
4476 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

CSR-Net: A Novel Complex-Valued Network for Fast
and Precise 3-D Microwave Sparse Reconstruction

Mou Wang , Student Member, IEEE, Shunjun Wei , Member, IEEE, Jun Shi , Member, IEEE,
Yue Wu , Student Member, IEEE, Qizhe Qu , Student Member, IEEE, Yuanyuan Zhou,

Xiangfeng Zeng , and Bokun Tian

Abstract—Since the compressed sensing (CS) theory broke
through the limitation of the traditional Nyquist sampling theory,
it has attracted extensive attention in the field of microwave imag-
ing. However, in 3-D microwave sparse reconstruction application,
conventional CS-based algorithms always suffer from huge com-
putational cost. In this article, a novel 3-D microwave sparse recon-
struction method based on a complex-valued sparse reconstruction
network (CSR-Net) is proposed, which converts complex number
operations into matrix operations for real and imaginary parts.
Using the unfolding + network approximate scheme, each iteration
process of CS-based iterative threshold optimization is designed as
a block of CSR-Net, and a modified shrinkage term is introduced to
improve the convergence performance of the approach. In addition,
CSR-Net adopts a convolutional neural network module to replace
a nonlinear sparse representation process, which dramatically
reduces computational complexity and improves reconstruction
performance over conventional CS-based iterative threshold opti-
mization algorithms. Then, we divide the 3-D scene into a series of
2-D slices, and a phase correction scheme is adopted to ensure that
the whole 3-D scene can be reconstructed with measurement matrix
of a slice. Moreover, an efficient position–amplitude–random train-
ing method without additional real-measured data is employed
for the proposed network, which effectively train the CSR-Net
without enough real-measured data. Extensive experiment results
demonstrate that CSR-Net outperforms both conventional iterative
threshold optimization methods and deep network-based ISTA-
NET-plus large margins. Its speed and reconstruction accuracy in
3-D imaging can achieve a state-of-the-art level.

Index Terms—3-D microwave imaging, complex-valued
network, compressed sensing (CS), convolutional neural network
(CNN), deep learning (DL), iterative threshold optimization.

I. INTRODUCTION

3 -D MICROWAVE imaging technology [1]–[4] and its ap-
plication [5], [6] have become a hotspot. Up to now, various

3-D microwave imaging solutions have been proposed [7], [8].
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They play an important role in topographic mapping, urban in-
spection, and so on. Compared with the traditional 2-D imaging
methods [9], 3-D solutions overcome some drawbacks and can
obtain more essential information about the target. However, the
problems existing in the conventional 3-D imaging algorithms
based on the traditional Nyquist sampling theorem and the
classical signal processing theory, such as difficulty in system
implementation, too many antenna elements, and low imaging
resolution, are still the main difficulties in high-precision 3-D
fast imaging.

In recent years, an emerging theory of compression sens-
ing has brought revolutionary breakthroughs for accurate re-
construction of sparse signals, and attracted high attention in
different application fields, including but not limited to com-
pression imaging [10]–[12], channel coding [13], [14], medical
imaging [15], pattern recognition [16], wireless network [17],
and radar technology [18]–[20]. CS theory demonstrates that
as long as the original signal is sparse or compressible, it
can be recovered with a sub-Nyquist sampling rate, and the
stronger the signal sparsity, the fewer observation data required
for sparse reconstruction. CS theory uses a nonadaptive lin-
ear projection to maintain the structural information of the
original signal and then reconstructs the original signal by
solving the optimal solution of the underdetermined equations.
In [21], this process is a dubbed sparse linear inverse problem.
In the past ten years, plenty of algorithms are proposed to
solve the sparse linear inverse problem, such as the Iterative
Shrinkage-Thresholding Algorithm (ISTA) [22], Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [23], the Approxi-
mate Message Passing algorithm (AMP) [24], and so on. In spite
of the good performance in solving linear inverse problems,
conventional CS reconstruction algorithms always perform a
high time complexity in 3-D microwave imaging applications,
because of their iterative properties and a large amount of
echo data.

Recently deep learning (DL) has been widely studied, and it
has dramatically advanced the state-of-the-art for many prob-
lems in most fields. For example, target recognition, image pro-
cessing, natural language processing, and many others. A repre-
sentative work to embed deep networks into CS reconstruction
did by Kulkarni et al. in [25], they designed a novel convolutional
neural network (CNN) architecture dubbed ReconNet, which
takes in CS measurements as input and outputs an intermedi-
ate reconstruction. They showed that ReconNet provides high
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quality reconstructions for a wide range of measurement rates
in real time. In [26], Mason et al. introduced a DL framework
for inverse problems in synthetic aperture radar (SAR) imaging,
and they designed a recurrent neural network architecture as
an inverse solver based on the iterations of proximal gradient
descent optimization methods. But their method is only for pas-
sive radar imaging problems. As for general microwave imaging
problems, essentially, it can be converted into a special type of
sparse linear inverse problem. Considering the wide application
of linear inverse problems, CS reconstruction algorithms based
on deep networks have been proposed. Deep unfolding [27] is a
widely used method to convert conventional iteration algorithms
into deep networks. Inspired by the conception, Borgerding
et al. proposed the AMP inspired deep networks to solve the
sparse linear inverse problems [21]. Sufficient experiments show
that their network has excellent performance. But its excellent
performance is overly dependent on the number of iteration
layers. This greatly limits its speed. Recently, Wu et al. pro-
posed a new superresolution imaging structure based on CS
and deep neural network (DNN) for multiple-input multiple-
output (MIMO) array SAR [28]. They designed a spatial filter-
ing method based on CS and a group of parallel end-to-end
DNN regression models to realize superresolution in the el-
evation direction. And they validated the method can realize
the state-of-the-art superresolution imaging with a higher speed
than conventional methods, but the imaging process still costs
several hours. Aiming at developing a fast yet accurate network,
in [29], Zhang and Ghanem proposed a novel structured deep
network dubbed ISTA-NET. They adopted a novel strategy to
design their network, that is to combine the speed advantage of
CNN and the accuracy advantage of deep unfolding. Adequate
experimental results shown that their networks outperformed
existing CS methods by large margins in the reconstruction of
natural images.

