S2\{i})) −V(S2,α′

2)
and note

that V(S2,α′
2)

will be orthogonal to V(S1,α1) by the previous case, since it contradicts α1 on
i. Hence, we can always reduce to the case when there is an i in only one of the sets, say S1,
such that α1(i) = 0. Now we again decompose V(S1,α1), and note that

〈

V(S1,α1),V(S2,α2)

〉

=
〈

V(S1\{i},α1(S1\{i})),V(S2,α2)

〉

−
〈

V(S1,α′
1),V(S2,α2)

〉

=
〈

V(S1∪S2\{i},α1(S1\{i})◦α2),V(∅,∅)
〉

−
〈

V(S1∪S2,α′
1◦α2),V(∅,∅)

〉

=
〈

V(S1∪S2,α1◦α2),V(∅,∅)
〉

where we used the induction hypothesis in the second step.

• We claim that to show property (3), it is sufficient to prove that for all S,
∑

α∈{0,1}S

∥

∥V(S,α)

∥

∥

2
=

1 (It is clearly necessary if we intend to interpret these values as probabilities). Before proving
it, we note that it is equivalent to the condition that

∑

α∈{0,1}S V(S,α) = V(∅,∅) because it
implies

∥

∥

∥

∥

∥

∥

∑

α∈{0,1}S

V(S,α) − V(∅,∅)

∥

∥

∥

∥

∥

∥

2

=
∑

α∈{0,1}S

∥

∥V(S,α)

∥

∥

2
− 1 = 0 (4)

Using the above equivalence, we can then conclude the consistency of the probability distri-
butions as defined in the lemma. Consider a set S and the distribution over α ∈ {0, 1}S given

by P[α] =
∥

∥V(S,α)

∥

∥

2
. In this distribution, if α′ ∈ {0, 1}S′

is an event, then the probability

of α′ can be calculated by summing the probabilities of all the events α ∈ {0, 1}S such that

37

α(S′) = α′. This must also equal
∥

∥V(S′,α′)

∥

∥

2
, which would be the probability of α′ if we just

considered the distribution over S′. This follows from (4) because,

∑

α(S′)=α

∥

∥V(S,α)

∥

∥

2
=

∑

α(S′)=α′

〈

V(S,α),V(∅,∅)
〉

=
∑

α1∈{0,1}S\S′

〈

V(S\S′,α1),V(S′,α′)
〉

=
〈

V(∅,∅),V(S′,α′)
〉

=
∥

∥V(S′,α′)

∥

∥

2

To prove that
∑

α∈{0,1}S

∥

∥V(S,α)

∥

∥

2
= 1 for all S with |S| ≤ t/2, we proceed by induction on

|S|. The base case (empty set) is trivial. To do the induction step, note that for any i ∈ S

∑

α∈{0,1}S

∥

∥V(S,α)

∥

∥

2
=

∑

α1∈{0,1}S\{i}

〈

V(S\{i},α1),V({i},0)
〉

+
∑

α1∈{0,1}S\{i}

〈

V(S\{i},α1),V({i},1)
〉

=
〈

V(∅,∅),V({i},1)
〉

+
〈

V(∅,∅),V({i},1)
〉

=
〈

V(∅,∅),V(∅,∅)
〉

= 1

• Finally, to show that the vectors V(S,0S) form a valid solution to the vertex cover SDP, we note
that they satisfy all the consistency conditions by the previous arguments. The only extra con-
dition that the SDP would impose is that for any edge (i, j) ,

〈

U − V({i},0),U∅ − V({j},0)
〉

=
0. But this is immediate because U∅ −V({i},0) = U{i} (similarly for j) and

〈

U{i},U{j}
〉

= 0.

38

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