In this article, we introduce a deep network termed CSR-Net
adapted to 3-D microwave imaging which is inspired by the work
in [29]. Taking into account the needs of real-time imaging in
the security field, we use the same network construction strategy
as ISTA-NET, but an iterative shrinkage term derived from a
classical iterative threshold optimization algorithm FISTA is
additionally introduced to get better convergence performance.
Our network is a combination of deep unfolding structure and
CNN modules. We unfold the iteration process into a blocks
based network. In each block, a CNN module is designed to
represent an optimal sparse basis, which is a key part of the
sparse linear inverse problem. Aiming at performing a fast yet
accurate 3-D imaging process with CSR-Net, we adopt a scheme
of converting 3-D imaging space to slices and reconstruct them
respectively, 3-D imaging results are obtained by a heap of
reconstruction results of all slices with an additional approxi-
mate fixed phase correction process. Furthermore, we propose
a novel training method dubbed PAR for the proposed CSR-Net
and other networks based on CS theory. Adequate experimental
results show that the training method can be effectively used for
3-D microwave imaging. A summary of the main contributions
of our work are as follows.

1) A complex-valued sparse reconstruction network (CSR-
Net) is constructed, which converts complex number oper-
ations into matrix operations for real and imaginary parts.
Compared with ISTA-NET-plus, we introduce a modified
shrinkage term from the FISTA algorithm, which gives
our network better convergence performance.

2) CSR-Net adopts a CNN module to learn an optimal non-
linear sparsifying transform, which dramatically reduces
computational complexity and improves reconstruction
performance.

3) A phase correction scheme is introduced to fix the phase
difference of echo data of each slice, aiming at ensuring
the generality of the measurement matrix to slices.

4) An efficient positionamplituderandom (PAR) training
method is designed. Even if there is not enough measured
data for training, this method can effectively deal with the
training problem of microwave imaging network.

5) CSR-Net is applied to 3-D microwave sparse reconstruc-
tion, both simulation and real-measured experimental re-
sults demonstrate that our method outperforms both con-
ventional iterative threshold optimization methods and
deep network-based method ISTA-NET-plus large mar-
gins.

The rest of this article is organized as follows. In Section II,
we introduce the theory of classical iterative threshold optimiza-
tion methods for CS, and a simple convergence performance
comparison is analyzed. In Section III, the CSR-Net network
is introduced form both unfolding structure and CNN network
module. In Section IV, a 3-D microwave imaging phase cor-
rection scheme is introduced. In order to adopt CSR-Net to
microwave imaging application, a complex-valued CSR-Net
is modified. At the end of the section, we design an efficient
training method for CSR-Net which can be extended to all
CS-based networks. In Section V, we analyze the performance
of the CSR-Net network and its performance on 3-D microwave
imaging application. Numerical results demonstrate that our
method can achieve state-of-the-art performance. Section VI
concludes this article.

II. ITERATIVE THRESHOLD OPTIMIZATION METHODS

FOR COMPRESSED SENSING

Compressed sensing aims to recover a signal x ∈ R
N form a

linear measurement y ∈ R
M of the form

y = Φx+ n (1)

where Φ ∈ R
M×N dubbed measurement matrix, CS ratio is de-

fined as M
N

, andn ∈ R
M is the measurement noise assumed to be

Gaussian distributed. In most application scenarios,M ≪ N , in
other words,Φ is a flat matrix. In these assumptions, the problem
can be converted into solving under-determined equations.

We assume that s ∈ R
N is a sparse representation ofx approx-

imately expressed as x = Ψs, where Ψ ∈ R
N×N is a suitable

sparse basis, such as Fourier, Wavelet, and Discrete Cosine basis.
Thus, we can rewrite (1) as follows:

y = ΦΨs+ e � As+ e (2)
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where A = ΦΨ dubbed the sparse measurement matrix. As for
measurement y, the CS theory demonstrates that the signal s
can be reconstructed with a high probability when it conforms
to the sparse structure in a transform domain as Ψ, on the
premise that Φ satisfies the RIP constraint [30]. According to
the reconstruction results ŝ, the estimate of signal x can be
effectively recovered via x̂ = Ψŝ.

One of the best-known methods of solving the reconstruction
problem is through solving the convex optimization problem

ŝ = C(s) = argmin
s

1

2
‖y −As‖22 + λ‖s‖1 (3)

where λ is a tunable parameter that controls the tradeoff between
sparsity and reconstruction error constraint.

A simple way to solve (3) is iterative threshold optimization,
such as ISTA and FISTA. The major iterative steps of ISTA
expressed as follows:

⎧
⎨
⎩

vk = y −Ask
rk = sk + χAT vk
sk+1 = η (rk, θ)

(4)

where θ is the soft threshold, χ is a step size, the reconstruction
error after the tth iteration is vk, rk represents rough estimate
of sk, and η(r, θ) : R

N → R
N is the shrinkage function of the

form

η(r, θ) � sgn(r)max{|r| − θ, 0} (5)

where sgn(·) represents symbolic function.
In [23], Beck and Teboulle prove that ISTA has a worst-case

complexity result ofO(1/k) and they introduce a new ISTA with
an improved complexity result of O(1/k2) dubbed FISTA. The
major iterative steps are similar to ISTA, but a shrinkage term
associated with historical iteration values is added

⎧
⎪⎨
⎪⎩

vk = y −Ask

rk = sk + χAT vk +
(

tk−1
tk+1

)
(sk − sk−1)

sk+1 = η (rk, θ)

(6)

where tk is the shrinkage pseudo coefficient, and it can be
iteratively updated by the following process:

tk+1 =
1 +

√
1 + 4t2k
2

. (7)

Plenty of researches shows that FISTA converges in order of
magnitude fewer iterations than ISTA.

III. DESIGN OF CSR-NET

In order to develop a fast yet accurate method for 3-D
microwave imaging, a novel CNN-based unfolding structured
network dubbed CSR-Net is introduced. Unlike the work in [21],
it simply uses an unfolding structure for iterative algorithms,
while our method mainly consists of two modules, unfolding
module and CNN module.

A. Unfolding Module

In general, the proposed CSR-Net adopts the idea of unfolding
and constructs an iterative-based network model. Furthermore,

we unfolded every FISTA iteration phase into an update block.
In order to improve the performance of the network and get
the reconstruction result directly, transform basis Ψ module and
its inverse form Ψ−1 added for each iteration block instead of
simply attaching moduleΨ to the end of the whole network. This
work appears to be redundant now, but in the following sections,
its elegance will be gradually revealed. The unfolding structure
of CSR-Net is shown in Fig. 1, where ∆xk is the difference
between kth and (k-1)th iteration result. The proposed CSR-Net
is composed of several iteration blocks, for each iteration block,
four main update steps are performed. We take block k as an
example.

1) Shrinkage Coefficient Update: This step can be divided
into two more detailed steps. First, tk+1 can be updated as (7)
according to historical shrinkage pseudo coefficient tk, then the
shrinkage coefficient ck can be calculated of the form

ck =
tk − 1

tk+1
. (8)

2) Shrinkage Terms Update: In this step, iteration block need
input consisting of xk−1, xk−2, and shrinkage coefficient ck.
Thus, shrinkage terms can be updated according to the following
formula:

ωk = ck∆xk−1 = ck (xk−1 − xk−2) . (9)

Essentially, the FISTA algorithm is a kind of gradient descent,
and each iteration is a gradient drop of problem (3). As for
formula (3), this process can be split into two separate steps
as follows.

3) MMSE Gradient Descent: Considering the first item of
(3), each gradient drop update result r̂k can be calculated as
follows:

r̂k = xk−1 − χ∇C (xk−1)

= xk−1 − χΦT (y − Φxk−1) . (10)

Then, the shrinkage factor rk will be updated as

rk = r̂k + ωk. (11)

4) Shrinkage for Sparsity Constraint: Now we consider the
second term of (3), sparsity constraint, it is also termed l1-
regularization, aims to seek the sparsest solution of s. A simple
way to solve this problem is also gradient descent. But we
note that ∇‖·‖1 = sgn(·), that is to say l1-regularization is not
differentiable at 0. Recent years, some researchers found (5) is
an effective method to solve the problem, and (5) is a special
case of so-called proximal mapping. According to the method,
result of block-k can be calculated as follows with the input of
rk and soft threshold θ

sk = sgn(rk)max {|rk| − θ, 0}

xk = Ψsk. (12)

It is worth noting that steps 1) and 2) are the main differences
between ISTA and FISTA. Essentially, a block in CSR-Net
represents these four steps above, and it also equals an iteration
phase in the conventional FISTA algorithm.
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Fig. 1. Unfolded structure of CSR-Net.

B. CNN Module

In order to obtain a most sparse representation of x, and get
a state of art reconstruction performance. A key point is to find
an optimal sparse basis. Inspired by the work of ISTA-Net-
plus [29], we adopt a more elegant way to improve this work
for our application.

Considering the uncertainty and substitutability of Ψ, we
choose to design a general nonlinear transform function Ψ(·)
to sparsify rough estimation of reconstruction signal rk in the
kth block. Ψ(·) can be formulated in matrix form as

Ψ(x) = B3 ×ReLU (B2B1x̃) (13)

where x ∈ R
1×n represents the input signal, x̃ ∈ R

1×(n+s−1)

is the zero expansion of x, and ReLU(x) = max(0, x). Define
learnable weightswi ∈ R

s×1, arrange them in subbasis matrices
Bi as follows:

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wi,1 0 · · · 0

wi,2 wi,1
. . .

...
... wi,2

. . . 0

wi,s

...
. . . wi,1

0 wi,s wi,2

...
...

. . .
...

0 0 · · · wi,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

where Bi ∈ R
(n+s−1)×n, wi,j represents the jth element of wi.

Obviously, matrix multiplications of Bi can also be equivalently
transformed into the single-channel convolution operations with
wi the kernels. If we redefine wi ∈ R

ms×t, and arrange them in
Bi the same way, matrix multiplication can be transformed into
convolution operations with m channels input and t channels
output.

Thus, we can adopt a CNN network module to replace Ψ(·),
it is a combination of convolution operators, ReLU and batch

normalization (BN). Compared with the work in [29], an extra
BN layer is introduced to prevent overfitting and vanishing
gradient problem. In more detail, every two convolution layers
are separated by a ReLU unit, and each ReLU is preceded by a
BN layer. The first convolution layer corresponds to 1 filter in
order to adapt single-channel data. And the second convolution
layer corresponds to Nconv filters of the size Nf ×Nf , the next
two convolution layers are the same size as the second one. It is
of note that s = Nf ×Nf and t = Nconv. Furthermore, a sym-
metric network denoted by Ψ−1(·) with a mirror-symmetrical
structure and different weights is constructed as the representa-
tion of Ψ−1.

Essentially, step 4) in Section II can be converted into an
optimization problem of the form

xk = argmin
x

1

2
‖x− rk‖

2
2 + λ‖Ψx‖1. (15)

As proved in [29], under a reasonable assumption that each
term x− rk follows an independent normal distribution with
common zero mean and variance δ2, the following equation is
established:

∥∥Ψ−1(x)−Ψ−1 (rk)
∥∥2
2
≈ κ ‖x− rk‖

2
2 (16)

where κ is a coefficient related to convolutional weights. Thus,
with the proximal mapping theory in (5), (15) can be approxi-
mated to another form with the definition of Ψ(·) and Ψ−1(·)

xk = Ψ
(
η
(
Ψ−1 (rk) , θ

))
. (17)

The CNN module in kth block of CSR-Net is shown in Fig. 2,
it is inspired by (17), the network achieved a combination of
simplicity and high performance. In another perspective, this is
also why we choose to lead in extra Ψ and Ψ−1 modules in each
iteration block.

As for loss function, we adopted the similar solution in [29]
to consider the constraint of Ψ(·)×Ψ(·)−1 = I. Where I is
the identity operator. Both reconstruction error and sparsity
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Fig. 2. CNN module in kth block.

constraint were considered, and adjustable parameters were
adopted to control the tradeoff between two constrained terms.
With the training data {xi, yi}

Ntrain
i=1 and learnable parameters

Θ = {χ, θ,Ψ,Ψ−1}, the global loss function lg(Θ) is defined
as

lg (Θ) =
β1

Nset

Nset∑

i=1

‖x̂− xi‖
2
2

+
β2

Nset

Nset∑

i=1

t∑

k=1

∥∥Ψ−1 (Ψ (rk))− rk
∥∥2
2

(18)

where t is the number of iteration blocks, Nset is the number of
training samples. And β1, β2 are the weight parameters for the
two different constrained factors, in our experiments they are set
to 1 and 0.1, respectively.

C. Complex-Valued Network

Taking the basic operators for complex-valued data into
consideration, especially for multiplication operators, it can be
converted into a matrix operators based on the real and imaginary
parts respectively, i.e., for complex multiplication c = a× b, it
can be expressed as

(
Re(c)
Im(c)

)
=

(
Re(a) −Im(a)
Im(a) Re(a)

)(
Re(b)
Im(b)

)
(19)

here, Re(·) and Im(·) represent real and imaginary operators,
respectively. Inspired by (19), we establish the following data
structures for echo y and imaging results α, which is simply
double the data dimensional size by separating the real and
imaginary parts of original data

αk =

(
Re (αk)
Im (αk)

)
yk =

(
Re (yk)
Im (yk)

)
. (20)

As for measurement matrix Asys, we adopt the modification as

aij =

(
Re (aij) −Im (aij)
Im (aij) Re (aij)

)
(21)

where aij is an element of Asys. With the modifications above,
we can effectively convert complex-valued problems into real-
valued ones. Thus, the CSR-Net can be applied to microwave
imaging problems.

IV. 3-D MICROWAVE IMAGING VIA CSR-NET

In most instances, the microwave imaging process can be
equivalent to a special case of compressed sensing problem
of recovering a complex signal α ∈ C

N dubbed target scene
scattering coefficients form a complex measurement y ∈ C

M

dubbed echo. The echo data can be expressed as

y = Asysα+ e (22)

where Asys ∈ C
M×N is determined by the imaging system.

To our best knowledge, CS-based imaging has been widely
studied, but a majority of researches focused on 2-D imaging
or conventional iteration algorithms. And in this section, an
effective and efficient method for 3-D microwave imaging based
on the proposed CSR-Net will be introduced.

A. Correction Scheme for 3-D Microwave Imaging

For 3-D microwave imaging via CSR-Net, the key point is to
build an appropriate measurement matrix for the imaging sys-
tem. As for a single imaging scene slice, considering an imaging
scene withNs ×Ns resolution units, and we assumeNa antenna
elements randomly distributed. We consider the round-trip phase
difference ∆ϕi,j between the imaging resolution unit Ps

i and
the antenna array element Pa

j , it can be calculated as

∆ϕi,j = 4π

∥∥Ps
i − Pa

j
∥∥

λ
=

4πf

c

∥∥Ps
i − Pa

j
∥∥ (23)

where f is the carrier frequency, c is the velocity of light, λ = c
f

is the wavelength, Ps
i represents the coordinate vector of imag-

ing resolution unit i, and Pa
j represents the coordinate vector

of antenna array element j. Thanks to the exponential form of
imaging system echo, we can get a ∆ϕi,j based measurement
matrix Asys ∈ C

Na×Ns
2

of the form

Asys =

⎛
⎜⎝

e−j∆ϕ1,1 · · · e−j∆ϕ
1,Ns

2

...
. . .

...
e−j∆ϕNa,1 · · · e−j∆ϕ

Na,Ns
2

⎞
⎟⎠ . (24)

It is worth noting that Asys is determined by the imaging sys-
tem and geometric parameters. And in some other application
scenarios Asys can be constructed in a different way, i.e., FFT.
We assume target scattering coefficient is α ∈ C

Ns
2×1, and its

element defined as αi. Thus, echo y ∈ C
Na×1 can be expressed
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Fig. 3. Schematic of 3-D imaging via CSR-Net.

as

y = Asysα. (25)

In pursuit of simplicity, 3-D imaging scenes were divided into
several slices in our scheme, therefore, we can perform sparse
reconstruction imaging via CSR-Net on each slice separately,
and then correct the imaging results and superimpose them to
obtain 3-D imaging results. The schematic is shown in Fig. 3.
Based on the scheme above, for a 3-D imaging scene divided into
Nslice slices, we assume that target scattering coefficient for slice
k is αk ∈ C

Ns
2×1, and echo for slice k is yk ∈ C

Na×1, where
k = 1, 2, . . . , Nslice. Thus, in a whole 3-D scene, target scattering
coefficientα3D ∈ C

Ns
2×Nslice and echo y3D ∈ C

Na×Nslice can be
extended to the following forms respectively:

α3D =
(
α1 α2 · · · αNslice

)

y3D =
(
y1 y2 · · · yNslice

)

= Asys
(
α1 α2 · · · αNslice

)

= Asysα3D. (26)

For microwave imaging, the problem is to reconstruct α3D from
a known Asys and y3D, that can be performed by the proposed
CSR-Net efficiently.

Noting (26), in practical 3-D imaging cases, Asys usually vary
from slice to slice, and network parameters vary with Asys.
So a constant measurement matrix A0

sys
must be found as a

reference, we assume that the measurement matrix for slice k
is Ak

sys
. Essentially, for the reference measurement matrix A0

sys
,

Ak
sys

can be represented as Ak
sys

≈ ΘkA
0
sys

, where Θk is a scalar
termed phase correction factor. We perform a calibration process
on y3D, and get a close form of (26) with only a constant
measurement matrix A0

sys

y3DΘ−1 = A0
sysα3D (27)

where Θ−1 is the inverse of correction matrix formed by correc-
tion factors Θk. We propose the following method to get a close
form of Θ. As shown in Fig. 4. R0 is the distance between the
array plane and the reference plane, Rk is the distance between
the array plane and the kth slice, and the size of resolution unit
is ∆Ps, the antenna array element spacing is ∆Pa. Thus, in kth

Fig. 4. Schematic of distance difference between slices.

slice, the distance between antenna element am and imaging
resolution unit sn can be expressed as

Rk
mn =

√

Rk
2 +

(√(
is

2 + js
2
)
∆Ps −

√(
ia

2 + ja2
)
∆Pa

)2

(28)

where is and js are the indexes of sn, ia and ja are the indexes
of am. For simplicity, in the following description, we define
fij

a =
√

(ia
2 + ja

2) as the distance index of am, and the
similar fij

s represents the distance index of sn. We carry out
Taylor expansion of (28) and ignore the higher-order terms, it
can be expressed as

Rk
mn ≈ Rk +

(
fs
ij∆Ps − fa

ij∆Pa

)2

2Rk

. (29)

We assume that Rk ≫ ∆Ps and Rk ≫ ∆Pa in microwave
imaging problem, this relationship is always be met. (29) can
simply converted intoRk

mn ≈ Rk. Therefore, for each resolution
unit in slicek, the phase differences∆ϕk between reference slice
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and slice k are of the same form

∆ϕk ≈
4πf

c
(Rk −R0) . (30)

Thus, Θk can be expressed as

Θk = e−j∆ϕk . (31)

And correction matrix Θ can be expressed as

Θ = diag (Θk) =

⎛
⎜⎜⎜⎝

Θ1 0
Θ2

. . .
0 ΘNslice

⎞
⎟⎟⎟⎠ . (32)

Using (27), we can perform a 3-D imaging process with only a
constant measurement matrix A0

sys rather than plenty of them,
which is a significant modification for the adoption of proposed
CSR-Net in real 3-D imaging application. In this method, the
3-D imaging process can be written as

α̂3D = f
(
y3DΘ−1, A0

sys

)
(33)

where α̂ represents imaging result, and f(·) is imaging process.

B. Training Scheme for CSR-Net

Another novelty for our work is that we propose a simple but
efficient method dubbed PAR to train CSR-Net networks for
microwave imaging application scenarios. In seek for accurate
results, conventional deep networks always should be trained
with quite a large number of training samples that are usually
hard to get, especially, in the microwave imaging application
scenarios. But for the microwave imaging based on CS theory,
we found that the imaging process is mainly affected by the
pseudo inverse of Asys. So we attempted to create a training
pattern related to Asys only, and it is not important whether there
are enough real-measured data samples.

Aiming at generating a data set {xi, yi}
Ntrain
i=1 matching specific

imaging tasks, a key problem is how to determine the range
of label amplitude. In our work, the MF reconstruction results
are taken as a reference, and the amplitudes of label vectors
xi, i = 1, 2, .., Ntrain are in the same order of magnitude and
randomly distributed. Moreover, label vectors are of the same
size as imaging resolution plane Ns ×Ns, and none zero values
of them are distributed in random places. According to the imag-
ing system and geometric model parameters, the measurement
matrixAsys can be calculated by (24). Thus, the measurement for
each constructed label vector can be generated as yi = Asysxi.
Under these assumptions, an arbitrarily sized training set can
be constructed. And it is worth noting that the number of target
N i

target
of training data {xi, yi} can be calculated as

N i
target = ‖xi‖1. (34)

According to the theory of compressed sensing [7], the following
restrictions for N i

target
need to be met:

1 ≤ N i
target

≤
Na

2
. (35)

We construct a training data sample with a target number that
meets the above constraint, moreover, the number of training

targets is evenly distributed in the restricted interval. Therefore,
in the manner described above, we can generate any amount of
data needed to train CSR-Net.

V. EXPERIMENTAL RESULTS

In this article, we analyze the performance of the proposed
CSR-Net in a numerical test environment first. Then, the pro-
posed 3-D imaging method is verified in terms of performance
and speed. And in both cases, our method performs better over
conventional and network-based methods.

In our experiments, we trained all networks for different test
conditions with the following fixed mutual hyperparameters:
convolution size of 32, filter size of 3× 3, initial learning rate
of 0.0001, and batch size of 8. And we set χ and θ to 0.0001 and
0.001, respectively. It is of note that χ and θ are learnable. All
of our training and testing experiments were implemented in the
Tensorflow framework with the Adam optimizer and performed
on a platform with 3.70 GHz Intel Core i7-8700 K CPU (64 G
RAM) and RTX 2060 GPU (6 G Memory).

For the quantitative evaluation of reconstruction performance,
we adopt two indexes. First, the normalized mean square error
(NMSE) [31] value was used which is defined as

NMSE =
‖α̂− αlabel‖

2
2

‖αlabel‖
2
2

(36)

where α̂ and αlabel denote the reconstructed images and ground
truth, respectively. We also use the target-to-background ratio
(TBR) [32], which is defined by

TBR = 10 lg

⎡
⎢⎣

∑
(i,j)∈RT

|α̂ij |
2

∑
(i,j)∈RB

|α̂ij |
2

⎤
⎥⎦ (37)

whereRT andRB are the set of target points and the set of back-
ground points, respectively. To effectively evaluate the imaging
performance of measured data, we use the image entropy (ENT),
which is defined as

ENT = −
∑

g(i)

pi log pi (38)

where pi represents the proportion of pixels with amplitude i in
the image, g(i) is total gray value of image histogram. It reflects
the average amount of information in the image, the smaller the
ENT value, the clearer the image.

A. Performance of CSR-Net

We generate {xi, yi}
Ntrain
i=1 for training, and the elements of

matrices xi are randomly distributed, we adopt 0.5-1 to rep-
resent the scattering coefficients with different strengths, and
a zero value means no target. For learnable parameters Θ =
{χ, θ,Ψ,Ψ−1}, in this article, we adopt untied training mode to
both CSR-Net and its comparative experiment ISTA-NET-plus,
in this mode, in which learnable parameters can be represented
as Θ = {χk, θk,Ψk,Ψk

−1}t−1
k=1.

First, four different networks are designed to verify the impact
of BN layers. We adopt the method described in Section IV-B to
generate a training set with 10 000 samples, 20 dB additive white
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Fig. 5. Performance investigation on BN layers. (a) NMSE. (b) TBR.

Gaussian noise (AWGN) is added to generated clean measure-
ments. For each sample in the set, the number of targets sets to be
a random number, and it meets the constraint in (35), all networks
use the same training set. Furthermore, as a default setting, all
networks are fixed in 9 blocks, and we set the number of reso-
lution units as 64× 64, the range of scenarios as 60 m × 60 m,
the platform height R0 equals 3000 m which is much larger
than the size of the resolution unit. Thus, the measurement
matrix Asys ∈ C

Na×Ns
2

can be calculated of the form in (24).
Furthermore, we generate a testing set consist of 50 different
samples in each number of targets, and the number of targets
is in range of {200, 400, 600, 800, 1000, 1200}. If not specified,
20 dB AWGN noise is added to all test sets in this section by
default. Fig. 5(a) shows networks with BN layers get lower
NMSE values, and that is more obvious for ISTA-NET-plus.
Fig. 5(b) shows CSR-Net with BN layers perform slightly worse
than the original one in TBR, but ISTA-NET-plus improves quit
a lot. It suggests that for CSR-Net, the BN layer can improve
the reconstruction accuracy to a certain extent; but it reduces the
TBR value. However, for ISTA-NET-plus, the introduction of
the BN layer can greatly improve the reconstruction accuracy,
and at the same time increase the TBR value. Nevertheless, after
the introduction of the BN layer, CSR-Net still performs better
than ISTA-NET-plus in two indicators. So in what follows, BN
layers are introduced by default.

1) Target Quantity: In this section, we study the effect of
target density on reconstruction performance. CS ratio is fixed
to 50%. For a fair comparison, the same training set is used, We
adopt testing sets with target density as sparse (0.1×Ntotal =
135), half (0.5×Ntotal = 675) and full (Ntotal = 1351), where
Ntotal = 1351 is the total number of target in an imaging sce-
nario. Results are shown in Fig. 6.

In order to investigate the performance of target density
more detailedly, we compare the performance of CSR-Net with
not only network-based ISTA-NET-plus but also conventional
Matched Filtering (MF,baseline) ISTA, FISTA algorithms. To
be more precise, the same test set described above adopted. We
analyze NMSE and TBR performance of all methods mentioned
above, Fig. 7 shows NMSE and TBR performance versus tar-
get quantity. It demonstrates that CSR-Net obtains compelling
reconstruction results compared to the MF baseline, it also
significantly outperforming other algorithms involved whether
in a scene with sparse or dense targets.

2) Number of Blocks: Then, we analyze the effect of the
maximum number of blocks k on reconstruction performance.

We train our networks with a maximum number of blocks in
a range of {1, 3, 6, 9, 12, 15}, and the same training process is
implemented in ISTA-NET-plus. A testing set consists of 50
samples applied, in which each sample is randomly distributed
with 500 targets. For a fair comparison, the testing set is also
applied to test conventional ISTA and FISTA algorithms with
the same number of iterations. Taking MF as baseline, Fig. 8
shows curves of reconstruction performance under different
blocks/iterations. Experimental results show that NMSE of re-
constructed results is quite worse in a small number of blocks,
at this time, we can get quite a considerable drop of NMSE
with only a small increase in the number of blocks. Inversely,
when the number of blocks is quite large, only little performance
improvement can be made by adding extra blocks. However,
TBR shows the opposite trend. In Fig. 8(a), the NMSE values of
proposed CSR-Net are smaller than ISTA-NET-plus, it indicates
that our method outperforms ISTA-NET-plus in reconstruction
accuracy, and it also exceeds conventional methods quite large
margins. Furthermore, Fig. 8(b) shows that TBR obtained by
CSR-Net is higher than the other four methods. It suggests that
our method has good reconstruction accuracy. In more detail,
we find that both NMSE and TBR curves are tend to be stable
when the number of blocks exceeds nine. So, in the following
experiments, nine blocks are adopted by default.

3) SNR: To further investigate the robustness of CSR-Net,
AWGN noise of different intensities is added to the testing set.
SNRs of testing sets are in the range of {0, 5, 10, 15, 20, 25, 30}
dB. Both networks and conventional algorithms are composed of
nine blocks/iterations, and networks are trained for 50 epochs
with the same training set. Fig. 9 demonstrates performance
under different SNRs. We note that Fig. 9 shows the proposed
method outperforms ISTA-NET-plus and conventional algo-
rithms in both NMSE and TBR. This indicates that no matter
what noise conditions, CSR-Net has higher reconstruction ac-
curacy. Furthermore, the trend of curves shows that all methods
is fairly robust to noise except MF performs worse in high noise
level.

B. Investigation on 3-D Imaging

We adopt the proposed CSR-Net in 3-D imaging simulation
experiments using the method described in Section IV-A. The
number of resolution units is fixed as 64× 64, and the platform
height R0 is 3000 m that much higher than the size of resolution
units, more detailed parameters of the simulation system is
shown in Table I. In what follows, we analyze the imaging
performance with 9 blocks/iterations and adopt 32 slices in
height by default.

1) Superresolution Test: In the simulation environment, we
set pulse repetition rate (PRF) to 420 Hz, and platform velocity
vs is set to be 100 m/s. With parameters in Table I, the azimuth
and range resolutions can be calculated as follows:

Rc =
λH

2La

= 1m

Ra =
λH

2Wa

=
λH

2× (Sa − 1)vs/PRF
= 1 m (39)
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Fig. 6. Reconstruction results of CSR-Net and ISTA-NET-plus. Row 1 represents sparse (0.1×Ntotal) case. Row 2 are half (0.5×Ntotal). Row 3 full (Ntotal).
(a) Ground truth. (b) ISTA-NET-plus. (c) CSR-Net.

Fig. 7. Performance under different target quantity. (a) NMSE. (b) TBR.

where λ = c
fc

is the wavelength, c is speed of light, and Wa

is Azimuth sampling length, it can be calculated as Wa =

Fig. 8. Performance under different blocks/iterations. (a) NMSE. (b) TBR.

(Sa − 1) vs

PRF . In order to investigate whether CSR-Net can re-
alize superresolution reconstruction, we set the reconstruction
resolution in range of 0.3Rsys − 0.9Rsys by adjusting image
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Fig. 9. Performance under different SNRs. (a) NMSE. (b) TBR.

TABLE I
PARAMETERS OF SIMULATION DATA

Fig. 10. Imaging performance under different RR. (a) NMSE. (b) TBR.

range and fixing the number of resolution units, here in Rsys =
Rc = Ra = 1 m. And we fix the CS ratio as 50% which is related
to the number of antenna elements activated and resolution units.
It is worth noting that the measurement matrix varies with the
number of resolution units and the size of the scene range. So we
generate training data sets with 10 000 samples for each different
reconstruction resolution, and 20 dB AWGN noise added to all
training sets.

Fig. 10 shows imaging performance under different resolution
ratio (RR). Fig. 10(a) shows that CSR-Net performs the lowest
NMSE than other methods in all range of resolution interval. And
it can be noted that networks based methods exceed conventional
ones by large margins, especially in a low RR value. A similar
phenomenon also presented in the curves of TBR versus RR. In
addition, both network-based methods mentioned in this article
still perform well when the resolution reaches twice the theoret-
ical value of the system (0.5Rsys), which means both CSR-Net
and ISTA-NET-plus can realize double superresolution recon-
struction. It is of note that the performance of conventional ISTA
and FISTA deteriorate significantly when RR in range of 0.3–0.5,
which even leads to reconstruction failure. So the performance
of them in this range is not reflected in Fig. 10. In addition, an

F35 fighter model is used to perform a 3-D imaging experiment,
Fig. 11 shows some 3-D imaging results via different methods
mentioned in this article when RR = 0.5.

2) CS Ratio: At last, we investigate the effect on the CS ratio
of 3-D imaging performance. CS ratios are changed in range
{0.1, 0.3, 0.5, 0.7, 0.9}. For the microwave imaging application
scenario, it can be achieved by adjusting the number of antenna
elements or sampling the received signal. In this article, we
adopt the former method, and schematic diagrams of antenna
array plane in different CS ratio are shown in Fig. 12. 3-D
imaging results via CSR-Net and ISTA-NET-plus are shown in
Fig. 13. It suggests that CSR-Net obtains better results in 3-D
imaging applications regardless of CS ratio. And Fig. 14 show
the performance under different CS ratio. Fig. 14(a) shows that
network-based methods have a worse reconstruction accuracy
than conventional algorithms in a low CS ratio, but all of them do
not perform well. When the CS ratio exceeds 0.2, network-based
methods outperform conventional ones, especially, the proposed
CSR-Net shows a fairly low reconstruction error than other
methods. In addition, all methods perform a considerable low
reconstruction error with a CS ratio near 1. Fig. 14(b) shows
the proposed CSR-Net exceeds other methods by quite large
margins in TBR. That suggests it has a better target resolution.

3) Speed Investigation: In this section, the speed perfor-
mance of 3-D imaging process via different methods are investi-
gated. Noting that conventional CS algorithms often suffer from
high data-dependence and low parallelism, which is not suitable
for GPU acceleration, so they are only tested on CPU. While
network-based methods are examined on both CPU and GPU
platforms. Leveraging the fact that the data feeding process costs
a considerable amount of time and this process can be easily
optimized by adopting an asynchronous FIFO in actual appli-
cation, thus, only reconstruction (forward inference) process is
counted in imaging speed test for network-based methods. And
reconstruction speed is evaluated in two different conditions,
the same blocks/iterations and NMSE < 0.001. We generate
a 3-D imaging testing set consist of 20 slices using the PAR
method. Runtime(s) of all methods in two different conditions
are shown in Tables II and III, respectively. As can be seen in
Table II, networks with the same blocks show a similar speed,
and both of them exceed conventional algorithms by more than
two orders of magnitude. Moreover, Table III means that the
proposed CSR-Net achieves a higher speed in the same MSE
level.

C. Verification on Measured Data

Two experimental ground-based linear array SAR (GB-
LASAR) systems are adopted to verify the performance of CSR-
Net. A nine blocks CSR-Net network is trained for imaging,
furthermore, MF, OMP, ISTA, and FISTA algorithms are used
for performance comparison in these experiments.

1) Experiment 1: Imaging experiment is adopted using mea-
sured data obtained from ground-based equivalent LASAR ex-
perimental system 1. System parameters are listed in Table IV,
and the experimental scenario and system are shown in Fig. 15
top row. As shown in Table IV, the number of virtual 2-D array



4486 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 11. 3-D imaging results via different methods when resolution ratio RR = 0.5, row 1 represent 3-D results, and row 2 are slices of them. (a) Ground truth.
(b) ISTA. (c) FISTA. (d) ISTA-NET-plus. (e) CSR-Net.

TABLE II
RUNTIME (S) OF DIFFERENT METHODS WHEN BLOCKS/ITERATIONS ARE 9 (CPU/GPU)

TABLE III
RUNTIME (S) OF DIFFERENT METHODS WHEN NMSE < 0.001(CPU/GPU)

TABLE IV
PARAMETERS OF EXPERIMENTAL SYSTEM

Fig. 12. Antenna array elements distribution diagram. (a) Spare, CS ratio =

0.1. (b) Half, CS ratio = 0.5. (c) Full, CS ratio = 1.

elements is 8394, from which we randomly sample 4000 and
2000 elements, that is to say, the CS ratio is fixed as 47.7%
and 23.8%, respectively. During system movement, the size
of the virtual antenna array formed is 1.5 × 1.3 m. As a full
sampling baseline shown in Fig. 16, Fig. 17 shows imaging
results obtained via MF, OMP, ISTA, FISTA, and CSR-Net with
4000 and 2000 elements.

2) Experiment 2: A different experiment system is adopted
to verify the universality of CSR-Net. System parameters
are listed in Table IV, and the experimental scenario and
system are shown in Fig. 15 bottom row. In this system,
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Fig. 13. 3-D imaging results via CSR-Net and ISTA-NET-plus in different CS ratio, row 1 represent 3-D results, and row 2 and 3 are slices of them. (a) Ground
truth. (b)–(d) ISTA-NET-plus. (e)–(g) CSR-Net. (b,e) CS ratio 0.3. (c,f) CS ratio 0.5. (d,g) CS ratio 0.7.

Fig. 14. Imaging performance under different CS ratio. (a) NMSE. (b) TBR.

Fig. 15. Experimental systems and scenarios, the top and bottom rows
correspond to experiment 1 and 2, respectively. (a) Experimental systems.
(b) Experimental scenarios.

the number of virtual 2-D array elements is 8928, and we
also randomly sample 4000 and 2000 elements, the CS ra-
tio is fixed as 44.8% and 22.4%, respectively. As a baseline,
Fig. 18 shows results via MF and OMP in the full sampling

Fig. 16. Full sample (8394 elements) 3-D imaging via MF and OMP used for
comparison. (a) MF. (b) OMP.

case. Fig. 19 shows 3-D imaging results in 4000 and 2000
elements.

3) Performance and Speed Analysis: Compared with base-
line Fig. 16, Fig. 17 shows our method still perform well at low
CS ratios, and it can be seen in Fig. 17, results of CSR-Net get
fewer false target points than that of ISTA-NET-plus and conven-
tional algorithms in 4000 elements sampling, but networks based
methods show a significant performance degradation at low
CS ratio (2000 elements sampling), especially ISTA-NET-plus.
Even so, CSR-Net can still achieve reconstruction accuracy
comparable to traditional algorithms, this also conforms to the
law presented in Fig. 14 in Section V-B. Table V numerically
shows the ENT of the experiments, we note that CSR-Net gets
lower ENT values, it suggests that CSR-Net achieves a better
performance. Similarly, the conclusion can also be drawn from
experiment 2.

In addition, Table VI shows reconstruction time of all meth-
ods. Since MF adopts formula α̂ = Asys

T y directly to obtain
imaging results, its reconstruction speed is fairly fast by just
simply using one matrix multiplication. As for other algorithms,
the proposed CSR-Net is noticeably better than ISTA, FISTA,
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Fig. 17. Experiment 1, double balls 3-D imaging results, the top and bottom rows represent 4000 and 2000 elements, respectively. (a) MF. (b) OMP. (c) ISTA.
(d) FISTA.(e) ISTA-NET-plus. (f) CSR-Net.

TABLE V
ENT VALUES OF DIFFERENT METHODS IN REAL 3-D IMAGING APPLICATIONS

TABLE VI
RUNTIME (S) OF DIFFERENT METHODS IN REAL 3-D IMAGING APPLICATIONS(CPU/GPU)

Fig. 18. Full sample (8928 elements) 3-D imaging via MF and OMP used for
comparison. (a) MF. (b) OMP.

and OMP in reconstruction speed. Since the same block number
adopted in both CSR-Net and ISTA-NET-plus, they have similar
reconstruction time.

D. Discussion

1) Generalization Ability: Considering that the simulation
and real-measured experiments of this article are based on the
far-field LASAR imaging platforms. In order to demonstrate
the generality of the method, this section applies the proposed
method to the recently released “IWR1443” MIMO millimeter-
wave (MMW) sensors real-measured data [33] for near-field
3-D reconstruction. The significant radar system parameters are
listed in Table IV. The target scenarios are shown in Fig. 20.
After the measurement matrix is constructed according to the
imaging geometric parameters, the MF scattering amplitude of
scenario 1 is estimated. Referring to the estimated amplitude,
10 000 training samples are generated by PAR method, CS
ratio is fixed to 0.1216 (5000 elements of 41107), and the
number of resolution units is 64× 64. Set network parameters
to default values (described at the beginning of this article), we
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Fig. 19. Experiment 2, curved wall 3-D imaging results, the top and bottom rows represent 4000 and 2000 elements, respectively. (a) MF. (b) OMP. (c) ISTA.
(d) FISTA. (e) ISTA-NET-plus. (f) CSR-Net.

Fig. 20. MMW experimental scenarios. (a) Scenario 1, simple target. (b)
Scenario 2, hidden targets.

Fig. 21. 3-D MMW reconstruction results of scenario 1 via different methods,
row 1 represent 3-D results, and row 2 are front views of them. (a) MF. (b) FISTA.
(c) CSR-Net.

trained a CSR-net with nine blocks. For the sake of fairness,
the parameters of the conventional FISTA algorithm are set to
be the same with CSR-NET initialization parameters. Taking
MF as the baseline, Fig. 21 shows 3-D imaging results of the
proposed method and the conventional FISTA algorithm. In
addition, to verify the adaptability of the proposed method to
different target scenes, the well-trained network was directly
applied to scenario 2. The imaging results are shown in Fig. 22.

Fig. 22. 3-D MMW reconstruction results of scenario 2 via different methods,
row 1 represent 3D results, and row 2 are front views of them. (a) MF. (b) FISTA.
(c) CSR-Net.

In Fig. 21, it can be observed that the FISTA and MF will bring
many artifacts and grating-lobes due to the lack of samples under
5000 sampling elements, but CSR-Net obtained compelling
reconstruction results. Note that Scenario 2 is the imaging scene
of the hidden object in the box, and the low-value region in the
figure represents the weak scattering region dominated by the
box. Similarly, imaging results in Fig. 22 demonstrate the MF
contains a significant amount of artifacts, FISTA loses a large
number of weak scattering targets, while CSR-NET achieved
more accurate reconstruction results. Therefore, the proposed
method is suitable not only for far-field LASAR 3-D imag-
ing but also for near-field MIMO MMW 3-D reconstruction,
the CSR-Net trained in Scenario 1 still achieves competitive
reconstruction performance on Scenario 2, showing its good
generalization ability.

2) Characteristic Analysis: Compared with the traditional
algorithm, the parameters of CSR-NET are learnable. In the
training process of the network, CSR-NET learns the optimal
parameters automatically, while the traditional algorithm needs
to manually debug these parameters, which requires a lot of time.
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In addition, CSR-NET adopts CNN to learn an optimal nonlinear
sparse representation process instead of the hand-crafted trans-
form basis in conventional algorithms. Therefore, CSR-NET
has a significant performance improvement and maintains an
efficient reconstruction speed. And CSR-NET also has a better
adaptability performance to weakly sparse scenes. Benefiting
from the feedforward data-path of CSR-Net, we can acceler-
ate it using GPU. But due to iterative nature of conventional
algorithms (OMP, ISTA, FISTA), they often suffer from high
data-dependence and low parallelism, which is not suitable for
GPU acceleration. This gives CSR-Net a speed gain of about two
orders of magnitude over conventional algorithms. However,
because the proposed method converts complex operations into
matrix operations and vectorizes 2-D scene slices, it requires
more memory than traditional algorithms, thus the imaging task
of large scenes is difficult to be realized directly. In future work,
we will exploit the effective method to apply CSR-NET to large
scene imaging tasks.

VI. CONCLUSION

In this article, we propose a novel 3-D microwave sparse
reconstruction method based on a complex-valued sparse re-
construction network (CSR-Net). First, aiming at getting a bet-
ter convergence performance, a shrinkage term derived from
FISTA is introduced to CSR-Net. In addition, CSR-Net adopts a
convolutional neural module to learn an optimal nonlinear spar-
sifying transform, which dramatically reduces computational
complexity and improves reconstruction performance. Further-
more, in order to ensure the generality of the measurement
matrix to slices, a 3-D microwave imaging correction scheme is
introduced to fix the phase difference of measurement data of
each slice. Considering the absence of measured data, the PAR
method is designed to train our network effectively. Finally,
experiments carried out on simulated and real-measured data
demonstrate the advanced accuracy and efficiency of the pro-
posed method, compared with the network-based ISTA-NET-
plus, conventional MF, OMP, ISTA, and FISTA algorithms. It is
of note that the proposed method is extremely fast in reconstruc-
tion, especially on GPU, we can envisage the proposed method to
be implemented in a real-time microwave imaging application.

Note that the proposed method converts complex number op-
erations to matrix operations, this will take up a too large amount
of memory resources to achieve large scene reconstruction. A
multichannel processing scheme may have great potential for
this work and deserves further attention.
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